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Colorings
instance:  undirected G(V,E) with max-degree ≤Δ

goal:  counting the number of proper q-colorings for G

q colors:

• exact counting is #P-hard

• when q<Δ , decision of existence is NP-hard



Colorings
instance:  undirected G(V,E) with max-degree ≤Δ

goal:  counting the number of proper q-colorings for G

q colors:

• exact counting is #P-hard

• when q<Δ , decision of existence is NP-hard

approximately counting the number of 
proper q-colorings for G when q ≥αΔ+β

equivalent to sampling an almost uniform random q-coloring



Spin System
(pairwise Markov random field)

• undirected G(V,E);

• q states: [q];

• each edge e∈E associated with an activity:

• each vertex v∈V associated with an external field:

Ae : [q]⇥ [q] ! R�0

a symmetric nonnegative q×q matrix

Fv : [q] ! R�0a nonnegative q-vector

instance:
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X
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Y
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Ae(xu, xv)
Y

v2V
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goal:  computing the partition function:
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Ae : [q]⇥ [q] ! R�0
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coloring:

partition function:  count the # of solutions to an CSP



• 2-spin:  q=2

• hardcore model (independent set), Ising model, etc.

• multi-spin:  general q

• coloring:

Examples of Spin systems
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• 2-spin:  q=2

• hardcore model (independent set), Ising model, etc.

• multi-spin:  general q

• coloring:

• Potts model:  inverse temperature β

Examples of Spin systems
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Results

• coloring: q ≥αΔ+β

• randomized algorithms: by simulating a random walk 
(the Glauber dynamics) over colorings

• α=11/6 (Jerrum’95⇢Bubley-Dyer’97⇢Vigoda’99)

• deterministic algorithms: by exploiting the 
correlation decay (spatial mixing) property 

• α≈2.8432 (Gamarnik-Katz’07)

• just correlation decay (no FPTAS): α≈1.763 
(Goldberg-Martin-Paterson’05, Gamarnik-Katz-Misra’12)

sufficient conditions for FPTAS for classes of spin systems 

this paper:  deterministic FPTAS for α≈2.58071



Results

• general multi-spin system:

• Gamarnik-Katz’07:

• on Potts model (with inverse temperature β):

sufficient conditions for FPTAS for classes of spin systems 

(c� � c��)�q� < 1

in terms of 
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c = max
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  this paper:              3�(c� � 1)  1
an exponential
improvement!



Results

• general multi-spin system:

• Gamarnik-Katz’07:

• on Potts model (with inverse temperature β):

sufficient conditions for FPTAS for classes of spin systems 

(c� � c��)�q� < 1

in terms of 

  it implies:              3�(e|�| � 1)  1
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e2E

w,x,y,z2[q]
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(x, y)
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(w, z)

  this paper:              3�(c� � 1)  1

• confirming the conjecture of                     in [GK’07]

• asymptotically matching the                     inaproximability 
bound for            in [Galanis-Stefankovic-Vigoda’13]

e� < 1� q
�

� < 0

|�| = O
�

1
�

�

an exponential
improvement!



The standard first step:
reducing to the computing of marginal probability
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Gibbs measure:

marginal probability:

P[X = x] =

Q
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The standard first step:
reducing to the computing of marginal probability

Z =
X

x2[q]V

Y

e=uv2E

Ae(xu, xv)
Y

v2V

Fv(xv)

for any configuration x 2 [q]V

Gibbs measure:

marginal probability:

P[X = x] =

Q
e=uv2E Ae(xu, xv)

Q
v2V Fv(xv)

Z

P[Xv = xv]

 for self-reducible class of spin-systems:
efficient approximation 
of marginal probability

(with additive error)
FPTAS for Z

Jerrum-Valiant-Vazirani’86



The standard first step:
• self-reducible:  general spin systems, Potts models

• not self-reducible: coloring

• self-reducible superclass of coloring: list-coloring

instance:  undirected G(V,E)
each vertex v associated 
with a list Lv of colors
allowed to use on v 

{         }

{      }

{         }

{            }

{            } coloring ⊂ list-coloring ⊂ Potts ⊂ multi-spin| {z }
self-reducible
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The standard first step:
• self-reducible:  general spin systems, Potts models

• not self-reducible: coloring

• self-reducible superclass of coloring: list-coloring

for
multi-spin system

Potts model
list-coloring

( )
approximate the marginal

                (with additive error)P[Xv = x]

new goal:

instance:  undirected G(V,E)
each vertex v associated 
with a list Lv of colors
allowed to use on v 

{         }

{      }

{         }

{            }

{            } coloring ⊂ list-coloring ⊂ Potts ⊂ multi-spin| {z }
self-reducible

classic way:  random walk new way:  correlation decay



Recursion for List-Coloring
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⌦list-coloring instance

⌦i
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G

v

v1 vd
Gn vi�1

: delete v
∀j<i, delete x
    from list      Lvj

Lvj � {x}

v’s neighbors: v1, v2, . . . , vd
color: x

Gamarnik-Katz’07:
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products



Recursion for general multi-spin system

⌦multi-spin system ⌦i

v,x
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vd
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F 0
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Correlation Decay
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(Xvi = z)where

recursion tree

• an exponential-time exact 
algorithm
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recursion tree

t

•an exponential-time exact 
algorithm

error: ≤1

error: ε

correlation decay:
error at root ε = exp(-Ω(t))

• truncation: 
• compute up-to level t

• use arbitrary estimation at level t



Correlation Decay

pi,y,zt

error at leaf: ≤1

error at root: ε 
correlation decay:

error at root ε = exp(-Ω(t))

f(p)

if running the recursion up-to level t

a sufficient condition:

(stepwise decay)

then due to the Mean Value Theorem 

pi,y,z

f(p)

at any step

✏ 
X

i,y,z

����
@f(p)

@pi,y,z

���� ✏i,y,z   ·max

i,y,z
✏i,y,z

 ,
X

i,y,z

����
@f(p)

@pi,y,z

���� < 1

induction!
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Correlation Decay

pi,y,zt

error at leaf: ≤1

error at root: ε 
correlation decay:

error at root ε = exp(-Ω(t))

f(p)

if running the recursion up-to level t

a sufficient condition:

(stepwise decay)

then due to the Mean Value Theorem 

pi,y,z

f(p)

at any step

✏ 
X

i,y,z

����
@f(p)

@pi,y,z

���� ✏i,y,z   ·max

i,y,z
✏i,y,z

 ,
X

i,y,z

����
@f(p)

@pi,y,z

���� < 1

induction!

amortized behavior
correlation decay?

decay at every step!

error ε 

t 
stepwise decay
amortized decay



The Potential Method
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⇠i,y,z = �(pi,y,z)

original: potential:



The Potential Method

pi,y,z

p = f(~p)

✏i,y,zerror
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�
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⇠ = g(~⇠)

�

⇠ = �(p)

⇠i,y,z = �(pi,y,z)

⇠ = g(~⇠) = �(f(��1(⇠i,y,z), 8i, y, z)))

original: potential:

g

new 
recursion

by Mean Value Thm:�(x) =
d�(x)

dx
let � 

X

i,y,z
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The Potential Method

pi,y,z

p = f(~p)

✏i,y,zerror

error ✏
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⇠i,y,z = �(pi,y,z)

⇠ = g(~⇠) = �(f(��1(⇠i,y,z), 8i, y, z)))

original: potential:

g

new 
recursion

with good choice of potential function φ :
error ε 

t 

error δ 

t 
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world

potential
world

by Mean Value Thm:�(x) =
d�(x)

dx
let � 
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The Potential Method

error ε 

t 

error δ 

t 

�original
world

potential
world

� 
X

i,y,z

����
@f(p)

@pi,y,z

����
�(f(p))

�(pi,y,z)
�i,y,z

•The potential method has been used for analyzing the 
correlation decay in 2-spin systems (Restrepo-Shin-Tetali-
Vigoda-Yang’11, Sinclair-Srivastava-Thurley’12, Li-Lu-Yin’12, 
Li-Lu-Yin’13, Sinclair-Srivastava-Yin’13).

•This is the first time it is used for multi-spin systems.



Amortized Correlation Decay
amortized decay condition:

•  at any step,  we have 

•  the values of          and         are bounded over domain

∃ a positive-valued function         , s.t.
X
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�(pi,y,z)
< 1

�(p) 1
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Amortized Correlation Decay
amortized decay condition:

•  at any step,  we have 

•  the values of          and         are bounded over domain

∃ a positive-valued function         , s.t.
X

i,y,z
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@f(p)
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����
�(f(p))

�(pi,y,z)
< 1

control the costs of translating initially from 
and finally back to the original world

by induction:

amortized 
decay condition

exponential 
correlation decay

FPTAS efficient approximation 
of marginal probability

for the considered classes of spin systems
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Establishing the Decay
for general multi-spin systems:  with max-degree Δ

choose with small enough η > 0

c = max

e2E

w,x,y,z2[q]

A

e

(x, y)

A

e

(w, z)

denoted

3�(c� � 1)  1
amortized 

decay condition

for Potts model (with inverse temperature β):

directly translated to 3�(e|�| � 1)  1

(by easy calculation)

�(p) =
1

p+ ⌘



Establishing the Decay
for general multi-spin systems:  with max-degree Δ

choose with small enough η > 0

c = max

e2E
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3�(c� � 1)  1
amortized 
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for Potts model (with inverse temperature β):

directly translated to 3�(e|�| � 1)  1

(by easy calculation)

�(p) =
1

p+ ⌘

* Other potential functions may further improve the constant factor
(but may be harder to analyze).



Establishing the Decay
for list-coloring:  with max-degree Δ, 
                         each vertex v with color list Lv

choose

observing that for list-coloring satisfying the condition,
marginals are always bounded away from both 0 and 1

�(p) =
1

(1� p)
p
p

for coloring:   replacing | Lv | with q

amortized 
decay condition

(by more involved calculation)

8v, |Lv| � ↵�+ 1

α≈2.58071



Establishing the Decay
for list-coloring:  with max-degree Δ, 
                         each vertex v with color list Lv

choose

observing that for list-coloring satisfying the condition,
marginals are always bounded away from both 0 and 1

�(p) =
1

(1� p)
p
p

for coloring:   replacing | Lv | with q

* The potential functions are chosen in an ad hoc way.

amortized 
decay condition

(by more involved calculation)

8v, |Lv| � ↵�+ 1

α≈2.58071



Open Problem

• Find a more systematic way for designing 
good potential functions.

• Further improve the bounds for correlation 
decay and FPTAS for multi-spin systems.

• For coloring: α=2 is a barrier for the 
approach due to the overheads caused by 
total differentiation. Overcome this barrier.


