
Homework 2

Course: Algorithm Design and Analysis Semester: Spring 2024

Instructor: Shi Li Due Date: 2024/4/7

Student Name: Student ID:

Problems 1 2 3 4 5 6 Total

Max. Score 15 15 20 15 15 20 100

Your Score

Remarks:

• In all the algorithm design problems, a correct pseudo-code or description of the
algorithm will give you a majority of the points.

• If the algorithm you designed is a greedy algorithm, you need to prove its correctness
to get a full score. The most convenient way to do this is to describe the three
elements: the decision you make for each step, proof of the safety of the decision,
a reduction of the instance after you made the decision. If additionally, you are
asked to achieve a certain running time, a pseudo-code on top of the three elements
is sufficient.

• If the algorithm you designed is a divide and conquer algorithm, you need to describe
the input and the output of the recursion, and the recurrence for the running time,
and give the final running time.

• The examples are given to you to help you understand the problems. There might be
multiple optimum solutions for the given input instance; it is OK if your algorithm
outputs a different optimum solution from the one provided.

Problem 1. In the interval covering problem, we are given n intervals [s1, t1), [s2, t2),
· · · , [sn, tn) such that

⋃
i∈[n][si, ti) = [0, T ) for some given T . The goal of the problem

is to return a smallest-size set S ⊆ [n] such that
⋃

i∈S[si, ti) = [0, T ). Design a greedy
algorithm to solve this problem. To get a full mark for this problem, the running time of
the algorithm should be O(n log n).

For example, consider the instance in Figure 1. You can use intervals 1, 4, 7 to cover
the whole interval [0, 160), and the set {1, 4, 7} is the optimum solution for the instance.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

1

2

4

5

3 7

6

Figure 1: Instance for Interval Covering.

1



Problem 2. Given two sequences A and B of letters, the sequence A is a sub-sequence
of B, if A can be obtained from B by removing some letters. For example, “abcadb” is a
sub-sequence of “badbaccaddfb” as you can remove letters as follows: “badbaccaddfb”.

Given two sequences A and B of letters with total length n, design an O(n)-time
algorithm to decide if A is a sub-sequence of B.

Problem 3. You are given n jobs which needs to be processed on one machine. Each
job j has an arrive time rj, a deadline dj and a processing time pj, where rj ∈ Z≥0

and pj, dj ∈ Z>0. A job j can only be processed during the time interval (rj, dj]. The
processing of jobs can be interrupted and resumed later, and a job j is completed if it is
processed for pj units of time during the interval (rj, dj]. Your goal is to check if all the
jobs can be completed. Design an O(n log n) time algorithm to solve the problem.

Formally, the time is slotted into unit time slots 1, 2, 3, · · · . During any time slot t,
you can choose to process a job j on the time slot, if rj < t ≤ dj. You can process at
most one job in a time slot. The jobs can be completed if every job j can be processed
during pj time slots.

For example, consider the instance with 3 jobs given by Table 1. The 3 jobs can all
be completed: A feasible solution is given in Figure 2. So, for the instance you should
output “yes”. However, if pc is 2 instead of 1, then you should output “no”.

job indices a b c

rj 0 3 7

dj 5 10 9

pj 4 5 1

Table 1: Instance for Problem 3.

0 1 2 3 4 5 6 7 8 9 10

ra darb dbrc dc

a ba a a b b b bc

Figure 2: A feasible schedule of the instance.

Problem 4. We consider the following problem of counting significant inversions.
Given an array A of n positive integers, a pair i, j ∈ {1, 2, 3, · · · , n} of indices is called
a significant inversion if i < j and A[i] > 2A[j]. The goal of the problem is to count the
number of significant inversions for a given array A. Give a divide-and-conquer algorithm
that runs in O(n lg n) time to solve the problem.

Problem 5. Given an array A[1 .. n] of n distinct numbers, we say that some index
i ∈ {1, 2, 3 · · · , n} is a local minimum of A, if A[i] < A[i − 1] and A[i] < A[i + 1] (we
assume that A[0] = A[n + 1] = ∞). Suppose the array A is already stored in memory.
Give an O(log n)-time algorithm to find a local minimum of A.

For example, if the array is A[1..10] = (50, 10, 20, 40, 100, 70, 30, 80, 90, 60), your
algorithm can return 2, 7 or 10. Notice that it only needs to return one of them.

Problem 6. (Exercise 4 on Page 247 of KT book) You’ve been working with some
physicists who need to study, as part of their experimental design, the interactions among
large numbers of very small charged particles. Basically, their setup works as follows.
They have an inert lattice structure, and they use this for placing charged particles at
regular spacing along a straight line. Thus we can model their structure 1, 2, 3, · · · , n on

2



the real line; and at each of these points j, they have a particle with charge qj. (Each
charge can be either positive or negative.)

They want to study the total force on each particle, by measuring it and then
comparing it to a computational prediction. This computational part is where they
need your help. The total net force on particle j, by Couiomb’s Law, is equal to

Fj =
∑
i<j

Cqiqj
(j − i)2

−
∑
i>j

Cqiqj
(j − i)2

.

Designing an O(n log n)-time algorithm to compute Fj for all j ∈ [n], using the Fast
Fourier Transform algorithm. It suffices for you to reduce the problem to the convolution
problem.

3


