算法设计与分析(2024年春季学期)
Graph Algorithms

授课老师: 栗师
南京大学计算机科学与技术系
Outline

1. Minimum Spanning Tree
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2. Single Source Shortest Paths
 - Dijkstra’s Algorithm

3. Shortest Paths in Graphs with Negative Weights

4. All-Pair Shortest Paths and Floyd-Warshall

5. Minimum Cost Arborescence
Def. Given a connected graph $G = (V, E)$, a spanning tree $T = (V, F)$ of G is a sub-graph of G that is a tree including all vertices V.
Lemma Let $T = (V, F)$ be a subgraph of $G = (V, E)$. The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;
- T is connected and has $n - 1$ edges;
- T is acyclic and has $n - 1$ edges;
- T is minimally connected: removal of any edge disconnects it;
- T is maximally acyclic: addition of any edge creates a cycle;
- T has a unique simple path between every pair of nodes.
Minimum Spanning Tree (MST) Problem

Input: Graph $G = (V, E)$ and edge weights $w : E \rightarrow \mathbb{R}$

Output: the spanning tree T of G with the minimum total weight
Recall: Steps of Designing A Greedy Algorithm

- Design a “reasonable” strategy
- Prove that the reasonable strategy is “safe” (key, usually done by “exchanging argument”)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is “safe” if there is an optimum solution that is “consistent” with the choice

Two Classic Greedy Algorithms for MST

- Kruskal’s Algorithm
- Prim’s Algorithm
Outline

1. Minimum Spanning Tree
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2. Single Source Shortest Paths
 - Dijkstra’s Algorithm

3. Shortest Paths in Graphs with Negative Weights

4. All-Pair Shortest Paths and Floyd-Warshall

5. Minimum Cost Arborescence
Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).
Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.
- Take a minimum spanning tree T
- Assume the lightest edge e^* is not in T
- There is a unique path in T connecting u and v
- Remove any edge e in the path to obtain tree T'
- $w(e^*) \leq w(e) \implies w(T') \leq w(T)$: T' is also a MST
Is the Residual Problem Still a MST Problem?

- Residual problem: find the minimum spanning tree that contains edge \((g, h)\)
- Contract the edge \((g, h)\)
- Residual problem: find the minimum spanning tree in the contracted graph
Contraction of an Edge \((u, v)\)

- Remove \(u\) and \(v\) from the graph, and add a new vertex \(u^*\)
- Remove all edges \((u, v)\) from \(E\)
- For every edge \((u, w)\) \(\in E\), \(w \neq v\), change it to \((u^*, w)\)
- For every edge \((v, w)\) \(\in E\), \(w \neq u\), change it to \((u^*, w)\)
- May create parallel edges! E.g. : two edges \((i, g^*)\)
Greedy Algorithm

Repeat the following step until G contains only one vertex:

1. Choose the lightest edge e^*, add e^* to the spanning tree
2. Contract e^* and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u and v formed by edges we selected
Greedy Algorithm

MST-Greedy\((G, w)\)

1. \(F \leftarrow \emptyset\)
2. sort edges in \(E\) in non-decreasing order of weights \(w\)
3. **for** each edge \((u, v)\) in the order **do**
4. **if** \(u\) and \(v\) are not connected by a path of edges in \(F\) **then**
5. \(F \leftarrow F \cup \{(u, v)\}\)
6. **return** \((V, F)\)
Kruskal’s Algorithm: Example

Sets: \{a, b, c, i, f, g, h, d, e\}
Kruskal’s Algorithm: Efficient Implementation of Greedy Algorithm

MST-Kruskal(G, w)

1: $F \leftarrow \emptyset$
2: $S \leftarrow \{\{v\} : v \in V\}$
3: sort the edges of E in non-decreasing order of weights w
4: for each edge $(u, v) \in E$ in the order do
5: $S_u \leftarrow$ the set in S containing u
6: $S_v \leftarrow$ the set in S containing v
7: if $S_u \neq S_v$ then
8: $F \leftarrow F \cup \{(u, v)\}$
9: $S \leftarrow S \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}$
10: return (V, F)
Running Time of Kruskal’s Algorithm

MST-Kruskal(G, w)

1: $F \leftarrow \emptyset$
2: $S \leftarrow \{\{v\} : v \in V\}$
3: sort the edges of E in non-decreasing order of weights w
4: for each edge $(u, v) \in E$ in the order do
5: $S_u \leftarrow$ the set in S containing u
6: $S_v \leftarrow$ the set in S containing v
7: if $S_u \neq S_v$ then
8: $F \leftarrow F \cup \{(u, v)\}$
9: $S \leftarrow S \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}$
10: return (V, F)

Use union-find data structure to support 2, 5, 6, 7, 9.
Union-Find Data Structure

- V: ground set
- We need to maintain a partition of V and support following operations:
 - Check if u and v are in the same set of the partition
 - Merge two sets in partition
• $V = \{1, 2, 3, \cdots, 16\}$

• Partition: $\{2, 3, 5, 9, 10, 12, 15\}$, $\{1, 7, 13, 16\}$, $\{4, 8, 11\}$, $\{6, 14\}$

• $par[i]$: parent of i, ($par[i] = \bot$ if i is a root).
Q: how can we check if u and v are in the same set?
A: Check if $\text{root}(u) = \text{root}(v)$.

$\text{root}(u)$: the root of the tree containing u

Merge the trees with root r and r': $\text{par}[r] \leftarrow r'$.
Union-Find Data Structure

root(\(v\))

1: \textbf{if} \(par[v] = \bot\) \textbf{then}
2: \quad \textbf{return} \(v\)
3: \textbf{else}
4: \quad \textbf{return} root(par[v])

--

text

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root, saving time in the future.
root(v)

1: if $par[v] = \bot$ then
2: return v
3: else
4: $par[v] \leftarrow \text{root}(par[v])$
5: return $par[v]$

![Diagram of Union-Find Data Structure](image)
MST-Kruskal(G, w)

1. $F \leftarrow \emptyset$
2. $S \leftarrow \{ \{v\} : v \in V \}$
3. sort the edges of E in non-decreasing order of weights w
4. for each edge $(u, v) \in E$ in the order do
5. $S_u \leftarrow$ the set in S containing u
6. $S_v \leftarrow$ the set in S containing v
7. if $S_u \neq S_v$ then
8. $F \leftarrow F \cup \{ (u, v) \}$
9. $S \leftarrow S \setminus \{ S_u \} \setminus \{ S_v \} \cup \{ S_u \cup S_v \}$
10. return (V, F)
MST-Kruskal(G, w)

1: $F \leftarrow \emptyset$

2: for every $v \in V$ do: $\text{par}[v] \leftarrow \bot$

3: sort the edges of E in non-decreasing order of weights w

4: for each edge $(u, v) \in E$ in the order do

5: $u' \leftarrow \text{root}(u)$

6: $v' \leftarrow \text{root}(v)$

7: if $u' \neq v'$ then

8: $F \leftarrow F \cup \{(u, v)\}$

9: $\text{par}[u'] \leftarrow v'$

10: return (V, F)

- 2, 5, 6, 7, 9 takes time $O(m\alpha(n))$
- $\alpha(n)$ is very slow-growing: $\alpha(n) \leq 4$ for $n \leq 10^{80}$.
- Running time = time for 3 = $O(m \lg n)$.
Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

- (i, g) is not in the MST because of cycle (i, c, f, g)
- (e, f) is in the MST because no such cycle exists
Outline

1. **Minimum Spanning Tree**
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2. **Single Source Shortest Paths**
 - Dijkstra’s Algorithm

3. **Shortest Paths in Graphs with Negative Weights**

4. **All-Pair Shortest Paths and Floyd-Warshall**

5. **Minimum Cost Arborescence**
Two Methods to Build a MST

1. Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree.

2. Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree.

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.
Lemma It is safe to exclude the heaviest non-bridge edge: there is a MST that does not contain the heaviest non-bridge edge.
Reverse Kruskal’s Algorithm

MST-Greedy\((G, w)\)

1. \(F \leftarrow E\)
2. sort \(E\) in non-increasing order of weights
3. for every \(e\) in this order do
4. if \((V, F \setminus \{e\})\) is connected then
5. \(F \leftarrow F \setminus \{e\}\)
6. return \((V, F)\)
Reverse Kruskal’s Algorithm: Example
Outline

1. **Minimum Spanning Tree**
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2. **Single Source Shortest Paths**
 - Dijkstra’s Algorithm

3. **Shortest Paths in Graphs with Negative Weights**

4. **All-Pair Shortest Paths and Floyd-Warshall**

5. **Minimum Cost Arborescence**
Recall the greedy strategy for Kruskal’s algorithm: choose the edge with the smallest weight.

Greedy strategy for Prim’s algorithm: choose the lightest edge incident to a.
Lemma It is safe to include the lightest edge incident to \(a \).

Proof.

- Let \(T \) be a MST
- Consider all components obtained by removing \(a \) from \(T \)
- Let \(e^* \) be the lightest edge incident to \(a \) and \(e^* \) connects \(a \) to component \(C \)
- Let \(e \) be the edge in \(T \) connecting \(a \) to \(C \)
- \(T' = T \setminus \{e\} \cup \{e^*\} \) is a spanning tree with \(w(T') \leq w(T) \)
Prim’s Algorithm: Example
Greedy Algorithm

MST-Greedy1(G, w)

1: $S \leftarrow \{s\}$, where s is arbitrary vertex in V
2: $F \leftarrow \emptyset$
3: **while** $S \neq V$ **do**
4: $(u, v) \leftarrow$ lightest edge between S and $V \setminus S$, where $u \in S$ and $v \in V \setminus S$
5: $S \leftarrow S \cup \{v\}$
6: $F \leftarrow F \cup \{(u, v)\}$
7: **return** (V, F)

- **Running time of naive implementation:** $O(nm)$
Prim’s Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

- $d[v] = \min_{u \in S: (u,v) \in E} w(u,v)$:
 the weight of the lightest edge between v and S

- $\pi[v] = \arg \min_{u \in S: (u,v) \in E} w(u,v)$:
 $(\pi[v], v)$ is the lightest edge between v and S
Prim’s Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

- $d[v] = \min_{u \in S: (u,v) \in E} w(u, v)$: the weight of the lightest edge between v and S
- $\pi[v] = \arg \min_{u \in S: (u,v) \in E} w(u, v)$: $(\pi[v], v)$ is the lightest edge between v and S

In every iteration

- Pick $u \in V \setminus S$ with the smallest $d[u]$ value
- Add $(\pi[u], u)$ to F
- Add u to S, update d and π values.
Prim’s Algorithm

MST-Prim(G, w)

1: $s \leftarrow$ arbitrary vertex in G
2: $S \leftarrow \emptyset$, $d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$
3: **while** $S \neq V$ **do**
4: $u \leftarrow$ vertex in $V \setminus S$ with the minimum $d[u]$
5: $S \leftarrow S \cup \{u\}$
6: **for** each $v \in V \setminus S$ such that $(u, v) \in E$ **do**
7: **if** $w(u, v) < d[v]$ **then**
8: $d[v] \leftarrow w(u, v)$
9: $\pi[v] \leftarrow u$
10: **return** $\{(u, \pi[u])|u \in V \setminus \{s\}\}$
Example
Prim’s Algorithm

For every $v \in V \setminus S$ maintain

- $d[v] = \min_{u \in S : (u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S

- $\pi[v] = \arg\min_{u \in S : (u,v) \in E} w(u,v)$: $(\pi[v], v)$ is the lightest edge between v and S

In every iteration

- Pick $u \in V \setminus S$ with the smallest $d[u]$ value
 - `extract_min`

- Add $(\pi[u], u)$ to F

- Add u to S, update d and π values.
 - `decrease_key`

Use a priority queue to support the operations
Def. A **priority queue** is an abstract data structure that maintains a set U of elements, each with an associated key value, and supports the following operations:

- **insert**(v, key_value): insert an element v, whose associated key value is key_value.
- **decrease_key**(v, new_key_value): decrease the key value of an element v in queue to new_key_value
- **extract_min**(): return and remove the element in queue with the smallest key value
Prim’s Algorithm

\textbf{MST-Prim}(G, w)

1: \(s \leftarrow \) arbitrary vertex in \(G \)
2: \(S \leftarrow \emptyset, d(s) \leftarrow 0 \) and \(d[v] \leftarrow \infty \) for every \(v \in V \setminus \{s\} \)
3:
4: \textbf{while} \(S \neq V \) \textbf{do}
5: \(u \leftarrow \) vertex in \(V \setminus S \) with the minimum \(d[u] \)
6: \(S \leftarrow S \cup \{u\} \)
7: \textbf{for} each \(v \in V \setminus S \) such that \((u, v) \in E \) \textbf{do}
8: \hspace{1em} \textbf{if} \(w(u, v) < d[v] \) \textbf{then}
9: \hspace{2em} \(d[v] \leftarrow w(u, v) \)
10: \hspace{2em} \(\pi[v] \leftarrow u \)
11: \textbf{return} \(\{(u, \pi[u])|u \in V \setminus \{s\}\} \)
Prim’s Algorithm Using Priority Queue

MST-Prim(G, w)

1: $s \leftarrow$ arbitrary vertex in G
2: $S \leftarrow \emptyset$, $d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$
3: $Q \leftarrow$ empty queue, for each $v \in V$: $Q.insert(v, d[v])$
4: while $S \neq V$ do
5: \hspace{1em} $u \leftarrow Q.extract_min()$
6: \hspace{1em} $S \leftarrow S \cup \{u\}$
7: \hspace{1em} for each $v \in V \setminus S$ such that $(u, v) \in E$ do
8: \hspace{2em} if $w(u, v) < d[v]$ then
9: \hspace{3em} $d[v] \leftarrow w(u, v)$, $Q.decrease_key(v, d[v])$
10: \hspace{3em} $\pi[v] \leftarrow u$
11: return $\{(u, \pi[u]) | u \in V \setminus \{s\}\}$
Running Time of Prim’s Algorithm Using Priority Queue

\[O(n) \times (\text{time for extract_min}) + O(m) \times (\text{time for decrease_key}) \]

<table>
<thead>
<tr>
<th>concrete DS</th>
<th>extract_min</th>
<th>decrease_key</th>
<th>overall time</th>
</tr>
</thead>
<tbody>
<tr>
<td>heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(m \log n))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(\log n))</td>
<td>(O(1))</td>
<td>(O(n \log n + m))</td>
</tr>
</tbody>
</table>
Assumption Assume all edge weights are different.

Lemma \((u, v)\) is in MST, if and only if there exists a cut \((U, V \setminus U)\), such that \((u, v)\) is the lightest edge between \(U\) and \(V \setminus U\).

- \((c, f)\) is in MST because of cut \(\{a, b, c, i\}, V \setminus \{a, b, c, i\}\)
- \((i, g)\) is not in MST because no such cut exists
“Evidence” for \(e \in \text{MST} \) or \(e \notin \text{MST} \)

Assumption Assume all edge weights are different.

- \(e \in \text{MST} \iff \text{there is a cut in which } e \text{ is the lightest edge} \)
- \(e \notin \text{MST} \iff \text{there is a cycle in which } e \text{ is the heaviest edge} \)

Exactly one of the following is true:

- There is a cut in which \(e \) is the lightest edge
- There is a cycle in which \(e \) is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.
Outline

1. Minimum Spanning Tree
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2. Single Source Shortest Paths
 - Dijkstra’s Algorithm

3. Shortest Paths in Graphs with Negative Weights

4. All-Pair Shortest Paths and Floyd-Warshall

5. Minimum Cost Arborescence
<table>
<thead>
<tr>
<th>algorithm</th>
<th>graph</th>
<th>weights</th>
<th>SS?</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple DP</td>
<td>DAG</td>
<td>R</td>
<td>SS</td>
<td>(O(n + m))</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>U/D</td>
<td>(\mathbb{R}_{\geq 0})</td>
<td>SS</td>
<td>(O(n \log n + m))</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>U/D</td>
<td>R</td>
<td>SS</td>
<td>(O(nm))</td>
</tr>
<tr>
<td>Floyd-Warshall</td>
<td>U/D</td>
<td>R</td>
<td>AP</td>
<td>(O(n^3))</td>
</tr>
</tbody>
</table>

- DAG = directed acyclic graph
- U = undirected
- D = directed
- SS = single source
- AP = all pairs
s-t Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s, t \in V$

$w : E \rightarrow \mathbb{R}_{\geq 0}$

Output: shortest path from s to t
Single Source Shortest Paths

Input: directed graph $G = (V, E)$, $s \in V$

$w : E \rightarrow \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem

- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight
Single Source Shortest Paths

Input: directed graph $G = (V, E)$, $s \in V$

$w : E \rightarrow \mathbb{R}_{\geq 0}$

Output: $\pi[v], v \in V \setminus s$: the parent of v in shortest path tree

$d[v], v \in V \setminus s$: the length of shortest path from s to v
Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s
Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a path of $w(u, v)$ unit-weight edges

Shortest Path Algorithm by Running BFS

1. replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
2. run BFS virtually
3. $\pi[v] \leftarrow$ vertex from which v is visited
4. $d[v] \leftarrow$ index of the level containing v

- Problem: $w(u, v)$ may be too large!
Shortest Path Algorithm by Running BFS Virtually

1: $S \leftarrow \{s\}, d(s) \leftarrow 0$
2: while $|S| \leq n$ do
3: find a $v \notin S$ that minimizes $\min_{u \in S: (u, v) \in E} \{d[u] + w(u, v)\}$
4: $S \leftarrow S \cup \{v\}$
5: $d[v] \leftarrow \min_{u \in S: (u, v) \in E} \{d[u] + w(u, v)\}$
Virtual BFS: Example

Time 10
Outline

1. Minimum Spanning Tree
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2. Single Source Shortest Paths
 - Dijkstra’s Algorithm

3. Shortest Paths in Graphs with Negative Weights

4. All-Pair Shortest Paths and Floyd-Warshall

5. Minimum Cost Arborescence
Dijkstra’s Algorithm

Dijkstra\((G, w, s) \)

1: \(S \leftarrow \emptyset \), \(d(s) \leftarrow 0 \) and \(d[v] \leftarrow \infty \) for every \(v \in V \setminus \{s\} \)
2: while \(S \neq V \) do
3: \(u \leftarrow \) vertex in \(V \setminus S \) with the minimum \(d[u] \)
4: add \(u \) to \(S \)
5: for each \(v \in V \setminus S \) such that \((u, v) \in E \) do
6: if \(d[u] + w(u, v) < d[v] \) then
7: \(d[v] \leftarrow d[u] + w(u, v) \)
8: \(\pi[v] \leftarrow u \)
9: return \((d, \pi) \)

- Running time = \(O(n^2) \)
Improved Running Time using Priority Queue

\textbf{Dijkstra}(G, w, s)

1: \(s \leftarrow \) arbitrary vertex in \(G\)
2: \(S \leftarrow \emptyset, d(s) \leftarrow 0 \) and \(d[v] \leftarrow \infty\) for every \(v \in V \setminus \{s\}\)
3: \(Q \leftarrow\) empty queue, for each \(v \in V:\ Q.\text{insert}(v, d[v])\)
4: \textbf{while} \(S \neq V\) \textbf{do}
5: \(u \leftarrow Q.\text{extract_min}()\)
6: \(S \leftarrow S \cup \{u\}\)
7: \textbf{for} each \(v \in V \setminus S\) such that \((u, v) \in E\) \textbf{do}
8: \textbf{if} \(d[u] + w(u, v) < d[v]\) \textbf{then}
9: \(d[v] \leftarrow d[u] + w(u, v),\ Q.\text{decrease_key}(v, d[v])\)
10: \(\pi[v] \leftarrow u\)
11: \textbf{return} \((\pi, d)\)
Recall: Prim’s Algorithm for MST

MST-Prim\((G, w)\)

1: \(s \leftarrow\) arbitrary vertex in \(G\)
2: \(S \leftarrow \emptyset, d(s) \leftarrow 0\) and \(d[v] \leftarrow \infty\) for every \(v \in V \setminus \{s\}\)
3: \(Q \leftarrow\) empty queue, for each \(v \in V\): \(Q.insert(v, d[v])\)
4: **while** \(S \neq V\) **do**
5: \(u \leftarrow Q.extract_min()\)
6: \(S \leftarrow S \cup \{u\}\)
7: **for** each \(v \in V \setminus S\) such that \((u, v) \in E\) **do**
8: \(\text{if } w(u, v) < d[v] \text{ then}\)
9: \(d[v] \leftarrow w(u, v), Q.decrease_key(v, d[v])\)
10: \(\pi[v] \leftarrow u\)
11: **return** \(\{(u, \pi[u])|u \in V \setminus \{s\}\}\)
Improved Running Time

Running time:
\[O(n) \times (\text{time for extract_min}) + O(m) \times (\text{time for decrease_key}) \]

<table>
<thead>
<tr>
<th>Priority-Queue</th>
<th>extract_min</th>
<th>decrease_key</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(m \log n))</td>
</tr>
<tr>
<td>Fibonacci Heap</td>
<td>(O(\log n))</td>
<td>(O(1))</td>
<td>(O(n \log n + m))</td>
</tr>
</tbody>
</table>
Outline

1. Minimum Spanning Tree
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2. Single Source Shortest Paths
 - Dijkstra’s Algorithm

3. Shortest Paths in Graphs with Negative Weights

4. All-Pair Shortest Paths and Floyd-Warshall

5. Minimum Cost Arborescence
Input: directed graph \(G = (V, E) \), \(s \in V \)
assumee all vertices are reachable from \(s \)
\(w : E \rightarrow \mathbb{R} \)

Output: shortest paths from \(s \) to all other vertices \(v \in V \)

- In transition graphs, negative weights make sense
- If we sell a item: ‘having the item’ \(\rightarrow \) ‘not having the item’, weight is negative (we gain money)
- Dijkstra’s algorithm does not work any more!
Dijkstra’s Algorithm Fails if We Have Negative Weights
Q: What is the length of the shortest path from \(s \) to \(d \)?

A: \(-\infty\)

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Q: What is the length of the shortest simple path from \(s \) to \(d \)?

A: 1
Unfortunately, computing the shortest simple path between two vertices is an \textbf{NP-hard} problem.

\textbf{Dealing with Negative Cycles}

- We need to compute the shortest paths, among both simple and complex paths.
- Hardest: output $-\infty$ as a distance
- Easier: if negative cycle exists, allow algorithm to report “negative cycle exists” without computing distances
- Easiest: assume negative cycles do not exist; all shortest paths are automatically simple paths
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Graph Form</th>
<th>Weights</th>
<th>SS?</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple DP</td>
<td>DAG</td>
<td>(\mathbb{R})</td>
<td>SS</td>
<td>(O(n + m))</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>U/D</td>
<td>(\mathbb{R}_{\geq 0})</td>
<td>SS</td>
<td>(O(n \log n + m))</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>U/D</td>
<td>(\mathbb{R})</td>
<td>SS</td>
<td>(O(nm))</td>
</tr>
<tr>
<td>Floyd-Warshall</td>
<td>U/D</td>
<td>(\mathbb{R})</td>
<td>AP</td>
<td>(O(n^3))</td>
</tr>
</tbody>
</table>

- DAG = directed acyclic graph
- U = undirected
- D = directed
- SS = single source
- AP = all pairs
Single Source Shortest Paths, Weights May be Negative

Input: directed graph $G = (V, E)$, $s \in V$

- assume all vertices are reachable from s
- $w : E \rightarrow \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

- first try: $f[v]$: length of shortest path from s to v
- issue: do not know in which order we compute $f[v]$’s
- $f^\ell[v]$, $\ell \in \{0, 1, 2, 3 \cdots , n - 1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^\ell[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n - 1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] = 6$
- $f^3[a] = 2$

$$f^\ell[v] = \begin{cases}
0 & \text{if } \ell = 0, v = s \\
\infty & \text{if } \ell = 0, v \neq s \\
\min \left\{ \min_{u : (u,v) \in E} \left(f^{\ell-1}[u] + w(u,v) \right) \right\} & \text{if } \ell > 0
\end{cases}$$
Dynamic Programming: Example

\[f^0 \]

\[f^1 \]

\[f^2 \]

\[f^3 \]

\[f^4 \]

\[\text{length-0 edge} \]
dynamic-programming(*G, w, s*)

1. \(f^0[s] \leftarrow 0 \) and \(f^0[v] \leftarrow \infty \) for any \(v \in V \setminus \{s\} \)
2. **for** \(\ell \leftarrow 1 \) to \(n - 1 \) **do**
3. copy \(f^{\ell-1} \rightarrow f^\ell \)
4. **for** each \((u, v) \in E\) **do**
5. \[\text{if } f^{\ell-1}[u] + w(u, v) < f^\ell[v] \text{ then} \]
6. \[f^\ell[v] \leftarrow f^{\ell-1}[u] + w(u, v) \]
7. **return** \((f^{n-1}[v])_{v \in V}\)

Obs. Assuming there are no negative cycles, then a shortest path contains at most \(n - 1 \) edges

Proof.

If there is a path containing at least \(n \) edges, then it contains a cycle. Removing the cycle gives a path with the same or smaller length. \(\square \)
Bellman-Ford Algorithm

Bellman-Ford\((G, w, s)\)

1: \(f[s] \leftarrow 0\) and \(f[v] \leftarrow \infty\) for any \(v \in V \setminus \{s\}\)
2: for \(\ell \leftarrow 1\) to \(n - 1\) do
3: for each \((u, v) \in E\) do
4: if \(f[u] + w(u, v) < f[v]\) then
5: \(f[v] \leftarrow f[u] + w(u, v)\)
6: return \(f\)

- Issue: when we compute \(f[u] + w(u, v)\), \(f[u]\) may be changed since the end of last iteration
- This is OK: it can only “accelerate” the process!
- After iteration \(\ell\), \(f[v]\) is at most the length of the shortest path from \(s\) to \(v\) that uses at most \(\ell\) edges
- \(f[v]\) is always the length of some path from \(s\) to \(v\)
Bellman-Ford Algorithm

- After iteration ℓ:

 \[
 \text{length of shortest } s-v \text{ path } \leq f[v] \\
 \leq \text{length of shortest } s-v \text{ path using at most } \ell \text{ edges}
 \]

- Assuming there are no negative cycles:

 \[
 \text{length of shortest } s-v \text{ path } = \text{length of shortest } s-v \text{ path using at most } n - 1 \text{ edges}
 \]

- So, assuming there are no negative cycles, after iteration $n - 1$:

 \[
 f[v] = \text{length of shortest } s-v \text{ path}
 \]
order in which we consider edges: (s, a), (s, b), (a, b), (a, c), (b, d), (c, d), (d, a)

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations, instead of 4.
Bellman-Ford Algorithm

Bellman-Ford\((G, w, s)\)

1: \(f[s] \leftarrow 0\) and \(f[v] \leftarrow \infty\) for any \(v \in V \setminus \{s\}\)
2: for \(\ell \leftarrow 1\) to \(n\) do
3: \(\text{updated} \leftarrow \text{false}\)
4: for each \((u, v) \in E\) do
5: \(\quad\text{if } f[u] + w(u, v) < f[v] \text{ then}\)
6: \(\quad\quad f[v] \leftarrow f[u] + w(u, v), \; \pi[v] \leftarrow u\)
7: \(\quad\text{updated} \leftarrow \text{true}\)
8: if not \(\text{updated}\), then return \(f\)
9: output “negative cycle exists”

- \(\pi[v]\): the parent of \(v\) in the shortest path tree
- Running time = \(O(nm)\)
Outline

1 Minimum Spanning Tree
 • Kruskal’s Algorithm
 • Reverse-Kruskal’s Algorithm
 • Prim’s Algorithm

2 Single Source Shortest Paths
 • Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

5 Minimum Cost Arborescence
All-Pair Shortest Paths

Input: directed graph $G = (V, E)$,
\[w : E \to \mathbb{R} \text{ (can be negative)} \]

Output: shortest path from u to v for every $u, v \in V$

1. **for** every starting point $s \in V$ **do**
2. run Bellman-Ford(G, w, s)

- Running time $= O(n^2m)$
Summary of Shortest Path Algorithms we learned

<table>
<thead>
<tr>
<th>algorithm</th>
<th>graph</th>
<th>weights</th>
<th>SS?</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple DP</td>
<td>DAG</td>
<td>\mathbb{R}</td>
<td>SS</td>
<td>$O(n + m)$</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>U/D</td>
<td>$\mathbb{R}_{\geq 0}$</td>
<td>SS</td>
<td>$O(n \log n + m)$</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>U/D</td>
<td>\mathbb{R}</td>
<td>SS</td>
<td>$O(nm)$</td>
</tr>
<tr>
<td>Floyd-Warshall</td>
<td>U/D</td>
<td>\mathbb{R}</td>
<td>AP</td>
<td>$O(n^3)$</td>
</tr>
</tbody>
</table>

- DAG = directed acyclic graph
- U = undirected
- D = directed
- SS = single source
- AP = all pairs
Design a Dynamic Programming Algorithm

- It is convenient to assume $V = \{1, 2, 3, \ldots, n\}$
- For simplicity, extend the w values to non-edges:

$$w(i, j) = \begin{cases}
0 & i = j \\
\text{weight of edge } (i, j) & i \neq j, (i, j) \in E \\
\infty & i \neq j, (i, j) \notin E
\end{cases}$$

- For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: $f[i, j]$ is length of shortest path from i to j
- Issue: do not know in which order we compute $f[i, j]$’s

$$f^k[i, j]: \text{length of shortest path from } i \text{ to } j \text{ that only uses vertices } \{1, 2, 3, \ldots, k\} \text{ as intermediate vertices}$$
Example for Definition of $f^k[i, j]$’s

\[
\begin{align*}
 f^0[1, 4] &= \infty \\
 f^1[1, 4] &= \infty \\
 f^2[1, 4] &= 140 \quad (1 \rightarrow 2 \rightarrow 4) \\
 f^3[1, 4] &= 90 \quad (1 \rightarrow 3 \rightarrow 2 \rightarrow 4) \\
 f^4[1, 4] &= 90 \quad (1 \rightarrow 3 \rightarrow 2 \rightarrow 4) \\
 f^5[1, 4] &= 60 \quad (1 \rightarrow 3 \rightarrow 5 \rightarrow 4)
\end{align*}
\]
\[w(i, j) = \begin{cases}
0 & i = j \\
\text{weight of edge } (i, j) & i \neq j, (i, j) \in E \\
\infty & i \neq j, (i, j) \notin E
\end{cases} \]

- \(f^k[i, j] \): length of shortest path from \(i \) to \(j \) that only uses vertices \(\{1, 2, 3, \ldots, k\} \) as intermediate vertices

\[f^k[i, j] = \begin{cases}
w(i, j) & k = 0 \\
\min \left\{ f^{k-1}[i, j], f^{k-1}[i, k] + f^{k-1}[k, j] \right\} & k = 1, 2, \ldots, n
\end{cases} \]
Floyd-Warshall(G, w)

1: $f^0 \leftarrow w$
2: for $k \leftarrow 1$ to n do
3: copy $f^{k-1} \rightarrow f^k$
4: for $i \leftarrow 1$ to n do
5: for $j \leftarrow 1$ to n do
6: if $f^{k-1}[i, k] + f^{k-1}[k, j] < f^k[i, j]$ then
7: $f^k[i, j] \leftarrow f^{k-1}[i, k] + f^{k-1}[k, j]$
Floyd-Warshall\((G, w)\)

1: \(f^{\text{old}} \leftarrow w\)
2: for \(k \leftarrow 1\) to \(n\) do
3: \hspace{0.5cm} copy \(f^{\text{old}} \rightarrow f^{\text{new}}\)
4: for \(i \leftarrow 1\) to \(n\) do
5: \hspace{0.5cm} for \(j \leftarrow 1\) to \(n\) do
6: \hspace{1cm} if \(f^{\text{old}}[i, k] + f^{\text{old}}[k, j] < f^{\text{new}}[i, j]\) then
7: \hspace{1cm} \(f^{\text{new}}[i, j] \leftarrow f^{\text{old}}[i, k] + f^{\text{old}}[k, j]\)

Lemma Assume there are no negative cycles in \(G\). After iteration \(k\), for \(i, j \in V\), \(f[i, j]\) is exactly the length of shortest path from \(i\) to \(j\) that only uses vertices in \(\{1, 2, 3, \ldots, k\}\) as intermediate vertices.

- Running time = \(O(n^3)\).
\[i = 1, \quad i = 2, \quad i = 3, \quad k = 1, \quad k = 2, \quad k = 3, \quad j = 1, \quad j = 2, \quad j = 3, \quad j = 4 \]
Recovering Shortest Paths

Floyd-Warshall(G, w)

1: $f \leftarrow w$, $\pi[i, j] \leftarrow \perp$ for every $i, j \in V$
2: for $k \leftarrow 1$ to n do
3: for $i \leftarrow 1$ to n do
4: for $j \leftarrow 1$ to n do
5: if $f[i, k] + f[k, j] < f[i, j]$ then
6: $f[i, j] \leftarrow f[i, k] + f[k, j]$, $\pi[i, j] \leftarrow k$

print-path(i, j)

1: if $\pi[i, j] = \perp$ then then
2: if $i \neq j$ then print(i, “,”)
3: else
4: print-path(i, $\pi[i, j]$), print-path($\pi[i, j]$, j)
Detecting Negative Cycles

Floyd-Warshall\((G, w)\)

1: \(f \leftarrow w, \pi[i, j] \leftarrow \perp\) for every \(i, j \in V\)
2: \textbf{for} \(k \leftarrow 1\) \textbf{to} \(n\) \textbf{do}
3: \hspace{1em} \textbf{for} \(i \leftarrow 1\) \textbf{to} \(n\) \textbf{do}
4: \hspace{2em} \textbf{for} \(j \leftarrow 1\) \textbf{to} \(n\) \textbf{do}
5: \hspace{3em} \textbf{if} \(f[i, k] + f[k, j] < f[i, j]\) \textbf{then}
6: \hspace{3em} \(f[i, j] \leftarrow f[i, k] + f[k, j], \pi[i, j] \leftarrow k\)
7: \textbf{for} \(k \leftarrow 1\) \textbf{to} \(n\) \textbf{do}
8: \hspace{1em} \textbf{for} \(i \leftarrow 1\) \textbf{to} \(n\) \textbf{do}
9: \hspace{2em} \textbf{for} \(j \leftarrow 1\) \textbf{to} \(n\) \textbf{do}
10: \hspace{3em} \textbf{if} \(f[i, k] + f[k, j] < f[i, j]\) \textbf{then}
11: \hspace{3em} report “negative cycle exists” and exit
Summary of Shortest Path Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Graph Type</th>
<th>Weights</th>
<th>SS?</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple DP</td>
<td>DAG</td>
<td>\mathbb{R}</td>
<td>SS</td>
<td>$O(n + m)$</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>U/D</td>
<td>$\mathbb{R}_{\geq 0}$</td>
<td>SS</td>
<td>$O(n \log n + m)$</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>U/D</td>
<td>\mathbb{R}</td>
<td>SS</td>
<td>$O(nm)$</td>
</tr>
<tr>
<td>Floyd-Warshall</td>
<td>U/D</td>
<td>\mathbb{R}</td>
<td>AP</td>
<td>$O(n^3)$</td>
</tr>
</tbody>
</table>

- **DAG** = directed acyclic graph
- **U** = undirected
- **D** = directed
- **SS** = single source
- **AP** = all pairs
Outline

1 Minimum Spanning Tree
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2 Single Source Shortest Paths
 - Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

5 Minimum Cost Arborescence
Def. An arborescence is directed rooted tree, where all edges are directed away from the root.

Minimum Cost Arborescence Problem

Input: a directed graph \(G = (V, E) \), edge weights \(w : E \to \mathbb{R}_{\geq 0} \), root \(r \in V \)

Output: a minimum-cost sub-graph \(T = (V, E') \) of \(G \) that is an arborescence with root \(r \)
Assumptions

- the root r does not have incoming edges.
- every vertex is reachable from the root r.

For every $v \in V \setminus \{r\}$, define $l_v = \min_{e \in \delta_v^\text{in}} w(e)$.

For every $v \in V \setminus \{r\}$ and $e \in \delta_v^\text{in}$, define $w'(e) = w(e) - l_v$.

Lemma The instances (G, w, r) and (G, w', r) have the same optimum solution.
Lemma The instances \((G, w, r)\) and \((G, w', r)\) have the same optimum solution.

Proof. Given any tree solution \(T\), \(w(T) - w'(T)\) is always \(\sum_{v \in V \setminus \{r\}} l_v\).

Lemma Let \((v_0, v_1, v_2, \ldots, v_p = v_0)\) be a cycle \(C\) of 0-cost edges in \(G\). Then there is an optimum solution \(T\), that contains all but one edges in \(C\).
MCA(G, r, w)

1: \(F^* \leftarrow \emptyset \)
2: for every \(v \in V \setminus \{r\} \) do
3: \(l_v \leftarrow \min_{e \in \delta_{v}^{in}} w(e) \)
4: for every edge \(e \) entering \(v \) do: \(w'(e) \leftarrow w(e) - l_v \)
5: choose a 0-cost edge entering \(v \), add it to \((V, F^*)\)
6: if \(F^* \) form an arborescence then return \(F^* \)
7: else
8: for every cycle \(C \) in \(F^* \) do: contract \(C \) into a single node
9: let \(G' = (V', E') \) be the obtained graph.
10: \(T' \leftarrow \text{MCA}(G', r, w') \)
11: extend \(T' \) to an aborescence \(T \) in \(G \), by keeping all but one edges in every cycle \(C \) in \(F^* \), and return \(T \)
The running time of the algorithm is $O(mn)$

[Tarjan (1971)]: $O(\min(m \log n, n^2))$

[Gabow, Galil, Spencer, Tarjan (1986)]: $O(n \log n + m)$

[Mendelson, Tarjan, Thorup, Zwick (2006)]: $O(m \log \log n)$