算法设计与分析(2024年春季学期)

Divide-and-Conquer

授课老师: 栗师
南京大学计算机科学与技术系
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm
Greedy Algorithm
- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer
- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort(A, n)

1: if $n = 1$ then
2: return A
3: else
4: $B \leftarrow \text{merge-sort}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5: $C \leftarrow \text{merge-sort}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6: return $\text{merge}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
merge-sort\((A, n)\)

1. **if** \(n = 1\) **then**
2. **return** \(A\)
3. **else**
4. \(B \leftarrow \text{merge-sort}\(\{A[1..\lceil n/2 \rceil], \lfloor n/2 \rfloor\}\)\)
5. \(C \leftarrow \text{merge-sort}\(\{A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil\}\)\)
6. **return** \(\text{merge}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\)

- **Divide:** trivial
- **Conquer:** 4, 5
- **Combine:** 6
Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\lg n)$ levels
- Running time $= O(n \lg n)$
- Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2 \end{cases}$$

- With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n/2) + O(n) & \text{if } n \geq 2 \end{cases}$$

- Even simpler: $T(n) = 2T(n/2) + O(n)$. (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)

- Solving this recurrence, we have \(T(n) = O(n \lg n) \) (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>8</th>
<th>15</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
</table>
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>8</th>
<th>15</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

```
10 8 15 9 12
8 9 10 12 15
```

4 inversions (for convenience, using numbers, not indices):

- $(10, 8)$
- $(10, 9)$
- $(15, 9)$
- $(15, 12)$
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Example:

4 inversions (for convenience, using numbers, not indices):
$(10, 8), (10, 9), (15, 9), (15, 12)$
Naive Algorithm for Counting Inversions

\textbf{count-inversions}(A, n)

\begin{enumerate}
\item $c \leftarrow 0$
\item \textbf{for} every $i \leftarrow 1$ to $n - 1$ do
\item \hspace{0.5em} \textbf{for} every $j \leftarrow i + 1$ to n do
\item \hspace{1.5em} \textbf{if} $A[i] > A[j]$ \textbf{then} $c \leftarrow c + 1$
\item \textbf{return} c
\end{enumerate}
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \ B = A[1..p], \ C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = | \{(i, j) : B[i] > C[j]\} | \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

- $p = \lfloor n/2 \rfloor$, $B = A[1..p]$, $C = A[p+1..n]$
- $\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m$

 $m = \left| \{(i, j) : B[i] > C[j] \} \right|$

Lemma If both B and C are sorted, then we can compute m in $O(n)$ time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

<table>
<thead>
<tr>
<th>B</th>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
</table>

| C | 5 | 7 | 9 | 25 | 29 |

\[\text{total} = 0 \]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 0$
Counting Inversions between \(B \) and \(C \)

Count pairs \(i, j \) such that \(B[i] > C[j] \):

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\hline
5 & 7 & 9 & 25 & 29 & \\
\end{array}
\]

\[
\text{total} = 0
\]

\[
+0
\]

\[
3
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$$
B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\quad \text{total}= \ 0
$$

$$
C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\quad +0
$$

3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

total = 0

B: +0

C: 3 5

13/74
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0$

$\text{total}= 0$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

$C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$\text{total} = 0$

$B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

$C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$+0$

$\begin{array}{cccc}
3 & 5 & 7 \\
\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0$

3 5 7

$\text{total}= 0$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0$ $+2$

3 5 7 8

$\text{total} = 2$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0 +2$

3 5 7 8

total = 2
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

$C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

Total: 2
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]:$

$B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

$C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$\text{total} = 2$

$\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 \\
\end{array}$

$+0 +2$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48
total = 5

C: 5 7 9 25 29

+0 +2 +3

3 5 7 8 9 12
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[3\ 8\ 12\ 20\ 32\ 48\]

C: \[5\ 7\ 9\ 25\ 29\]

$+0\ +2\ +3$

total=5

\[3\ 5\ 7\ 8\ 9\ 12\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$: $\text{total} = 8$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B:
\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

C:
\[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 & \\
\end{array}
\]

Total = 8

B: C: $\begin{array}{cccccc}
+0 & +2 & +3 & +3 & \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & \\
\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

\[
\begin{array}{cccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

$\text{total} = 8$

\[
\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 \\
\end{array}
\]

$+0 \quad +2 \quad +3 \quad +3$
Counting Inversions between \(B \) and \(C \)

Count pairs \(i, j \) such that \(B[i] > C[j] \):

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 & \text{total} = 8
\end{array}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[3\ 8\ 12\ 20\ 32\ 48\]

C: \[5\ 7\ 9\ 25\ 29\]

\[\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\
\end{array}\]

\[\begin{array}{cccccc}
+0 & +2 & +3 & +3 & \text{total} = 8 \\
\end{array}\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 & \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\
\end{array}
\]

\[\text{total} = 8\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \end{array} \]

C: \[\begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 \end{array} \]

Total = 13
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 13$

$+0 +2 +3 +3 +5$

$3 5 7 8 9 12 20 25 29 32$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

Total = 18
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}\] \[\text{total} = 18\]

C: \[\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}\]

$+0 +2 +3 +3 +5 +5$

\[\begin{array}{cccccccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\end{array}\]
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count(B, C, n_1, n_2)

1: $count \leftarrow 0$;
2: $A \leftarrow$ array of size $n_1 + n_2$; $i \leftarrow 1$; $j \leftarrow 1$
3: while $i \leq n_1$ or $j \leq n_2$ do
4: \hspace{1em} if $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) then
5: \hspace{2em} $A[i + j - 1] \leftarrow B[i]$; $i \leftarrow i + 1$
6: \hspace{2em} $count \leftarrow count + (j - 1)$
7: \hspace{1em} else
8: \hspace{2em} $A[i + j - 1] \leftarrow C[j]$; $j \leftarrow j + 1$
9: return ($A, count$)
A procedure that returns the sorted array of A and counts the number of inversions in A:

sort-and-count(A, n)

1: if $n = 1$ then
2: return (A, 0)
3: else
4: (B, m_1) ← sort-and-count($A[1..[n/2]]$, $[n/2]$)
5: (C, m_2) ← sort-and-count($A[[n/2] + 1..n]$, $[n/2]$)
6: (A, m_3) ← merge-and-count(B, C, $[n/2]$, $[n/2]$)
7: return (A, $m_1 + m_2 + m_3$)
Sort and Count Inversions in A

A procedure that returns the sorted array of A and counts the number of inversions in A:

sort-and-count(A, n)

1. **if** $n = 1$ **then**
2. **return** ($A, 0$)
3. **else**
4. $(B, m_1) \leftarrow$ sort-and-count($A[1..\lfloor n/2 \rfloor], \lceil n/2 \rceil$)
5. $(C, m_2) \leftarrow$ sort-and-count($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6. $(A, m_3) \leftarrow$ merge-and-count($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
7. **return** ($A, m_1 + m_2 + m_3$)

- **Divide:** trivial
- **Conquer:** 4, 5
- **Combine:** 6, 7
sort-and-count(A, n)

1: \textbf{if } $n = 1$ \textbf{then}
2: \hspace{1em} \textbf{return} ($A, 0$)
3: \textbf{else}
4: \hspace{1em} (B, m_1) \leftarrow sort-and-count($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5: \hspace{1em} (C, m_2) \leftarrow sort-and-count($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6: \hspace{1em} (A, m_3) \leftarrow merge-and-count($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
7: \hspace{1em} \textbf{return} ($A, m_1 + m_2 + m_3$)

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
sort-and-count(A, n)

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5: $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7: return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time = $O(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. **Solving Recurrences**
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

\[T(n) = 2T\left(\frac{n}{2}\right) + O(n) \]
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

- Each level takes running time \(O(n) \)
- There are \(O(\log n) \) levels
Recursion-Tree Method

- $T(n) = 2T(n/2) + O(n)$

Each level takes running time $O(n)$

There are $O(\lg n)$ levels

Running time = $O(n \lg n)$
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]

- Total running time at level \(i \)?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)

Index of last level?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\lg_2 n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

![Recursion Tree]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\lg_2 n \)
- Total running time?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2} \right)^i n \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2} \right)^i n = O \left(n \left(\frac{3}{2} \right)^{\lg_2 n} \right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

Total running time at level \(i \)?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

- Total running time at level i? $(\frac{n}{2^i})^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$

- Index of last level?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level? \(\log_2 n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level? \(\log_2 n \)
- Total running time?
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

- Total running time at level i? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$

- Index of last level? $\lg_2 n$

- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 =$$
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

![Recursion Tree Diagram]

- Total running time at level \(i \): \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level: \(\lg_2 n \)
- Total running time:

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2).
\]
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1 \), \(b > 1 \), \(c \geq 0 \) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\frac{\lg 3}{2}})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
3^c & \text{if } c < \lg_b a \\
O(n^2) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases} ?? & \text{if } c < \lg_b a \\ ?? & \text{if } c = \lg_b a \\ ?? & \text{if } c > \lg_b a \end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n) & \text{if } c = \lg_b a \\
O(n^2) & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
?? & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ ?? & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

Ex: \(T(n) = 4T(n/2) + O(n^2) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\log_2 3}) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(\frac{n}{b}) + O(n^c) \]

\[\begin{array}{c}
1 \text{ node} \\
(\frac{n}{b})^c \\
a^2 \text{ nodes} \\
(\frac{n}{b^2})^c \\
a^3 \text{ nodes} \\
(\frac{n}{b^3})^c
\end{array} \]

\[c < \log_b a: \text{ bottom-level dominates} \]

\[c = \log_b a: \text{ all levels have same time} \]

\[c > \log_b a: \text{ top-level dominates} \]

\[O(n^c) \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- \(c < \lg_b a \): bottom-level dominates: \[\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a} \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

\begin{itemize}
 \item \(c < \log_b a \): bottom-level dominates: \((\frac{a}{b^c})^{\log_b n} n^c = n^{\log_b a} \)
 \item \(c = \log_b a \): all levels have same time: \(n^c \log_b n = O(n^c \log n) \)
\end{itemize}
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- **1 node**
 \[n^c \]

- **a nodes**
 \[(\frac{n}{b})^c \]

- **a^2 nodes**
 \[(\frac{n}{b^2})^c \]
 \[(\frac{n}{b^2})^c \]

- **a^3 nodes**
 \[(\frac{n}{b^3})^c \]
 \[(\frac{n}{b^3})^c \]
 \[(\frac{n}{b^3})^c \]

\[\frac{a}{b^c} n^c \]
\[\frac{a}{b^c} n^c \]
\[\frac{a}{b^c} n^c \]
\[\frac{a}{b^c} n^c \]
\[\frac{a}{b^c} n^c \]
\[\frac{a}{b^c} n^c \]

- **c < \log_b a**: bottom-level dominates:
 \[\left(\frac{a}{b^c}\right)^{\log_b n} n^c = n^{\log_b a} \]

- **c = \log_b a**: all levels have same time:
 \[n^c \log_b n = O(n^c \log n) \]

- **c > \log_b a**: top-level dominates:
 \[O(n^c) \]
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Quicksort vs Merge-Sort

<table>
<thead>
<tr>
<th>Divide</th>
<th>Conquer</th>
<th>Combine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Merge Sort</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trivial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recurse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Merge 2 sorted arrays</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QuickSort</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Separate small and big numbers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recurse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trivial</td>
<td></td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.
Quicksort Example

Assumption
We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.
Assumption We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th></th>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>29</th>
<th>38</th>
<th>45</th>
<th>25</th>
<th>15</th>
<th>37</th>
<th>17</th>
<th>64</th>
<th>82</th>
<th>75</th>
<th>94</th>
<th>92</th>
<th>69</th>
<th>76</th>
<th>85</th>
</tr>
</thead>
</table>

| | 25 | 15 | 17 | 29 | 38 | 45 | 37 | 64 | 82 | 75 | 94 | 92 | 69 | 76 | 85 |
Quicksort

quicksort(A, n)

1: if \(n \leq 1 \) then return A
2: \(x \leftarrow \) lower median of A
3: \(A_L \leftarrow \) array of elements in A that are less than \(x \) \quad \text{\textbackslash \textbackslash \text{Divide}}
4: \(A_R \leftarrow \) array of elements in A that are greater than \(x \) \quad \text{\textbackslash \textbar \textbar \text{Divide}}
5: \(B_L \leftarrow \) quicksort\((A_L, \text{length of } A_L)\) \quad \text{\textbackslash \textbar \textbar \text{Conquer}}
6: \(B_R \leftarrow \) quicksort\((A_R, \text{length of } A_R)\) \quad \text{\textbackslash \textbar \textbar \text{Conquer}}
7: \(t \leftarrow \) number of times \(x \) appear in A
8: return concatenation of \(B_L, t \) copies of \(x \), and \(B_R \)
Quicksort

quicksort\((A, n)\)

1: if \(n \leq 1\) then return \(A\)
2: \(x \leftarrow\) lower median of \(A\)
3: \(A_L \leftarrow\) array of elements in \(A\) that are less than \(x\)
4: \(A_R \leftarrow\) array of elements in \(A\) that are greater than \(x\)
5: \(B_L \leftarrow\) quicksort\((A_L, \text{length of } A_L)\)
6: \(B_R \leftarrow\) quicksort\((A_R, \text{length of } A_R)\)
7: \(t \leftarrow\) number of times \(x\) appear \(A\)
8: return concatenation of \(B_L, t\) copies of \(x\), and \(B_R\)

- Recurrence \(T(n) \leq 2T(n/2) + O(n)\)
Quicksort

```plaintext
quicksort(A, n)
1: if n \leq 1 then return A
2: x ← lower median of A
3: AL ← array of elements in A that are less than x  \|| Divide
4: AR ← array of elements in A that are greater than x \|| Divide
5: BL ← quicksort(AL, length of AL) \|| Conquer
6: BR ← quicksort(AR, length of AR) \|| Conquer
7: t ← number of times x appear A
8: return concatenation of BL, t copies of x, and BR
```

- Recurrence \(T(n) \leq 2T(n/2) + O(n) \)
- Running time = \(O(n \log n) \)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:
1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
2. Choose a **pivot randomly** and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

quicksort\((A, n)\)

1: \textbf{if} \(n \leq 1\) \textbf{then return} \(A\)
2: \(x \leftarrow \) a random element of \(A\) \((x\) is called a pivot\)
3: \(A_L \leftarrow \) array of elements in \(A\) that are less than \(x\) \quad \text{Divide}
4: \(A_R \leftarrow \) array of elements in \(A\) that are greater than \(x\) \quad \text{Divide}
5: \(B_L \leftarrow \) quicksort\((A_L, \text{length of } A_L)\) \quad \text{Conquer}
6: \(B_R \leftarrow \) quicksort\((A_R, \text{length of } A_R)\) \quad \text{Conquer}
7: \(t \leftarrow \) number of times \(x\) appear \(A\)
8: \textbf{return} concatenation of \(B_L\), \(t\) copies of \(x\), and \(B_R\)
Assumption: There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?
Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use *pseudo-random-generator*, a deterministic algorithm returning numbers that “look like” random
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use **pseudo-random-generator**, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort(A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ a random element of A (x is called a pivot)
3: $A_L \leftarrow$ array of elements in A that are less than x
4: $A_R \leftarrow$ array of elements in A that are greater than x
5: $B_L \leftarrow$ quicksort(A_L, length of A_L)
6: $B_R \leftarrow$ quicksort(A_R, length of A_R)
7: $t \leftarrow$ number of times x appear in A
8: return concatenation of B_L, t copies of x, and B_R

Lemma The expected running time of the algorithm is $O(n \lg n)$.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

| 64 | 82 | 75 | 29 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[
i \quad j
\]

\[
\begin{array}{cccccccccccccccc}
64 & 82 & 75 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 37 & 17 & 85
\end{array}
\]
QuickSort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
17 82 75 29 38 45 94 69 25 76 15 92 37 64 85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
  17  82  75  29  38  45  94  69  25  76  15  92  37  64  85
  i   j
```
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[
\begin{array}{cccccccccccc}
17 & 64 & 75 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 37 & 82 & 85 \\
\end{array}
\]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need \(O(1) \) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[i \quad j \]

\[
\begin{array}{cccccccccccc}
17 & 37 & 75 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 64 & 82 & 85
\end{array}
\]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[
\begin{array}{cccccccccccc}
17 & 37 & 64 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 75 & 82 & 85 \\
\end{array}
\]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
17  37  64  29  38  45  94  69  25  76  15  92  75  82  85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
17 37 15 29 38 45 94 69 25 76 64 92 75 82 85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[\begin{array}{cccccccccccccccc}
17 & 37 & 15 & 29 & 38 & 45 & 64 & 69 & 25 & 76 & 94 & 92 & 75 & 82 & 85
\end{array} \]

To partition the array into two parts, we only need \(O(1) \) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm:** an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

17 37 15 29 38 45 25 64 69 76 94 92 75 82 85
QuickSort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
partition(A, ℓ, r)

1: $p \leftarrow \text{random integer between } \ell \text{ and } r, \text{ swap } A[p] \text{ and } A[\ell]$
2: $i \leftarrow \ell, j \leftarrow r$
3: while true do
5: if $i = j$ then break
6: swap $A[i]$ and $A[j]$; $i \leftarrow i + 1$
7: while $i < j$ and $A[i] < A[j]$ do $i \leftarrow i + 1$
8: if $i = j$ then break
9: swap $A[i]$ and $A[j]$; $j \leftarrow j - 1$
10: return i
In-Place Implementation of Quick-Sort

quicksort\((A, \ell, r) \)

1. if \(\ell \geq r \) then return
2. \(m \leftarrow \text{partition}(A, \ell, r) \)
3. quicksort\((A, \ell, m - 1) \)
4. quicksort\((A, m + 1, r) \)

To sort an array \(A \) of size \(n \), call quicksort\((A, 1, n) \).

Note: We pass the array \(A \) by reference, instead of by copying.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

\[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3
\end{array}
\]
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3  8  12  20  32  48
5  7  9  25  29
3
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3 8 12 20 32 48
5 7 9 25 29
3 5
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3 8 12 20 32 48
5 7 9 25 29
3 5 7
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 \\
\end{array}
\]
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3  8  12  20  32  48
5  7  9  25  29
3  5  7  8
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3 8 12 20 32 48
```

```
5 7 9 25 29
```

```
3 5 7 8
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3 8 12 20 32 48
5 7 9 25 29
3 5 7 8 9 12 20 25 29
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
 3  8  12  20  32  48
 5  7  9  25  29
 3  5  7  8  9  12  20  25  29  32  48
```
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Q: Can we do better than $O(n \log n)$ for sorting?
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We cannot use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

![Binary search tree](image)
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

• Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
• You can ask Bob “yes/no” questions about π.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots , n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

\[\text{quicksort}(A, n) \]

1. \textbf{if} \(n \leq 1 \) \textbf{then return} \(A \)
2. \(x \leftarrow \) lower median of \(A \)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \hspace{1cm} \triangleright \text{Divide}
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \hspace{1cm} \triangleright \text{Divide}
5. \(B_L \leftarrow \text{quicksort}(A_L, A_L.\text{size}) \) \hspace{1cm} \triangleright \text{Conquer}
6. \(B_R \leftarrow \text{quicksort}(A_R, A_R.\text{size}) \) \hspace{1cm} \triangleright \text{Conquer}
7. \(t \leftarrow \) number of times \(x \) appear \(A \)
8. \textbf{return} the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)
Selection Algorithm with Median Finder

selection(A, n, i)

1: if n = 1 then return A
2: x ← lower median of A
3: AL ← elements in A that are less than x ▷ Divide
4: AR ← elements in A that are greater than x ▷ Divide
5: if i ≤ AL.size then
6: return selection(AL, AL.size, i) ▷ Conquer
7: else if i > n – AR.size then
8: return selection(AR, AR.size, i – (n – AR.size)) ▷ Conquer
9: else
10: return x
Selection Algorithm with Median Finder

\textbf{selection}(A, n, i)

1: \textbf{if} \ n = 1 \ \textbf{then return} \ A
2: \ x \leftarrow \ \text{lower median of} \ A
3: \ A_L \leftarrow \ \text{elements in} \ A \ \text{that are less than} \ x \quad \triangleright \ \text{Divide}
4: \ A_R \leftarrow \ \text{elements in} \ A \ \text{that are greater than} \ x \quad \triangleright \ \text{Divide}
5: \ \textbf{if} \ i \leq A_L.\text{size} \ \textbf{then}
6: \ \ \ \textbf{return} \ \text{selection}(A_L, A_L.\text{size}, i) \quad \triangleright \ \text{Conquer}
7: \ \textbf{else if} \ i > n - A_R.\text{size} \ \textbf{then}
8: \ \ \ \textbf{return} \ \text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \quad \triangleright \ \text{Conquer}
9: \ \textbf{else}
10: \ \ \ \textbf{return} \ x

\begin{itemize}
 \item Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
\end{itemize}
Selection Algorithm with Median Finder

selection(A, n, i)

1: if n = 1 then return A
2: x ← lower median of A
3: A_L ← elements in A that are less than x ▷ Divide
4: A_R ← elements in A that are greater than x ▷ Divide
5: if i ≤ A_L.size then
6: return selection(A_L, A_L.size, i) ▷ Conquer
7: else if i > n − A_R.size then
8: return selection(A_R, A_R.size, i − (n − A_R.size)) ▷ Conquer
9: else
10: return x

- Recurrence for selection: $T(n) = T(n/2) + O(n)$
- Solving recurrence: $T(n) = O(n)$
Randomized Selection Algorithm

\[\text{selection}(A, n, i) \]

1: \textbf{if} \(n = 1 \) \textbf{then} return \(A \)
2: \(x \leftarrow \) random element of \(A \) (called \textit{pivot})
3: \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \hspace{1cm} \triangleright \text{Divide}
4: \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \hspace{1cm} \triangleright \text{Divide}
5: \textbf{if} \(i \leq A_L.\text{size} \) \textbf{then}
6: \hspace{1cm} \textbf{return} \text{selection}(A_L, A_L.\text{size}, i) \hspace{1cm} \triangleright \text{Conquer}
7: \textbf{else if} \(i > n - A_R.\text{size} \) \textbf{then}
8: \hspace{1cm} \textbf{return} \text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \hspace{1cm} \triangleright \text{Conquer}
9: \textbf{else}
10: \hspace{1cm} \textbf{return} \(x \)
Randomized Selection Algorithm

\[
\text{selection}(A, n, i)
\]

1. **if** \(n = 1 \) **then** \(\text{return} \ A \)
2. \(x \leftarrow \text{random element of} \ A \) (called **pivot**)
3. \(A_L \leftarrow \text{elements in} \ A \) that are less than \(x \) ▷ **Divide**
4. \(A_R \leftarrow \text{elements in} \ A \) that are greater than \(x \) ▷ **Divide**
5. **if** \(i \leq A_L.\text{size} \) **then**
6. \(\text{return} \ \text{selection}(A_L, A_L.\text{size}, i) \) ▷ **Conquer**
7. **else if** \(i > n - A_R.\text{size} \) **then**
8. \(\text{return} \ \text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) ▷ **Conquer**
9. **else**
10. \(\text{return} \ x \)

- expected running time = \(O(n) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)
\]

\[
= 6x^6 - 9x^5 + 18x^4 - 15x^3 + 4x^5 - 6x^4 + 12x^3 - 10x^2
\]

\[
- 10x^4 + 15x^3 - 30x^2 + 25x + 8x^3 - 12x^2 + 24x - 20
\]

\[
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)
\]

\[
= 6x^6 - 9x^5 + 18x^4 - 15x^3 \\
+ 4x^5 - 6x^4 + 12x^3 - 10x^2 \\
- 10x^4 + 15x^3 - 30x^2 + 25x \\
+ 8x^3 - 12x^2 + 24x - 20
\]

\[
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]

- **Input:** \((4, -5, 2, 3), (-5, 6, -3, 2)\)
- **Output:** \((-20, 49, -52, 20, 2, -5, 6)\)
Naïve Algorithm

polynomial-multiplication \((A, B, n)\)

1: let \(C[k] \leftarrow 0\) for every \(k = 0, 1, 2, \ldots, 2n - 2\)
2: for \(i \leftarrow 0\) to \(n - 1\) do
3: for \(j \leftarrow 0\) to \(n - 1\) do
4: \(C[i + j] \leftarrow C[i + j] + A[i] \times B[j]\)
5: return \(C\)
Naïve Algorithm

\[\text{polynomial-multiplication}(A, B, n)\]

1: let \(C[k] \leftarrow 0\) for every \(k = 0, 1, 2, \cdots, 2n - 2\)
2: \(\text{for } i \leftarrow 0\ \text{to } n - 1\ \text{do}\)
3: \(\quad \text{for } j \leftarrow 0\ \text{to } n - 1\ \text{do}\)
4: \(\quad\quad C[i + j] \leftarrow C[i + j] + A[i] \times B[j]\)
5: \(\text{return } C\)

Running time: \(O(n^2)\)
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L) \]
\[= p_Hq_Hx^n + (p_Hq_L + p_Lq_H)x^{n/2} + p_Lq_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[
\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n + \left(\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H) \right) \times x^{n/2} + \text{multiply}(p_L, q_L)
\]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n + (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} + \text{multiply}(p_L, q_L) \]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r = \text{multiply} (p_H, q_H) \]

\[r_L = \text{multiply} (p_L, q_L) \]

\[\text{multiply} (p, q) = r_H \times x^n + \text{multiply} (p_H + p_L, q_H + q_L) - r_H - r_L \times x^{n/2} + r_L \]

Solving Recurrence:

\[T(n) = 3T(n/2) + O(n) \]

\[T(n) = O(n \log_2 3) = O(n^{1.585}) \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \\
+ r_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \\
+ r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \\
+ r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\lg_2 3}) = O(n^{1.585}) \)
Assumption n is a power of 2. Arrays are 0-indexed.

\textbf{multiply}(A, B, n)

1: if $n = 1$ then return $(A[0]B[0])$
2: $A_L \leftarrow A[0 .. n/2 - 1], A_H \leftarrow A[n/2 .. n - 1]$
3: $B_L \leftarrow B[0 .. n/2 - 1], B_H \leftarrow B[n/2 .. n - 1]$
4: $C_L \leftarrow \text{multiply}(A_L, B_L, n/2)$
5: $C_H \leftarrow \text{multiply}(A_H, B_H, n/2)$
6: $C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2)$
7: $C \leftarrow \text{array of } (2n - 1) \text{ 0's}$
8: for $i \leftarrow 0$ to $n - 2$ do
9: \hspace{1em} $C[i] \leftarrow C[i] + C_L[i]$
10: \hspace{1em} $C[i + n] \leftarrow C[i + n] + C_H[i]$
11: \hspace{1em} $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$
12: return C
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: matrix-multiplication (A, B, n)

1: for $i \leftarrow 1$ to n
2: for $j \leftarrow 1$ to n
3: $C[i, j] \leftarrow 0$
4: for $k \leftarrow 1$ to n
5: $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$

6: return C

running time: $O(n^3)$
Matrix Multiplication

Input: two \(n \times n \) matrices \(A \) and \(B \)

Output: \(C = AB \)

Naive Algorithm: matrix-multiplication\((A, B, n)\)

1. \textbf{for} \(i \leftarrow 1 \) to \(n \) \textbf{do}
2. \hspace{1em} \textbf{for} \(j \leftarrow 1 \) to \(n \) \textbf{do}
3. \hspace{2em} \(C[i, j] \leftarrow 0 \)
4. \hspace{1em} \textbf{for} \(k \leftarrow 1 \) to \(n \) \textbf{do}
5. \hspace{2em} \(C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j] \)
6. \textbf{return} \(C \)

running time = \(O(n^3) \)
Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1. for $i \leftarrow 1$ to n do
2. for $j \leftarrow 1$ to n do
3. $C[i, j] \leftarrow 0$
4. for $k \leftarrow 1$ to n do
5. $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. return C

- running time $= O(n^3)$
Try to Use Divide-and-Conquer

\[C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \]

- \text{matrix_multiplication}(A, B) recursively calls \text{matrix_multiplication}(A_{11}, B_{11}), \text{matrix_multiplication}(A_{12}, B_{21}), \ldots
Try to Use Divide-and-Conquer

\[
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}
\]

\[
C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}
\]

- `matrix_multiplication(A, B)` recursively calls `matrix_multiplication(A_{11}, B_{11})`, `matrix_multiplication(A_{12}, B_{21})`, ...

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2) \)

- \(T(n) = O(n^3) \)
Try to Use Divide-and-Conquer

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\quad n/2
\quad B = \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\quad n/2
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- matrix_multiplication\((A, B)\) recursively calls
 matrix_multiplication\((A_{11}, B_{11})\), matrix_multiplication\((A_{12}, B_{21})\), ...

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2)\)

- \(T(n) = O(n^3)\)

- Strassen’s Algorithm: \(T(n) = 7T(n/2) + O(n^2)\)
Try to Use Divide-and-Conquer

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\quad n/2

B = \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\quad n/2
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- matrix_multiplication(A, B) recursively calls matrix_multiplication(A_{11}, B_{11}), matrix_multiplication(A_{12}, B_{21}), ...

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2) \)

- \(T(n) = O(n^3) \)

- Strassen’s Algorithm: \(T(n) = 7T(n/2) + O(n^2) \)

- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Strassen’s Algorithm

\[\begin{align*}
A &= \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}^{n/2}, \\
B &= \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}^{n/2}, \\
C &= \begin{bmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{bmatrix}
\end{align*} \]
Strassen’s Algorithm

\[A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \]

\[C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \]

\[M_1 \leftarrow (A_{11} + A_{22}) \times (B_{11} + B_{22}) \]
\[M_2 \leftarrow (A_{21} + A_{22}) \times B_{11} \]
\[M_3 \leftarrow A_{11} \times (B_{12} - B_{22}) \]
\[M_4 \leftarrow A_{22} \times (B_{21} - B_{11}) \]
\[M_5 \leftarrow (A_{11} + A_{12}) \times B_{22} \]
\[M_6 \leftarrow (A_{21} - A_{11}) \times (B_{11} + B_{12}) \]
\[M_7 \leftarrow (A_{12} - A_{22}) \times (B_{21} + B_{22}) \]

\[C_{11} \leftarrow M_1 + M_4 - M_5 + M_7 \]
\[C_{12} \leftarrow M_3 + M_5 \]
\[C_{21} \leftarrow M_2 + M_4 \]
\[C_{22} \leftarrow M_1 - M_2 + M_3 + M_6 \]
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing n-th Fibonacci Number
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Output: the pair of points that are closest
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

Output: the pair of points that are closest

- Trivial algorithm: $O(n^2)$ running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line

![Diagram showing points divided into two halves]
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair

For each point, only need to consider $O(1)$ boxes nearby

Implementation: Sort points inside the stripe according to y-coordinates

For every point, consider $O(1)$ points around it in the order
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
Each box contains at most one pair
For each point, only need to consider $O(1)$ boxes nearby
Implementation: \textbf{Sort} points inside the stripe according to y-coordinates
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair
For each point, only need to consider $O(1)$ boxes nearby
Implementation: Sort points inside the stripe according to y-coordinates
For every point, consider $O(1)$ points around it in the order
- time for combine step = $O(n \log n)$
- recurrence: $T(n) = 2T(n/2) + O(n \log n)$
time for combine step = $O(n \log n)$
recurrence: $T(n) = 2T(n/2) + O(n \log n)$
solving recurrence: $T(n) = ?$
- time for combine step = $O(n \log n)$
- recurrence: $T(n) = 2T(n/2) + O(n \log n)$
- solving recurrence: $T(n) = O(n \log^2 n)$
- time for combine step = $O(n \log n)$
- recurrence: $T(n) = 2T(n/2) + O(n \log n)$
- solving recurrence: $T(n) = O(n \log^2 n)$

Improve the running time of combine step to $O(n)$

- also sort the points in ascending order of y values at the beginning
- pass the sequence to the root recursion
- constructing two sub-sequences from the sequence, and pass them to the two sub-recursions respectively
time for combine step = $O(n \log n)$
recurrence: $T(n) = 2T(n/2) + O(n \log n)$
solving recurrence: $T(n) = O(n \log^2 n)$

Improve the running time of combine step to $O(n)$

- also sort the points in ascending order of y values at the beginning
- pass the sequence to the root recursion
- constructing two sub-sequences from the sequence, and pass them to the two sub-recursions respectively

$T(n) = 2T(n/2) + O(n) \implies T(n) = O(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Solving Recurrences
4. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
5. Polynomial Multiplication
6. Strassen’s Algorithm for Matrix Multiplication
7. Finding Closest Pair of Points in 2D Euclidean Space
8. Computing \(n\)-th Fibonacci Number
Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$

n-th Fibonacci Number

Input: integer $n > 0$

Output: F_n
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

Running time is at least $\Omega(F_n)$

F_n is exponential in n
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
Computing F_n : Stupid Divide-and-Conquer Algorithm

\[
\text{Fib}(n) \quad \begin{align*}
1: & \quad \text{if } n = 0 \text{ return } 0 \\
2: & \quad \text{if } n = 1 \text{ return } 1 \\
3: & \quad \text{return Fib}(n - 1) + \text{Fib}(n - 2)
\end{align*}
\]

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

\begin{verbatim}
Fib(n)
1: F[0] ← 0
2: F[1] ← 1
3: for i ← 2 to n do
4: F[i] ← F[i − 1] + F[i − 2]
5: return F[n]
\end{verbatim}

- Dynamic Programming
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time $= \ ?$
Computing F_n: Reasonable Algorithm

```
Fib(n)
1:  F[0] ← 0
2:  F[1] ← 1
3:  for i ← 2 to n do
4:      F[i] ← F[i − 1] + F[i − 2]
5:  return F[n]
```

- Dynamic Programming
- Running time $= \mathcal{O}(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} \\
\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix} \\
\hspace{1cm} \cdots \\
\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}
\]
power(n)

1. if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2. $R \leftarrow \text{power}([n/2])$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. return R

Fib(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$
power(n)

1. if $n = 0$ then return \[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]
2. $R \leftarrow \text{power}([n/2])$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}$
5. return R

Fib(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$

- Recurrence for running time?
\textbf{power}(n)

1: if \(n = 0 \) then return \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)

2: \(R \leftarrow \text{power}(\lfloor n/2 \rfloor) \)

3: \(R \leftarrow R \times R \)

4: if \(n \) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)

5: return \(R \)

\textbf{Fib}(n)

1: if \(n = 0 \) then return 0

2: \(M \leftarrow \text{power}(n - 1) \)

3: return \(M[1][1] \)

- Recurrence for running time? \(T(n) = T(n/2) + O(1) \)
\textbf{power}(n)

1. if $n = 0$ then return \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
2. $R \leftarrow \text{power}([n/2])$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. return R

\textbf{Fib}(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
- $T(n) = O(\lg n)$
Running time $= O(\log n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time. Even printing $F(n)$ requires time much larger than $O(\log n)$.

Fixing the Problem

To compute F_n, we need $O(\log n)$ basic arithmetic operations on integers.
Running time = $O(\log n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$
Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
$O(n \lg n)$-Time Algorithm for Convex Hull
$O(n \log n)$-Time Algorithm for Convex Hull
$O(n \lg n)$-Time Algorithm for Convex Hull
$O(n \lg n)$-Time Algorithm for Convex Hull
$O(n \lg n)$-Time Algorithm for Convex Hull
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ...:

 \[T(n) = 2T(n/2) + O(n) \implies T(n) = O(n \lg n) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \ldots:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ...:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ⋯:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]

- To improve running time, design better algorithm for “combine” step, or reduce number of recursions, ⋯