
Homework 4

Course: Algorithm Design and Analysis Semester: Spring 2024

Instructor: Shi Li Due Date: 2024/5/5

Student Name: Student ID:

Problems 1 2 3 4 5 Total

Max. Score 20 20 20 20 20 100

Your Score

Problem 1. Suppose we are given an undirected graph G = (V,E), with non-negative
edge weights (we)e∈E. Let T be the minimum spanning tree of G, and let T ′ be any
spanning tree of G. Suppose we sort the n − 1 edge weights of T in ascending order to
obtain y1 ≤ y2 ≤ · · · ≤ yn−1, and we sort the n− 1 edge weights of T ′ in ascending order
to obtain y′1 ≤ y′2 ≤ · · · ≤ y′n−1.

Prove the following statement: for every i ∈ [n− 1], we have yi ≤ y′i.

Problem 2. We are given a connected undirected graph G = (V,E) with non-negative
edge weights (we)e∈E. Design an O(n log n+m)-time algorithm to decide if the minimum
spanning tree of G is unique or not.

Problem 3. We are given a connected undirected graph G = (V,E) with non-negative
edge weights (we)e∈E. We are also given two vertices s, t ∈ V . Design an O(n log n+m)-
time algorithm to decide if the shortest path from s to t in G is unique or not.

Problem 4. Consider the minimum cost arborescence problem on the directed graph
G = (V,E) with non-negative edge weights (we)e∈E and a specified root r. Let C be a
0-cost simple cycle in G that does not contain r. Prove the statement that we skipped
in class: there exists a minimum cost arborescence T in G (rooted at r) that includes all
but one edge of C.

Problem 5. This problem asks you to find the largest rectangle in a histogram given an
arrayA of n non-negative integers. For instance, with the input array (3, 5, 10, 11, 20, 4, 8, 10),
the largest rectangle has an area of 30, achieved by a rectangle of height 10 spanning from
column 3 to column 5 (see Figure 1).

Additionally, you are given a sorted array of indices in [n] according to the heights of
the bars in the histogram; that is, a permutation (i1, i2, . . . , in), of n with A[i1] ≤ A[i2] ≤
. . . ≤ A[in]. You need to use the union-find data structure to design an algorithm that
solves this problem in O(nα(n)) time, where α(n) is the inverse Ackermann function.

1



20

15

10

5

0

Figure 1: The largest rectangle of in the histogram is given by the shaded area.

2


