算法设计与分析(2024年春季学期)

Divide-and-Conquer

授课老师: 栗师
南京大学计算机科学与技术系
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Greedy Algorithm
- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer
- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort(A, n)

1: if $n = 1$ then
2: return A
3: else
4: $B \leftarrow \text{merge-sort} \left(A[1..\lceil n/2 \rceil], \lceil n/2 \rceil \right)$
5: $C \leftarrow \text{merge-sort} \left(A[\lfloor n/2 \rfloor + 1..n], \lfloor n/2 \rfloor \right)$
6: return $\text{merge}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Each level takes running time $O(n)$
- There are $O(\log n)$ levels
- Running time $= O(n \log n)$
- Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2 \end{cases}$$

- With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n/2) + O(n) & \text{if } n \geq 2 \end{cases}$$

- Even simpler: $T(n) = 2T(n/2) + O(n)$. (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)

- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

- 4 inversions (for convenience, using numbers, not indices):
 - $(10, 8)$, $(10, 9)$, $(15, 9)$, $(15, 12)$
Naive Algorithm for Counting Inversions

count-inversions(A, n)
1: $c \leftarrow 0$
2: for every $i \leftarrow 1$ to $n - 1$ do
3: for every $j \leftarrow i + 1$ to n do
4: if $A[i] > A[j]$ then $c \leftarrow c + 1$
5: return c
Divide-and-Conquer

A: \[B \quad C \]

- \(p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n] \)
- \(\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \)
 \[
 m = \left| \{(i, j) : B[i] > C[j]\} \right|
 \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

$C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$\text{total} = 18$

$\begin{array}{cccccccccc}
+0 & +2 & +3 & +3 & +5 & +5 \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\end{array}$
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count(B, C, n_1, n_2)

1: $count \leftarrow 0$;
2: $A \leftarrow$ array of size $n_1 + n_2$; $i \leftarrow 1$; $j \leftarrow 1$
3: while $i \leq n_1$ or $j \leq n_2$ do
4: if $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) then
5: $A[i + j - 1] \leftarrow B[i] ; i \leftarrow i + 1$
6: else
7: $count \leftarrow count + (j - 1)$
8: $A[i + j - 1] \leftarrow C[j] ; j \leftarrow j + 1$
9: return ($A, count$)
A procedure that returns the sorted array of A and counts the number of inversions in A:

\[
\text{sort-and-count}(A, n) \quad \text{Divide: trivial}
\]

1. \textbf{if} $n = 1$ \textbf{then}
2. \hspace{1cm} \textbf{return} $(A, 0)$
3. \textbf{else}
4. \hspace{1cm} $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lceil n/2 \rceil], \lfloor n/2 \rfloor)$
5. \hspace{1cm} $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6. \hspace{1cm} $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. \hspace{1cm} \textbf{return} $(A, m_1 + m_2 + m_3)$

\[
\text{Conquer: 4, 5}
\]

\[
\text{Combine: 6, 7}
\]
sort-and-count(A, n)

1: **if** $n = 1$ **then**
2: \hspace{1em} **return** $(A, 0)$
3: **else**
4: \hspace{1em} $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lceil n/2 \rceil], \lceil n/2 \rceil)$
5: \hspace{1em} $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lfloor n/2 \rfloor)$
6: \hspace{1em} $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7: **return** $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time $= O(n \lg n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- $T(n) = 2T(n/2) + O(n)$

Each level takes running time $O(n)$

There are $O(\log n)$ levels

Running time $= O(n \log n)$
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

```
  n
 /  \
/    \
/      \
\n/  \\
/    \\n/      \
```

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\frac{\lg_2 n}{\lg_3 2}} \left(\frac{3}{2}\right)^i n = O \left(n \left(\frac{3}{2}\right)^{\frac{\lg_2 n}{\lg_3 2}} \right) = O(3^{\lg_2 n}) = O(n^{\lg_3 3}).
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

- Index of last level? \(\lg_2 n \)

- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \log n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\log n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

1 node

\[n^c \]

\[a \] nodes

\[(n/b)^c \]

\[\frac{a}{b^c} n^c \]

\[a^2 \] nodes

\[(n/b^2)^c \]

\[(n/b^2)^c \]

\[(n/b^2)^c \]

\[(n/b^2)^c \]

\[\left(\frac{a}{b^c}\right)^2 n^c \]

\[a^3 \] nodes

\[\left(\frac{n}{b^3}\right)^c \]

\[\left(\frac{n}{b^3}\right)^c \]

\[\left(\frac{n}{b^3}\right)^c \]

\[\left(\frac{n}{b^3}\right)^c \]

\[\left(\frac{a}{b^c}\right)^3 n^c \]

- \(c < \lg_b a \): bottom-level dominates: \(\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a} \)
- \(c = \lg_b a \): all levels have same time: \(n^c \lg_b n = O(n^c \lg n) \)
- \(c > \lg_b a \): top-level dominates: \(O(n^c) \)
Outline

1 Divide-and-Conquer
2 Counting Inversions
3 Solving Recurrences
4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5 Polynomial Multiplication
6 Strassen’s Algorithm for Matrix Multiplication
7 Finding Closest Pair of Points in 2D Euclidean Space
8 Computing n-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Quicksort vs Merge-Sort

<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>QuickSort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conquer</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Combine</td>
<td>Merge 2 sorted arrays</td>
<td>Recurse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>37</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
Quicksort

quicksort(*A*, *n*)

1: if *n* ≤ 1 then return *A*

2: *x* ← lower median of *A*

3: *A*_L ← array of elements in *A* that are less than *x*

4: *A*_R ← array of elements in *A* that are greater than *x*

5: *B*_L ← quicksort(*A*_L, length of *A*_L)

6: *B*_R ← quicksort(*A*_R, length of *A*_R)

7: *t* ← number of times *x* appear *A*

8: return concatenation of *B*_L, *t* copies of *x*, and *B*_R

- Recurrence *T*(n) ≤ 2*T*(n/2) + *O*(n)
- Running time = *O*(n lg n)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

2. Choose a *pivot randomly* and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

quicksort(A, n)

1: if $n \leq 1$ then return A

2: $x \leftarrow$ a random element of A (x is called a pivot)

3: $A_L \leftarrow$ array of elements in A that are less than x \ Divide

4: $A_R \leftarrow$ array of elements in A that are greater than x \ Divide

5: $B_L \leftarrow$ quicksort(A_L, length of A_L) \ Conquer

6: $B_R \leftarrow$ quicksort(A_R, length of A_R) \ Conquer

7: $t \leftarrow$ number of times x appear A

8: return concatenation of B_L, t copies of x, and B_R
Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort(\(A, n\))

1: if \(n \leq 1\) then return \(A\)
2: \(x \leftarrow\) a random element of \(A\) (\(x\) is called a pivot)
3: \(A_L \leftarrow\) array of elements in \(A\) that are less than \(x\) \quad \| Divide
4: \(A_R \leftarrow\) array of elements in \(A\) that are greater than \(x\) \quad \| Divide
5: \(B_L \leftarrow\) quicksort\((A_L, \text{length of } A_L)\) \quad \| Conquer
6: \(B_R \leftarrow\) quicksort\((A_R, \text{length of } A_R)\) \quad \| Conquer
7: \(t \leftarrow\) number of times \(x\) appear \(A\)
8: return concatenation of \(B_L, t\) copies of \(x\), and \(B_R\)

Lemma The expected running time of the algorithm is \(O(n \log n)\).
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
partition(A, ℓ, r)

1: $p \leftarrow \text{random integer between } \ell \text{ and } r$, swap $A[p]$ and $A[\ell]$

2: $i \leftarrow \ell, j \leftarrow r$

3: **while** true **do**

5: **if** $i = j$ **then** break

6: swap $A[i]$ and $A[j]$; $i \leftarrow i + 1$

7: **while** $i < j$ and $A[i] < A[j]$ do $i \leftarrow i + 1$

8: **if** $i = j$ **then** break

9: swap $A[i]$ and $A[j]$; $j \leftarrow j - 1$

10: **return** i
In-Place Implementation of Quick-Sort

quicksort(A, ℓ, r)

1. if $\ell \geq r$ then return
2. $m \leftarrow \text{partition}(A, \ell, r)$
3. quicksort$(A, \ell, m - 1)$
4. quicksort$(A, m + 1, r)$

To sort an array A of size n, call quicksort$(A, 1, n)$.

Note: We pass the array A by reference, instead of by copying.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Selection Problem

Input: a set \(A \) of \(n \) numbers, and \(1 \leq i \leq n \)

Output: the \(i \)-th smallest number in \(A \)

- Sorting solves the problem in time \(O(n \lg n) \).
- Our goal: \(O(n) \) running time
Recall: Quicksort with Median Finder

quicksort\((A, n)\)

1. **if** \(n \leq 1\) **then return** \(A\)
2. \(x \leftarrow\) lower median of \(A\)
3. \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) ▷ Divide
4. \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) ▷ Divide
5. \(B_L \leftarrow\) quicksort\((A_L, A_L.\text{size})\) ▷ Conquer
6. \(B_R \leftarrow\) quicksort\((A_R, A_R.\text{size})\) ▷ Conquer
7. \(t \leftarrow\) number of times \(x\) appear \(A\)
8. **return** the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)
Selection Algorithm with Median Finder

\[\text{selection}(A, n, i) \]

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \) lower median of \(A \)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) ▷ Divide
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) ▷ Divide
5. if \(i \leq A_L.\text{size} \) then
6. return \(\text{selection}(A_L, A_L.\text{size}, i) \) ▷ Conquer
7. else if \(i > n - A_R.\text{size} \) then
8. return \(\text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) ▷ Conquer
9. else
10. return \(x \)

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
- Solving recurrence: \(T(n) = O(n) \)
Randomized Selection Algorithm

selection(A, n, i)

1: if \(n = 1 \) then return \(A \)
2: \(x \leftarrow \) random element of \(A \) (called pivot)
3: \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \(\triangleright \) Divide
4: \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \(\triangleright \) Divide
5: if \(i \leq A_L\).size then
6: return selection(\(A_L \), \(A_L\).size, \(i \)) \(\triangleright \) Conquer
7: else if \(i > n \) – \(A_R\).size then
8: return selection(\(A_R \), \(A_R\).size, \(i \) – \((n – A_R\).size\)) \(\triangleright \) Conquer
9: else
10: return \(x \)

- expected running time = \(O(n) \)
Outline

1 Divide-and-Conquer
2 Counting Inversions
3 Solving Recurrences
4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5 Polynomial Multiplication
6 Strassen’s Algorithm for Matrix Multiplication
7 Finding Closest Pair of Points in 2D Euclidean Space
8 Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5) = 6x^6 - 9x^5 + 18x^4 - 15x^3 + 4x^5 - 6x^4 + 12x^3 - 10x^2 - 10x^4 + 15x^3 - 30x^2 + 25x + 8x^3 - 12x^2 + 24x - 20 = 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$

- **Input:** $(4, -5, 2, 3), (-5, 6, -3, 2)$
- **Output:** $(-20, 49, -52, 20, 2, -5, 6)$
Naïve Algorithm

polynomial-multiplication(A, B, n)

1: let $C[k] \leftarrow 0$ for every $k = 0, 1, 2, \cdots, 2n - 2$
2: for $i \leftarrow 0$ to $n - 1$ do
3: for $j \leftarrow 0$ to $n - 1$ do
4: $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$
5: return C

Running time: $O(n^2)$
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L) \]
\[= p_Hq_Hx^n + (p_Hq_L + p_Lq_H)x^{n/2} + p_Lq_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]

\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\bullet \quad p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \\
+ r_L
\]

- **Solving Recurrence:** \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption \(n \) is a power of 2. Arrays are 0-indexed.

multiply \((A, B, n)\)

1. if \(n = 1 \) then return \((A[0]B[0])\)
2. \(A_L \leftarrow A[0 .. n/2 - 1], A_H \leftarrow A[n/2 .. n - 1] \)
3. \(B_L \leftarrow B[0 .. n/2 - 1], B_H \leftarrow B[n/2 .. n - 1] \)
4. \(C_L \leftarrow \text{multiply}(A_L, B_L, n/2) \)
5. \(C_H \leftarrow \text{multiply}(A_H, B_H, n/2) \)
6. \(C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2) \)
7. \(C \leftarrow \text{array of } (2n - 1) \text{ 0's} \)
8. for \(i \leftarrow 0 \) to \(n - 2 \) do
9. \(C[i] \leftarrow C[i] + C_L[i] \)
10. \(C[i + n] \leftarrow C[i + n] + C_H[i] \)
11. \(C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i] \)
12. return \(C \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Matrix Multiplication

Input: two \(n \times n \) matrices \(A \) and \(B \)

Output: \(C = AB \)

Naive Algorithm: matrix-multiplication(\(A, B, n \))

1. \textbf{for} \(i \leftarrow 1 \) to \(n \) \textbf{do}
2. \hspace{1em} \textbf{for} \(j \leftarrow 1 \) to \(n \) \textbf{do}
3. \hspace{2em} \(C[i, j] \leftarrow 0 \)
4. \hspace{1em} \textbf{for} \(k \leftarrow 1 \) to \(n \) \textbf{do}
5. \hspace{2em} \(C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j] \)
6. \textbf{return} \(C \)

\(\bullet \) running time = \(O(n^3) \)
Try to Use Divide-and-Conquer

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\quad n/2
\quad B = \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\quad n/2
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- matrix_multiplication(A, B) recursively calls
 - matrix_multiplication(A_{11}, B_{11}), matrix_multiplication(A_{12}, B_{21}),
 ...

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2) \)
- \(T(n) = O(n^3) \)
- Strassen’s Algorithm: \(T(n) = 7T(n/2) + O(n^2) \)
- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Strassen’s Algorithm

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\quad \text{and} \quad
B = \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- \(M_1 \leftarrow (A_{11} + A_{22}) \times (B_{11} + B_{22}) \)
- \(M_2 \leftarrow (A_{21} + A_{22}) \times B_{11} \)
- \(M_3 \leftarrow A_{11} \times (B_{12} - B_{22}) \)
- \(M_4 \leftarrow A_{22} \times (B_{21} - B_{11}) \)
- \(M_5 \leftarrow (A_{11} + A_{12}) \times B_{22} \)
- \(M_6 \leftarrow (A_{21} - A_{11}) \times (B_{11} + B_{12}) \)
- \(M_7 \leftarrow (A_{12} - A_{22}) \times (B_{21} + B_{22}) \)

- \(C_{11} \leftarrow M_1 + M_4 - M_5 + M_7 \)
- \(C_{12} \leftarrow M_3 + M_5 \)
- \(C_{21} \leftarrow M_2 + M_4 \)
- \(C_{22} \leftarrow M_1 - M_2 + M_3 + M_6 \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest

- Trivial algorithm: \(O(n^2)\) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- Implementation: Sort points inside the stripe according to y-coordinates
- For every point, consider $O(1)$ points around it in the order
- time for combine step = \(O(n \log n)\)
- recurrence: \(T(n) = 2T(n/2) + O(n \log n)\)
- solving recurrence: \(T(n) = O(n \log^2 n)\)

Improve the running time of combine step to \(O(n)\)

- also sort the points in ascending order of \(y\) values at the beginning
- pass the sequence to the root recursion
- constructing two sub-sequences from the sequence, and pass them to the two sub-recursions respectively

\[T(n) = 2T(n/2) + O(n) \implies T(n) = O(n \log n) \]
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ···

n-th Fibonacci Number

Input: integer $n > 0$

Output: F_n
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)
1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. **for** $i \leftarrow 2$ **to** n **do**
4. \[
 F[i] \leftarrow F[i - 1] + F[i - 2]
\]
5. **return** $F[n]$

- Dynamic Programming
- Running time $= O(n)$
Computing F_n: Even Better Algorithm

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix}$$

...

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$$
power\((n) \)

1: if \(n = 0 \) then return \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)

2: \(R \leftarrow \text{power}(\lfloor n/2 \rfloor) \)

3: \(R \leftarrow R \times R \)

4: if \(n \) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)

5: return \(R \)

Fib\((n) \)

1: if \(n = 0 \) then return 0

2: \(M \leftarrow \text{power}(n - 1) \)

3: return \(M[1][1] \)

- Recurrence for running time? \(T(n) = T(n/2) + O(1) \)
- \(T(n) = O(\lg n) \)
Running time $= \mathcal{O}(\log n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $\mathcal{O}(1)$ time.
- Even printing $F(n)$ requires time much larger than $\mathcal{O}(\log n)$.

Fixing the Problem

To compute F_n, we need $\mathcal{O}(\log n)$ basic arithmetic operations on integers.
$O(n \lg n)$-Time Algorithm for Convex Hull
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, …:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]

- To improve running time, design better algorithm for “combine” step, or reduce number of recursions, …