Chapter 2

Simple energy balance
climate models

Supplemental reading:

Budyko {1969)

Held and Suarez {1974)

Lindzen and Farrell (1977)

North (1973)

Sellers (1969)
We will consider cnergy balance climate models because they are the
simplest models wherein the interactions of radiation [including the
effeet of snow on albedo) and dynamic heat transport can be considered.
Tn the above references some atlempt is made to justify the realism of
vhe models. Although this is probably worth thinking ahout, we are

here only concerned with the illustrative aspects rather than detailed
realism.

& complete list of references 1s given at the end of this book, Those references
that are partiealsrly pseful 1o a given chapler am lstese] ol Che Beginnimg of Gt
chapler. Sometimes specific pages and for chipters will e noted
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These models are typically characterized as follows:

1. Only latitude dependences are considered; that is, the maodels
are spatially one-dimensional (though time dependence is also
sometimes considered).

9. Clobal energy budgets are assumed to be expressible in terms of
surface temperatires,

3. Planeiary albedo is taken to depend primarily on ice and /o1 snow
cover or the lack thereof,

1. The convergence of dynamic heat fluxes is generally represented
by either a simple diffusion law or by a linear heating law wherein
local heating is proportional to deviations of the glubal mean
temperature from the local aurface temperature. The primary
feature of the heat transporl is that it carries hect from warmer
to colder regions. Both of the above representations do this.

5. Generally, only annual mean conditions are considered.

The starting point for such models is an equation of the form

(-raT{ £, ﬂ
= 'a!.

incoming solar radiation

—infrared cooling
—divergence of heat flux, (2.1)

where € is some heat capacity of the atmosphere-ocean system, T the
wurface temperature (°C), 1 is time, and = = sin @, where # is the
latitude. It is somewhat more convenient to deal with # rather than .

Under the assumption that the total global encrgy budget can be
pxpressed in terms of the surface temperature, the first term on the
tight-hand side of Equation 2.1 1s gencrally taken to be the total inso-
lation as might be determined by a satellite ahove the atmosphere. It
I by pically written as

incoming solar radiation = Q@s{x)A(T'), (2.2)

whore (2 is one quarter of the solar constant (Why?) and s(z) is a
funetion whose integral from the equator to the pole is unity and which
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represents the annually averaged latitude distribution of incoming ra-
diation. This function is discussed in Held and Suarez (1974). Finally,
A(T) is 1 minus the planetary albedo; A is allowed to depend on tem-
perature. In most simple climate models, a temperature T is identified
with the onset of ice (snow) cover such that for T > T there is no
ice (snow), and for T < T, there is. The most important change in
A is due to T passing through T,. We will specify .A more explicitly
later.

Again under the assumption that global energy budgets can be ex-
pressed in terms of surface temperature, one writes

infrared cooling = I(T). (2.3)

The justification for Equation 2.3 is that temperature profiles have
more or less the same shape at all latitudes. Hence cooling, which de-
pends on the temperature at all levels, ought to be expressible in terms
of surface temperature, since the temperature at all levels is related
to the surface temperature. In fact, temperature profiles at different
latitudes are somewhat different (viz. Figure 2.1). Moreover, Held and
Suarez (1974) have shown that 500mb temperatures correlate better
with infrared emission than do surface temperatures. Nevertheless, it
is the surface temperature which relates to the formation of ice, and
which therefore must be used in simple climate models. The fact that
total infrared emission is not perfectly related to surface temperature
is merely an indication that a significant portion of the emitted radi-
ation originates in the atmosphere. Similarly, not all of the incoming
radiation is absorbed at the surface; in practice, some of the incoming
radiation is not directly involved in the surface energy budget.

As a rule, models based on Equation 2.1 take little account of clouds
and cloud feedbacks. In truth we hardly know how to include such
feedbacks. It is probably impossible in such a simple model. However,

to the extent that clouds can be specified in terms of Jatitude and
surface temperature, their effects on incoming radiation and on infrared
emission can be included in Equations 2.2 and 2.3.
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Figure 2.1: Vertical temperature profiles for various latitudes. (From
U/ §. Standard Atmosphere Supplements, 1966.)

The divergence of atmospheric and oceanic heat flux must also be
expressed in terms of an operator on surface temperature; that is,

div flux — F[T), (2.4)

where F is some operator. Usually F is a linear operator, although Held
and Suarez (1974) and North (1975) have also considered nonlinear
operators as suggested by Green (1970) and Stone (1973). The common
choices for F[T] are a linear relation first suggested by Budyko (1969):

FT|=C (T -T), (2.5)
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where T is the average of T over all latitudes?, and a diffusion law (first
used in this context by Sellers (1969)):

a

F[T] = o [(1 —23)D

oT
] , (2.6)

oz

where C and D in (2.5) and (2.6) are constants; they are generally
chosen to simulate some features of the existing climate.

The most common application of (2.1) involves assuming a steady
s.tate and seeking a relation between the equilibrium position of the ice
line and the solar constant. Usually, one linearizes (2.3) to obtain

I=A+ BT, (2.7)

and replaces T by I as defined in (2.7). Equation 2.1 becomes?

Qs(z)A(I) — I + F*[I] = 0. (2.8)

One identifies the ice line with a temperature T, or equivalently I, =
A+ BT,. We shall use z, to identify the value of z at I = I,. Moreover
variations in A are taken to be due solely to whether or not there is ar;
ice surface, that is,

A= Az, z,). (2.9)

“C” or ‘D’ in (2.4) will be chosen so that for the present climate T' = T,
at the present annually averaged value of z, (i.e., z, ~ 0.95). Obtaining
the dependence of z, on @ (or more conveniently, the dependence of Q
on z,) is straightforward. If we write

I=QI(z), (2.10)

and assume F to be a linear operator, then we may divide (2.8) by @
yielding ’
—~ P+ I = s(z)Alz, 2,)- (2.11)

2 : : g 2y
3?“3;21&11'?1‘ constraint on F[T] is that its integral over the globe be zero (Why?).

Simple energy balance climate models
For any choice of z, we may solve (2.11) for [ = I(z,z,). It is now

4 trivial matter to obtain the solar constant (or, equivalently, Q) as a
function of z,. We already have

I(z,) = I,-

But since

I(z,) = I(z,,2)Q, (2.13)

by combining (2.12) and (2.13) we have

Q@ 1
L Izomd) )

which is the desired relation.

Normally, we expect advancing ice (decreasing ) to be associated
with decreasing . Such a situation is generally stable in the sense
that the time-dependent version (2.1) indicates that perturbations away
from the equilibria defined by (2.14) decay in time. This stability is
easy to understand intuitively. If, for example, one decreased z, while
holding @ constant, then Q would be larger than needed for that value
of r, and the resulting warming would cause z to increase. This is,
in fact, the situation when we do not have transport. Surprisingly,
(he introduction of transport always leads to some values of x, where
decreasing T, is associated with increasing @ — an unstable situation
leading to an ice covered earth (at least in the context of the simple
|um|t"l},

We shall examine how this occurs under particularly simple condi-
tlons. First we shall use (2.5) for F[T]. Next we shall take the following

axpression for A:

A = afor T <T;
(2.15)

A = BforT > 1T,
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Common choices for a and 3 are:

a = 04
(2.16)
3 = 0.

For T, we, for the moment, take Ts = —10°C, and for the constants A
and B in (2.7) we use A = 211.1Wm™2, and B = 1.55Wm~2(°C)~ 1.
Hence, I, = 195.6 Wm~2. For s(z) we use the annual average function
as approximated by North (1975):

s(z) = 1—0.241(32” - 1). (2.17)
For the present solar constant,

0 = B,

For the above choices, straightforward analytic solutions exist. Let us
begin by neglecting all transport. Equation 2.8 becomes

Qs(z)A(z,z,) —A— BT =0,
or
Qs(z)A(z, z,) — A
B :

This radiative equilibrium value of T' depends only on the local radia-
tive budget. Its distribution is shown in Figure 2.2 as is the observed
distribution. Note that the observed gradients are much smaller than
in the equilibrium distribution. The value of Q associated with z, is
not unique. Any value of @ less than the value needed for T(z,) = T,
with A = a, and greater than the value needed for T(z,) = T, with
A = (3, is consistent with z,. This leads to the two curves for Q(z,)
shown in Figure 2.3:

=

(2.18)

A+ BT,
Q+(zs) = :a—)ﬂ—, (2.19)
Q-(z,) = osas (2.20)

s(x, )}T
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Figure 2.2: T(¢) for radiative equilibrium. Also shown is the observed
T(¢). For reference purposes, T as well as ¢ is shown. Taken from
Lindzen and Farrell (1977).

It will be left to the student to figure out how z, will vary as @ is
changed, but it is evident that for both (2.19) and (2.20) that decreasing
() leads to decreasing Zs and vice versa. (Note that s(z,) decreases
monotonically with z,.)

Introducing transport via Equation 2.5 does not eliminate the am-
biguity in Q. A device for eliminating the ambiguity is to choose

a+p

A(z,) = (2.21)
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This device turns out to be almost equivalent to introducing a very
small conductivity which, in turn, renders T continuous at =, {(viz.
Figure 2.3).

Now
P[0 = (¢/B){ - ) (2.22)

and

I= j: s(z) Az, z,) dz (2.23)

(Why?).
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Flgl.u_"e ?.3: Variation of ¢ (¢ = Q/I.) vs. 6, (sin"'z,) for radiative
equilibrium. The curve g_ represents T = T, for the ice-free side of
5 wh%le g+ represents T = T, for the ice-covered side of z,. Also
shown is the curve obtained with a very small amount of diffusive heat
transport. From Held and Suarez (1974).
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Evaluating (2.23) (using (2.15) and (2.17)) we get
7= (8- a)(1.241z, — 24123) + o (2.24)
Substituting (2.22) in (2.11), we get

%}-(iﬂs) + s(x) Az, z,) :

2.25
-~ (2.25)

I=

Equation 2.25 allows us to determine C such that I(.95) = I, for present
conditions (C/B =72431s bgta‘ined). Assuming this value of C' re-
mains constant as @ varies, we then get from (2.14)
(1+ $)(A + BTy)
C1(x,) + s(24)(557)

Q= (2.26)

Fxamining the denominator of (2.26) in detail we get

den = ﬁ;a x 1‘241+a%

+%{g —a) x 12411,

s ! ) 72302 %(ﬁ ~a) x 24125, (227)

When C = 0, the denominator decreases as I, increases, as already
noted. But, when C # 0, there always exists some neighbourhood of
¢, = 0 where the linear term in (2.27) dominates, and the denominator
increases as T, increases. This leads to the distribution of Q versus T,
shown in Figure 2.4. Two features should be noted in Figure 2.4, both
being due to the existence of horizontal heat transport:

I. A much smaller value of Q is needed for ice/snow to onset at all.
This represents the stabilizing effect of transport.

2. There now exists some minimum Q, below which the climate will
unstably proceed to an ice/snow covered earth. This represents
the destabilizing effect of transport.
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Figure 2.4: Equilibrium ice line position z, as a function of normal-
ized solar constant Q/Qp (where @ is the current value of the solar
constant) when Budyko-type heat transport is used. The curve Q_/Qo
corresponds to T = T, on the equatorward side of the ice line, while
Q./Qo corresponds to T' = T, on the poleward side. The single re-
maining curve results from adding a small amount of diffusion to the
Budyko-type transport.

Both the above effects result very generally from the sharing of
heat between low and high latitudes. Clearly, heat transport from low
latitudes initially inhibits the onset of ice/snow at the poles. However,
as the ice/snow line advances, the transport of heat out of warmer
regions cools these regions to such an extent that Q must actually be
increased to keep up with further advances. This situation is clearly
unstable. We shall refer to the percentage ) must be reduced from its
present value to reach instability as the ‘global stability’. The results
in Figure 2.4 correspond to a global stability of only ~ 2%. To be sure,
the solar constant might not vary this much. However, Q can be viewed
as a general measure of global heating. Changes in @ can be simulated
by changes in I and/or A, for example.

As will be seen in the exercise, the above estimate of global stability
is hardly firm, but our only interest at this point is in the general role
of heat transport.

Simple energy balance climate models 15

Exercise
2.1 Let a = 0.45. Keep A and B as given in the text.

Determine 3 such that 7' remains unchanged.
Determine C for the above choices of a and 3.
Compute Q(zs).

Discuss any differences between these results and those ob-
tained for a = .4, 8 = .7. In particular, how has the global
stability changed and why?

= B B e




	LINDZEN_CHAP21
	LINDZEN_CHAP22
	LINDZEN_CHAP23
	LINDZEN_CHAP24
	LINDZEN_CHAP25
	LINDZEN_CHAP26

