Homework 8

Course: Algorithm Design and Analysis
Semester: Spring 2024
Instructor: Shi Li
Due Date: 2024/6/23

Student Name: \qquad Student ID: \qquad

Problems	1	2	3	4	Total
Max. Score	20	20	35	25	100
Your Score					

Problem 1. In a connected graph $G=(V, E)$, then number of global minimum cuts is at most $\binom{n}{2} \leq n^{2}$. Let $\alpha \geq 1$ be an integer. We say a cut in G is an α-approximate cut, if its cut value is at most α times the value of the global minimum cut. Prove that the number of α-approximate minimum cuts in a connected graph $G=(V, E)$ is at most $n^{2 \alpha}$.

Problem 2. We are given an array A of n integers, and we are promised that some integer appears in A at least $\frac{n}{3}$ times. Design a simple Las Vegas algorithm that finds such an integer in $O(n)$ time in expectation.

Problem 3. Let $G=(V, E)$ be a graph with tree-width tw.
(3a) Prove that there is a $(\mathrm{tw}+1)$-coloring for the vertices of G.
(3b) Suppose we are additionally given a tree-decomposition $\left(T,\left(V_{t}\right)_{t \in U}\right)$ of G with treewidth tw. It is possible that G can be colored using k colors, for some given integer $k \leq \mathrm{tw}$. Design an $f(\mathrm{tw}) \operatorname{poly}(n)$-time algorithm to check if some a k-coloring exists, where $f(\mathrm{tw})$ can be any function on tw.

Problem 4. Suppose we are given a directed acyclic graph with specified source node s and sink node t, and each arc e has an associated $\operatorname{cost} c_{e}$ and length l_{e}. We are also given a length bound L. Give an FPTAS for the problem of finding a minimum-cost path from s to t of total length at most L.

