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Colorings

instance: undirected G(V,E) with max-degree <A

® (
g colors:
O e

goal: counting the number of proper g-colorings for G

* exact counting is #P-hard

* when g<A, decision of existence is NP-hard




Colorings

instance: undirected G(V,E) with max-degree <A

® (
g colors:
O e

goal: counting the number of proper g-colorings for G

* exact counting is #P-hard

* when g<A, decision of existence is NP-hard

approximately counting the number of
proper g-colorings for G when g =0A+)3

equivalent to sampling an almost uniform random g-coloring




Spin System

(pairwise Markov random field)
. ., A, F
instance: o

e undirected G(V,E);

® ¢ states: [q]; 1 2
® cach edge ecE associated with an activity:

a symmetric honnegative gXg matrix
Ae : g] % [g] = Rxg

® cach vertex veV associated with an external field:

a nonnegative g-vector F}, : [q] = R>g

goal: computing the partition function:
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O
F, 4 F,

partition function: count the # of solutions to an CSP

P i J——

P ——— ) _
V& > p
4 :

enumerate al
configurations

coloring: A=




Examples of Spin systems

® 2-spin: g=2

® hardcore model (independent set), Ising model, etc.

® multi-spin: general g
® coloring: .- ;1




Examples of Spin systems

® 2-spin: g=2

® hardcore model (independent set), Ising model, etc.
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® coloring: 4| ™
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® Potts model: inverse temperature 3

arbitrary F

when =- and F=(1,1,... ,1),it is coloring




Results

sufficient conditions for FPTAS for classes of spin systems

® coloring: g =0 A+f3

® randomized algorithms: by simulating a random walk
(the Glauber dynamics) over colorings

® a=11/6 (Jerrum’95-*Bubley-Dyer’'97-*Vigoda’99)

® deterministic algorithms: by exploiting the
correlation decay (spatial mixing) property

® (=2.8432 (Gamarnik-Katz’07)

® just correlation decay (no FPTAS): a=1.763
(Goldberg-Martin-Paterson’05, Gamarnik-Katz-Misra’12)

this paper: deterministic FPTAS for a=2.58071




Results

sufficient conditions for FPTAS for classes of spin systems

® general multi-spin system:

A
interms of ¢c= max (7, 9)
ecE  A.(w, 2)
w,x,yY,2€|q]

e Gamarnik-Katz’07: (c® —c¢ 2)A¢® <1

an exponential
improvement!

this paper: 3A(c® —1) <1

® on Potts model (with inverse temperature f3):

it implies: 3A(e”l —1) <1




Results

sufficient conditions for FPTAS for classes of spin systems

® general multi-spin system:

A
interms of ¢c= max (7, 9)
ecE  A.(w, 2)
w,x,yY,2€|q]

e Gamarnik-Katz’07: (c® —c¢ 2)A¢® <1

this paper: 3A(c® —1) <1

an exponential
improvement!

® on Potts model (with inverse temperature f3):

it implies: 3A(e”l —1) <1

® confirming the conjecture of |3| = (i) in [GK’07]

® asymptotically matching the ef < 1— + inaproximability
bound for 3 < 0 in [Galanis-Stefankovic-Vigoda’l3]




The standard first step:

reducing to the computing of marginal probability

Z—Z H A (Lo, 2y) HFZUU
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for any configuration x € g

Gibbs measure;

He:uUEE Ae(xfuﬂ :U’U) HUEV FU (ij)
/

marginal probability: P[X, = z,]

P X = x| =




The standard first step:

reducing to the computing of marginal probability

Z—Z H A (Lo, 2y) HFZUU

V e=uvekl veV

for any configuration z € [q]”

Gibbs measure;

He:uUEE AB(xU? ZB’U) HUEV FU (ij)
/

marginal probability: P[X, = z,]

P X = x| =

Jerrum-Valiant-Vazirani’86

for self-reducible class of spin-systems:
efficient approximation

of marginal probability > FPTAS for Z

(with additive error)




The standard first step:

e self-reducible: general spin systems, Potts models

* not self-reducible: coloring

e self-reducible superclass of coloring; list-coloring

instance: undirected G(V,E)

{000 @} each vertex v associated
] with a list L, of colors
allowed to use on v

{00}

e

{0000}

coloring c list-coloring ¢ Potts c multi-spin

selﬁregucible
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The standard first step:

e self-reducible: general spin systems, Potts models
* not self-reducible: coloring
e self-reducible superclass of coloring; list-coloring

instance: undirected G(V,E)

{000 @} each vertex v associated
] with a list L, of colors
allowed to use on v

{00}

e

{00 0} {0000}

coloring c list-coloring ¢ Potts c multi-spin

self-regucible

new goal:

for {mUIt"SPm SyStem} approximate the marginal

Potts model

list-coloring P| X, = x| (with additive error)

classic way: random walk new way: correlation decay



Recursion for List-Coloring

list-coloring instance ()

v’s neighbors: v1,v2,...,0q

color: x

Vj<i, delete x
from list L,

Gamarnik-Katz’07:
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Recursion for List-Coloring

list-coloring instance ()

v’s neighbors: v1,v2,...,0q

color: x

Vj<i, delete x
from list L,

Gamarnik-Katz’'07:
A dlg=1 "Ry p \T UV 7




Recursion for general multi-spin system

a natural generalization of list-coloring:

multi-spin system () v,z - delete v

Vs neighbors: U1, U2, . . ., Vg Vj<i, new external field

state: x Ey (y) = Ay, (2, 9) Fy, (y)

i'augmen’red‘i
. by edge
. activity

F,(z) [T, (Awi (z,2) =3, 4 (Ave; (2,3)— Ay, (x,z))P%w (Xo, :z)>

Zyg[q] F’U (y) Hglzl (Avvi (yay)_zz;éy (A’U’U,L' (yay)_Avvi (yaz))PQ}U’y (sz :Z)>




Recursion for general multi-spin system

a natural generalization of list-coloring:

multi-spin system () v,z - delete v

Vs neighbors: U1, U2, . . ., Vg Vj<i, new external field

state: x Ey (y) = Ay, (2, 9) Fy, (y)

i'augmen’red‘i
. by edge
. activity

F,(z) [T, (Awi (z,2) =3, 4 (Ave; (2,3)— Ay, (x,z))P%w (Xo, :z)>

Zyg[q] F’U (y) Hglzl (Av'vi (yay)_zz;éy (A’U’U,L' (yay)_Avvi (yaz))PQ}U’y (sz :Z)>

for list-coloring: special case
Hgizl (1 _ PQ%w (sz




Correlation Decay

vector P = (pi,y,z)lgigd;y,zE[q];y#z where piy,. = ]P)Q;ﬁ,y (Xm — Z)

Fo(2) [T (Avw; (2,2) =32, Lo (Ao, (2,2) = Ayy, (2,2) ) Pi o, 2 )
Zyg[q] FU (y) ngl (A’U”Ui (yay)_Zzyéy (A’Ufui (yay)_A’Ufui (yaz>)pi,y,z)

® an exponential-time exact
algorithm

recursion tree




Correlation Decay

Fo(2) [T (Avw; (2,2) =32, Lo (Ao, (2,2) = Ayy, (2,2) ) Pi o, 2 )
Zyg[q] F’U (y) szzl (A’U”Ui (yay)_Zzyéy (A’U”Ui (yay)_A’Ufui (yaz>)pi,y,z)

® an exponential-time exact
algorithm

® truncation:

® compute up-to level t

® use arbitrary estimation at level t

correlation decay:
error at root € = exp(-£2(t))




Correlation Decay

correlation decay:
error at root: €

error at root € = exp(-£2(t))

if running the recursion up-to level t

error at leaf: <1 : f(p)

a sufficient condition:

REDY ofp)| (stepwise decay)

OPiy,»

Z7y7z

then due to the Mean Value Theorem

€iy,z S K-MAX €}y »
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Correlation Decay

correlation decay:
error at root: €

error at root € = exp(-£2(t))

if running the recursion up-to level t

error at leaf: <1 : f(p)

a sufficient condition:

REDY ofp)| (stepwise decay)

OPiy,»

Z7y7z

then due to the Mean Value Theorem
decay at every step!

€iy,z S\K) NAX €y »

A

CITOr €
amortized behavior

correlation decay? amortized decay

stepwise decay
> [




The Potential Method

original: potential:

¢ = o(p)




The Potential Method

original: potential:

p=f0)  &£=9)  &=g()

-

new
recursion

g

\_ .
eITor €; 4 » fz‘,y,z — Qb(pi,y,z)

§=9(&) = d(f(d (&iy,z), Vi y,Z)))

let o) = “““) by Mean Value Thm: s< 3" |7 apzyz | 2 (p”)a

1,Y,2




The Potential Method

original: potential:

p=f0)  &£=9)  &=g()

-

new
recursion

g

\_ .
eITor €; 4 » fz‘,y,z — Qb(pi,y,z)

§=9(&) = d(f(d (&iy,z), Vi y,Z)))

et o)~ 1) by MeanValue Thm: < 3~ | /(2| 25

1,Y,2

with good choice of potential function ¢ :
A A

error ¢ error &

> f > |




The Potential Method

5§Z of(p)

OPiy,»

ll’7y7z

error O
/\/\/\x\/L }

> [

A

® The potential method has been used for analyzing the
correlation decay in 2-spin systems (Restrepo-Shin-Tetali-
Vigoda-Yang'l1, Sinclair-Srivastava-Thurley’12, Li-Lu-Yin’12,
Li-Lu-Yin’13, Sinclair-Srivastava-Yin’13).

® This is the first time it is used for multi-spin systems.




Amortized Correlation Decay

amortized decay condition:

3 a positive-valued function ®(p),s.t.

of(p) | 2(f(p))
apz’,y,z (I)(pz,y,z)

® at any step, we have D <1

Z7y7z

® the values of ®(p) and ﬁ are bounded over domain
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® the values of ®(p) and @(p) are bounded over domain

control the costs of ‘rr'ansla’rmg mmally from
and finally back to the original world
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Amortized Correlation Decay

amortized decay condition:

3 a positive-valued function ®(p),s.t.

(p) ®(f(p))

<1

® at any step, we have D

1,Y,2

® the values of ®(p) and @(p) are bounded over domain

control the costs of ‘rr'ansla’rmg mmally from
and finally back to the original world

by induction: for the considered classes of spin systems

amortized > exponential

decay condition correlation decay

efficient a\{ imation
ICi pproximatio
FPTAS < of marginal probability




Establishing the Decay

for general multi-spin systems: with max-degree A

choose ®(p) = L with small enough 7 > 0

P+

denoted ¢ = max
ec

w,x,y,2€(q]

A amortized
—1) <1
3Ae ) < > decay condition

(by easy calculation)

for Potts model (with inverse temperature j3):

directly translated to 3A(e/?l — 1) <1




Establishing the Decay

for general multi-spin systems: with max-degree A

choose ®(p) = L with small enough 7 > 0

P+

denoted ¢ = max
ec

w,x,y,2€(q]

ized
A(A 1) <1 amortize
3Ae ) < > decay condition

(by easy calculation)

for Potts model (with inverse temperature j3):

directly translated to 3A(e/?l — 1) <1

* Other potential functions may further improve the constant factor
(but may be harder to analyze).




Establishing the Decay

for list-coloring: with max-degree A,

each vertex v with color list L,
1

(1—p)\/p

observing that for list-coloring satisfying the condition,
marginals are always bounded away from both 0 and 1

choose ®(p) =

Yo, |Ly| > aA+1 > amortized
de

a=2.58071 cay condition

(by more involved calculation)

for coloring: replacing | L, | with g




Establishing the Decay

for list-coloring: with max-degree A,

each vertex v with color list L,
1

(1—p)\/p

observing that for list-coloring satisfying the condition,
marginals are always bounded away from both 0 and 1

choose ®(p) =

Yo, |Ly| > aA+1 > amortized
de

a=2.58071 cay condition

(by more involved calculation)

for coloring: replacing | L, | with g

* The potential functions are chosen in an ad hoc way.




Open Problem

® Find a more systematic way for designing
good potential functions.

® Further improve the bounds for correlation
decay and FPTAS for multi-spin systems.

® For coloring: a=2 is a barrier for the
approach due to the overheads caused by
total differentiation. Overcome this barrier.




