Homework 4

Course: Algorithm Design and Analysis
Semester: Spring 2024
Instructor: Shi Li
Due Date: 2024/5/5

Student Name: \qquad Student ID: \qquad

Problems	1	2	3	4	5	Total
Max. Score	20	20	20	20	20	100
Your Score						

Problem 1. Suppose we are given an undirected graph $G=(V, E)$, with non-negative edge weights $\left(w_{e}\right)_{e \in E}$. Let T be the minimum spanning tree of G, and let T^{\prime} be any spanning tree of G. Suppose we sort the $n-1$ edge weights of T in ascending order to obtain $y_{1} \leq y_{2} \leq \cdots \leq y_{n-1}$, and we sort the $n-1$ edge weights of T^{\prime} in ascending order to obtain $y_{1}^{\prime} \leq y_{2}^{\prime} \leq \cdots \leq y_{n-1}^{\prime}$.

Prove the following statement: for every $i \in[n-1]$, we have $y_{i} \leq y_{i}^{\prime}$.
Problem 2. We are given a connected undirected graph $G=(V, E)$ with non-negative edge weights $\left(w_{e}\right)_{e \in E}$. Design an $O(n \log n+m)$-time algorithm to decide if the minimum spanning tree of G is unique or not.

Problem 3. We are given a connected undirected graph $G=(V, E)$ with non-negative edge weights $\left(w_{e}\right)_{e \in E}$. We are also given two vertices $s, t \in V$. Design an $O(n \log n+m)$ time algorithm to decide if the shortest path from s to t in G is unique or not.

Problem 4. Consider the minimum cost arborescence problem on the directed graph $G=(V, E)$ with non-negative edge weights $\left(w_{e}\right)_{e \in E}$ and a specified root r. Let C be a 0 -cost simple cycle in G that does not contain r. Prove the statement that we skipped in class: there exists a minimum cost arborescence T in G (rooted at r) that includes all but one edge of C.

Problem 5. This problem asks you to find the largest rectangle in a histogram given an array A of n non-negative integers. For instance, with the input array ($3,5,10,11,20,4,8,10$), the largest rectangle has an area of 30 , achieved by a rectangle of height 10 spanning from column 3 to column 5 (see Figure 1).

Additionally, you are given a sorted array of indices in $[n]$ according to the heights of the bars in the histogram; that is, a permutation $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$, of n with $A\left[i_{1}\right] \leq A\left[i_{2}\right] \leq$ $\ldots \leq A\left[i_{n}\right]$. You need to use the union-find data structure to design an algorithm that solves this problem in $O(n \alpha(n))$ time, where $\alpha(n)$ is the inverse Ackermann function.

Figure 1: The largest rectangle of in the histogram is given by the shaded area.

