
Homework 3

Course: Algorithm Design and Analysis Semester: Spring 2024

Instructor: Shi Li Due Date: 2024/4/21

Student Name: Student ID:

Problems 1 2 3 4 5 Total

Max. Score 20 15 20 15 30 100

Your Score

Remarks: All the problems are for dynamic programming.

• To analyze the correctness of dynamic-programming based algorithms, you need to
provide three elements:

(1) the definition of cells (sub-problems) in the dynamic-programming table,

(2) the formula for computing the values of the cells, including both the boundary
cases and the recursive cases,

(3) and in which order you compute the cells.

The three elements are sufficient for the proof of the correctness. If you use a
pseudo-code instead, it will only cover (2) and (3), but not (1).

• If additionally, some problems ask for the solution that achieves the optimum value,
a pseudo-code for outputting the solution is sufficient.

• If the running time of your algorithm is obvious, one sentence describing it is
sufficient.

Problem 1. You need to use dynamic programming to solve the Knapsack problem
with unlimited copies of each item.

We are given n items indexed by [n] = {1, 2, 3, · · · , n}. Each item i ∈ [n] has an
integer value vi ≥ 1 and an integer weight wi ≥ 1. Each item i has unlimited number
of copies. You have a budget of W . The goal of the problem is to buy a set of items
with budget W so as to maximize the value. Now we can buy many copies of each item.
Formally we need to find a vector (c1, c2, · · · , cn), where each ci is a non-negative integer
and

∑n
i=1 ciwi ≤ W , so as to maximize

∑n
i=1 civi.

For example, suppose we have n = 3 items, with values v1 = 16, v2 = 30 and v3 = 60
and weights w1 = 30, w2 = 50 and w3 = 80, and the budget is W = 200. Then consider
three different solutions:

• Buy 4 copies of item 2. The weight is 50× 4 ≤ 200. The value is 30× 4 = 120.

• Buy 2 copies of item 1, 1 copy of item 2, and 1 copy of item 3. The weight is
30× 2 + 50 + 80 ≤ 20. The value is 16× 2 + 30 + 60 = 122.

• Buy 1 copy of item 1 and 2 copies of item 3. The weight is 30 + 80× 2 ≤ 200. The
value is 16 + 60× 2 = 136.

1



The third solution gives the maximum value. Indeed, it is the best solution for the
instance. So, for the instance, the maximum value is 136, and the ci values are c1 =
1, c2 = 0 and c3 = 2.

Design an O(nW )-time algorithm to solve the problem. You need to output both the
maximum value and the ci’s that achieve the value.

Problem 2. There are n balloons in a row. Each balloon is painted with a positive
integer number on it. You are asked to burst all the balloons.

If you burst the i-th remaining balloon in the row, you will get nums[i−1]×nums[i]×
nums[i + 1] coins, where nums[t] for any t is the number on the t-th remaining balloon
in the row. If i− 1 = 0 or i + 1 is more than the number of balloons, then treat it as if
there is a balloon with a 1 painted on it.

Return the maximum coins you can collect by bursting the balloons wisely. For
example, if there are initially 4 balloons in the row with numbers 3,1,5,8 on them. Then
the maximum coins you can get is 167. This is how the array of numbers change when
you burst the balloons: (3, 1, 5, 8) → (3, 5, 8) → (3, 8) → (8) → (). The coins you get is
3× 1× 5 + 3× 5× 8 + 1× 3× 8 + 1× 8× 1 = 167.

Design an O(n3)-time algorithm to solve the problem. For convenience, you only need
to output the maximum number of coins you can get.

Problem 3. An independent set of a graph G = (V,E) is a set U ⊆ V of vertices such
that there are no edges between vertices in U . Given a graph with node weights, the
maximum-weight independent set problem asks for the independent set of a given graph
with the maximum total weight. In general, this problem is very hard. Here we want to
solve the problem on trees: given a tree with node weights, find the independent set of
the tree with the maximum total weight. For example, the maximum-weight independent
set of the tree in Figure 1 has weight 47.

15

8 16 18

3 5

4

5 7 2 9

Figure 1: The maximum-weight indpendent set of the tree has weight 47. The red vertices
give the independent set.

Design an O(n)-time algorithm for the problem, where n is the number of vertices in
the tree. We assume that the nodes of the tree are {1, 2, 3, · · · , n}. The tree is rooted at
vertex 1, and for each vertex i ∈ {2, 3, · · · , n}, the parent of i is a vertex j < i. In the
input, we specify the weight wi for each vertex i ∈ {1, 2, 3, · · · , n} and the parent of i for
each i ∈ {2, 3, · · · , n}.

Your algorithm needs to output both the maximum weight, and the indices of the
vertices in the independent set that achieves the maximum weight.

2



Problem 4. Consider the following job-selection problem. Suppose you can undertake
one job in each of the following n weeks. The set of possible jobs is divided into those
that are low-stress and that are high-stress. The basic question, each week, is whether
to take on a low-stress job or a high-stress job.

If you select a low-stress job in week i, then you get a revenue of li > 0 dollars; if you
select a high-stress job, you get a revenue of hi > 0 dollars. The catch, however, is that
in order for you to take on a high-stresss job in week i, it is required that you do no job
(of either type) in week i− 1. On the other hand, it’s OK if you take a low-stress job in
week i even if you have done a job (of either type) in week i− 1.

So, given a sequence of n weeks, a plan is specified by a choice of “low”, “high”, or
“none” for each of the n weeks, with the property that if “high” is chosen for week i > 1,
then “none” has to be chosen for week i − 1. (You can choose “high” for week 1.) The
value of the plan is determined in the natural way: for each i, you add li to the value if
you choose “low” in week i, and you add hi to the value if you choose “high” in week i.
(You add 0 if you choose “none”.)

For example, suppose n = 5 and the hi and li values are given in the following table:

i 1 2 3 4 5

hi 50 20 20 10 60

li 30 15 10 5 50

Then the maximum revenue you can achieve is 135, achieved by the plan “high, low,
low, none, high”. In this plan, the revenue you get in the each of the 5 days are 50, 15,
10, 0 and 60.

Design an efficient (i.e, polynomial-time) dynamic-programming algorithm to solve
the problem. For convenience you only need to output the maximum revenue you can
achieve.

Problem 5. Given an array A of n numbers, we say that a 5-tuple (i1, i2, · · · , i10) of
integers is inverted if 1 ≤ i1 < i2 < i3 < · · · < i5 ≤ n and A[i1] > A[i2] > A[i3] > · · · >
A[i5].

(a) Give an O(n2)-time algorithm to count the number of inverted 5-tuples w.r.t A.

(b) Improve the running time for (a) to O(n log n).

3


