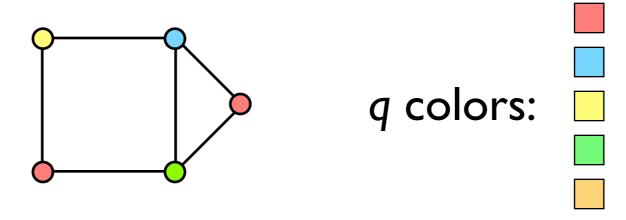
Improved FPTAS for Multi-spin Systems

Pinyan Lu Microsoft Research Asia Yitong Yin Nanjing University

presented by:
Sangxia Huang

Colorings

instance: undirected G(V,E) with max-degree $\leq \Delta$

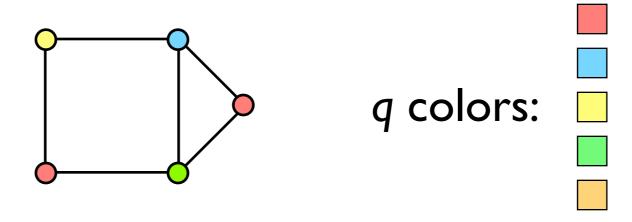


goal: counting the number of proper q-colorings for G

- exact counting is #P-hard
- when $q<\Delta$, decision of existence is **NP-hard**

Colorings

instance: undirected G(V,E) with max-degree $\leq \Delta$



goal: counting the number of proper q-colorings for G

- exact counting is #P-hard
- when $q<\Delta$, decision of existence is **NP-hard**

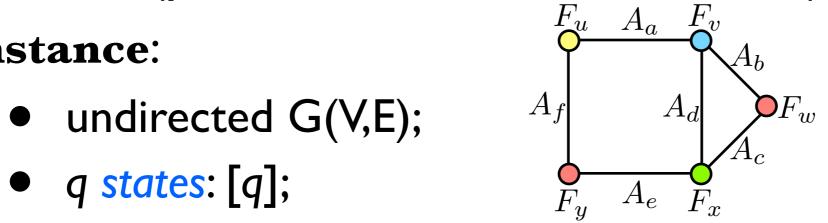
approximately counting the number of proper q-colorings for G when $q \ge \alpha \Delta + \beta$

equivalent to sampling an almost uniform random q-coloring

Spin System

(pairwise Markov random field)

instance:



• each edge $e \in E$ associated with an activity:

a symmetric nonnegative $q \times q$ matrix

$$A_e: [q] \times [q] \to \mathbb{R}_{\geq 0}$$

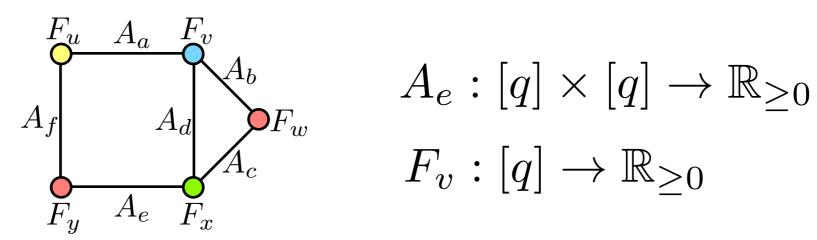
• each vertex $v \in V$ associated with an external field:

a nonnegative q-vector
$$\ F_v:[q] o \mathbb{R}_{>0}$$

goal: computing the partition function:

$$Z = \sum_{\boldsymbol{x} \in [q]^V} \prod_{e=uv \in E} A_e(x_u, x_v) \prod_{v \in V} F_v(x_v)$$

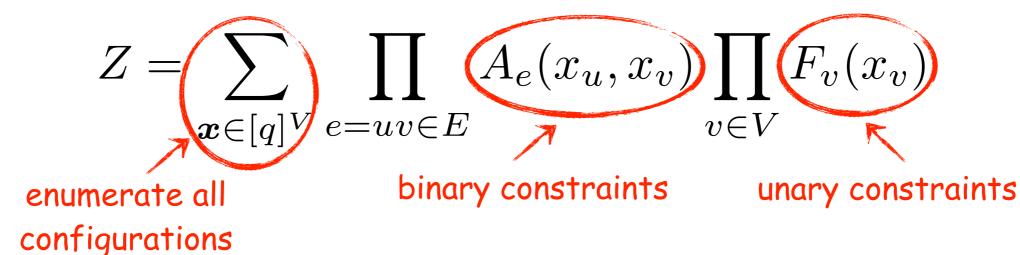
Spin System



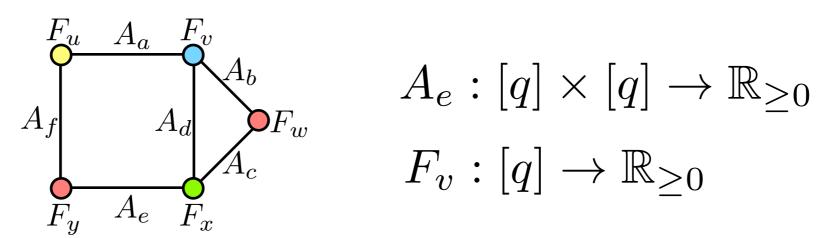
$$A_e: [q] \times [q] \to \mathbb{R}_{>0}$$

$$F_v:[q]\to\mathbb{R}_{\geq 0}$$

partition function: count the # of solutions to an CSP



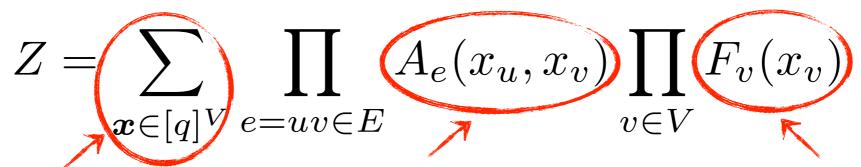
Spin System



$$A_e:[q]\times[q]\to\mathbb{R}_{\geq 0}$$

$$F_v: [q] \to \mathbb{R}_{\geq 0}$$

partition function: count the # of solutions to an CSP



enumerate all configurations binary constraints unary constraints

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$F = \begin{vmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{vmatrix}$$

Examples of Spin systems

- 2-spin: q=2
 - hardcore model (independent set), Ising model, etc.
- multi-spin: general q
 - coloring: $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ $F = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$

Examples of Spin systems

- 2-spin: q=2
 - hardcore model (independent set), Ising model, etc.
- multi-spin: general q
 - coloring: $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ $F = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$
 - Potts model: inverse temperature β

$$A = egin{bmatrix} \mathrm{e}^eta & 1 & \ 1 & \ddots & \ 1 & \ddots & \mathrm{e}^eta \end{bmatrix}$$
 arbitrary F

when $\beta=-\infty$ and F=(1,1,...,1), it is coloring

Results

sufficient conditions for FPTAS for classes of spin systems

- coloring: $q \ge \alpha \Delta + \beta$
 - randomized algorithms: by simulating a random walk (the Glauber dynamics) over colorings
 - α =11/6 (Jerrum'95···• Bubley-Dyer'97···• Vigoda'99)
 - deterministic algorithms: by exploiting the correlation decay (spatial mixing) property
 - $\alpha \approx 2.8432$ (Gamarnik-Katz'07)
 - just correlation decay (no FPTAS): α≈1.763
 (Goldberg-Martin-Paterson'05, Gamarnik-Katz-Misra'12)

this paper: deterministic FPTAS for α ≈2.58071

Results

sufficient conditions for FPTAS for classes of spin systems

• general multi-spin system:

in terms of
$$c = \max_{\substack{e \in E \\ w, x, y, z \in [q]}} \frac{A_e(x, y)}{A_e(w, z)}$$

• Gamarnik-Katz'07: $(c^{\Delta}-c^{-\Delta})\Delta q^{\Delta}<1$

this paper: $3\Delta(c^{\Delta}-1) \leq 1$

an exponential improvement!

• on Potts model (with inverse temperature β):

it implies: $3\Delta(e^{|\beta|}-1) \le 1$

Results

sufficient conditions for FPTAS for classes of spin systems

• general multi-spin system:

in terms of
$$c = \max_{\substack{e \in E \\ w, x, y, z \in [q]}} \frac{A_e(x, y)}{A_e(w, z)}$$

• Gamarnik-Katz'07: $(c^{\Delta}-c^{-\Delta})\Delta q^{\Delta}<1$

this paper: $3\Delta(c^{\Delta}-1)\leq 1$

an exponential improvement!

• on Potts model (with inverse temperature β):

it implies:
$$3\Delta(e^{|\beta|}-1) \leq 1$$

- ullet confirming the conjecture of $|eta|=O\left(rac{1}{\Delta}
 ight)$ in [GK'07]
- \bullet asymptotically matching the $\,{\rm e}^{\beta}<1-\frac{q}{\Delta}\,$ inaproximability bound for $\beta<0\,$ in [Galanis-Stefankovic-Vigoda'13]

reducing to the computing of marginal probability

$$Z = \sum_{\boldsymbol{x} \in [q]^V} \prod_{e=uv \in E} A_e(x_u, x_v) \prod_{v \in V} F_v(x_v)$$

for any configuration $x \in [q]^V$

Gibbs measure:

$$\mathbb{P}[\boldsymbol{X} = \boldsymbol{x}] = \frac{\prod_{e=uv \in E} A_e(x_u, x_v) \prod_{v \in V} F_v(x_v)}{Z}$$

marginal probability: $\mathbb{P}[X_v = x_v]$

reducing to the computing of marginal probability

$$Z = \sum_{\boldsymbol{x} \in [q]^V} \prod_{e=uv \in E} A_e(x_u, x_v) \prod_{v \in V} F_v(x_v)$$

for any configuration $x \in [q]^V$

Gibbs measure:

$$\mathbb{P}[\boldsymbol{X} = \boldsymbol{x}] = \frac{\prod_{e=uv \in E} A_e(x_u, x_v) \prod_{v \in V} F_v(x_v)}{Z}$$

marginal probability: $\mathbb{P}[X_v = x_v]$

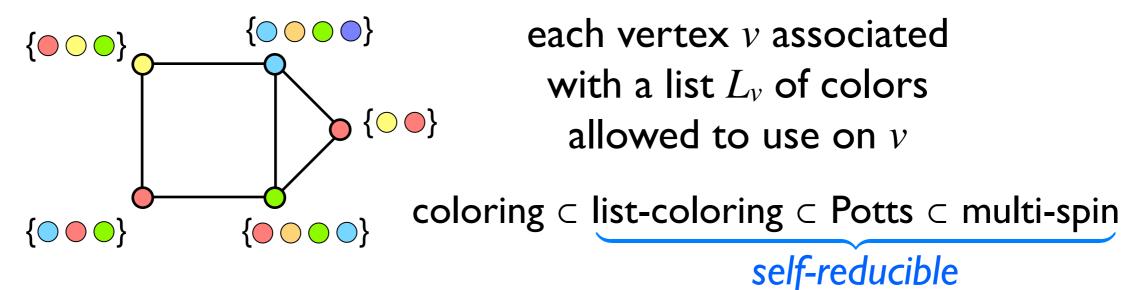
Jerrum-Valiant-Vazirani'86

for self-reducible class of spin-systems:

efficient approximation of marginal probability \Box FPTAS for Z(with additive error)

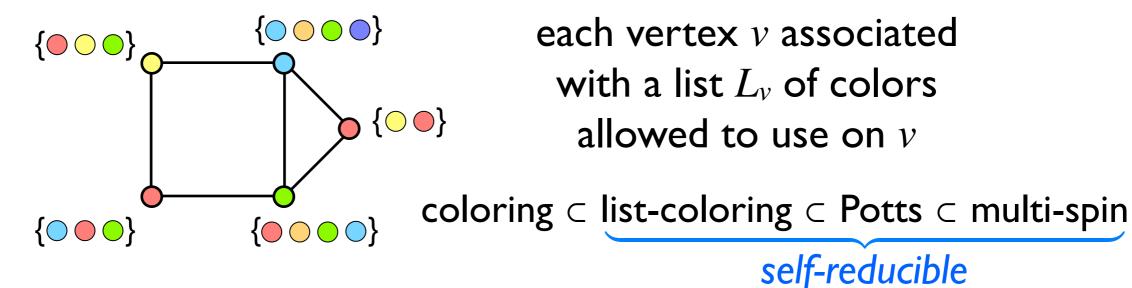
- self-reducible: general spin systems, Potts models
- not self-reducible: coloring
- self-reducible superclass of coloring: list-coloring

instance: undirected G(V,E)



- self-reducible: general spin systems, Potts models
- not self-reducible: coloring
- self-reducible superclass of coloring: list-coloring

instance: undirected G(V,E)

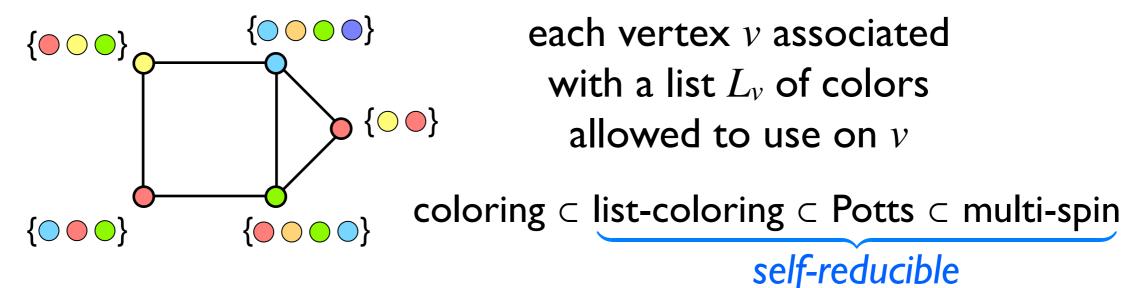


new goal:

for
$$\left\{ egin{array}{ll} \mbox{multi-spin system} \\ \mbox{Potts model} \\ \mbox{list-coloring} \end{array} \right\}$$
 approximate the marginal $\mathbb{P}[X_v=x]$ (with additive error)

- self-reducible: general spin systems, Potts models
- not self-reducible: coloring
- self-reducible superclass of coloring: list-coloring

instance: undirected G(V,E)



new goal:

for
$$\left\{ egin{array}{ll} \mbox{multi-spin system} \\ \mbox{Potts model} \\ \mbox{list-coloring} \end{array} \right\}$$
 approximate the marginal $\mathbb{P}[X_v=x]$ (with additive error)

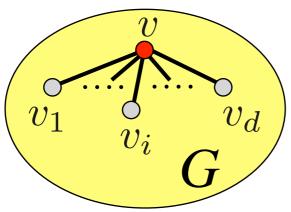
classic way: random walk new way: correlation decay

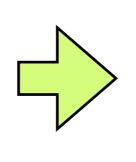
Recursion for List-Coloring

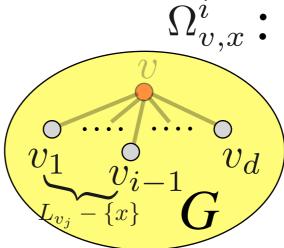
list-coloring instance Ω

v's neighbors: v_1, v_2, \ldots, v_d

color: x







 $\Omega_{v,x}^{i}$: delete v $\forall j < i$, delete xfrom list $L_{v_{j}}$

Gamarnik-Katz'07:

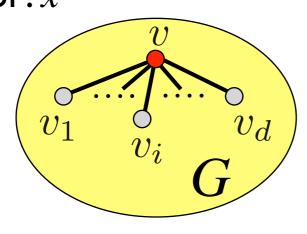
$$\mathbb{P}_{\Omega}(X_{v} = x) = \frac{\prod_{i=1}^{d} \mathbb{P}_{\Omega_{v,x}^{i}}(X_{v_{i}} \neq x)}{\sum_{y \in L_{v}} \prod_{i=1}^{d} \mathbb{P}_{\Omega_{v,x}^{i}}(X_{v_{i}} \neq y)}$$

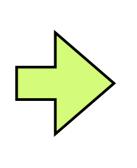
$$= \frac{\prod_{i=1}^{d} \left(1 - \mathbb{P}_{\Omega_{v,x}^{i}}(X_{v_{i}} = x)\right)}{\sum_{y \in L_{v}} \prod_{i=1}^{d} \left(1 - \mathbb{P}_{\Omega_{v,x}^{i}}(X_{v_{i}} = y)\right)}$$

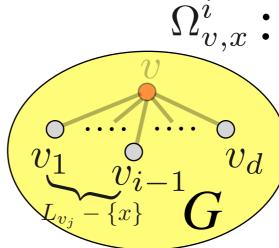
Recursion for List-Coloring

list-coloring instance Ω

v's neighbors: v_1, v_2, \ldots, v_d color: x







 $\Omega_{v,x}^{i}$: delete v $\forall j < i$, delete xfrom list $L_{v_{j}}$

Gamarnik-Katz'07:

$$\begin{split} \mathbb{P}_{\Omega}(X_v = x) &= \frac{\prod_{i=1}^d \mathbb{P}_{\Omega^i_{v,x}}(X_{v_i} \neq x)}{\sum_{y \in L_v} \prod_{i=1}^d \mathbb{P}_{\Omega^i_{v,x}}(X_{v_i} \neq y)} \text{products} \\ &= \frac{\prod_{i=1}^d \left(1 - \mathbb{P}_{\Omega^i_{v,x}}(X_{v_i} = x)\right)}{\sum_{y \in L_v} \prod_{i=1}^d \left(1 - \mathbb{P}_{\Omega^i_{v,x}}(X_{v_i} = y)\right)} \end{split}$$

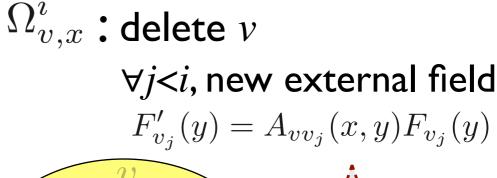
Recursion for general multi-spin system

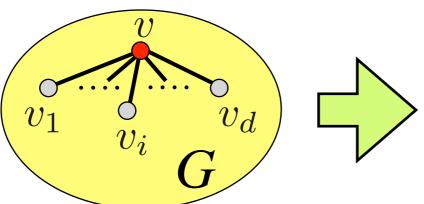
a natural generalization of list-coloring:

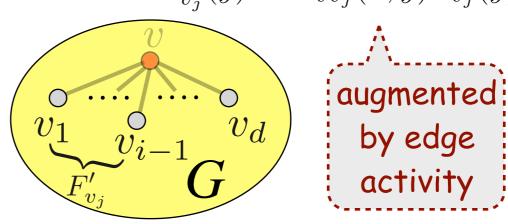
multi-spin system Ω

v's neighbors: v_1, v_2, \ldots, v_d

state: x







$$\mathbb{P}_{\Omega}(X_{v} = x) = \frac{F_{v}(x) \prod_{i=1}^{d} \left(A_{vv_{i}}(x, x) - \sum_{z \neq x} \left(A_{vv_{i}}(x, x) - A_{vv_{i}}(x, z)\right) \mathbb{P}_{\Omega_{v, x}^{i}}(X_{v_{i}} = z)\right)}{\sum_{y \in [q]} F_{v}(y) \prod_{i=1}^{d} \left(A_{vv_{i}}(y, y) - \sum_{z \neq y} \left(A_{vv_{i}}(y, y) - A_{vv_{i}}(y, z)\right) \mathbb{P}_{\Omega_{v, y}^{i}}(X_{v_{i}} = z)\right)}$$

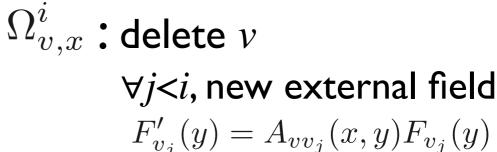
Recursion for general multi-spin system

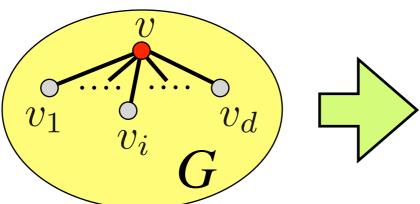
a natural generalization of list-coloring:

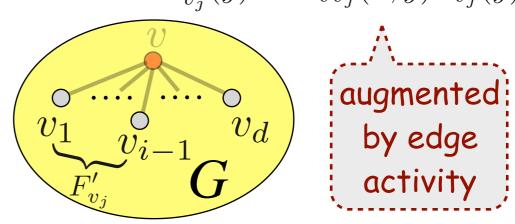
multi-spin system Ω

v's neighbors: v_1, v_2, \ldots, v_d

state: *x*







$$\mathbb{P}_{\Omega}(X_{v} = x) = \frac{F_{v}(x) \prod_{i=1}^{d} \left(A_{vv_{i}}(x,x) - \sum_{z \neq x} \left(A_{vv_{i}}(x,x) - A_{vv_{i}}(x,z) \right) \mathbb{P}_{\Omega_{v,x}^{i}}(X_{v_{i}} = z) \right)}{\sum_{y \in [q]} F_{v}(y) \prod_{i=1}^{d} \left(A_{vv_{i}}(y,y) - \sum_{z \neq y} \left(A_{vv_{i}}(y,y) - A_{vv_{i}}(y,z) \right) \mathbb{P}_{\Omega_{v,y}^{i}}(X_{v_{i}} = z) \right)}$$

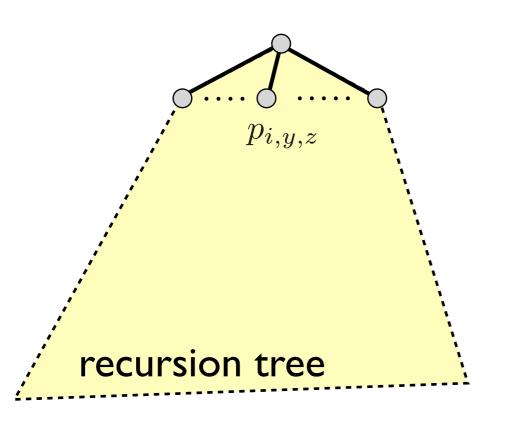
for list-coloring: special case

$$\mathbb{P}_{\Omega}(X_{v} = x) = \frac{\prod_{i=1}^{d} \left(1 - \mathbb{P}_{\Omega_{v,x}^{i}}(X_{v_{i}} = x)\right)}{\sum_{y \in L_{v}} \prod_{i=1}^{d} \left(1 - \mathbb{P}_{\Omega_{v,x}^{i}}(X_{v_{i}} = y)\right)}$$

vector $p = (p_{i,y,z})_{1 \leq i \leq d; y,z \in [q]; y \neq z}$ where $p_{i,y,z} = \mathbb{P}_{\Omega^i_{v,y}}(X_{v_i} = z)$

$$f(\mathbf{p}) = \frac{F_v(x) \prod_{i=1}^d (A_{vv_i}(x,x) - \sum_{z \neq x} (A_{vv_i}(x,x) - A_{vv_i}(x,z)) p_{i,x,z})}{\sum_{y \in [q]} F_v(y) \prod_{i=1}^d (A_{vv_i}(y,y) - \sum_{z \neq y} (A_{vv_i}(y,y) - A_{vv_i}(y,z)) p_{i,y,z})}$$

$$\mathbb{P}_{\Omega}[X_v = x] = f(\boldsymbol{p})$$

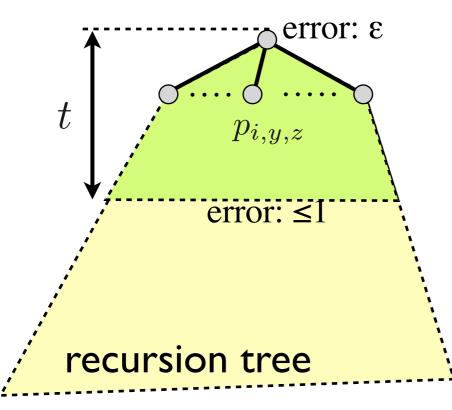


 an exponential-time exact algorithm

vector $p = (p_{i,y,z})_{1 \leq i \leq d; y,z \in [q]; y \neq z}$ where $p_{i,y,z} = \mathbb{P}_{\Omega^i_{v,y}}(X_{v_i} = z)$

$$f(\mathbf{p}) = \frac{F_v(x) \prod_{i=1}^d (A_{vv_i}(x,x) - \sum_{z \neq x} (A_{vv_i}(x,x) - A_{vv_i}(x,z)) p_{i,x,z})}{\sum_{y \in [q]} F_v(y) \prod_{i=1}^d (A_{vv_i}(y,y) - \sum_{z \neq y} (A_{vv_i}(y,y) - A_{vv_i}(y,z)) p_{i,y,z})}$$

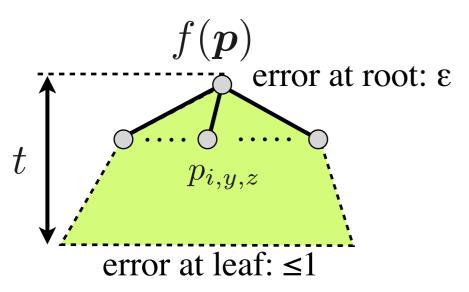
$$\mathbb{P}_{\Omega}[X_v = x] = f(\boldsymbol{p})$$



- an exponential-time exact algorithm
- truncation:
 - compute up-to level *t*
 - use arbitrary estimation at level t

correlation decay:

error at root $\varepsilon = \exp(-\Omega(t))$



correlation decay:

error at root $\varepsilon = \exp(-\Omega(t))$

if running the recursion up-to level t

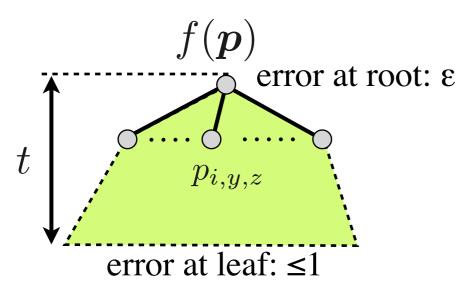
$$p_{i,y,z}$$

a sufficient condition: at any step
$$\kappa \triangleq \sum_{i,y,z} \left| \frac{\partial f(\boldsymbol{p})}{\partial p_{i,y,z}} \right| < 1 \quad \text{(stepwise decay)}$$

then due to the Mean Value Theorem

$$\epsilon \leq \sum_{i,y,z} \left| \frac{\partial f(\mathbf{p})}{\partial p_{i,y,z}} \right| \epsilon_{i,y,z} \leq \kappa \cdot \max_{i,y,z} \epsilon_{i,y,z}$$

induction!

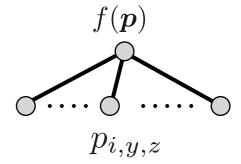


correlation decay:

error at root $\varepsilon = \exp(-\Omega(t))$

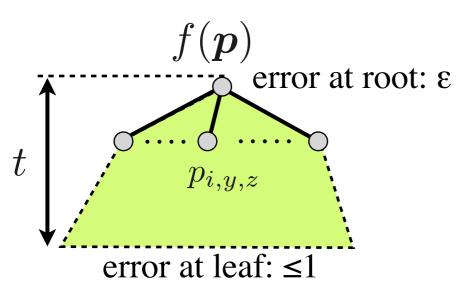
if running the recursion up-to level t

a sufficient condition: at any step
$$\kappa \triangleq \sum_{i,y,z} \left| \frac{\partial f(\boldsymbol{p})}{\partial p_{i,y,z}} \right| < 1 \quad \text{(stepwise decay)}$$



then due to the Mean Value Theorem

$$\epsilon \leq \sum_{i,y,z} \left| \frac{\partial f(\boldsymbol{p})}{\partial p_{i,y,z}} \right| \epsilon_{i,y,z} \leq \kappa \cdot \max_{i,y,z} \epsilon_{i,y,z}$$
 induction!

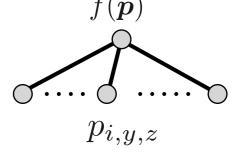


correlation decay:

error at root $\varepsilon = \exp(-\Omega(t))$

if running the recursion up-to level t

a sufficient condition: at any step



$$\kappa \triangleq \sum_{i,y,z} \left| \frac{\partial f(\boldsymbol{p})}{\partial p_{i,y,z}} \right| < 1$$
 (stepwise decay)

then due to the Mean Value Theorem

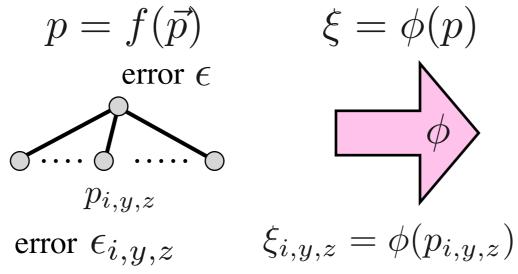
$$\epsilon \leq \sum_{i,y,z} \left| \frac{\partial f(\boldsymbol{p})}{\partial p_{i,y,z}} \right| \epsilon_{i,y,z} \leq \kappa \cdot \max_{i,y,z} \epsilon_{i,y,z}$$

induction!

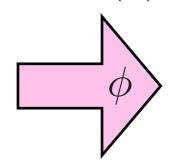
amortized behavior correlation decay?

error ϵ stepwise decay

original:



$$\xi = \phi(p)$$

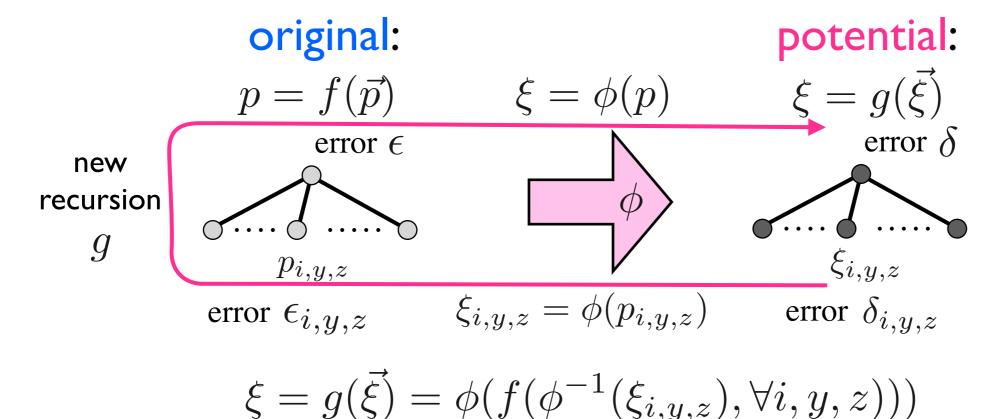


$$\xi_{i,y,z} = \phi(p_{i,y,z})$$

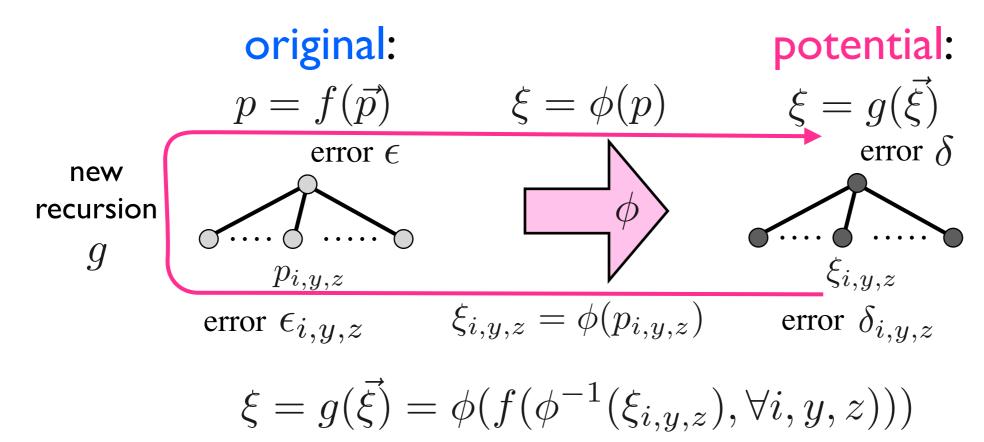
potential:

$$\xi = g(\vec{\xi})$$
error δ

$$\xi_{i,y,z}$$
error $\delta_{i,y,z}$

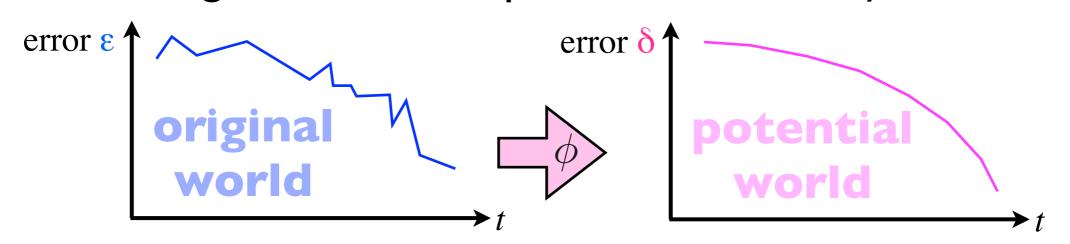


let
$$\Phi(x) = \frac{\mathrm{d}\,\phi(x)}{\mathrm{d}\,x}$$
 by Mean Value Thm: $\delta \leq \sum_{i,y,z} \left| \frac{\partial f(\boldsymbol{p})}{\partial p_{i,y,z}} \right| \frac{\Phi(f(\boldsymbol{p}))}{\Phi(p_{i,y,z})} \delta_{i,y,z}$

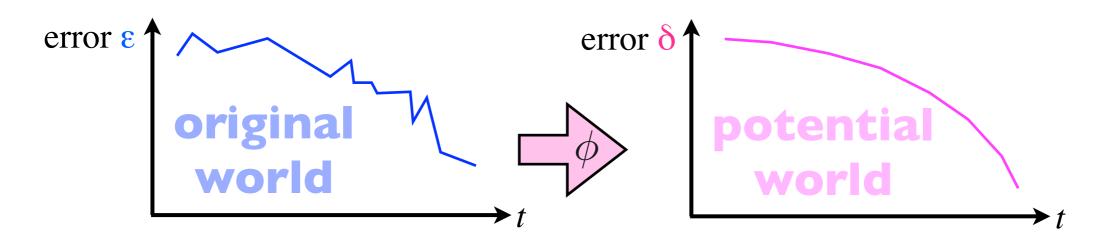


let
$$\Phi(x) = \frac{\mathrm{d}\,\phi(x)}{\mathrm{d}\,x}$$
 by Mean Value Thm: $\delta \leq \sum_{i,y,z} \left| \frac{\partial f(\boldsymbol{p})}{\partial p_{i,y,z}} \right| \frac{\Phi(f(\boldsymbol{p}))}{\Phi(p_{i,y,z})} \delta_{i,y,z}$

with good choice of potential function ϕ :



$$\delta \leq \sum_{i,y,z} \left| \frac{\partial f(\boldsymbol{p})}{\partial p_{i,y,z}} \right| \frac{\Phi(f(\boldsymbol{p}))}{\Phi(p_{i,y,z})} \delta_{i,y,z}$$



- The potential method has been used for analyzing the correlation decay in 2-spin systems (Restrepo-Shin-Tetali-Vigoda-Yang'11, Sinclair-Srivastava-Thurley'12, Li-Lu-Yin'12, Li-Lu-Yin'13, Sinclair-Srivastava-Yin'13).
- This is the first time it is used for multi-spin systems.

amortized decay condition:

 \exists a positive-valued function $\Phi(p)$, s.t.

- ullet at any step, we have $\sum_{i,y,z}\left|rac{\partial f(m{p})}{\partial p_{i,y,z}}
 ight|rac{\Phi(f(m{p}))}{\Phi(p_{i,y,z})}<1$
- \bullet the values of $\Phi(p)$ and $\frac{1}{\Phi(p)}$ are bounded over domain

amortized decay condition:

 \exists a positive-valued function $\Phi(p)$, s.t.

- ullet at any step, we have $\sum_{i,y,z}\left|rac{\partial f(m{p})}{\partial p_{i,y,z}}
 ight|rac{\Phi(f(m{p}))}{\Phi(p_{i,y,z})}<1$
- \bullet the values of $\Phi(p)$ and $\frac{1}{\Phi(p)}$ are bounded over domain

control the costs of translating initially from and finally back to the original world

amortized decay condition:

 \exists a positive-valued function $\Phi(p)$, s.t.

- ullet at any step, we have $\sum_{i,y,z}\left|rac{\partial f(m{p})}{\partial p_{i,y,z}}
 ight|rac{\Phi(f(m{p}))}{\Phi(p_{i,y,z})}<1$
- ullet the values of $\Phi(p)$ and $\frac{1}{\Phi(p)}$ are bounded over domain

control the costs of translating initially from and finally back to the original world

by induction: for the considered classes of spin systems

amortized exponential decay condition correlation decay

amortized decay condition:

 \exists a positive-valued function $\Phi(p)$, s.t.

- ullet at any step, we have $\sum_{i,y,z}\left|rac{\partial f(m{p})}{\partial p_{i,y,z}}
 ight|rac{\Phi(f(m{p}))}{\Phi(p_{i,y,z})}<1$
- the values of $\Phi(p)$ and $\frac{1}{\Phi(p)}$ are bounded over domain

control the costs of translating initially from and finally back to the original world

by induction: for the considered classes of spin systems

amortized exponential decay condition correlation decay

FPTAS efficient approximation of marginal probability

for general multi-spin systems: with max-degree Δ

choose
$$\Phi(p) = \frac{1}{p+\eta}$$
 with small enough $\eta > 0$

denoted
$$c = \max_{\substack{e \in E \\ w, x, y, z \in [q]}} \frac{A_e(x, y)}{A_e(w, z)}$$

$$3\Delta(c^{\Delta}-1) \leq 1 \qquad \text{amortized} \\ \text{decay condition}$$
 (by easy calculation)

for Potts model (with inverse temperature β):

directly translated to $3\Delta(e^{|\beta|}-1) \le 1$

for general multi-spin systems: with max-degree Δ

choose
$$\Phi(p) = \frac{1}{p+\eta}$$
 with small enough $\eta > 0$

denoted
$$c = \max_{\substack{e \in E \\ w, x, y, z \in [q]}} \frac{A_e(x, y)}{A_e(w, z)}$$

$$3\Delta(c^{\Delta}-1) \leq 1 \qquad \qquad \text{amortized} \\ \text{decay condition} \\ \text{(by easy calculation)}$$

for Potts model (with inverse temperature β):

directly translated to
$$3\Delta(e^{|\beta|}-1) \le 1$$

* Other potential functions may further improve the constant factor (but may be harder to analyze).

for list-coloring: with max-degree Δ , each vertex v with color list L_v

choose
$$\Phi(p) = \frac{1}{(1-p)\sqrt{p}}$$

observing that for list-coloring satisfying the condition, marginals are always bounded away from both 0 and 1

$$|L_v| \geq \alpha \Delta + 1 \qquad \text{amortized}$$
 decay condition (by more involved calculation)

for coloring: replacing $|L_v|$ with q

for list-coloring: with max-degree Δ , each vertex v with color list L_v

choose
$$\Phi(p) = \frac{1}{(1-p)\sqrt{p}}$$

observing that for list-coloring satisfying the condition, marginals are always bounded away from both 0 and 1

$$|L_v| \geq \alpha \Delta + 1 \qquad \text{amortized} \\ \alpha \approx 2.58071 \qquad \text{decay condition}$$
 (by more involved calculation)

for coloring: replacing $|L_v|$ with q

* The potential functions are chosen in an ad hoc way.

Open Problem

- Find a more systematic way for designing good potential functions.
- Further improve the bounds for correlation decay and FPTAS for multi-spin systems.
- For coloring: α=2 is a barrier for the approach due to the overheads caused by total differentiation. Overcome this barrier.