算法设计与分析(2024年春季学期)
Dynamic Programming

授课老师: 栗师
南京大学计算机科学与技术系
Paradigms for Designing Algorithms

Greedy algorithm
- Make a greedy choice
- Prove that the greedy choice is safe
- Reduce the problem to a sub-problem and solve it iteratively
- Usually for optimization problems

Divide-and-conquer
- Break a problem into many **independent** sub-problems
- Solve each sub-problem separately
- Combine solutions for sub-problems to form a solution for the original one
- Usually used to design more efficient algorithms
Paradigms for Designing Algorithms

Dynamic Programming

- Break up a problem into many *overlapping* sub-problems
- Build solutions for larger and larger sub-problems
- Use a *table* to store solutions for sub-problems for reuse
Recall: Computing the n-th Fibonacci Number

- $F_0 = 0$, $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, $\forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $F[i] \leftarrow F[i-1] + F[i-2]$
5: return $F[n]$

- Store each $F[i]$ for future use.
Outline

1. Weighted Interval Scheduling
2. Segmented Least Squares
3. Subset Sum Problem
 - Related Problem: Knapsack Problem
4. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
5. Shortest Paths in Directed Acyclic Graphs
6. Matrix Chain Multiplication
7. Optimum Binary Search Tree
8. Summary
Recall: Interval Scheduling

Input: \(n \) jobs, job \(i \) with start time \(s_i \) and finish time \(f_i \)
each job has a weight (or value) \(v_i > 0 \)

\(i \) and \(j \) are compatible if \([s_i, f_i)\) and \([s_j, f_j)\) are disjoint

Output: a maximum-size subset of mutually compatible jobs

Optimum value = 220
Q: Which job is safe to schedule?

- Job with the earliest finish time? No, we are ignoring weights
- Job with the largest weight? No, we are ignoring times
- Job with the largest \(\frac{\text{weight}}{\text{length}} \) ?

No, when weights are equal, this is the shortest job
Designing a Dynamic Programming Algorithm

- Sort jobs according to non-decreasing order of finish times
- $opt[i]$: optimal value for instance only containing jobs $\{1, 2, \ldots, i\}$

<table>
<thead>
<tr>
<th>i</th>
<th>$opt[i]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>170</td>
</tr>
<tr>
<td>7</td>
<td>185</td>
</tr>
<tr>
<td>8</td>
<td>220</td>
</tr>
<tr>
<td>9</td>
<td>220</td>
</tr>
</tbody>
</table>
Designing a Dynamic Programming Algorithm

- Focus on instance \{1, 2, 3, \ldots, i\},
- \(opt[i] \): optimal value for the instance
- assume we have computed \(opt[0], opt[1], \ldots, opt[i-1] \)

Q: The value of optimal solution that does not contain \(i \)?

A: \(opt[i - 1] \)

Q: The value of optimal solution that contains job \(i \)?

A: \(v_i + opt[p_i], \quad p_i = \text{the largest } j \text{ such that } f_j \leq s_i \)
Designing a Dynamic Programming Algorithm

Q: The value of optimal solution that does not contain i?
A: $opt[i - 1]$

Q: The value of optimal solution that contains job i?
A: $v_i + opt[p_i]$, $p_i =$ the largest j such that $f_j \leq s_i$

Recursion for $opt[i]$: $opt[i] = \max \{opt[i - 1], v_i + opt[p_i]\}$
Designing a Dynamic Programming Algorithm

Recursion for $opt[i]$:
\[
opt[i] = \max \{ opt[i - 1], v_i + opt[p_i] \}
\]

- $opt[0] = 0$
- $opt[1] = \max \{ opt[0], 80 + opt[0] \} = 80$
- $opt[2] = \max \{ opt[1], 100 + opt[0] \} = 100$
- $opt[3] = \max \{ opt[2], 90 + opt[0] \} = 100$
- $opt[5] = \max \{ opt[4], 50 + opt[3] \} = 150$
Designing a Dynamic Programming Algorithm

Recursion for $opt[i]$:

$$opt[i] = \max\{opt[i - 1], v_i + opt[p_i]\}$$

- $opt[0] = 0$, $opt[1] = 80$, $opt[2] = 100$
- $opt[6] = \max\{opt[5], 70 + opt[3]\} = 170$
- $opt[7] = \max\{opt[6], 80 + opt[4]\} = 185$
- $opt[8] = \max\{opt[7], 50 + opt[6]\} = 220$
- $opt[9] = \max\{opt[8], 30 + opt[7]\} = 220$
Dynamic Programming

1: sort jobs by non-decreasing order of finishing times
2: compute p_1, p_2, \cdots, p_n
3: $opt[0] \leftarrow 0$
4: for $i \leftarrow 1$ to n do
5: $opt[i] \leftarrow \max\{opt[i - 1], v_i + opt[p_i]\}$

- Running time sorting: $O(n \lg n)$
- Running time for computing p: $O(n \lg n)$ via binary search
- Running time for computing $opt[n]$: $O(n)$
How Can We Recover the Optimum Schedule?

1: sort jobs by non-decreasing order of finishing times
2: compute \(p_1, p_2, \cdots, p_n \)
3: \(\text{opt}[0] \leftarrow 0 \)
4: for \(i \leftarrow 1 \) to \(n \) do
5: \(\text{if } \text{opt}[i - 1] \geq v_i + \text{opt}[p_i] \text{ then} \)
6: \(\quad \text{opt}[i] \leftarrow \text{opt}[i - 1] \)
7: \(\quad b[i] \leftarrow \text{N} \)
8: \(\text{else} \)
9: \(\quad \text{opt}[i] \leftarrow v_i + \text{opt}[p_i] \)
10: \(b[i] \leftarrow \text{Y} \)

1: \(i \leftarrow n, S \leftarrow \emptyset \)
2: \(\text{while } i \neq 0 \text{ do} \)
3: \(\quad \text{if } b[i] = \text{N} \text{ then} \)
4: \(\quad i \leftarrow i - 1 \)
5: \(\quad \text{else} \)
6: \(\quad S \leftarrow S \cup \{i\} \)
7: \(\quad i \leftarrow p_i \)
8: \(\text{return } S \)
Recovering Optimum Schedule: Example

<table>
<thead>
<tr>
<th>i</th>
<th>$opt[i]$</th>
<th>$b[i]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>⊥</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>Y</td>
</tr>
<tr>
<td>6</td>
<td>170</td>
<td>Y</td>
</tr>
<tr>
<td>7</td>
<td>185</td>
<td>Y</td>
</tr>
<tr>
<td>8</td>
<td>220</td>
<td>Y</td>
</tr>
<tr>
<td>9</td>
<td>220</td>
<td>N</td>
</tr>
</tbody>
</table>
Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse
Outline

1. Weighted Interval Scheduling
2. **Segmented Least Squares**
3. Subset Sum Problem
 - Related Problem: Knapsack Problem
4. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
5. Shortest Paths in Directed Acyclic Graphs
6. Matrix Chain Multiplication
7. Optimum Binary Search Tree
8. Summary
Linear Regression

- \(P = \{(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\}, x_1 < x_2 < \cdots < x_n \)
- \(L : y = ax + b \)

\[
\text{Error}(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2
\]

Linear Regression

- find \(L \), minimize Error\((L, P)\)

\[
a := \frac{n \sum_i x_i y_i - (\sum_i x_i)(\sum_i y_i)}{n \sum_i x_i^2 - (\sum_i x_i)^2}
\]

\[
b := \frac{\sum_i y_i - a \sum_i x_i}{n}
\]
Data may come from multiple line-segments. One line may have a large error.

Solution: using segments
Segmented Least Squares

Input: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n), x_1 < x_2 < \cdots < x_n\)
penalty parameter \(C > 0\)

Output: partition into \(k \geq 1\) \((k\text{ unknown})\) segments,
minimize cost := error + penalty
error: sum of squared error over all the \(k\) segments
penalty: \(kC\)

\[
\text{cost} = \text{error}(L_1, P_1) + \text{error}(L_2, P_2) + \text{error}(L_3, P_3) + 3C
\]
Dynamic Programming

- $e_{ji}, 1 \leq j \leq i \leq n$: minimum error for $(x_j, y_j), \ldots, (x_i, y_i)$ using 1 line
- $opt[i]$: minimum cost for the instance with first i points

$$opt[i] = \begin{cases}
0 & \text{if } i = 0 \\
\min_{j:1 \leq j \leq i} (opt[j - 1] + e_{ji}) + C & \text{if } i \geq 1
\end{cases}$$

- Running time $= O(n^2)$.

![Diagram](image)
Outline

1. Weighted Interval Scheduling
2. Segmented Least Squares
3. Subset Sum Problem
 - Related Problem: Knapsack Problem
4. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
5. Shortest Paths in Directed Acyclic Graphs
6. Matrix Chain Multiplication
7. Optimum Binary Search Tree
8. Summary
Subset Sum Problem

Input: an integer bound \(W > 0 \)

a set of \(n \) items, each with an integer weight \(w_i > 0 \)

Output: a subset \(S \) of items that

\[
\text{maximizes } \sum_{i \in S} w_i \quad \text{s.t. } \sum_{i \in S} w_i \leq W.
\]

- Motivation: you have budget \(W \), and want to buy a subset of items, so as to spend as much money as possible.

Example:

- \(W = 35, n = 5, w = (14, 9, 17, 10, 13) \)

- Optimum: \(S = \{1, 2, 4\} \) and \(14 + 9 + 10 = 33 \)
Greedy Algorithms for Subset Sum

Candidate Algorithm:
- Sort according to non-increasing order of weights
- Select items in the order as long as the total weight remains below W

Q: Does candidate algorithm always produce optimal solutions?

A: No. $W = 100, n = 3, w = (51, 50, 50)$.

Q: What if we change “non-increasing” to “non-decreasing”?

A: No. $W = 100, n = 3, w = (1, 50, 50)$.
Design a Dynamic Programming Algorithm

- Consider the instance: $i, W', (w_1, w_2, \cdots, w_i)$;
- $opt[i, W']$: the optimum value of the instance

Q: The value of the optimum solution that does not contain i?

A: $opt[i - 1, W']$

Q: The value of the optimum solution that contains i?

A: $opt[i - 1, W' - w_i] + w_i$
Dynamic Programming

- Consider the instance: \(i, W', (w_1, w_2, \cdots, w_i) \);
- \(opt[i, W'] \): the optimum value of the instance

\[
opt[i, W'] = \begin{cases}
0 & \text{if } i = 0 \\
opt[i - 1, W'] & \text{if } i > 0, w_i > W' \\
\max \left\{ \begin{array}{l}
\text{opt}[i - 1, W'] \\
\text{opt}[i - 1, W' - w_i] + w_i
\end{array} \right\} & \text{if } i > 0, w_i \leq W'
\end{cases}
\]
Dynamic Programming

1: for $W' \leftarrow 0$ to W do
2: \hspace{1em} $opt[0, W'] \leftarrow 0$
3: for $i \leftarrow 1$ to n do
4: \hspace{1em} for $W' \leftarrow 0$ to W do
5: \hspace{2em} $opt[i, W'] \leftarrow opt[i - 1, W']$
6: \hspace{2em} if $w_i \leq W'$ and $opt[i - 1, W' - w_i] + w_i \geq opt[i, W']$ then
7: \hspace{3em} $opt[i, W'] \leftarrow opt[i - 1, W' - w_i] + w_i$
8: return $opt[n, W]$
Recover the Optimum Set

1: for $W' \leftarrow 0$ to W do
2: \hspace{1em} opt[0, W'] \leftarrow 0
3: for $i \leftarrow 1$ to n do
4: \hspace{1em} for $W' \leftarrow 0$ to W do
5: \hspace{2em} opt[i, W'] \leftarrow opt[$i - 1$, W']
6: \hspace{2em} $b[i, W']$ \leftarrow N
7: \hspace{2em} if $w_i \leq W'$ and opt[$i - 1$, $W' - w_i$] + w_i \geq opt[i, W']
8: \hspace{3em} opt[i, W'] \leftarrow opt[$i - 1$, $W' - w_i$] + w_i
9: \hspace{3em} $b[i, W']$ \leftarrow Y
10: return opt[n, W]
Recover the Optimum Set

1: \(i \leftarrow n, \ W' \leftarrow W, \ S \leftarrow \emptyset \)

2: \(\textbf{while } i > 0 \ \textbf{do} \)

3: \(\quad \textbf{if } b[i, W'] = Y \ \textbf{then} \)

4: \(\quad \quad W' \leftarrow W' - w_i \)

5: \(\quad S \leftarrow S \cup \{i\} \)

6: \(\quad i \leftarrow i - 1 \)

7: \(\textbf{return } S \)
Running Time of Algorithm

```
1: for $W' \leftarrow 0$ to $W$ do
2:     $opt[0, W'] \leftarrow 0$
3: for $i \leftarrow 1$ to $n$ do
4:     for $W' \leftarrow 0$ to $W$ do
5:         $opt[i, W'] \leftarrow opt[i - 1, W']$
6:     if $w_i \leq W'$ and $opt[i - 1, W' - w_i] + w_i \geq opt[i, W']$ then
7:         $opt[i, W'] \leftarrow opt[i - 1, W' - w_i] + w_i$
8: return $opt[n, W]$
```

- Running time is $O(nW)$
- Running time is pseudo-polynomial because it depends on value of the input integers.
Example

- \(n = 4 \), \(w = (2, 3, 9, 8) \), \(W = 14 \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>
Avoiding Unnecessary Computation and Memory Using Memoized Algorithm and Hash Map

compute-opt\((i, W')\)

1: if \(opt[i, W'] \neq \bot\) then return \(opt[i, W']\)
2: if \(i = 0\) then \(r \leftarrow 0\)
3: else
4: \(r \leftarrow compute-opt(i - 1, W')\)
5: if \(w_i \leq W'\) then
6: \(r' \leftarrow compute-opt(i - 1, W' - w_i) + w_i\)
7: if \(r' > r\) then \(r \leftarrow r'\)
8: \(opt[i, W'] \leftarrow r\)
9: return \(r\)

- Use hash map for \(opt\)
Example Using Memoized Rounding

- \(n = 4, \ w = (2, 3, 9, 8), \ W = 14 \)

<table>
<thead>
<tr>
<th>(i, W')</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- (4, 14) → (3, 14) → (2, 14) → (1, 14) → (0, 14)
- (4, 14) → (3, 14) → (2, 5) → (1, 5) → (0, 5)
- (4, 14) → (3, 14) → (2, 5) → (1, 2) → (0, 2)
- (4, 14) → (3, 14) → (2, 5) → (1, 3) → (0, 3)
- (4, 14) → (3, 14) → (2, 5) → (1, 11) → (0, 11)
- (4, 14) → (3, 14) → (2, 5) → (1, 11) → (0, 9)
- (4, 14) → (3, 14) → (2, 5) → (1, 11) → (0, 12)
- (4, 14) → (3, 14) → (2, 5) → (1, 11) → (0, 14)
Outline

1. Weighted Interval Scheduling
2. Segmented Least Squares
3. Subset Sum Problem
 - Related Problem: Knapsack Problem
4. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
5. Shortest Paths in Directed Acyclic Graphs
6. Matrix Chain Multiplication
7. Optimum Binary Search Tree
8. Summary
Knapsack Problem

Input: an integer bound $W > 0$

a set of n items, each with an integer weight $w_i > 0$

a value $v_i > 0$ for each item i

Output: a subset S of items that

maximizes $\sum_{i \in S} v_i$ s.t. $\sum_{i \in S} w_i \leq W$.

- Motivation: you have budget W, and want to buy a subset of items of maximum total value
DP for Knapsack Problem

- $opt[i, W']$: the optimum value when budget is W' and items are $\{1, 2, 3, \cdots, i\}$.
- If $i = 0$, $opt[i, W'] = 0$ for every $W' = 0, 1, 2, \cdots, W$.

$$
opt[i, W'] = \begin{cases}
0 & i = 0 \\
opt[i - 1, W'] & i > 0, w_i > W' \\
\max \left\{ \begin{array}{l}
\qquad \quad opt[i - 1, W'] \\
\quad \quad \quad \quad opt[i - 1, W' - w_i] + v_i
\end{array} \right\} & i > 0, w_i \leq W'
\end{cases}
$$
Exercise: Items with 3 Parameters

Input: integer bounds $W > 0, Z > 0$,
a set of n items, each with an integer weight $w_i > 0$
a size $z_i > 0$ for each item i
a value $v_i > 0$ for each item i

Output: a subset S of items that

maximizes $\sum_{i \in S} v_i$ \quad s.t. \quad

$\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} z_i \leq Z$
Outline

1. Weighted Interval Scheduling
2. Segmented Least Squares
3. Subset Sum Problem
 - Related Problem: Knapsack Problem
4. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
5. Shortest Paths in Directed Acyclic Graphs
6. Matrix Chain Multiplication
7. Optimum Binary Search Tree
8. Summary
Subsequence

- $A = bacdca$
- $C = adca$
- C is a subsequence of A

Def. Given two sequences $A[1..n]$ and $C[1..t]$ of letters, C is called a subsequence of A if there exists integers $1 \leq i_1 < i_2 < i_3 < \ldots < i_t \leq n$ such that $A[i_j] = C[j]$ for every $j = 1, 2, 3, \ldots, t$.

- Exercise: how to check if sequence C is a subsequence of A?
Longest Common Subsequence

Input: $A[1 .. n]$ and $B[1 .. m]$

Output: the longest common subsequence of A and B

Example:
- $A = 'bacdca'$
- $B = 'abcdca'$
- $LCS(A, B) = 'adca'$

Applications: edit distance (diff), similarity of DNAs
Goal of LCS: find a maximum-size non-crossing matching between letters in A and letters in B.
Reduce to Subproblems

- \(A = 'bacdca' \)
- \(B = 'adbcda' \)

- either the last letter of \(A \) is not matched:
 - need to compute \(\text{LCS}('bacd', 'adbcda') \)

- or the last letter of \(B \) is not matched:
 - need to compute \(\text{LCS}('bacdc', 'adbc') \)
Dynamic Programming for LCS

- $opt[i, j], 0 \leq i \leq n, 0 \leq j \leq m$: length of longest common sub-sequence of $A[1..i]$ and $B[1..j]$.
- If $i = 0$ or $j = 0$, then $opt[i, j] = 0$.
- If $i > 0, j > 0$, then

$$opt[i, j] = \begin{cases} opt[i - 1, j - 1] + 1 & \text{if } A[i] = B[j] \\ \max \left\{ opt[i - 1, j], opt[i, j - 1] \right\} & \text{if } A[i] \neq B[j] \end{cases}$$
Dynamic Programming for LCS

1: for $j \leftarrow 0$ to m do
2: \hspace{1em} opt[0, j] \leftarrow 0
3: for $i \leftarrow 1$ to n do
4: \hspace{1em} opt[i, 0] \leftarrow 0
5: for $j \leftarrow 1$ to m do
6: \hspace{2em} if $A[i] = B[j]$ then
7: \hspace{3em} opt[i, j] \leftarrow opt[i - 1, j - 1] + 1, \pi[i, j] \leftarrow “↖”
8: \hspace{2em} else if $opt[i, j - 1] \geq opt[i - 1, j]$ then
9: \hspace{3em} opt[i, j] \leftarrow opt[i, j - 1], \pi[i, j] \leftarrow “←”
10: \hspace{2em} else
11: \hspace{3em} opt[i, j] \leftarrow opt[i - 1, j], \pi[i, j] \leftarrow “↑”
Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>B</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>c</td>
<td>d</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0⊥</td>
<td>0⊥</td>
<td>0⊥</td>
<td>0⊥</td>
<td>0⊥</td>
<td>0⊥</td>
<td>0⊥</td>
</tr>
<tr>
<td>1</td>
<td>0⊥</td>
<td>0←</td>
<td>0←</td>
<td>1↖</td>
<td>1←</td>
<td>1←</td>
<td>1←</td>
</tr>
<tr>
<td>2</td>
<td>0⊥</td>
<td>1↖</td>
<td>1←</td>
<td>1←</td>
<td>1←</td>
<td>1←</td>
<td>2↖</td>
</tr>
<tr>
<td>3</td>
<td>0⊥</td>
<td>1↑</td>
<td>1←</td>
<td>1←</td>
<td>2↖</td>
<td>2←</td>
<td>2←</td>
</tr>
<tr>
<td>4</td>
<td>0⊥</td>
<td>1↑</td>
<td>2↖</td>
<td>2←</td>
<td>2←</td>
<td>3↖</td>
<td>3←</td>
</tr>
<tr>
<td>5</td>
<td>0⊥</td>
<td>1↑</td>
<td>2↑</td>
<td>2←</td>
<td>3↖</td>
<td>3←</td>
<td>3←</td>
</tr>
<tr>
<td>6</td>
<td>0⊥</td>
<td>1↖</td>
<td>2↑</td>
<td>2←</td>
<td>3↑</td>
<td>3←</td>
<td>4↖</td>
</tr>
</tbody>
</table>
Example: Find Common Subsequence

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>d</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>B</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 ↓</td>
</tr>
<tr>
<td>1</td>
<td>0 ↓</td>
<td>0 ←</td>
<td>0 ←</td>
<td>1 ↖</td>
<td>1 ←</td>
<td>1 ←</td>
<td>1 ←</td>
</tr>
<tr>
<td>2</td>
<td>0 ↓</td>
<td>1 ↖</td>
<td>1 ←</td>
<td>1 ←</td>
<td>1 ←</td>
<td>1 ←</td>
<td>2 ↖</td>
</tr>
<tr>
<td>3</td>
<td>0 ↓</td>
<td>1 ↑</td>
<td>1 ←</td>
<td>1 ←</td>
<td>2 ↖</td>
<td>2 ←</td>
<td>2 ←</td>
</tr>
<tr>
<td>4</td>
<td>0 ↓</td>
<td>1 ↑</td>
<td>2 ↖</td>
<td>2 ←</td>
<td>2 ←</td>
<td>3 ↖</td>
<td>3 ←</td>
</tr>
<tr>
<td>5</td>
<td>0 ↓</td>
<td>1 ↑</td>
<td>2 ↑</td>
<td>2 ←</td>
<td>3 ↖</td>
<td>3 ←</td>
<td>3 ←</td>
</tr>
<tr>
<td>6</td>
<td>0 ↓</td>
<td>1 ↖</td>
<td>2 ↑</td>
<td>2 ←</td>
<td>3 ↑</td>
<td>3 ←</td>
<td>4 ↖</td>
</tr>
</tbody>
</table>
Find Common Subsequence

1: $i \leftarrow n, j \leftarrow m, S \leftarrow ()$
2: while $i > 0$ and $j > 0$ do
3:
4: if $\pi[i, j] =$ "\downarrow" then
5:
6: else if $\pi[i, j] =$ "\uparrow" then
7:
8: else
9:
10: return S
Variants of Problem

Edit Distance with Insertions and Deletions

Input: a string A
- each time we can delete a letter from A or insert a letter to A

Output: minimum number of operations (insertions or deletions) we need to change A to B?

Example:
- $A =$ ocurrence, $B =$ occurrence
- 3 operations: insert 'c', remove 'a' and insert 'e'

Obs. $\#OPs = \text{length}(A) + \text{length}(B) - 2 \cdot \text{length(LCS}(A, B))$
Edit Distance with Insertions, Deletions and Replacing

Input: a string A,

each time we can delete a letter from A, insert a letter to A or **change a letter**

Output: how many operations do we need to change A to B?

Example:
- $A = \text{ocurrance}, \ B = \text{occurrence}$.
- 2 operations: insert 'c', change 'a' to 'e'

- Not related to LCS any more
Edit Distance with Replacing: Reduction to a Variant of LCS

- Need to match letters in A and B, every letter is matched at most once and there should be no crosses.
- However, we can **match two different letters**: Matching a same letter gives score 2, matching two different letters gives score 1.
- Need to maximize the score.
- DP recursion for the case $i > 0$ and $j > 0$:

$$
opt[i, j] = \begin{cases}
\opt[i-1, j-1] + 2 & \text{if } A[i] = B[j] \\
\max \begin{cases}
\opt[i-1, j] \\
\opt[i, j-1] \\
\opt[i-1, j-1] + 1 & \text{if } A[i] \neq B[j]
\end{cases}
\end{cases}
$$

- Relation: $\#OPs = \text{length}(A) + \text{length}(B) - \text{max}_\text{score}$
Edit Distance (with Replacing): using DP directly

1. \(opt[i, j], 0 \leq i \leq n, 0 \leq j \leq m \): edit distance between \(A[1 .. i] \) and \(B[1 .. j] \).
2. if \(i = 0 \) then \(opt[i, j] = j \); if \(j = 0 \) then \(opt[i, j] = i \).
3. if \(i > 0, j > 0 \), then

\[
opt[i, j] = \begin{cases}
 opt[i - 1, j - 1] & \text{if } A[i] = B[j] \\
 \min \{ opt[i - 1, j] + 1, opt[i, j - 1] + 1, opt[i - 1, j - 1] + 1 \} & \text{if } A[i] \neq B[j]
\end{cases}
\]
Exercise: Longest Palindrome

Def. A **palindrome** is a string which reads the same backward or forward.

- example: “racecar”, “wasitacaroracatisaw”, ”putitup”

Longest Palindrome Subsequence

Input: a sequence A

Output: the longest subsequence C of A that is a palindrome.

Example:
- Input: acbcedeacab
- Output: acedeca
Outline

1. Weighted Interval Scheduling
2. Segmented Least Squares
3. Subset Sum Problem
 - Related Problem: Knapsack Problem
4. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
5. Shortest Paths in Directed Acyclic Graphs
6. Matrix Chain Multiplication
7. Optimum Binary Search Tree
8. Summary
Computing the Length of LCS

1: for $j \leftarrow 0$ to m do
2: \hspace{1em} \text{opt}[0, j] \leftarrow 0
3: for $i \leftarrow 1$ to n do
4: \hspace{1em} \text{opt}[i, 0] \leftarrow 0
5: for $j \leftarrow 1$ to m do
6: \hspace{2em} if $A[i] = B[j]$ then
7: \hspace{3em} \text{opt}[i, j] \leftarrow \text{opt}[i - 1, j - 1] + 1
8: \hspace{2em} else if $\text{opt}[i, j - 1] \geq \text{opt}[i - 1, j]$ then
9: \hspace{3em} \text{opt}[i, j] \leftarrow \text{opt}[i, j - 1]
10: \hspace{2em} else
11: \hspace{3em} \text{opt}[i, j] \leftarrow \text{opt}[i - 1, j]

Obs. The i-th row of table only depends on $(i - 1)$-th row.
Reducing Space to $O(n + m)$

Obs. The i-th row of table only depends on $(i - 1)$-th row.

Q: How to use this observation to reduce space?

A: We only keep two rows: the $(i - 1)$-th row and the i-th row.
Linear Space Algorithm to Compute Length of LCS

1: for $j \leftarrow 0$ to m do
2: \hspace{1em} $opt[0, j] \leftarrow 0$
3: for $i \leftarrow 1$ to n do
4: \hspace{1em} $opt[i \mod 2, 0] \leftarrow 0$
5: for $j \leftarrow 1$ to m do
6: \hspace{2em} if $A[i] = B[j]$ then
7: \hspace{3em} $opt[i \mod 2, j] \leftarrow opt[i - 1 \mod 2, j - 1] + 1$
8: \hspace{2em} else if $opt[i \mod 2, j - 1] \geq opt[i - 1 \mod 2, j]$ then
9: \hspace{3em} $opt[i \mod 2, j] \leftarrow opt[i \mod 2, j - 1]$
10: \hspace{2em} else
11: \hspace{3em} $opt[i \mod 2, j] \leftarrow opt[i - 1 \mod 2, j]$
12: return $opt[n \mod 2, m]$
How to Recover LCS Using Linear Space?

- Only keep the last two rows: only know how to match $A[n]$
- Can recover the LCS using n rounds: time $= O(n^2 m)$
- Using Divide and Conquer + Dynamic Programming:
 - Space: $O(m + n)$
 - Time: $O(nm)$
Outline

1. Weighted Interval Scheduling
2. Segmented Least Squares
3. Subset Sum Problem
 - Related Problem: Knapsack Problem
4. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
5. Shortest Paths in Directed Acyclic Graphs
6. Matrix Chain Multiplication
7. Optimum Binary Search Tree
8. Summary
Def. A directed acyclic graph (DAG) is a directed graph without (directed) cycles.

Lemma A directed graph is a DAG if and only its vertices can be topologically sorted.
Shortest Paths in DAG

Input: directed acyclic graph $G = (V, E)$ and $w : E \to \mathbb{R}$.

Assume $V = \{1, 2, 3 \cdots, n\}$ is topologically sorted: if $(i, j) \in E$, then $i < j$

Output: the shortest path from 1 to i, for every $i \in V$
Shortest Paths in DAG

- $f[i]$: length of the shortest path from 1 to i

$$f[i] = \begin{cases}
0 & i = 1 \\
\min_{j: (j,i) \in E} \{ f(j) + w(j,i) \} & i = 2, 3, \cdots, n
\end{cases}$$
Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG

1: $f[1] \leftarrow 0$
2: for $i \leftarrow 2$ to n do
3: \hspace{1em} $f[i] \leftarrow \infty$
4: for each incoming edge (j, i) of i do
5: \hspace{2em} if $f[j] + w(j, i) < f[i]$ then
6: \hspace{3em} $f[i] \leftarrow f[j] + w(j, i)$
7: \hspace{3em} $\pi(i) \leftarrow j$

print-path(t)

1: if $t = 1$ then
2: \hspace{1em} print(1)
3: \hspace{1em} return
4: \hspace{1em} print-path($\pi(t)$)
5: \hspace{1em} print(“,”, t)
Example
Variant: Heaviest Path in a Directed Acyclic Graph

Input: directed acyclic graph \(G = (V, E) \) and \(w : E \rightarrow \mathbb{R} \).
Assume \(V = \{1, 2, 3, \cdots, n\} \) is topologically sorted: if \((i, j) \in E\), then \(i < j \)

Output: the path with the largest weight (the heaviest path) from 1 to \(n \).

- \(f[i] \): weight of the heaviest path from 1 to \(i \)

\[
f[i] = \begin{cases}
0 & i = 1 \\
\max_{j:(j, i) \in E} \{ f(j) + w(j, i) \} & i = 2, 3, \cdots, n
\end{cases}
\]
Outline

1. Weighted Interval Scheduling
2. Segmented Least Squares
3. Subset Sum Problem
 - Related Problem: Knapsack Problem
4. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
5. Shortest Paths in Directed Acyclic Graphs
6. **Matrix Chain Multiplication**
7. Optimum Binary Search Tree
8. Summary
Matrix Chain Multiplication

Input: n matrices A_1, A_2, \cdots, A_n of sizes $r_1 \times c_1, r_2 \times c_2, \cdots, r_n \times c_n$, such that $c_i = r_{i+1}$ for every $i = 1, 2, \cdots, n - 1$.

Output: the order of computing $A_1A_2\cdots A_n$ with the minimum number of multiplications.

Fact Multiplying two matrices of size $r \times k$ and $k \times c$ takes $r \times k \times c$ multiplications.
Example:

- $A_1 : 10 \times 100$, $A_2 : 100 \times 5$, $A_3 : 5 \times 50$

![Diagram showing the calculation process]

- $(A_1A_2)A_3$: $10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500$
- $A_1(A_2A_3)$: $100 \times 5 \times 50 + 10 \times 100 \times 50 = 75000$
Matrix Chain Multiplication: Design DP

- Assume the last step is \((A_1 A_2 \cdots A_i)(A_{i+1} A_{i+2} \cdots A_n)\)
- Cost of last step: \(r_1 \times c_i \times c_n\)
- Optimality for sub-instances: we need to compute \(A_1 A_2 \cdots A_i\) and \(A_{i+1} A_{i+2} \cdots A_n\) optimally
- \(opt[i, j]:\) the minimum cost of computing \(A_i A_{i+1} \cdots A_j\)

\[
opt[i, j] = \begin{cases}
0 & i = j \\
\min_{k: i \leq k < j} (opt[i, k] + opt[k + 1, j] + r_i c_k c_j) & i < j
\end{cases}
\]
Matrix Chain Multiplication: Design DP

\textbf{matrix-chain-multiplication}(n, r[1..n], c[1..n])

1: let \(opt[i, i] \leftarrow 0\) for every \(i = 1, 2, \ldots, n\)
2: \textbf{for} \(\ell \leftarrow 2\) to \(n\) \textbf{do}
3: \hspace{1em} \textbf{for} \(i \leftarrow 1\) to \(n - \ell + 1\) \textbf{do}
4: \hspace{2em} \(j \leftarrow i + \ell - 1\)
5: \hspace{1em} \(opt[i, j] \leftarrow \infty\)
6: \hspace{1em} \textbf{for} \(k \leftarrow i\) to \(j - 1\) \textbf{do}
7: \hspace{2em} \textbf{if} \(opt[i, k] + opt[k + 1, j] + r_ic_kc_j < opt[i, j]\) \textbf{then}
8: \hspace{2em} \(opt[i, j] \leftarrow opt[i, k] + opt[k + 1, j] + r_ic_kc_j\)
9: \hspace{2em} \(\pi[i, j] \leftarrow k\)
10: \textbf{return} \(opt[1, n]\)
Constructing Optimal Solution

Print-Optimal-Order\((i, j)\)

1: if \(i = j\) then
2: print("A" \(_i\))
3: else
4: print("(")
5: Print-Optimal-Order\((i, \pi[i, j])\)
6: Print-Optimal-Order\((\pi[i, j] + 1, j)\)
7: print(")"
\begin{array}{c|ccccc}
\text{matrix} & A_1 & A_2 & A_3 & A_4 & A_5 \\
\text{size} & 3 \times 5 & 5 \times 2 & 2 \times 6 & 6 \times 9 & 9 \times 4 \\
\end{array}

\begin{align*}
\text{opt}[1, 2] &= \text{opt}[1, 1] + \text{opt}[2, 2] + 3 \times 5 \times 2 = 30, \quad \pi[1, 2] = 1 \\
\text{opt}[2, 3] &= \text{opt}[2, 2] + \text{opt}[3, 3] + 5 \times 2 \times 6 = 60, \quad \pi[2, 3] = 2 \\
\text{opt}[3, 4] &= \text{opt}[3, 3] + \text{opt}[4, 4] + 2 \times 6 \times 9 = 108, \quad \pi[3, 4] = 3 \\
\text{opt}[4, 5] &= \text{opt}[4, 4] + \text{opt}[5, 5] + 6 \times 9 \times 4 = 216, \quad \pi[4, 5] = 4 \\
\text{opt}[1, 3] &= \min\{\text{opt}[1, 1] + \text{opt}[2, 3] + 3 \times 5 \times 6, \\
& \quad \text{opt}[1, 2] + \text{opt}[3, 3] + 3 \times 2 \times 6\} \\
& = \min\{0 + 60 + 90, 30 + 0 + 36\} = 66, \quad \pi[1, 3] = 2 \\
\text{opt}[2, 4] &= \min\{\text{opt}[2, 2] + \text{opt}[3, 4] + 5 \times 2 \times 9, \\
& \quad \text{opt}[2, 3] + \text{opt}[4, 4] + 5 \times 6 \times 9\} \\
& = \min\{0 + 108 + 90, 60 + 0 + 270\} = 198, \quad \pi[2, 4] = 2, \\
\end{align*}
<table>
<thead>
<tr>
<th>matrix</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>3×5</td>
<td>5×2</td>
<td>2×6</td>
<td>6×9</td>
<td>9×4</td>
</tr>
</tbody>
</table>

$$opt[3, 5] = \min\{opt[3, 3] + opt[4, 5] + 2 \times 6 \times 4, \\
opt[3, 4] + opt[5, 5] + 2 \times 9 \times 4\}$$
$$= \min\{0 + 216 + 48, 108 + 0 + 72\} = 180,$$
$$\pi[3, 5] = 4,$$
$$opt[1, 4] = \min\{opt[1, 1] + opt[2, 4] + 3 \times 5 \times 9, \\
opt[1, 2] + opt[3, 4] + 3 \times 2 \times 9, \\
opt[1, 3] + opt[4, 4] + 3 \times 6 \times 9\}$$
$$= \min\{0 + 198 + 135, 30 + 108 + 54, 66 + 0 + 162\} = 192,$$
$$\pi[1, 4] = 2,$$
<table>
<thead>
<tr>
<th>matrix</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>3×5</td>
<td>5×2</td>
<td>2×6</td>
<td>6×9</td>
<td>9×4</td>
</tr>
</tbody>
</table>

$$opt[2, 5] = \min\{opt[2, 2] + opt[3, 5] + 5 \times 2 \times 4, \quad opt[2, 3] + opt[4, 5] + 5 \times 6 \times 4, \quad opt[2, 4] + opt[5, 5] + 5 \times 9 \times 4\}$$

$$= \min\{0 + 180 + 40, 60 + 216 + 120, 198 + 0 + 180\} = 220,$$

$$opt[1, 5] = \min\{opt[1, 1] + opt[2, 5] + 3 \times 5 \times 4, \quad opt[1, 2] + opt[3, 5] + 3 \times 2 \times 4, \quad opt[1, 3] + opt[4, 5] + 3 \times 6 \times 4, \quad opt[1, 4] + opt[5, 5] + 3 \times 9 \times 4\}$$

$$= \min\{0 + 220 + 60, 30 + 180 + 24, \quad 66 + 216 + 72, 192 + 0 + 108\}$$

$$= 234,$$

$$\pi[1, 5] = 2.$$
<table>
<thead>
<tr>
<th>matrix</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>3×5</td>
<td>5×2</td>
<td>2×6</td>
<td>6×9</td>
<td>9×4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>opt, π</th>
<th>$j = 1$</th>
<th>$j = 2$</th>
<th>$j = 3$</th>
<th>$j = 4$</th>
<th>$j = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 1$</td>
<td>0, /</td>
<td>30, 1</td>
<td>66, 2</td>
<td>192, 2</td>
<td>234, 2</td>
</tr>
<tr>
<td>$i = 2$</td>
<td></td>
<td>0, /</td>
<td>60, 2</td>
<td>198, 2</td>
<td>220, 2</td>
</tr>
<tr>
<td>$i = 3$</td>
<td></td>
<td></td>
<td>0, /</td>
<td>108, 3</td>
<td>180, 4</td>
</tr>
<tr>
<td>$i = 4$</td>
<td></td>
<td></td>
<td></td>
<td>0, /</td>
<td>216, 4</td>
</tr>
<tr>
<td>$i = 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0, /</td>
</tr>
<tr>
<td>opt, π</td>
<td>$j = 1$</td>
<td>$j = 2$</td>
<td>$j = 3$</td>
<td>$j = 4$</td>
<td>$j = 5$</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>$i = 1$</td>
<td>0, /</td>
<td>30, 1</td>
<td>66, 2</td>
<td>192, 2</td>
<td>234, 2</td>
</tr>
<tr>
<td>$i = 2$</td>
<td>0, /</td>
<td>60, 2</td>
<td>198, 2</td>
<td>220, 2</td>
<td></td>
</tr>
<tr>
<td>$i = 3$</td>
<td>0, /</td>
<td>108, 3</td>
<td>180, 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i = 4$</td>
<td>0, /</td>
<td>216, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i = 5$</td>
<td>0, /</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Print-Optimal-Order(1,5)
Print-Optimal-Order(1, 2)
Print-Optimal-Order(1, 1)
Print-Optimal-Order(2, 2)
Print-Optimal-Order(3, 5)
Print-Optimal-Order(3, 4)
Print-Optimal-Order(3, 3)
Print-Optimal-Order(4, 4)
Print-Optimal-Order(5, 5)

Optimum way for multiplication: $((A_1 A_2)((A_3 A_4)A_5))$
Outline

1. Weighted Interval Scheduling
2. Segmented Least Squares
3. Subset Sum Problem
 - Related Problem: Knapsack Problem
4. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
5. Shortest Paths in Directed Acyclic Graphs
6. Matrix Chain Multiplication
7. Optimum Binary Search Tree
8. Summary
Optimum Binary Search Tree

- \(n \) elements \(e_1 < e_2 < e_3 < \cdots < e_n \)
- \(e_i \) has frequency \(f_i \)
- goal: build a binary search tree for \(\{e_1, e_2, \cdots, e_n\} \) with the minimum accessing cost:

\[
\sum_{i=1}^{n} f_i \times (\text{depth of } e_i \text{ in the tree})
\]

- motivation: the time to access \(e_i \) in the tree is linear in the depth of \(e_i \)
Example: \(f_1 = 10, f_2 = 5, f_3 = 3 \)

- \(10 \times 1 + 5 \times 2 + 3 \times 3 = 29 \)
- \(10 \times 2 + 5 \times 1 + 3 \times 2 = 31 \)
- \(10 \times 3 + 5 \times 2 + 3 \times 1 = 43 \)
suppose we decided to let e_k be the root

- $e_1, e_2, \cdots, e_{k-1}$ are on left sub-tree
- $e_{k+1}, e_{k+2}, \cdots, e_n$ are on right sub-tree

- d_j: depth of e_j in our tree
- C, C_L, C_R: cost of tree, left sub-tree and right sub-tree

- $d_1 = 3$, $d_2 = 2$, $d_3 = 3$, $d_4 = 4$, $d_5 = 1$, $d_6 = 2$, $d_7 = 4$, $d_8 = 3$, $d_9 = 4$,

- $C = 3f_1 + 2f_2 + 3f_3 + 4f_4 + f_5 + 2f_6 + 4f_7 + 3f_8 + 4f_9$
- $C_L = 2f_1 + f_2 + 2f_3 + 3f_4$
- $C_R = f_6 + 3f_7 + 2f_8 + 3f_9$
- $C = C_L + C_R + \sum_{j=1}^{9} f_j$
\[C = \sum_{\ell=1}^{n} f_\ell d_\ell = \sum_{\ell=1}^{n} f_\ell (d_\ell - 1) + \sum_{\ell=1}^{n} f_\ell \]

\[= \sum_{\ell=1}^{k-1} f_\ell (d_\ell - 1) + \sum_{\ell=k+1}^{n} f_\ell (d_\ell - 1) + \sum_{\ell=1}^{n} f_\ell \]

\[= C_L + C_R + \sum_{\ell=1}^{n} f_\ell \]
\[C = C_L + C_R + \sum_{\ell=1}^{n} f_{\ell} \]

- In order to minimize \(C \), need to minimize \(C_L \) and \(C_R \) respectively.
- \(opt[i, j] \): the optimum cost for the instance \((f_i, f_{i+1}, \cdots, f_j)\)

\[
opt[1, n] = \min_{k:1 \leq k \leq n} (opt[1, k - 1] + opt[k + 1, n]) + \sum_{\ell=1}^{n} f_{\ell}
\]

- In general, \(opt[i, j] = \)

\[
\begin{cases}
0 & \text{if } i = j + 1 \\
\min_{k : i \leq k \leq j} (opt[i, k - 1] + opt[k + 1, j]) + \sum_{\ell=i}^{j} f_{\ell} & \text{if } i \leq j
\end{cases}
\]
Optimum Binary Search Tree

1: \(fsum[0] \leftarrow 0 \)
2: \(\text{for } i \leftarrow 1 \text{ to } n \text{ do } fsum[i] \leftarrow fsum[i - 1] + f_i \)
 \(\triangleright fsum[i] = \sum_{j=1}^{i} f_j \)
3: \(\text{for } i \leftarrow 0 \text{ to } n \text{ do } opt[i + 1, i] \leftarrow 0 \)
4: \(\text{for } \ell \leftarrow 1 \text{ to } n \text{ do } \)
5: \(\quad \text{for } i \leftarrow 1 \text{ to } n - \ell + 1 \text{ do } \)
6: \(\quad \quad j \leftarrow i + \ell - 1, \text{ opt}[i, j] \leftarrow \infty \)
7: \(\quad \text{for } k \leftarrow i \text{ to } j \text{ do } \)
8: \(\quad \quad \text{if } \text{ opt}[i, k - 1] + \text{ opt}[k + 1, j] < \text{ opt}[i, j] \text{ then } \)
9: \(\quad \quad \quad \text{ opt}[i, j] \leftarrow \text{ opt}[i, k - 1] + \text{ opt}[k + 1, j] \)
10: \(\quad \quad \pi[i, j] \leftarrow k \)
11: \(\text{ opt}[i, j] \leftarrow \text{ opt}[i, j] + fsum[j] - fsum[i - 1] \)
Printing the Tree

Print-Tree(*i, j*)

1: **if** *i* > *j* **then**
2: **return**
3: **else**
4: print('(')
5: Print-Tree(*i, π[i, j] − 1*)
6: print(*π[i, j]*)
7: Print-Tree(*π[i, j] + 1, j*)
8: print(')')
Outline

1. Weighted Interval Scheduling
2. Segmented Least Squares
3. Subset Sum Problem
 - Related Problem: Knapsack Problem
4. Longest Common Subsequence
 - Longest Common Subsequence in Linear Space
5. Shortest Paths in Directed Acyclic Graphs
6. Matrix Chain Multiplication
7. Optimum Binary Search Tree
8. Summary
Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse
Comparison with greedy algorithms

- Greedy algorithm: each step is making a small progress towards constructing the solution
- Dynamic programming: the whole solution is constructed in the last step

Comparison with divide and conquer

- Divide and conquer: an instance is broken into many independent sub-instances, which are solved separately.
- Dynamic programming: the sub-instances we constructed are overlapping.
Definition of Cells for Problems We Learnt

- Weighted interval scheduling: \(opt[i] = \text{value of instance defined by jobs } \{1, 2, \ldots, i\} \)
- Segmented Least Square: \(opt[i] = \text{cost of instance defined by first } i \text{ points.} \)
- Subset sum, knapsack: \(opt[i, W'] = \text{value of instance with items } \{1, 2, \ldots, i\} \text{ and budget } W' \)
- Longest common subsequence: \(opt[i, j] = \text{value of instance defined by } A[1..i] \text{ and } B[1..j] \)
- Shortest paths in DAG: \(f[v] = \text{length of shortest path from } s \text{ to } v \)
- Matrix chain multiplication, optimum binary search tree: \(opt[i, j] = \text{value of instances defined by matrices } i \text{ to } j \)