算法设计与分析 (2024年春季学期)

Divide-and-Conquer

授课老师: 栗师
南京大学计算机科学与技术系
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. FFT (Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
8. Finding Closest Pair of Points in 2D Euclidean Space
9. Computing n-th Fibonacci Number
Greedy Algorithm
- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer
- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort\((A, n)\)

1: if \(n = 1\) then
2: return \(A\)
3: else
4: \(B \leftarrow \text{merge-sort}\left(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor\right)\)
5: \(C \leftarrow \text{merge-sort}\left(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil\right)\)
6: return merge\((B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Each level takes running time \(O(n) \)

There are \(O(\log n) \) levels

Running time = \(O(n \log n) \)

Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T([n/2]) + T([n/2]) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)

- Solving this recurrence, we have \(T(n) = O(n \log n) \) (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. FFT (Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
8. Finding Closest Pair of Points in 2D Euclidean Space
9. Computing n-th Fibonacci Number
Def. Given an array \(A \) of \(n \) integers, an inversion in \(A \) is a pair \((i, j)\) of indices such that \(i < j \) and \(A[i] > A[j] \).

Counting Inversions

Input: an sequence \(A \) of \(n \) numbers

Output: number of inversions in \(A \)

Example:

\[
\begin{array}{cccccc}
10 & 8 & 15 & 9 & 12 \\
8 & 9 & 10 & 12 & 15 \\
\end{array}
\]

- 4 inversions (for convenience, using numbers, not indices):
 - \((10, 8)\)
 - \((10, 9)\)
 - \((15, 9)\)
 - \((15, 12)\)
Naive Algorithm for Counting Inversions

count-inversions(\(A, n\))

1. \(c \leftarrow 0\)
2. for every \(i \leftarrow 1\) to \(n - 1\) do
3. for every \(j \leftarrow i + 1\) to \(n\) do
4. if \(A[i] > A[j]\) then \(c \leftarrow c + 1\)
5. return \(c\)
Divide-and-Conquer

- \(p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n] \)
- \(\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \)
 \[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
\textbf{Divide-and-Conquer}

\begin{equation*}
 A: \begin{array}{c}
 B \\
 p \\
 C
 \end{array}
\end{equation*}

\begin{itemize}
 \item $p = \lceil n/2 \rceil, B = A[1..p], C = A[p + 1..n]$
 \item $\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m$
 \[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]
\end{itemize}

\textbf{Lemma} If both B and C are sorted, then we can compute m in $O(n)$ time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 18$

$+0 +2 +3 +3 +5 +5$

3 5 7 8 9 12 20 25 29 32 48
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

```
merge-and-count($B, C, n_1, n_2$)

1: $count \leftarrow 0$;
2: $A \leftarrow$ array of size $n_1 + n_2$; $i \leftarrow 1$; $j \leftarrow 1$
3: while $i \leq n_1$ or $j \leq n_2$ do
4:   if $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) then
5:     $A[i + j - 1] \leftarrow B[i]$; $i \leftarrow i + 1$
6:     $count \leftarrow count + (j - 1)$
7:   else
8:     $A[i + j - 1] \leftarrow C[j]$; $j \leftarrow j + 1$
9: return $(A, count)$
```
Sort and Count Inversions in \(A \)

- A procedure that returns the sorted array of \(A \) and counts the number of inversions in \(A \):

\[
\text{sort-and-count}(A, n)
\]

1. \textbf{if} \(n = 1 \) \textbf{then}
2. \hspace{1em} \textbf{return} \((A, 0)\)
3. \textbf{else}
4. \hspace{1em} \((B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)\)
5. \hspace{1em} \((C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)\)
6. \hspace{1em} \((A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\)
7. \hspace{1em} \textbf{return} \((A, m_1 + m_2 + m_3)\)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6, 7
sort-and-count(A, n)

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5: $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7: return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time $= O(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. FFT (Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
8. Finding Closest Pair of Points in 2D Euclidean Space
9. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)

There are \(O(\log n) \) levels

Running time = \(O(n \log n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\log_2 n \)
- Total running time?

\[
\sum_{i=0}^{\log_2 n} \left(\frac{3}{2}\right)^i n = O \left(n \left(\frac{3}{2}\right)^{\log_2 n} \right) = O(3^{\log_2 n}) = O\left(n^{\log_2 3}\right).
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

\[
\begin{align*}
T(n) & = 3T(n/2) + O(n^2) \\
& = 3 \left(\frac{n}{2} \right)^2 + O\left(\left(\frac{n}{2} \right)^2 \right) \\
& = 3 \left(\frac{n^2}{4} \right) + O\left(\frac{n^2}{4} \right) \\
& = \frac{3n^2}{4} + O\left(\frac{n^2}{4} \right) \\
& = \frac{3n^2}{4} + O(n^2) \\
& = \left(\frac{3}{4} \right) n^2 + O(n^2).
\end{align*}
\]

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level? \(\log_2 n \)
- Total running time?

\[
\sum_{i=0}^{\log_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\log_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\log_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\log n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- \(n^c \) node
- \(\frac{a}{b^c} n^c \) node

\(a \) nodes
- \((n/b)^c\) node
- \((n/b^2)^c\) node
- \(\frac{(a/b)^2}{b^3} n^c\) node

\(a^2 \) nodes
- \((n/b^2)^c\) node
- \((n/b^3)^c\) node
- \(\frac{(a/b)^3}{b^3} n^c\) node

\(a^3 \) nodes
- \((n/b^3)^c\) node
- \((n/b^3)^c\) node
- \(\frac{(a/b)^3}{b^3} n^c\) node

- \(c < \log_b a \): bottom-level dominates: \(\left(\frac{a}{b^c}\right)^{\log_b n} n^c = n^{1\log_b a} \)
- \(c = \log_b a \): all levels have same time: \(n^c \log_b n = O(n^c \log n) \)
- \(c > \log_b a \): top-level dominates: \(O(n^c) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. FFT (Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
8. Finding Closest Pair of Points in 2D Euclidean Space
9. Computing n-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. FFT (Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
8. Finding Closest Pair of Points in 2D Euclidean Space
9. Computing n-th Fibonacci Number
Quicksort vs Merge-Sort

<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Conquer</td>
<td>Recurse</td>
<td></td>
</tr>
<tr>
<td>Combine</td>
<td>Merge 2 sorted arrays</td>
<td>Recurse</td>
</tr>
<tr>
<td></td>
<td>Trivial</td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>37</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
Quicksort

quicksort(A, n)

1: if \(n \leq 1 \) then return A
2: \(x \leftarrow \) lower median of A
3: \(A_L \leftarrow \) array of elements in A that are less than \(x \) \quad \| \quad \text{Divide}
4: \(A_R \leftarrow \) array of elements in A that are greater than \(x \) \quad \| \quad \text{Divide}
5: \(B_L \leftarrow \) quicksort(\(A_L \), length of \(A_L \)) \quad \| \quad \text{Conquer}
6: \(B_R \leftarrow \) quicksort(\(A_R \), length of \(A_R \)) \quad \| \quad \text{Conquer}
7: \(t \leftarrow \) number of times \(x \) appear A
8: return concatenation of \(B_L \), \(t \) copies of \(x \), and \(B_R \)

- Recurrence \(T(n) \leq 2T(n/2) + O(n) \)
- Running time = \(O(n \log n) \)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

2. Choose a **pivot randomly** and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

quicksort\((A, n)\)

1. if \(n \leq 1\) then return \(A\)
2. \(x \leftarrow\) a random element of \(A\) (\(x\) is called a pivot)
3. \(A_L \leftarrow\) array of elements in \(A\) that are less than \(x\)
4. \(A_R \leftarrow\) array of elements in \(A\) that are greater than \(x\)
5. \(B_L \leftarrow\) quicksort\((A_L, \text{length of } A_L)\)
6. \(B_R \leftarrow\) quicksort\((A_R, \text{length of } A_R)\)
7. \(t \leftarrow\) number of times \(x\) appear \(A\)
8. return concatenation of \(B_L\), \(t\) copies of \(x\), and \(B_R\)
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use **pseudo-random-generator**, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort(A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ a random element of A (x is called a pivot)
3: $A_L \leftarrow$ array of elements in A that are less than x
4: $A_R \leftarrow$ array of elements in A that are greater than x
5: $B_L \leftarrow$ quicksort(A_L, length of A_L)
6: $B_R \leftarrow$ quicksort(A_R, length of A_R)
7: $t \leftarrow$ number of times x appear
8: return concatenation of B_L, t copies of x, and B_R

Lemma The expected running time of the algorithm is $O(n \log n)$.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
partition(A, ℓ, r)

1: $p \leftarrow$ random integer between ℓ and r, swap $A[p]$ and $A[\ell]$
2: $i \leftarrow \ell, j \leftarrow r$
3: while true do
5: if $i = j$ then break
6: swap $A[i]$ and $A[j]$; $i \leftarrow i + 1$
7: while $i < j$ and $A[i] < A[j]$ do $i \leftarrow i + 1$
8: if $i = j$ then break
9: swap $A[i]$ and $A[j]$; $j \leftarrow j - 1$
10: return i
In-Place Implementation of Quick-Sort

quicksort(A, ℓ, r)

1: if ℓ ≥ r then return
2: m ← partition(A, ℓ, r)
3: quicksort(A, ℓ, m − 1)
4: quicksort(A, m + 1, r)

To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.
To merge two arrays, we need a third array with size equaling the total size of two arrays.
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. FFT (Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
8. Finding Closest Pair of Points in 2D Euclidean Space
9. Computing n-th Fibonacci Number
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements.
- We can not use “internal structures” of the elements.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \log n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

```
x = 1?
x \leq 2?
x = 3?
1 2 3 4
```
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over \{1, 2, 3, ⋯ , n\} in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. FFT (Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
8. Finding Closest Pair of Points in 2D Euclidean Space
9. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \log n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

quicksort\((A, n)\)

1: \textbf{if} \(n \leq 1\) \textbf{then return} \(A\)
2: \(x \leftarrow\) lower median of \(A\)
3: \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \hspace{1cm} ▷ \text{Divide}
4: \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \hspace{1cm} ▷ \text{Divide}
5: \(B_L \leftarrow\) quicksort\((A_L, A_L.\text{size})\) \hspace{1cm} ▷ \text{Conquer}
6: \(B_R \leftarrow\) quicksort\((A_R, A_R.\text{size})\) \hspace{1cm} ▷ \text{Conquer}
7: \(t \leftarrow\) number of times \(x\) appear \(A\)
8: \textbf{return} the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)
Selection Algorithm with Median Finder

\[
\text{selection}(A, n, i) \\
\begin{align*}
1: \ & \text{if } n = 1 \text{ then return } A \\
2: \ & x \leftarrow \text{lower median of } A \\
3: \ & A_L \leftarrow \text{elements in } A \text{ that are less than } x \\
4: \ & A_R \leftarrow \text{elements in } A \text{ that are greater than } x \\
5: \ & \text{if } i \leq A_L.\text{size} \text{ then} \\
6: \ & \quad \text{return selection}(A_L, A_L.\text{size}, i) \\
7: \ & \text{else if } i > n - A_R.\text{size} \text{ then} \\
8: \ & \quad \text{return selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \\
9: \ & \text{else} \\
10: \ & \quad \text{return } x \\
\end{align*}
\]

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
- Solving recurrence: \(T(n) = O(n) \)
Randomized Selection Algorithm

\[\text{selection}(A, n, i) \]

1: \textbf{if} \(n = 1 \) \textbf{then return} \(A \)
2: \(x \leftarrow \text{random element of } A \) (called \textit{pivot})
3: \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \) \textit{\(\triangleright \) Divide}
4: \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \) \textit{\(\triangleright \) Divide}
5: \textbf{if} \(i \leq A_L.\text{size} \) \textbf{then}
6: \textbf{return} \(\text{selection}(A_L, A_L.\text{size}, i) \) \textit{\(\triangleright \) Conquer}
7: \textbf{else if} \(i > n - A_R.\text{size} \) \textbf{then}
8: \textbf{return} \(\text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) \textit{\(\triangleright \) Conquer}
9: \textbf{else}
10: \textbf{return} \(x \)

\(\triangleright \) \textbf{expected running time} = \(O(n) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. FFT (Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
8. Finding Closest Pair of Points in 2D Euclidean Space
9. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)
= 6x^6 - 9x^5 + 18x^4 - 15x^3 \\
+ 4x^5 - 6x^4 + 12x^3 - 10x^2 \\
- 10x^4 + 15x^3 - 30x^2 + 25x \\
+ 8x^3 - 12x^2 + 24x - 20 \\
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]

- **Input:** \((4, -5, 2, 3), (-5, 6, -3, 2)\)
- **Output:** \((-20, 49, -52, 20, 2, -5, 6)\)
Discrete Convolution on Finite Domain

- $f, g : \{0, 1, \cdots, n - 1\} \rightarrow \mathbb{R}$
- The convolution of f and g, denoted as $h := f \times g$, is defined as

$$h(k) := \sum_{i,j : i + j = k} f(i)g(j) \quad \forall k \in \{0, 1, 2, \cdots, 2n - 2\}$$

Applications of Convolutions

- Polynomial and integer multiplication
- Signal and Image Processing
- Probability theory: Sum of two distributions
- Convolutional neural network
- ...
Naïve Algorithm

polynomial-multiplication(*A, B, n*)

1: let *C[k] ← 0* for every *k = 0, 1, 2, ..., 2n − 2*
2: for *i ← 0* to *n − 1* do
3: for *j ← 0* to *n − 1* do
5: return *C*

Running time: *O(n^2)*
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- **\(p(x) \):** degree of \(n - 1 \) (assume \(n \) is even)
- **\(p(x) = p_H(x)x^{n/2} + p_L(x) \),**
- **\(p_H(x), p_L(x) \):** polynomials of degree \(n/2 - 1 \).

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[
multiply(p, q) = multiply(p_H, q_H) \times x^n \]
\[
+ (multiply(p_H, q_L) + multiply(p_L, q_H)) \times x^{n/2} \]
\[
+ multiply(p_L, q_L) \]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[
pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \\
= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L
\]

\[
p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \\
+ r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption n is a power of 2. Arrays are 0-indexed.

\[\text{multiply}(A, B, n)\]

1. if $n = 1$ then return $(A[0]B[0])$
2. $A_L \leftarrow A[0 .. n/2 − 1], A_H \leftarrow A[n/2 .. n − 1]$
3. $B_L \leftarrow B[0 .. n/2 − 1], B_H \leftarrow B[n/2 .. n − 1]$
4. $C_L \leftarrow \text{multiply}(A_L, B_L, n/2)$
5. $C_H \leftarrow \text{multiply}(A_H, B_H, n/2)$
6. $C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2)$
7. $C \leftarrow$ array of $(2n − 1)$ 0’s
8. for $i \leftarrow 0$ to $n − 2$ do
9. \hspace{.5cm} $C[i] \leftarrow C[i] + C_L[i]$
10. \hspace{.5cm} $C[i + n] \leftarrow C[i + n] + C_H[i]$
11. \hspace{.5cm} $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] − C_L[i] − C_H[i]$
12. return C
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. **Strassen’s Algorithm for Matrix Multiplication**
7. FFT (Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
8. Finding Closest Pair of Points in 2D Euclidean Space
9. Computing n-th Fibonacci Number
Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1: for $i \leftarrow 1$ to n do
2: for $j \leftarrow 1$ to n do
3: $C[i, j] \leftarrow 0$
4: for $k \leftarrow 1$ to n do
5: $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6: return C

- running time = $O(n^3)$
Try to Use Divide-and-Conquer

\[
\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}
\]

\[
\begin{array}{cc}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- matrix_multiplication\((A, B)\) recursively calls matrix_multiplication\((A_{11}, B_{11})\), matrix_multiplication\((A_{12}, B_{21})\), …

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2)\)
- \(T(n) = O(n^3)\)
- Strassen’s Algorithm: \(T(n) = 7T(n/2) + O(n^2)\)
- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808})\)
Strassen’s Algorithm

\[A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{\frac{n}{2}} \quad \text{n/2} \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}^{\frac{n}{2}} \]

\[C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \]

- \[M_1 \leftarrow (A_{11} + A_{22}) \times (B_{11} + B_{22}) \]
- \[M_2 \leftarrow (A_{21} + A_{22}) \times B_{11} \]
- \[M_3 \leftarrow A_{11} \times (B_{12} - B_{22}) \]
- \[M_4 \leftarrow A_{22} \times (B_{21} - B_{11}) \]
- \[M_5 \leftarrow (A_{11} + A_{12}) \times B_{22} \]
- \[M_6 \leftarrow (A_{21} - A_{11}) \times (B_{11} + B_{12}) \]
- \[M_7 \leftarrow (A_{12} - A_{22}) \times (B_{21} + B_{22}) \]

- \[C_{11} \leftarrow M_1 + M_4 - M_5 + M_7 \]
- \[C_{12} \leftarrow M_3 + M_5 \]
- \[C_{21} \leftarrow M_2 + M_4 \]
- \[C_{22} \leftarrow M_1 - M_2 + M_3 + M_6 \]
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. FFT (Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
8. Finding Closest Pair of Points in 2D Euclidean Space
9. Computing n-th Fibonacci Number
\[p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} \]

Known: given the value of \(p(x) \) for \(n \) different values of \(x \), \(p \) is uniquely determined

Use the \(n \)-th roots of unity

\[e^{\frac{2\pi i \cdot k}{n}} = \cos\left(\frac{2\pi \cdot k}{n}\right) + i \cdot \sin\left(\frac{2\pi \cdot k}{n}\right), \quad k \in \{0, 1, \cdots, n\} \]

\(\omega := e^{\frac{2\pi i}{n}} \), \(n \)-th roots are \(1, \omega, \omega^2, \cdots, \omega^{n-1} \)
values of n points are

$$
\begin{pmatrix}
y_0 \\
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_{n-1}
\end{pmatrix}
:=
\begin{pmatrix}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{n-1} \\
1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\
1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(n-1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \cdots & \omega^{-(n-1)}
\end{pmatrix}
\begin{pmatrix}
a_0 \\
a_1 \\
a_2 \\
a_3 \\
\vdots \\
a_{n-1}
\end{pmatrix}
$$

$$y := F^{(n)} \cdot a$$
Assume n is even.

Breaking polynomial into even and odd parts

- $p_{\text{even}}(x) := a_0 + a_2 x + a_4 x^2 + \cdots + a_{n-2} x^{n/2-1}$
- $p_{\text{old}}(x) := a_1 + a_3 x + a_5 x^2 + \cdots + a_{n-1} x^{n/2-1}$
- $p(x) = p_{\text{even}}(x^2) + p_{\text{odd}}(x^2) \cdot x$

\[
p(\omega^k) = p_{\text{even}}(\omega^{2k}) + p_{\text{odd}}(\omega^{2k}) \cdot \omega^k, \quad k = 0, 1, \ldots, \frac{n}{2} - 1
\]

\[
p(\omega^{n/2+k}) = p_{\text{even}}(\omega^{2k}) - p_{\text{odd}}(\omega^{2k}) \cdot \omega^k, \quad k = 0, 1, \ldots, \frac{n}{2} - 1
\]
Assume n is an integer power of 2

DFT$(n, a_0, a_1, \cdots, a_{n-1})$

1. if $n = 1$ then return (a_0)
2. $(e_0, e_1, \cdots, e_{n/2-1}) \leftarrow \text{DFT}(n/2, a_0, a_2, \cdots, a_{n-2})$
3. $(o_0, o_1, \cdots, o_{n/2-1}) \leftarrow \text{DFT}(n/2, a_1, a_3, \cdots, a_{n-1})$
4. for $k \leftarrow 0, 1, 2, \cdots n/2 - 1$ do
 5. $y_k \leftarrow e_k + o_k \cdot \omega^k$
 6. $y_{n/2+k} \leftarrow e_k - o_k \cdot \omega^k$
5. return $(y_0, y_1, \cdots, y_{n-1})$

Recurrence for running time: $T(n) = 2T(n/2) + O(n)$

$T(n) = O(n \log n)$
\[p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1} \]
\[q(x) = b_0 + b_1 x + b_2 x^2 + \cdots + b_{n-1} x^{n-1} \]

multiplying \(p \) and \(q \), \(\triangleright \) assuming \(n \) is a power of 2

1. \(y \leftarrow \text{DFT}(2n, a_0, a_1, \cdots, a_{n-1}, 0, 0, \cdots, 0) \)
2. \(z \leftarrow \text{DFT}(2n, b_0, b_1, \cdots, b_{n-1}, 0, 0, \cdots, 0) \)
3. \(c \leftarrow \text{iDFT}(2n, y_0z_0, y_1z_1, \cdots, y_{2n-1}z_{2n-1}) \)
4. \text{return} \((c_0, c_1, \cdots, c_{2n-2})\)

- \(\text{iDFT}(n, y_0, y_1, \cdots, y_{n-1}) \): inverse DFT procedure: multiplying input vector \(y \) by the inverse of \(F^{(n)} \), which is

\[
\frac{1}{n}
\begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\
1 & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega & \omega^2 & \cdots & \omega^{n-1}
\end{pmatrix}
\]
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

- Trivial algorithm: $O(n^2)$ running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- Implementation: Sort points inside the stripe according to y-coordinates
- For every point, consider $O(1)$ points around it in the order
- time for combine step = $O(n \log n)$
- recurrence: $T(n) = 2T(n/2) + O(n \log n)$
- solving recurrence: $T(n) = O(n \log^2 n)$

Improve the running time of combine step to $O(n)$
- also sort the points in ascending order of y values at the beginning
- pass the sequence to the root recursion
- constructing two sub-sequences from the sequence, and pass them to the two sub-recursions respectively

- $T(n) = 2T(n/2) + O(n) \implies T(n) = O(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. FFT (Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
8. Finding Closest Pair of Points in 2D Euclidean Space
9. Computing n-th Fibonacci Number
Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

n-th Fibonacci Number

Input: integer $n > 0$

Output: F_n
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib (n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: \hspace{1em} $F[i] \leftarrow F[i-1] + F[i-2]$
5: return $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[\ldots\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(n)

1. if $n = 0$ then return $$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
2. $R \leftarrow \text{power}([n/2])$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. return R

Fib(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
- $T(n) = O(\log n)$
Running time $= O(\log n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\log n)$.

Fixing the Problem

To compute F_n, we need $O(\log n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, FFT, …:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Polynomial Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]

- To improve running time, design better algorithm for “combine” step, or reduce number of recursions, …