算法设计与分析(2024年春季学期)
Dynamic Programming

授课老师: 栗师
南京大学计算机科学与技术系
Paradigms for Designing Algorithms

Greedy algorithm
- Make a greedy choice
- Prove that the greedy choice is safe
- Reduce the problem to a sub-problem and solve it iteratively
- Usually for optimization problems

Divide-and-conquer
- Break a problem into many independent sub-problems
- Solve each sub-problem separately
- Combine solutions for sub-problems to form a solution for the original one
- Usually used to design more efficient algorithms
Paradigms for Designing Algorithms

Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse
Recall: Computing the n-th Fibonacci Number

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots

\textbf{Fib}(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: \textbf{for} $i \leftarrow 2$ \textbf{to} n \textbf{do}
4: \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: \textbf{return} $F[n]$

- Store each $F[i]$ for future use.
Outline

1. Weighted Interval Scheduling
2. Subset Sum Problem
 - Related Problem: Knapsack Problem
3. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
4. Shortest Paths in Directed Acyclic Graphs
5. Matrix Chain Multiplication
6. Optimum Binary Search Tree
7. Summary
Recall: Interval Scheduling

Input: n jobs, job i with start time s_i and finish time f_i

each job has a weight (or value) $v_i > 0$

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint

Output: a maximum-size subset of mutually compatible jobs

Optimum value $= 220$
Q: Which job is safe to schedule?

- Job with the earliest finish time? No, we are ignoring weights.
- Job with the largest weight? No, we are ignoring times.
- Job with the largest \(\frac{\text{weight}}{\text{length}} \)?

No, when weights are equal, this is the shortest job.
Designing a Dynamic Programming Algorithm

- Sort jobs according to non-decreasing order of finish times
- $opt[i]$: optimal value for instance only containing jobs $\{1, 2, \cdots, i\}$

<table>
<thead>
<tr>
<th>i</th>
<th>$opt[i]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>170</td>
</tr>
<tr>
<td>7</td>
<td>185</td>
</tr>
<tr>
<td>8</td>
<td>220</td>
</tr>
<tr>
<td>9</td>
<td>220</td>
</tr>
</tbody>
</table>
Designing a Dynamic Programming Algorithm

- Focus on instance \(\{1, 2, 3, \cdots, i\} \),
- \(opt[i] \): optimal value for the instance
- Assume we have computed \(opt[0], opt[1], \cdots, opt[i-1] \)

Q: The value of optimal solution that does not contain \(i \)?

A: \(opt[i - 1] \)

Q: The value of optimal solution that contains job \(i \)?

A: \(v_i + opt[p_i], \) \(p_i = \) the largest \(j \) such that \(f_j \leq s_i \)
Q: The value of optimal solution that does not contain i?

A: $opt[i - 1]$

Q: The value of optimal solution that contains job i?

A: $v_i + opt[p_i]$, $p_i = \text{the largest } j \text{ such that } f_j \leq s_i$

Recursion for $opt[i]$: $opt[i] = \max \left\{ opt[i - 1], v_i + opt[p_i] \right\}$
Designing a Dynamic Programming Algorithm

Recursion for $opt[i]$:

$$opt[i] = \max \{opt[i - 1], v_i + opt[p_i]\}$$

- $opt[0] = 0$
- $opt[1] = \max\{opt[0], 80 + opt[0]\} = 80$
- $opt[2] = \max\{opt[1], 100 + opt[0]\} = 100$
- $opt[3] = \max\{opt[2], 90 + opt[0]\} = 100$
- $opt[4] = \max\{opt[3], 25 + opt[1]\} = 105$
- $opt[5] = \max\{opt[4], 50 + opt[3]\} = 150$
Designing a Dynamic Programming Algorithm

Recursion for $opt[i]$:

$$opt[i] = \max \{ opt[i - 1], v_i + opt[p_i] \}$$

- $opt[0] = 0$, $opt[1] = 80$, $opt[2] = 100$
- $opt[7] = \max \{ opt[6], 80 + opt[4] \} = 185$
- $opt[8] = \max \{ opt[7], 50 + opt[6] \} = 220$
- $opt[9] = \max \{ opt[8], 30 + opt[7] \} = 220$
Dynamic Programming

1. sort jobs by non-decreasing order of finishing times
2. compute \(p_1, p_2, \cdots, p_n \)
3. \(\text{opt}[0] \leftarrow 0 \)
4. for \(i \leftarrow 1 \) to \(n \) do
5. \(\text{opt}[i] \leftarrow \max\{\text{opt}[i-1], v_i + \text{opt}[p_i]\} \)

- Running time sorting: \(O(n \lg n) \)
- Running time for computing \(p \): \(O(n \lg n) \) via binary search
- Running time for computing \(\text{opt}[n] \): \(O(n) \)
How Can We Recover the Optimum Schedule?

1: sort jobs by non-decreasing order of finishing times
2: compute p_1, p_2, \cdots, p_n
3: $opt[0] \leftarrow 0$
4: for $i \leftarrow 1$ to n do
5: if $opt[i - 1] \geq v_i + opt[p_i]$ then
6: $opt[i] \leftarrow opt[i - 1]$
7: $b[i] \leftarrow N$
8: else
9: $opt[i] \leftarrow v_i + opt[p_i]$
10: $b[i] \leftarrow Y$

1: $i \leftarrow n, S \leftarrow \emptyset$
2: while $i \neq 0$ do
3: if $b[i] = N$ then
4: $i \leftarrow i - 1$
5: else
6: $S \leftarrow S \cup \{i\}$
7: $i \leftarrow p_i$
8: return S
Recovering Optimum Schedule: Example

<table>
<thead>
<tr>
<th>i</th>
<th>$opt[i]$</th>
<th>$b[i]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>⊥</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>Y</td>
</tr>
<tr>
<td>6</td>
<td>170</td>
<td>Y</td>
</tr>
<tr>
<td>7</td>
<td>185</td>
<td>Y</td>
</tr>
<tr>
<td>8</td>
<td>220</td>
<td>Y</td>
</tr>
<tr>
<td>9</td>
<td>220</td>
<td>N</td>
</tr>
</tbody>
</table>
Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse
Outline

1. Weighted Interval Scheduling
2. Subset Sum Problem
 - Related Problem: Knapsack Problem
3. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
4. Shortest Paths in Directed Acyclic Graphs
5. Matrix Chain Multiplication
6. Optimum Binary Search Tree
7. Summary
Subset Sum Problem

Input: an integer bound \(W > 0 \)

a set of \(n \) items, each with an integer weight \(w_i > 0 \)

Output: a subset \(S \) of items that

\[
\text{maximizes } \sum_{i \in S} w_i \quad \text{s.t. } \sum_{i \in S} w_i \leq W.
\]

- Motivation: you have budget \(W \), and want to buy a subset of items, so as to spend as much money as possible.

Example:

- \(W = 35, n = 5, w = (14, 9, 17, 10, 13) \)
- Optimum: \(S = \{1, 2, 4\} \) and \(14 + 9 + 10 = 33 \)
Greedy Algorithms for Subset Sum

Candidate Algorithm:
- Sort according to non-increasing order of weights
- Select items in the order as long as the total weight remains below W

Q: Does candidate algorithm always produce optimal solutions?

A: No. $W = 100, n = 3, w = (51, 50, 50)$.

Q: What if we change “non-increasing” to “non-decreasing”?

A: No. $W = 100, n = 3, w = (1, 50, 50)$
Design a Dynamic Programming Algorithm

- Consider the instance: \(i, W', (w_1, w_2, \cdots, w_i) \);
- \(opt[i, W'] \): the optimum value of the instance

Q: The value of the optimum solution that does not contain \(i \)?

A: \(opt[i - 1, W'] \)

Q: The value of the optimum solution that contains \(i \)?

A: \(opt[i - 1, W' - w_i] + w_i \)
Consider the instance: $i, W', (w_1, w_2, \cdots, w_i)$;

opt $[i, W']$: the optimum value of the instance

$$
\text{opt}[i, W'] = \begin{cases}
0 & i = 0 \\
\text{opt}[i - 1, W'] & i > 0, w_i > W' \\
\max \left\{ \begin{array}{l}
\text{opt}[i - 1, W'] \\
\text{opt}[i - 1, W' - w_i] + w_i
\end{array} \right. & i > 0, w_i \leq W'
\end{cases}
$$
Dynamic Programming

1: for $W' \leftarrow 0$ to W do
2: \hspace{1em} $opt[0, W'] \leftarrow 0$
3: for $i \leftarrow 1$ to n do
4: \hspace{1em} for $W' \leftarrow 0$ to W do
5: \hspace{2em} $opt[i, W'] \leftarrow opt[i - 1, W']$
6: \hspace{1em} if $w_i \leq W'$ and $opt[i - 1, W' - w_i] + w_i \geq opt[i, W']$ then
7: \hspace{2em} $opt[i, W'] \leftarrow opt[i - 1, W' - w_i] + w_i$
8: return $opt[n, W]$
Recover the Optimum Set

1: for $W' \leftarrow 0$ to W do
2: $opt[0, W'] \leftarrow 0$
3: for $i \leftarrow 1$ to n do
4: for $W' \leftarrow 0$ to W do
5: $opt[i, W'] \leftarrow opt[i - 1, W']$
6: $b[i, W'] \leftarrow N$
7: if $w_i \leq W'$ and $opt[i - 1, W' - w_i] + w_i \geq opt[i, W']$
 then
8: $opt[i, W'] \leftarrow opt[i - 1, W' - w_i] + w_i$
9: $b[i, W'] \leftarrow Y$
10: return $opt[n, W]$
Recover the Optimum Set

1: \(i \leftarrow n, W' \leftarrow W, S \leftarrow \emptyset \)
2: \textbf{while} \(i > 0 \) \textbf{do}
3: \quad \textbf{if} \(b[i, W'] = Y \) \textbf{then}
4: \quad \quad W' \leftarrow W' - w_i
5: \quad \quad S \leftarrow S \cup \{i\}
6: \quad i \leftarrow i - 1
7: \quad \textbf{return} \ S
Running Time of Algorithm

1: \textbf{for} \ W' \leftarrow 0 \textbf{ to } W \textbf{ do} \\
2: \quad \text{opt}[0, W'] \leftarrow 0 \\
3: \textbf{for} \ i \leftarrow 1 \textbf{ to } n \textbf{ do} \\
4: \quad \textbf{for} \ W' \leftarrow 0 \textbf{ to } W \textbf{ do} \\
5: \quad \quad \text{opt}[i, W'] \leftarrow \text{opt}[i - 1, W'] \\
6: \quad \quad \textbf{if} \ w_i \leq W' \textbf{ and } \text{opt}[i - 1, W' - w_i] + w_i \geq \text{opt}[i, W'] \textbf{ then} \\
7: \quad \quad \quad \text{opt}[i, W'] \leftarrow \text{opt}[i - 1, W' - w_i] + w_i \\
8: \textbf{return} \ \text{opt}[n, W]

- Running time is $O(nW)$
- Running time is \textbf{pseudo-polynomial} because it depends on value of the input integers.
Avoiding Unnecessary Computation and Memory Using Memoized Algorithm and Hash Map

compute-opt(i, W')

1: if opt[i, W'] ≠ ⊥ then return opt[i, W']
2: if i = 0 then r ← 0
3: else
4: r ← compute-opt(i − 1, W')
5: if wi ≤ W' then
6: r' ← compute-opt(i − 1, W' − wi) + wi
7: if r' > r then r ← r'
8: opt[i, W'] ← r
9: return r

- Use hash map for opt
Outline

1. Weighted Interval Scheduling

2. **Subset Sum Problem**
 - Related Problem: Knapsack Problem

3. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space

4. Shortest Paths in Directed Acyclic Graphs

5. Matrix Chain Multiplication

6. Optimum Binary Search Tree

7. Summary
Knapsack Problem

Input: an integer bound $W > 0$
- a set of n items, each with an integer weight $w_i > 0$
- a value $v_i > 0$ for each item i

Output: a subset S of items that

$$\text{maximizes} \quad \sum_{i \in S} v_i \quad \text{s.t.} \quad \sum_{i \in S} w_i \leq W.$$

- Motivation: you have budget W, and want to buy a subset of items of maximum total value
DP for Knapsack Problem

- $opt[i, W']$: the optimum value when budget is W' and items are $\{1, 2, 3, \cdots, i\}$.

- If $i = 0$, $opt[i, W'] = 0$ for every $W' = 0, 1, 2, \cdots, W$.

\[
opt[i, W'] = \begin{cases}
0 & \text{if } i = 0 \\
opt[i - 1, W'] & \text{if } i > 0, w_i > W' \\
\max \left\{ \begin{array}{l}
opt[i - 1, W'] \\
opt[i - 1, W' - w_i] + v_i
\end{array} \right\} & \text{if } i > 0, w_i \leq W'
\end{cases}
\]
Exercise: Items with 3 Parameters

Input: integer bounds $W > 0, Z > 0$,
a set of n items, each with an integer weight $w_i > 0$
a size $z_i > 0$ for each item i
a value $v_i > 0$ for each item i

Output: a subset S of items that

$$\text{maximizes } \sum_{i \in S} v_i \quad \text{s.t.}$$

$$\sum_{i \in S} w_i \leq W \text{ and } \sum_{i \in S} z_i \leq Z$$
Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem
 - Related Problem: Knapsack Problem

3 Longest Common Subsequence
 - Longest Common Subsequence in Linear Space

4 Shortest Paths in Directed Acyclic Graphs

5 Matrix Chain Multiplication

6 Optimum Binary Search Tree

7 Summary
Subsequence

- \(A = bacdca \)
- \(C = adca \)
- \(C \) is a subsequence of \(A \)

Def. Given two sequences \(A[1 .. n] \) and \(C[1 .. t] \) of letters, \(C \) is called a subsequence of \(A \) if there exists integers \(1 \leq i_1 < i_2 < i_3 < \ldots < i_t \leq n \) such that \(A[i_j] = C[j] \) for every \(j = 1, 2, 3, \ldots, t \).

- Exercise: how to check if sequence \(C \) is a subsequence of \(A \)?
Longest Common Subsequence

Input: $A[1..n]$ and $B[1..m]$

Output: the longest common subsequence of A and B

Example:
- $A = 'bacdca'$
- $B = 'adbcda'$
- $\text{LCS}(A, B) = 'adca'$

Applications: edit distance (diff), similarity of DNAs
Goal of LCS: find a maximum-size non-crossing matching between letters in A and letters in B.
Reduce to Subproblems

- $A = 'bacdca'$
- $B = 'abcdca'$

either the last letter of A is not matched:
 - need to compute $\text{LCS}('bacd' , 'abcdc')$

or the last letter of B is not matched:
 - need to compute $\text{LCS}('bcad' , 'adbc')$
Dynamic Programming for LCS

- \(opt[i, j], 0 \leq i \leq n, 0 \leq j \leq m \): length of longest common sub-sequence of \(A[1..i] \) and \(B[1..j] \).
- if \(i = 0 \) or \(j = 0 \), then \(opt[i, j] = 0 \).
- if \(i > 0, j > 0 \), then

\[
opt[i, j] = \begin{cases}
 opt[i - 1, j - 1] + 1 & \text{if } A[i] = B[j] \\
 \max \left\{ \begin{array}{l}
 opt[i - 1, j] \\
 opt[i, j - 1]
 \end{array} \right\} & \text{if } A[i] \neq B[j]
\end{cases}
\]
Dynamic Programming for LCS

1: \textbf{for} \; j \leftarrow 0 \; \text{to} \; m \; \textbf{do}
2: \quad opt[0, j] \leftarrow 0
3: \textbf{for} \; i \leftarrow 1 \; \text{to} \; n \; \textbf{do}
4: \quad opt[i, 0] \leftarrow 0
5: \textbf{for} \; j \leftarrow 1 \; \text{to} \; m \; \textbf{do}
6: \quad \textbf{if} \; A[i] = B[j] \; \textbf{then}
7: \quad \quad opt[i, j] \leftarrow opt[i - 1, j - 1] + 1, \; \pi[i, j] \leftarrow \text{“\downarrow\”}
8: \textbf{else if} \; opt[i, j - 1] \geq opt[i - 1, j] \; \textbf{then}
9: \quad \quad opt[i, j] \leftarrow opt[i, j - 1], \; \pi[i, j] \leftarrow \text{“\leftarrow”}
10: \textbf{else}
11: \quad \quad opt[i, j] \leftarrow opt[i - 1, j], \; \pi[i, j] \leftarrow \text{“\uparrow”}
Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>d</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>B</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0⊥</td>
<td>0⊥</td>
<td>0⊥</td>
<td>0⊥</td>
<td>0⊥</td>
<td>0⊥</td>
<td>0⊥</td>
</tr>
<tr>
<td>1</td>
<td>0⊥</td>
<td>0←</td>
<td>0←</td>
<td>1↖</td>
<td>1←</td>
<td>1←</td>
<td>1←</td>
</tr>
<tr>
<td>2</td>
<td>0⊥</td>
<td>1↖</td>
<td>1←</td>
<td>1←</td>
<td>1←</td>
<td>1←</td>
<td>2↖</td>
</tr>
<tr>
<td>3</td>
<td>0⊥</td>
<td>1↑</td>
<td>1←</td>
<td>1←</td>
<td>2↖</td>
<td>2←</td>
<td>2←</td>
</tr>
<tr>
<td>4</td>
<td>0⊥</td>
<td>1↑</td>
<td>2↖</td>
<td>2←</td>
<td>2←</td>
<td>3↖</td>
<td>3←</td>
</tr>
<tr>
<td>5</td>
<td>0⊥</td>
<td>1↑</td>
<td>2↑</td>
<td>2←</td>
<td>3↖</td>
<td>3←</td>
<td>3←</td>
</tr>
<tr>
<td>6</td>
<td>0⊥</td>
<td>1↖</td>
<td>2↑</td>
<td>2←</td>
<td>3↑</td>
<td>3←</td>
<td>4↖</td>
</tr>
</tbody>
</table>
Example: Find Common Subsequence

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>B</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>a</td>
</tr>
</tbody>
</table>

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 ⊥</td>
</tr>
<tr>
<td>1</td>
<td>0 ⊥</td>
<td>0 ←</td>
<td>0 ←</td>
<td>1 ↖</td>
<td>1 ←</td>
<td>1 ←</td>
<td>1 ←</td>
</tr>
<tr>
<td>2</td>
<td>0 ⊥</td>
<td>1 ↖</td>
<td>1 ←</td>
<td>1 ←</td>
<td>1 ←</td>
<td>1 ←</td>
<td>2 ↖</td>
</tr>
<tr>
<td>3</td>
<td>0 ⊥</td>
<td>1 ↑</td>
<td>1 ←</td>
<td>1 ←</td>
<td>2 ↖</td>
<td>2 ←</td>
<td>2 ←</td>
</tr>
<tr>
<td>4</td>
<td>0 ⊥</td>
<td>1 ↑</td>
<td>2 ↖</td>
<td>2 ←</td>
<td>2 ←</td>
<td>3 ↖</td>
<td>3 ←</td>
</tr>
<tr>
<td>5</td>
<td>0 ⊥</td>
<td>1 ↑</td>
<td>2 ↑</td>
<td>2 ←</td>
<td>3 ↖</td>
<td>3 ←</td>
<td>3 ←</td>
</tr>
<tr>
<td>6</td>
<td>0 ⊥</td>
<td>1 ↖</td>
<td>2 ↑</td>
<td>2 ←</td>
<td>3 ↑</td>
<td>3 ←</td>
<td>4 ↖</td>
</tr>
</tbody>
</table>
```
Find Common Subsequence

1: $i \leftarrow n, j \leftarrow m, S \leftarrow ()$
2: while $i > 0$ and $j > 0$ do
3: if $\pi[i, j] = \nwarrow$ then
4: add $A[i]$ to beginning of S, $i \leftarrow i - 1, j \leftarrow j - 1$
5: else if $\pi[i, j] = \nearrow$ then
6: $i \leftarrow i - 1$
7: else
8: $j \leftarrow j - 1$
9: return S
Variants of Problem

Edit Distance with Insertions and Deletions

Input: a string A

each time we can delete a letter from A or insert a letter to A

Output: minimum number of operations (insertions or deletions) we need to change A to B?

Example:
- $A =$ occurrence, $B =$ occurrence
- 3 operations: insert 'c', remove 'a' and insert 'e'

Obs. $#OPs = \text{length}(A) + \text{length}(B) - 2 \cdot \text{length}(\text{LCS}(A, B))$
Variants of Problem

Edit Distance with Insertions, Deletions and Replacing

Input: a string A, each time we can delete a letter from A, insert a letter to A or change a letter

Output: how many operations do we need to change A to B?

Example:
- $A = \text{ocurrance}, \ B = \text{occurrence}$.
- 2 operations: insert 'c', change 'a' to 'e'

- Not related to LCS any more
Edit Distance with Replacing: Reduction to a Variant of LCS

- Need to match letters in A and B, every letter is matched at most once and there should be no crosses.
- However, we can match two different letters: Matching a same letter gives score 2, matching two different letters gives score 1.
- Need to maximize the score.
- DP recursion for the case $i > 0$ and $j > 0$:

$$opt[i, j] = \begin{cases}
 opt[i - 1, j - 1] + 2 & \text{if } A[i] = B[j] \\
 \max \begin{cases}
 opt[i - 1, j] \\
 opt[i, j - 1] \\
 opt[i - 1, j - 1] + 1
 \end{cases} & \text{if } A[i] \neq B[j]
\end{cases}$$

- Relation: $\#\text{OPs} = \text{length}(A) + \text{length}(B) - \text{max}_\text{score}$
Edit Distance (with Replacing): using DP directly

- $opt[i, j], 0 \leq i \leq n, 0 \leq j \leq m$: edit distance between $A[1 .. i]$ and $B[1 .. j]$.
- if $i = 0$ then $opt[i, j] = j$; if $j = 0$ then $opt[i, j] = i$.
- if $i > 0, j > 0$, then

$$opt[i, j] = \begin{cases}
\opt[i - 1, j - 1] & \text{if } A[i] = B[j] \\
\min \begin{cases}
\opt[i - 1, j] + 1 \\
\opt[i, j - 1] + 1 \\
\opt[i - 1, j - 1] + 1
\end{cases} & \text{if } A[i] \neq B[j]
\end{cases}$$
Exercise: Longest Palindrome

Def. A **palindrome** is a string which reads the same backward or forward.

- example: “racecar”, “wasitacaroracatisaw”, ”putitup”

Longest Palindrome Subsequence

Input: a sequence A

Output: the longest subsequence C of A that is a palindrome.

Example:
- Input: acbcedeacab
- Output: acedeca
Outline

1. Weighted Interval Scheduling
2. Subset Sum Problem
 - Related Problem: Knapsack Problem
3. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
4. Shortest Paths in Directed Acyclic Graphs
5. Matrix Chain Multiplication
6. Optimum Binary Search Tree
7. Summary
Computing the Length of LCS

1: for $j \leftarrow 0$ to m do
2: \hspace{1em} opt[0, j] \leftarrow 0
3: for $i \leftarrow 1$ to n do
4: \hspace{1em} opt[i, 0] \leftarrow 0
5: for $j \leftarrow 1$ to m do
6: \hspace{2em} if $A[i] = B[j]$ then
7: \hspace{3em} opt[i, j] \leftarrow opt[i - 1, j - 1] + 1
8: \hspace{2em} else if opt[i, j - 1] \geq opt[i - 1, j] then
9: \hspace{3em} opt[i, j] \leftarrow opt[i, j - 1]
10: \hspace{2em} else
11: \hspace{3em} opt[i, j] \leftarrow opt[i - 1, j]

Obs. The i-th row of table only depends on $(i - 1)$-th row.
Reducing Space to $O(n + m)$

Obs. The i-th row of table only depends on $(i - 1)$-th row.

Q: How to use this observation to reduce space?

A: We only keep two rows: the $(i - 1)$-th row and the i-th row.
Linear Space Algorithm to Compute Length of LCS

1: for \(j \leftarrow 0 \) to \(m \) do
2: \(\text{opt}[0, j] \leftarrow 0 \)
3: for \(i \leftarrow 1 \) to \(n \) do
4: \(\text{opt}[i \mod 2, 0] \leftarrow 0 \)
5: for \(j \leftarrow 1 \) to \(m \) do
6: \(\text{if } A[i] = B[j] \text{ then} \)
7: \(\text{opt}[i \mod 2, j] \leftarrow \text{opt}[i - 1 \mod 2, j - 1] + 1 \)
8: \(\text{else if } \text{opt}[i \mod 2, j - 1] \geq \text{opt}[i - 1 \mod 2, j] \text{ then} \)
9: \(\text{opt}[i \mod 2, j] \leftarrow \text{opt}[i \mod 2, j - 1] \)
10: \(\text{else} \)
11: \(\text{opt}[i \mod 2, j] \leftarrow \text{opt}[i - 1 \mod 2, j] \)
12: return \(\text{opt}[n \mod 2, m] \)
Only keep the last two rows: only know how to match $A[n]$

Can recover the LCS using n rounds: time $= O(n^2 m)$

Using **Divide and Conquer + Dynamic Programming**:

- Space: $O(m + n)$
- Time: $O(nm)$
Outline

1. Weighted Interval Scheduling
2. Subset Sum Problem
 - Related Problem: Knapsack Problem
3. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
4. Shortest Paths in Directed Acyclic Graphs
5. Matrix Chain Multiplication
6. Optimum Binary Search Tree
7. Summary
Def. A directed acyclic graph (DAG) is a directed graph without (directed) cycles.

![Diagram of a non-DAG graph](image1)

Lemma A directed graph is a DAG if and only its vertices can be topologically sorted.

![Diagram of a DAG graph](image2)
Shortest Paths in DAG

Input: directed acyclic graph $G = (V, E)$ and $w : E \rightarrow \mathbb{R}$.

Assume $V = \{1, 2, 3 \cdots, n\}$ is topologically sorted: if $(i, j) \in E$, then $i < j$

Output: the shortest path from 1 to i, for every $i \in V$
$f[i]$: length of the shortest path from 1 to i

$$f[i] = \begin{cases}
0 & i = 1 \\
\min_{j: (j, i) \in E} \{ f(j) + w(j, i) \} & i = 2, 3, \cdots, n
\end{cases}$$
Shortest Paths in DAG

- Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG

1. $f[1] \leftarrow 0$
2. for $i \leftarrow 2$ to n do
3. $f[i] \leftarrow \infty$
4. for each incoming edge (j, i) of i do
5. if $f[j] + w(j, i) < f[i]$ then
6. $f[i] \leftarrow f[j] + w(j, i)$
7. $\pi(i) \leftarrow j$

print-path(t)

1. if $t = 1$ then
2. print(1)
3. return
4. print-path($\pi(t)$)
5. print("","", t)
Example

Diagram of a network with nodes and edges labeled with values.
Heaviest Path in a Directed Acyclic Graph

Input: directed acyclic graph \(G = (V, E) \) and \(w : E \to \mathbb{R} \).

Assume \(V = \{1, 2, 3, \ldots, n\} \) is topologically sorted: if \((i, j) \in E\), then \(i < j \)

Output: the path with the largest weight (the heaviest path) from 1 to \(n \).

- \(f[i] \): weight of the heaviest path from 1 to \(i \)

\[
f[i] = \begin{cases}
0 & i = 1 \\
\max_{j: (j, i) \in E} \{ f(j) + w(j, i) \} & i = 2, 3, \ldots, n
\end{cases}
\]
Outline

1. Weighted Interval Scheduling
2. Subset Sum Problem
 - Related Problem: Knapsack Problem
3. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
4. Shortest Paths in Directed Acyclic Graphs
5. Matrix Chain Multiplication
6. Optimum Binary Search Tree
7. Summary
Matrix Chain Multiplication

Input: \(n \) matrices \(A_1, A_2, \cdots, A_n \) of sizes \(r_1 \times c_1, r_2 \times c_2, \cdots, r_n \times c_n \), such that \(c_i = r_{i+1} \) for every \(i = 1, 2, \cdots, n - 1 \).

Output: the order of computing \(A_1 A_2 \cdots A_n \) with the minimum number of multiplications.

Fact Multiplying two matrices of size \(r \times k \) and \(k \times c \) takes \(r \times k \times c \) multiplications.
Example:

- $A_1 : 10 \times 100, \quad A_2 : 100 \times 5, \quad A_3 : 5 \times 50$

\[
\begin{align*}
10 \times 100 & \quad 100 \times 5 & \quad 5 \times 50 \\
10 \times 5 & \quad 10 \cdot 100 \cdot 5 & \quad 10 \cdot 5 \cdot 50 \\
10 \times 50 & \quad 10 \times 5 & \quad 5 \times 50 \\
\end{align*}
\]

\[
\begin{align*}
10 \times 100 & \quad 100 \times 5 & \quad 5 \times 50 \\
10 \times 5 & \quad 10 \cdot 100 \cdot 5 & \quad 100 \cdot 5 \cdot 50 \\
10 \times 50 & \quad 10 \cdot 5 \cdot 50 & \quad 10 \times 5 \\
\end{align*}
\]

\[
\begin{align*}
\text{cost} &= 5000 + 2500 = 7500 \\
\text{cost} &= 25000 + 50000 = 75000
\end{align*}
\]

- $(A_1A_2)A_3: 10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500$

- $A_1(A_2A_3): 100 \times 5 \times 50 + 10 \times 100 \times 50 = 75000$
Matrix Chain Multiplication: Design DP

- Assume the last step is \((A_1 A_2 \cdots A_i)(A_{i+1} A_{i+2} \cdots A_n)\)
- Cost of last step: \(r_1 \times c_i \times c_n\)
- Optimality for sub-instances: we need to compute \(A_1 A_2 \cdots A_i\)
 and \(A_{i+1} A_{i+2} \cdots A_n\) optimally
- \(opt[i, j]\): the minimum cost of computing \(A_i A_{i+1} \cdots A_j\)

\[
opt[i, j] = \begin{cases}
0 & \text{if } i = j \\
\min_{k:i \leq k < j} (opt[i, k] + opt[k + 1, j] + r_i c_k c_j) & \text{if } i < j
\end{cases}
\]
matrix-chain-multiplication($n, r[1..n], c[1..n]$)

1: let $opt[i, i] \leftarrow 0$ for every $i = 1, 2, \cdots, n$
2: for $\ell \leftarrow 2$ to n do
3: for $i \leftarrow 1$ to $n - \ell + 1$ do
4: $j \leftarrow i + \ell - 1$
5: $opt[i, j] \leftarrow \infty$
6: for $k \leftarrow i$ to $j - 1$ do
7: if $opt[i, k] + opt[k + 1, j] + r_i c_k c_j < opt[i, j]$ then
8: $opt[i, j] \leftarrow opt[i, k] + opt[k + 1, j] + r^_i c_k c_j$
9: $\pi[i, j] \leftarrow k$
10: return $opt[1, n]$
Constructing Optimal Solution

Print-Optimal-Order\((i, j)\)

1: \textbf{if} \; i = j \; \textbf{then}
2: \hspace{1em} \text{print}(“A”}_i\)
3: \textbf{else}
4: \hspace{1em} \text{print}(“(”)
5: \hspace{1em} \text{Print-Optimal-Order}(i, \pi[i, j])
6: \hspace{1em} \text{Print-Optimal-Order}(\pi[i, j] + 1, j)
7: \hspace{1em} \text{print}(“)”)
<table>
<thead>
<tr>
<th>matrix</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>3×5</td>
<td>5×2</td>
<td>2×6</td>
<td>6×9</td>
<td>9×4</td>
</tr>
</tbody>
</table>

\[
\text{opt}[1, 2] = \text{opt}[1, 1] + \text{opt}[2, 2] + 3 \times 5 \times 2 = 30, \quad \pi[1, 2] = 1
\]

\[
\text{opt}[2, 3] = \text{opt}[2, 2] + \text{opt}[3, 3] + 5 \times 2 \times 6 = 60, \quad \pi[2, 3] = 2
\]

\[
\text{opt}[3, 4] = \text{opt}[3, 3] + \text{opt}[4, 4] + 2 \times 6 \times 9 = 108, \quad \pi[3, 4] = 3
\]

\[
\text{opt}[4, 5] = \text{opt}[4, 4] + \text{opt}[5, 5] + 6 \times 9 \times 4 = 216, \quad \pi[4, 5] = 4
\]

\[
\text{opt}[1, 3] = \min \{ \text{opt}[1, 1] + \text{opt}[2, 3] + 3 \times 5 \times 6, \\
\quad \text{opt}[1, 2] + \text{opt}[3, 3] + 3 \times 2 \times 6 \}
\]

\[
= \min \{ 0 + 60 + 90, 30 + 0 + 36 \} = 66, \quad \pi[1, 3] = 2
\]

\[
\text{opt}[2, 4] = \min \{ \text{opt}[2, 2] + \text{opt}[3, 4] + 5 \times 2 \times 9, \\
\quad \text{opt}[2, 3] + \text{opt}[4, 4] + 5 \times 6 \times 9 \}
\]

\[
= \min \{ 0 + 108 + 90, 60 + 0 + 270 \} = 198, \quad \pi[2, 4] = 2,
\]
\[\begin{array}{c|c|c|c|c|c} \text{matrix} & A_1 & A_2 & A_3 & A_4 & A_5 \\ \hline \text{size} & 3 \times 5 & 5 \times 2 & 2 \times 6 & 6 \times 9 & 9 \times 4 \end{array} \]

\[\begin{align*}
\text{opt}[3, 5] &= \min\{\text{opt}[3, 3] + \text{opt}[4, 5] + 2 \times 6 \times 4, \\
&\quad \text{opt}[3, 4] + \text{opt}[5, 5] + 2 \times 9 \times 4\} \\
&= \min\{0 + 216 + 48, 108 + 0 + 72\} = 180, \\
\pi[3, 5] &= 4,
\end{align*} \]

\[\begin{align*}
\text{opt}[1, 4] &= \min\{\text{opt}[1, 1] + \text{opt}[2, 4] + 3 \times 5 \times 9, \\
&\quad \text{opt}[1, 2] + \text{opt}[3, 4] + 3 \times 2 \times 9, \\
&\quad \text{opt}[1, 3] + \text{opt}[4, 4] + 3 \times 6 \times 9\} \\
&= \min\{0 + 198 + 135, 30 + 108 + 54, 66 + 0 + 162\} = 192, \\
\pi[1, 4] &= 2,
\end{align*} \]
\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{matrix} & A_1 & A_2 & A_3 & A_4 & A_5 \\
\text{size} & 3 \times 5 & 5 \times 2 & 2 \times 6 & 6 \times 9 & 9 \times 4 \\
\hline
\end{array}
\]

\[
opt[2, 5] = \min\{\opt[2, 2] + \opt[3, 5] + 5 \times 2 \times 4, \\
\opt[2, 3] + \opt[4, 5] + 5 \times 6 \times 4, \\
\opt[2, 4] + \opt[5, 5] + 5 \times 9 \times 4\}
\]

\[
= \min\{0 + 180 + 40, 60 + 216 + 120, 198 + 0 + 180\} = 220,
\]

\[
opt[1, 5] = \min\{\opt[1, 1] + \opt[2, 5] + 3 \times 5 \times 4, \\
\opt[1, 2] + \opt[3, 5] + 3 \times 2 \times 4, \\
\opt[1, 3] + \opt[4, 5] + 3 \times 6 \times 4, \\
\opt[1, 4] + \opt[5, 5] + 3 \times 9 \times 4\}
\]

\[
= \min\{0 + 220 + 60, 30 + 180 + 24, \\
66 + 216 + 72, 192 + 0 + 108\}
\]

\[
= 234,
\]

\[
\pi[1, 5] = 2.
\]
<table>
<thead>
<tr>
<th>matrix</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>3×5</td>
<td>5×2</td>
<td>2×6</td>
<td>6×9</td>
<td>9×4</td>
</tr>
<tr>
<td>opt, π</td>
<td>$j = 1$</td>
<td>$j = 2$</td>
<td>$j = 3$</td>
<td>$j = 4$</td>
<td>$j = 5$</td>
</tr>
<tr>
<td>$i = 1$</td>
<td>0, /</td>
<td>30, 1</td>
<td>66, 2</td>
<td>192, 2</td>
<td>234, 2</td>
</tr>
<tr>
<td>$i = 2$</td>
<td>0, /</td>
<td>60, 2</td>
<td>198, 2</td>
<td>220, 2</td>
<td></td>
</tr>
<tr>
<td>$i = 3$</td>
<td>0, /</td>
<td>108, 3</td>
<td>180, 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i = 4$</td>
<td>0, /</td>
<td>216, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i = 5$</td>
<td>0, /</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>opt, π</td>
<td>$j = 1$</td>
<td>$j = 2$</td>
<td>$j = 3$</td>
<td>$j = 4$</td>
<td>$j = 5$</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>$i = 1$</td>
<td>0, /</td>
<td>30, 1</td>
<td>66, 2</td>
<td>192, 2</td>
<td>234, 2</td>
</tr>
<tr>
<td>$i = 2$</td>
<td>0, /</td>
<td>60, 2</td>
<td>198, 2</td>
<td>220, 2</td>
<td></td>
</tr>
<tr>
<td>$i = 3$</td>
<td>0, /</td>
<td>108, 3</td>
<td>180, 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i = 4$</td>
<td>0, /</td>
<td>216, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i = 5$</td>
<td>0, /</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Print-Optimal-Order(1,5)
 Print-Optimal-Order(1, 2)
 Print-Optimal-Order(1, 1)
 Print-Optimal-Order(2, 2)
 Print-Optimal-Order(3, 5)
 Print-Optimal-Order(3, 4)
 Print-Optimal-Order(3, 3)
 Print-Optimal-Order(4, 4)
 Print-Optimal-Order(5, 5)

Optimum way for multiplication: $((A_1A_2)((A_3A_4)A_5))$
Outline

1. Weighted Interval Scheduling
2. Subset Sum Problem
 - Related Problem: Knapsack Problem
3. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
4. Shortest Paths in Directed Acyclic Graphs
5. Matrix Chain Multiplication
6. Optimum Binary Search Tree
7. Summary
Optimum Binary Search Tree

- n elements $e_1 < e_2 < e_3 < \cdots < e_n$
- e_i has frequency f_i
- goal: build a binary search tree for $\{e_1, e_2, \cdots, e_n\}$ with the minimum accessing cost:

$$\sum_{i=1}^{n} f_i \times (\text{depth of } e_i \text{ in the tree})$$
Example: \(f_1 = 10, f_2 = 5, f_3 = 3 \)

\[
\begin{align*}
10 \times 1 + 5 \times 2 + 3 \times 3 &= 29 \\
10 \times 2 + 5 \times 1 + 3 \times 2 &= 31 \\
10 \times 3 + 5 \times 2 + 3 \times 1 &= 43
\end{align*}
\]
suppose we decided to let e_k be the root

$e_1, e_2, \cdots, e_{k-1}$ are on left sub-tree

$e_{k+1}, e_{k+2}, \cdots, e_n$ are on right sub-tree

d_j: depth of e_j in our tree

C, C_L, C_R: cost of tree, left sub-tree and right sub-tree

- $d_1 = 3, d_2 = 2, d_3 = 3, d_4 = 4, d_5 = 1,$
- $d_6 = 2, d_7 = 4, d_8 = 3, d_9 = 4,$
- $C = 3f_1 + 2f_2 + 3f_3 + 4f_4 + f_5 + 2f_6 + 4f_7 + 3f_8 + 4f_9$
- $C_L = 2f_1 + f_2 + 2f_3 + 3f_4$
- $C_R = f_6 + 3f_7 + 2f_8 + 3f_9$
- $C = C_L + C_R + \sum_{j=1}^{9} f_j$
\[C = \sum_{\ell=1}^{n} f_{\ell}d_{\ell} = \sum_{\ell=1}^{n} f_{\ell}(d_{\ell} - 1) + \sum_{\ell=1}^{n} f_{\ell} \]

\[= \sum_{\ell=1}^{k-1} f_{\ell}(d_{\ell} - 1) + \sum_{\ell=k+1}^{n} f_{\ell}(d_{\ell} - 1) + \sum_{\ell=1}^{n} f_{\ell} \]

\[= C_L + C_R + \sum_{\ell=1}^{n} f_{\ell} \]
\[C = C_L + C_R + \sum_{\ell=1}^{n} f_\ell \]

- In order to minimize \(C \), need to minimize \(C_L \) and \(C_R \) respectively.
- \(\text{opt}[i, j] \): the optimum cost for the instance \((f_i, f_{i+1}, \cdots, f_j)\)

\[\text{opt}[1, n] = \min_{k:1 \leq k \leq n} \left(\text{opt}[1, k - 1] + \text{opt}[k + 1, n] \right) + \sum_{\ell=1}^{n} f_\ell \]

- In general, \(\text{opt}[i, j] = \)

\[
\begin{cases}
0 & \text{if } i = j + 1 \\
\min_{k:i \leq k \leq j} \left(\text{opt}[i, k - 1] + \text{opt}[k + 1, j] \right) + \sum_{\ell=i}^{j} f_\ell & \text{if } i \leq j
\end{cases}
\]
Optimum Binary Search Tree

1: \(fsum[0] \leftarrow 0 \)

2: \(\text{for } i \leftarrow 1 \text{ to } n \text{ do } fsum[i] \leftarrow fsum[i - 1] + f_i \)
 \(\triangleright fsum[i] = \sum_{j=1}^{i} f_j \)

3: \(\text{for } i \leftarrow 0 \text{ to } n \text{ do } opt[i + 1, i] \leftarrow 0 \)

4: \(\text{for } \ell \leftarrow 1 \text{ to } n \text{ do} \)

5: \(\quad \text{for } i \leftarrow 1 \text{ to } n - \ell + 1 \text{ do} \)

6: \(\quad j \leftarrow i + \ell - 1, \ opt[i, j] \leftarrow \infty \)

7: \(\quad \text{for } k \leftarrow i \text{ to } j \text{ do} \)

8: \(\quad \text{if } opt[i, k - 1] + opt[k + 1, j] < opt[i, j] \text{ then} \)

9: \(\quad \text{opt}[i, j] \leftarrow opt[i, k - 1] + opt[k + 1, j] \)

10: \(\quad \pi[i, j] \leftarrow k \)

11: \(\text{opt}[i, j] \leftarrow \text{opt}[i, j] + fsum[j] - fsum[i - 1] \)
Printing the Tree

Print-Tree\((i, j)\)

1: \textbf{if} \ i > j \ \textbf{then}
2: \hspace{1em} \textbf{return}
3: \textbf{else}
4: \hspace{1em} \text{print}('(')
5: \hspace{1em} \text{Print-Tree}(i, \pi[i, j] - 1)
6: \hspace{1em} \text{print}(\pi[i, j])
7: \hspace{1em} \text{Print-Tree}(\pi[i, j] + 1, j)
8: \hspace{1em} \text{print}(')')
Outline

1. Weighted Interval Scheduling
2. Subset Sum Problem
 - Related Problem: Knapsack Problem
3. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
4. Shortest Paths in Directed Acyclic Graphs
5. Matrix Chain Multiplication
6. Optimum Binary Search Tree
7. Summary
Dynamic Programming

- Break up a problem into many **overlapping** sub-problems
- Build solutions for larger and larger sub-problems
- Use a **table** to store solutions for sub-problems for reuse
Comparison with greedy algorithms

- Greedy algorithm: each step is making a small progress towards constructing the solution
- Dynamic programming: the whole solution is constructed in the last step

Comparison with divide and conquer

- Divide and conquer: an instance is broken into many independent sub-instances, which are solved separately.
- Dynamic programming: the sub-instances we constructed are overlapping.
Definition of Cells for Problems We Learnt

- **Weighted interval scheduling**: $opt[i] = \text{value of instance defined by jobs } \{1, 2, \cdots, i\}$
- **Subset sum, knapsack**: $opt[i, W'] = \text{value of instance with items } \{1, 2, \cdots, i\} \text{ and budget } W'$
- **Longest common subsequence**: $opt[i, j] = \text{value of instance defined by } A[1..i] \text{ and } B[1..j]$
- **Shortest paths in DAG**: $f[v] = \text{length of shortest path from } s \text{ to } v$
- **Matrix chain multiplication, optimum binary search tree**: $opt[i, j] = \text{value of instances defined by matrices } i \text{ to } j$