算法设计与分析(2024年春季学期) Graph Algorithms

授课老师: 栗师 南京大学计算机科学与技术系

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
- All-Pair Shortest Paths and Floyd-Warshall
- Minimum Cost Arborescence

Spanning Tree

Def. Given a connected graph G=(V,E), a spanning tree T=(V,F) of G is a sub-graph of G that is a tree including all vertices V.

Lemma Let T=(V,F) be a subgraph of G=(V,E). The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;
- T is connected and has n-1 edges;
- T is acyclic and has n-1 edges;
- T is minimally connected: removal of any edge disconnects it;
- T is maximally acyclic: addition of any edge creates a cycle;
- ullet T has a unique simple path between every pair of nodes.

Minimum Spanning Tree (MST) Problem

Input: Graph G = (V, E) and edge weights $w : E \to \mathbb{R}$

Output: the spanning tree T of G with the minimum total weight

Minimum Spanning Tree (MST) Problem

Input: Graph G = (V, E) and edge weights $w : E \to \mathbb{R}$

Output: the spanning tree T of G with the minimum total weight

Minimum Spanning Tree (MST) Problem

Input: Graph G = (V, E) and edge weights $w : E \to \mathbb{R}$

Output: the spanning tree T of G with the minimum total weight

Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Two Classic Greedy Algorithms for MST

- Kruskal's Algorithm
- Prim's Algorithm

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall
- Minimum Cost Arborescence

Q: Which edge can be safely included in the MST?

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

Proof.

ullet Take a minimum spanning tree T

- ullet Take a minimum spanning tree T
- ullet Assume the lightest edge e^* is not in T

- ullet Take a minimum spanning tree T
- Assume the lightest edge e^* is not in T
- ullet There is a unique path in T connecting u and v

- ullet Take a minimum spanning tree T
- Assume the lightest edge e^* is not in T
- ullet There is a unique path in T connecting u and v
- ullet Remove any edge e in the path to obtain tree T'

- ullet Take a minimum spanning tree T
- ullet Assume the lightest edge e^* is not in T
- \bullet There is a unique path in T connecting u and v
- ullet Remove any edge e in the path to obtain tree T^\prime
- $w(e^*) \le w(e) \implies w(T') \le w(T)$: T' is also a MST

 \bullet Residual problem: find the minimum spanning tree that contains edge (g,h)

- \bullet Residual problem: find the minimum spanning tree that contains edge (g,h)
- Contract the edge (g,h)

- \bullet Residual problem: find the minimum spanning tree that contains edge (g,h)
- Contract the edge (g, h)
- Residual problem: find the minimum spanning tree in the contracted graph

ullet Remove u and v from the graph, and add a new vertex u^*

- \bullet Remove u and v from the graph, and add a new vertex u^{\ast}
- ullet Remove all edges (u,v) from E

- \bullet Remove u and v from the graph, and add a new vertex u^{\ast}
- ullet Remove all edges (u,v) from E
- \bullet For every edge $(u,w) \in E, w \neq v$, change it to (u^*,w)

- ullet Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E
- For every edge $(u,w) \in E, w \neq v$, change it to (u^*,w)
- For every edge $(v,w) \in E, w \neq u$, change it to (u^*,w)

- ullet Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to (u^*, w)
- For every edge $(v, w) \in E, w \neq u$, change it to (u^*, w)
- May create parallel edges! E.g. : two edges (i, g^*)

Repeat the following step until G contains only one vertex:

- lacktriangledown Choose the lightest edge e^* , add e^* to the spanning tree
- ② Contract e^* and update G be the contracted graph

Repeat the following step until G contains only one vertex:

- lacktriangle Choose the lightest edge e^* , add e^* to the spanning tree
- f 2 Contract e^* and update G be the contracted graph

Q: What edges are removed due to contractions?

Repeat the following step until G contains only one vertex:

- lacktriangle Choose the lightest edge e^* , add e^* to the spanning tree
- f 2 Contract e^* and update G be the contracted graph

Q: What edges are removed due to contractions?

 $\mbox{\bf A:} \;\; \mbox{Edge}\;(u,v)$ is removed if and only if there is a path connecting u and v formed by edges we selected

$\mathsf{MST} ext{-}\mathsf{Greedy}(G,w)$

```
1: F \leftarrow \emptyset
```

- 2: sort edges in ${\cal E}$ in non-decreasing order of weights w
- 3: **for** each edge (u,v) in the order **do**
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$
- 6: **return** (V, F)

Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}\}$

Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}\}$

Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}, \{i\}$

Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}, \{i\}$

Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}$

Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}$

Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f, g, h\}$

Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f, g, h\}$

Sets: $\{a\}, \{b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a\}, \{b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a,b\},\{c,i,f,g,h\},\{d\},\{e\}$

Sets: $\{a,b\},\{c,i,f,g,h\},\{d\},\{e\}$

Sets: $\{a, b, c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a, b, c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a, b, c, i, f, g, h\}, \{d, e\}$

Sets: $\{a, b, c, i, f, g, h\}, \{d, e\}$

Sets: $\{a, b, c, i, f, g, h, d, e\}$

Kruskal's Algorithm: Efficient Implementation of Greedy Algorithm

```
1. F \leftarrow \emptyset
 2: S \leftarrow \{\{v\} : v \in V\}
 3: sort the edges of E in non-decreasing order of weights w
 4: for each edge (u, v) \in E in the order do
          S_u \leftarrow the set in S containing u
 5:
       S_v \leftarrow the set in S containing v
 6:
 7:
    if S_u \neq S_v then
               F \leftarrow F \cup \{(u,v)\}
 8:
               \mathcal{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}
 9:
10: return (V, F)
```

Running Time of Kruskal's Algorithm

```
MST-Kruskal(G, w)
 1: F \leftarrow \emptyset
 2: S \leftarrow \{\{v\} : v \in V\}
 3: sort the edges of E in non-decreasing order of weights w
 4: for each edge (u, v) \in E in the order do
          S_u \leftarrow the set in S containing u
 5:
     S_v \leftarrow the set in S containing v
 6:
    if S_u \neq S_v then
 7:
              F \leftarrow F \cup \{(u,v)\}
 8:
              \mathcal{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}
 9:
10: return (V, F)
```

Use union-find data structure to support 2, 5, 6, 7, 9.

- ullet V: ground set
- ullet We need to maintain a partition of V and support following operations:
 - ullet Check if u and v are in the same set of the partition
 - Merge two sets in partition

- $V = \{1, 2, 3, \cdots, 16\}$
- Partition: $\{2, 3, 5, 9, 10, 12, 15\}, \{1, 7, 13, 16\}, \{4, 8, 11\}, \{6, 14\}$

• par[i]: parent of i, $(par[i] = \bot \text{ if } i \text{ is a root})$.

ullet Q: how can we check if u and v are in the same set?

- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).

- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u

- ullet Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u
- Merge the trees with root r and r': $par[r] \leftarrow r'$.

- ullet Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u
- Merge the trees with root r and r': $par[r] \leftarrow r'$.

root(v)

```
1: if par[v] = \bot then
```

2: return v

3: **else**

4: **return** root(par[v])

```
root(v)
```

```
1: if par[v] = \bot then
```

2: return v

3: **else**

4: **return** root(par[v])

• Problem: the tree might too deep; running time might be large

root(v)

- 1: if $par[v] = \bot$ then
- 2: return v
- 3: **else**
- 4: **return** root(par[v])

- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

root(v)

- 1: if $par[v] = \bot$ then
- 2: return v
- 3: **else**
- 4: **return** root(par[v])

root(v)

- 1: if $par[v] = \bot$ then
 - 2: return v
 - 3: **else**
 - 4: $par[v] \leftarrow root(par[v])$
- 5: **return** par[v]
- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

root(v)

- 1: if $par[v] = \bot$ then
- 2: return v
- 3: **else**
- 4: $par[v] \leftarrow root(par[v])$
- 5: **return** par[v]


```
root(v)
```

```
1: if par[v] = \bot then
```

2: return v

3: **else**

4: $par[v] \leftarrow root(par[v])$

5: **return** par[v]


```
1: F \leftarrow \emptyset
 2: S \leftarrow \{\{v\} : v \in V\}
 3: sort the edges of E in non-decreasing order of weights w
 4: for each edge (u, v) \in E in the order do
 5:
          S_u \leftarrow the set in S containing u
       S_v \leftarrow the set in S containing v
 6:
     if S_u \neq S_v then
 7:
               F \leftarrow F \cup \{(u,v)\}
 8:
               \mathcal{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}
 9:
10: return (V, F)
```

```
1: F \leftarrow \emptyset
 2: for every v \in V do: par[v] \leftarrow \bot
 3: sort the edges of E in non-decreasing order of weights w
 4: for each edge (u, v) \in E in the order do
      u' \leftarrow \mathsf{root}(u)
 5:
    v' \leftarrow \mathsf{root}(v)
 6:
 7: if u' \neq v' then
              F \leftarrow F \cup \{(u,v)\}
 8:
             par[u'] \leftarrow v'
 9:
10: return (V, F)
```

```
1: F \leftarrow \emptyset
 2: for every v \in V do: par[v] \leftarrow \bot
 3: sort the edges of E in non-decreasing order of weights w
 4: for each edge (u, v) \in E in the order do
     u' \leftarrow \mathsf{root}(u)
 5:
 6: v' \leftarrow \text{root}(v)
 7: if u' \neq v' then
             F \leftarrow F \cup \{(u,v)\}
 8:
             par[u'] \leftarrow v'
 9:
10: return (V, F)
```

- 2,5,6,7,9 takes time $O(m\alpha(n))$
- $\alpha(n)$ is very slow-growing: $\alpha(n) \le 4$ for $n \le 10^{80}$.

- 1: $F \leftarrow \emptyset$ 2: **for** every $v \in V$ **do**: $par[v] \leftarrow \bot$ 3: sort the edges of E in non-decreasing order of weights w4: **for** each edge $(u, v) \in E$ in the order **do** $u' \leftarrow \mathsf{root}(u)$ 5: $v' \leftarrow \mathsf{root}(v)$ 6: 7: if $u' \neq v'$ then $F \leftarrow F \cup \{(u,v)\}$ 8: $par[u'] \leftarrow v'$ 9: 10: return (V, F)
- 2,5,6,7,9 takes time $O(m\alpha(n))$
- $\alpha(n)$ is very slow-growing: $\alpha(n) \le 4$ for $n \le 10^{80}$.
- Running time = time for $3 = O(m \lg n)$.

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is **not** in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is **not** in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

• (i,g) is not in the MST because of cycle (i,c,f,g)

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is **not** in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

- (i,g) is not in the MST because of cycle (i,c,f,g)
- \bullet (e, f) is in the MST because no such cycle exists

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall
- Minimum Cost Arborescence

 $\ \, \bullet \ \,$ Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree

- $\textbf{ 9 Start from } F \leftarrow \emptyset \text{, and add edges to } F \text{ one by one until we obtain a spanning tree}$
- ② Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

- $\textbf{ 9 Start from } F \leftarrow \emptyset \text{, and add edges to } F \text{ one by one until we obtain a spanning tree}$
- ② Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

- $\textbf{ 9 Start from } F \leftarrow \emptyset \text{, and add edges to } F \text{ one by one until we obtain a spanning tree}$
- ② Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

- $\textbf{ 9 Start from } F \leftarrow \emptyset \text{, and add edges to } F \text{ one by one until we obtain a spanning tree}$
- ② Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.

Lemma It is safe to exclude the heaviest non-bridge edge: there is a MST that does not contain the heaviest non-bridge edge.

Reverse Kruskal's Algorithm

$\mathsf{MST} ext{-}\mathsf{Greedy}(G,w)$

```
1: F \leftarrow E
```

- 2: sort E in non-increasing order of weights
- 3: **for** every e in this order **do**
- 4: **if** $(V, F \setminus \{e\})$ is connected **then**
- 5: $F \leftarrow F \setminus \{e\}$
- 6: **return** (V, F)

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall
- Minimum Cost Arborescence

Design Greedy Strategy for MST

 Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.

Design Greedy Strategy for MST

 Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.

• Greedy strategy for Prim's algorithm: choose the lightest edge incident to a.

Design Greedy Strategy for MST

 Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.

• Greedy strategy for Prim's algorithm: choose the lightest edge incident to a.

- ullet Let T be a MST
- ullet Consider all components obtained by removing a from T

- Let T be a MST
- ullet Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C

- Let T be a MST
- ullet Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C
- ullet Let e be the edge in T connecting a to C

- \bullet Let T be a MST
- ullet Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C
- ullet Let e be the edge in T connecting a to C
- $T' = T \setminus \{e\} \cup \{e^*\}$ is a spanning tree with $w(T') \le w(T)$

Greedy Algorithm

$\mathsf{MST} ext{-}\mathsf{Greedy1}(G,w)$

7: return (V, F)

```
1: S \leftarrow \{s\}, where s is arbitrary vertex in V

2: F \leftarrow \emptyset

3: while S \neq V do

4: (u,v) \leftarrow lightest edge between S and V \setminus S, where u \in S and v \in V \setminus S

5: S \leftarrow S \cup \{v\}

6: F \leftarrow F \cup \{(u,v)\}
```

Greedy Algorithm

$\mathsf{MST} ext{-}\mathsf{Greedy1}(G,w)$

7: return (V, F)

```
1: S \leftarrow \{s\}, where s is arbitrary vertex in V

2: F \leftarrow \emptyset

3: while S \neq V do

4: (u,v) \leftarrow lightest edge between S and V \setminus S, where u \in S and v \in V \setminus S

5: S \leftarrow S \cup \{v\}

6: F \leftarrow F \cup \{(u,v)\}
```

• Running time of naive implementation: O(nm)

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

- $d[v] = \min_{u \in S:(u,v) \in E} w(u,v)$:
- the weight of the lightest edge between \boldsymbol{v} and \boldsymbol{S}
- $\pi[v] = \arg\min_{u \in S:(u,v) \in E} w(u,v)$:

 $(\boldsymbol{\pi}[\boldsymbol{v}],\boldsymbol{v})$ is the lightest edge between \boldsymbol{v} and \boldsymbol{S}

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

- $\bullet \ d[v] = \min_{u \in S: (u,v) \in E} w(u,v):$
 - the weight of the lightest edge between \boldsymbol{v} and \boldsymbol{S}
- $\pi[v] = \arg\min_{u \in S: (u,v) \in E} w(u,v)$: $(\pi[v],v) \text{ is the lightest edge between } v \text{ and } S$

In every iteration

- Pick $u \in V \setminus S$ with the smallest d[u] value
- Add $(\pi[u], u)$ to F
- ullet Add u to S, update d and π values.

Prim's Algorithm

```
\mathsf{MST}\text{-}\mathsf{Prim}(G,w)
```

```
1: s \leftarrow arbitrary vertex in G
 2: S \leftarrow \emptyset, d(s) \leftarrow 0 and d[v] \leftarrow \infty for every v \in V \setminus \{s\}
 3: while S \neq V do
          u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d[u]
 4:
    S \leftarrow S \cup \{u\}
 5:
      for each v \in V \setminus S such that (u, v) \in E do
 6:
               if w(u,v) < d[v] then
 7:
                    d[v] \leftarrow w(u,v)
 8:
                    \pi[v] \leftarrow u
 9:
10: return \{(u, \pi[u])|u \in V \setminus \{s\}\}
```


Prim's Algorithm

For every $v \in V \setminus S$ maintain

- $d[v] = \min_{u \in S: (u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S
- $\pi[v] = \arg\min_{u \in S: (u,v) \in E} w(u,v)$: $(\pi[v],v) \text{ is the lightest edge between } v \text{ and } S$

In every iteration

- Pick $u \in V \setminus S$ with the smallest d[u] value
- Add $(\pi[u], u)$ to F
- Add u to S, update d and π values.

Prim's Algorithm

For every $v \in V \setminus S$ maintain

- $d[v] = \min_{u \in S:(u,v) \in E} w(u,v)$:
 - the weight of the lightest edge between \boldsymbol{v} and \boldsymbol{S}
- $\pi[v] = \arg\min_{u \in S: (u,v) \in E} w(u,v)$: $(\pi[v],v) \text{ is the lightest edge between } v \text{ and } S$

In every iteration

• Pick $u \in V \setminus S$ with the smallest d[u] value

extract_min

- Add $(\pi[u], u)$ to F
- Add u to S, update d and π values.

decrease_key

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that maintains a set U of elements, each with an associated key value, and supports the following operations:

- insert (v, key_value) : insert an element v, whose associated key value is key_value .
- decrease_key (v, new_key_value) : decrease the key value of an element v in queue to new_key_value
- extract_min(): return and remove the element in queue with the smallest key value
- • •

Prim's Algorithm

```
\mathsf{MST}\text{-}\mathsf{Prim}(G,w)
```

```
1: s \leftarrow \text{arbitrary vertex in } G
 2: S \leftarrow \emptyset, d(s) \leftarrow 0 and d[v] \leftarrow \infty for every v \in V \setminus \{s\}
 3:
 4: while S \neq V do
        u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d[u]
 5:
     S \leftarrow S \cup \{u\}
 6:
     for each v \in V \setminus S such that (u, v) \in E do
 7:
                if w(u,v) < d[v] then
 8:
                     d[v] \leftarrow w(u,v)
 9:
                     \pi[v] \leftarrow u
10:
11: return \{(u, \pi[u])|u \in V \setminus \{s\}\}
```

Prim's Algorithm Using Priority Queue

```
\mathsf{MST}\text{-}\mathsf{Prim}(G,w)
 1: s \leftarrow arbitrary vertex in G
 2: S \leftarrow \emptyset, d(s) \leftarrow 0 and d[v] \leftarrow \infty for every v \in V \setminus \{s\}
 3: Q \leftarrow \text{empty queue, for each } v \in V: Q.\text{insert}(v, d[v])
 4: while S \neq V do
        u \leftarrow Q.\mathsf{extract\_min}()
 5:
     S \leftarrow S \cup \{u\}
 6:
     for each v \in V \setminus S such that (u, v) \in E do
 7:
                if w(u,v) < d[v] then
  8:
                     d[v] \leftarrow w(u, v), Q.\mathsf{decrease\_key}(v, d[v])
 9:
                     \pi[v] \leftarrow u
10:
11: return \{(u, \pi[u])|u \in V \setminus \{s\}\}
```

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Assumption Assume all edge weights are different.

Lemma (u,v) is in MST, if and only if there exists a $\operatorname{cut}\ (U,V\setminus U)$, such that (u,v) is the lightest edge between U and $V\setminus U$.

Assumption Assume all edge weights are different.

Lemma (u,v) is in MST, if and only if there exists a $\operatorname{cut}\ (U,V\setminus U)$, such that (u,v) is the lightest edge between U and $V\setminus U$.

• (c, f) is in MST because of cut $(\{a, b, c, i\}, V \setminus \{a, b, c, i\})$

Assumption Assume all edge weights are different.

Lemma (u,v) is in MST, if and only if there exists a $\operatorname{cut}\ (U,V\setminus U)$, such that (u,v) is the lightest edge between U and $V\setminus U$.

- (c, f) is in MST because of cut $(\{a, b, c, i\}, V \setminus \{a, b, c, i\})$
- \bullet (i,g) is not in MST because no such cut exists

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- ullet There is a cut in which e is the lightest edge
- ullet There is a cycle in which e is the heaviest edge

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- ullet There is a cut in which e is the lightest edge
- ullet There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall
- 5 Minimum Cost Arborescence

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- ullet DAG = directed acyclic graph U = undirected D = directed
- ullet SS = single source AP = all pairs

s-t Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t

s-t Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$

 $w: E \to \mathbb{R}_{>0}$

Output: shortest path from s to t

s-t Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t

Single Source Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Single Source Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

 We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem

Single Source Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{>0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{>0}$

Output: $\pi[v], v \in V \setminus s$: the parent of v in shortest path tree

 $d[v], v \in V \setminus s$: the length of shortest path from s to v

 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS
- 3: $\pi[v] \leftarrow \text{vertex from which } v \text{ is visited}$
- 4: $d[v] \leftarrow \text{index of the level containing } v$

 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS
- 3: $\pi[v] \leftarrow \text{vertex from which } v \text{ is visited}$
- 4: $d[v] \leftarrow \text{index of the level containing } v$
- Problem: w(u, v) may be too large!

 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS virtually
- 3: $\pi[v] \leftarrow \text{vertex from which } v \text{ is visited}$
- 4: $d[v] \leftarrow \text{index of the level containing } v$
- Problem: w(u, v) may be too large!

Shortest Path Algorithm by Running BFS Virtually

- 1: $S \leftarrow \{s\}, d(s) \leftarrow 0$
- 2: while |S| < n do
- 3: find a $v \notin S$ that minimizes $\min_{u \in S: (u,v) \in E} \{d[u] + w(u,v)\}$
- 4: $S \leftarrow S \cup \{v\}$
- 5: $d[v] \leftarrow \min_{u \in S:(u,v) \in E} \{d[u] + w(u,v)\}$

Time 4

Time 9

Time 10

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall
- Minimum Cost Arborescence

Dijkstra's Algorithm

```
\mathsf{Dijkstra}(G, w, s)
```

```
1: S \leftarrow \emptyset, d(s) \leftarrow 0 and d[v] \leftarrow \infty for every v \in V \setminus \{s\}

2: while S \neq V do

3: u \leftarrow vertex in V \setminus S with the minimum d[u]

4: add u to S

5: for each v \in V \setminus S such that (u, v) \in E do

6: if d[u] + w(u, v) < d[v] then

7: d[v] \leftarrow d[u] + w(u, v)

8: \pi[v] \leftarrow u

9: return (d, \pi)
```

Dijkstra's Algorithm

$\mathsf{Dijkstra}(G, w, s)$

```
1: S \leftarrow \emptyset, d(s) \leftarrow 0 and d[v] \leftarrow \infty for every v \in V \setminus \{s\}

2: while S \neq V do

3: u \leftarrow vertex in V \setminus S with the minimum d[u]

4: add u to S

5: for each v \in V \setminus S such that (u, v) \in E do

6: if d[u] + w(u, v) < d[v] then

7: d[v] \leftarrow d[u] + w(u, v)

8: \pi[v] \leftarrow u

9: return (d, \pi)
```

• Running time = $O(n^2)$

Improved Running Time using Priority Queue

```
Dijkstra(G, w, s)
 1:
 2: S \leftarrow \emptyset, d(s) \leftarrow 0 and d[v] \leftarrow \infty for every v \in V \setminus \{s\}
 3: Q \leftarrow \text{empty queue, for each } v \in V: Q.\text{insert}(v, d[v])
 4: while S \neq V do
        u \leftarrow Q.\mathsf{extract\_min}()
 5:
      S \leftarrow S \cup \{u\}
 6:
       for each v \in V \setminus S such that (u, v) \in E do
 7:
               if d[u] + w(u, v) < d[v] then
 8:
                    d[v] \leftarrow d[u] + w(u, v), Q.\mathsf{decrease\_key}(v, d[v])
 9:
                    \pi[v] \leftarrow u
10:
11: return (\pi, d)
```

Recall: Prim's Algorithm for MST

```
\mathsf{MST}\text{-}\mathsf{Prim}(G,w)
 1: s \leftarrow arbitrary vertex in G
 2: S \leftarrow \emptyset, d(s) \leftarrow 0 and d[v] \leftarrow \infty for every v \in V \setminus \{s\}
 3: Q \leftarrow \text{empty queue, for each } v \in V: Q.\text{insert}(v, d[v])
 4: while S \neq V do
        u \leftarrow Q.\mathsf{extract\_min}()
 5:
     S \leftarrow S \cup \{u\}
 6:
     for each v \in V \setminus S such that (u, v) \in E do
 7:
                if w(u,v) < d[v] then
  8:
                     d[v] \leftarrow w(u, v), Q.\mathsf{decrease\_key}(v, d[v])
 9:
                     \pi[v] \leftarrow u
10:
11: return \{(u, \pi[u])|u \in V \setminus \{s\}\}
```

Improved Running Time

Running time:

 $O(n) \times (\mathsf{time} \ \mathsf{for} \ \mathsf{extract_min}) + O(m) \times (\mathsf{time} \ \mathsf{for} \ \mathsf{decrease_key})$

Priority-Queue	extract_min	decrease_key	Time
Неар	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci Heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall
- Minimum Cost Arborescence

Input: directed graph G = (V, E), $s \in V$ assume all vertices are reachable from s

 $w: E \to \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s

 $w: E \to \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

In transition graphs, negative weights make sense

Input: directed graph G = (V, E), $s \in V$ assume all vertices are reachable from s $w : E \to \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

- In transition graphs, negative weights make sense
- ullet If we sell a item: 'having the item' o 'not having the item', weight is negative (we gain money)

Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s $w:E\to\mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

- In transition graphs, negative weights make sense
- If we sell a item: 'having the item' \rightarrow 'not having the item', weight is negative (we gain money)
- Dijkstra's algorithm does not work any more!

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Q: What is the length of the shortest path from s to d?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Q: What is the length of the shortest simple path from s to d?

Q: What is the length of the shortest path from s to d?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Q: What is the length of the shortest simple path from s to d?

A: 1

Dealing with Negative Cycles

 We need to compute the shortest paths, among both simple and complex paths.

- We need to compute the shortest paths, among both simple and complex paths.
- Hardest: output $-\infty$ as a distance

- We need to compute the shortest paths, among both simple and complex paths.
- Hardest: output $-\infty$ as a distance
- Easier: if negative cycle exists, allow algorithm to report "negative cycle exists" without computing distances

- We need to compute the shortest paths, among both simple and complex paths.
- Hardest: output $-\infty$ as a distance
- Easier: if negative cycle exists, allow algorithm to report "negative cycle exists" without computing distances
- Easiest: assume negative cycles do not exist; all shortest paths are automatically simple paths

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- $\bullet \ \mathsf{DAG} = \mathsf{directed} \ \mathsf{acyclic} \ \mathsf{graph} \quad \mathsf{U} = \mathsf{undirected} \quad \mathsf{D} = \mathsf{directed}$
- ullet SS = single source AP = all pairs

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G = (V, E), $s \in V$

assume all vertices are reachable from \boldsymbol{s}

 $w: E \to \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G = (V, E), $s \in V$

assume all vertices are reachable from s

 $w: E \to \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

• first try: f[v]: length of shortest path from s to v

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G = (V, E), $s \in V$ assume all vertices are reachable from s

 $w: E \to \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

- ullet first try: f[v]: length of shortest path from s to v
- ullet issue: do not know in which order we compute f[v]'s

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s

 $w: E \to \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

- first try: f[v]: length of shortest path from s to v
- ullet issue: do not know in which order we compute f[v]'s
- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges

• $f^{\ell}[v]$, $\ell \in \{0,1,2,3\cdots,n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges

- $f^{\ell}[v]$, $\ell \in \{0,1,2,3\cdots,n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] =$

- $f^{\ell}[v]$, $\ell \in \{0,1,2,3\cdots,n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] = 6$

- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a] = 6$ $f^{3}[a] =$

- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] = 6$ $f^3[a] = 2$

- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a] = 6$ $f^{3}[a] = 2$

$$f^\ell[v] = \left\{$$

$$\ell = 0, v = s$$

$$\ell = 0, v \neq s$$

$$\ell > 0$$

- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] = 6$ $f^3[a] = 2$

$$f^{\ell}[v] = \begin{cases} 0 \\ \end{cases}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$

- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a] = 6$ $f^{3}[a] = 2$

$$f^{\ell}[v] = \begin{cases} 0 \\ \infty \end{cases}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$

- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a] = 6$ $f^{3}[a] = 2$

$$f^{\ell}[v] = \begin{cases} 0 \\ \infty \\ \min \end{cases}$$

$$\ell = 0, v = s$$

$$\ell = 0, v \neq s$$

$$\ell > 0$$

- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a] = 6$ $f^{3}[a] = 2$

$$f^{\ell}[v] = \begin{cases} 0 & \ell = 0, v = s \\ \infty & \ell = 0, v \neq s \end{cases}$$

$$\min \begin{cases} f^{\ell-1}[v] & \ell > 0 \end{cases}$$

- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a] = 6$ $f^{3}[a] = 2$

$$f^{\ell}[v] = \begin{cases} 0 & \ell = 0, v = s \\ \infty & \ell = 0, v \neq s \end{cases}$$

$$\min \begin{cases} f^{\ell-1}[v] & \ell > 0 \end{cases}$$

$$\min_{u:(u,v)\in E} \left(f^{\ell-1}[u] + w(u,v)\right) \qquad \ell > 0$$

dynamic-programming (G, w, s)

```
1: f^0[s] \leftarrow 0 and f^0[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: \operatorname{copy} f^{\ell-1} \rightarrow f^{\ell}

4: for each (u,v) \in E do

5: if f^{\ell-1}[u] + w(u,v) < f^{\ell}[v] then

6: f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u,v)

7: return (f^{n-1}[v])_{v \in V}
```

dynamic-programming (G, w, s)

```
1: f^0[s] \leftarrow 0 and f^0[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: \operatorname{copy} f^{\ell-1} \to f^{\ell}

4: for each (u,v) \in E do

5: if f^{\ell-1}[u] + w(u,v) < f^{\ell}[v] then

6: f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u,v)

7: return (f^{n-1}[v])_{v \in V}
```

Obs. Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

dynamic-programming (G, w, s)

```
1: f^0[s] \leftarrow 0 and f^0[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: \operatorname{copy} f^{\ell-1} \rightarrow f^\ell

4: for each (u,v) \in E do

5: if f^{\ell-1}[u] + w(u,v) < f^\ell[v] then

6: f^\ell[v] \leftarrow f^{\ell-1}[u] + w(u,v)

7: return (f^{n-1}[v])_{v \in V}
```

Obs. Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

Proof.

If there is a path containing at least n edges, then it contains a cycle. Removing the cycle gives a path with the same or smaller length. \square

```
dynamic-programming (G, w, s)
  1: f^{\text{old}}[s] \leftarrow 0 and f^{\text{old}}[v] \leftarrow \infty for any v \in V \setminus \{s\}
  2: for \ell \leftarrow 1 to n-1 do
          copy f^{\mathsf{old}} \to f^{\mathsf{new}}
  3:
      for each (u,v) \in E do
  4:
                  if f^{\text{old}}[u] + w(u,v) < f^{\text{new}}[v] then
  5:
                        f^{\mathsf{new}}[v] \leftarrow f^{\mathsf{old}}[u] + w(u,v)
  6:
            copy f^{\text{new}} \rightarrow f^{\text{old}}
  7:
  8: return f<sup>old</sup>
```

• f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors

```
dynamic-programming (G, w, s)
  1: f^{\text{old}}[s] \leftarrow 0 and f^{\text{old}}[v] \leftarrow \infty for any v \in V \setminus \{s\}
  2: for \ell \leftarrow 1 to n-1 do
        \mathsf{copv}\ f^\mathsf{old} 	o f^\mathsf{new}
  3:
      for each (u,v) \in E do
  4:
                  if f^{\text{old}}[u] + w(u,v) < f^{\text{new}}[v] then
  5:
                        f^{\text{new}}[v] \leftarrow f^{\text{old}}[u] + w(u,v)
  6:
            copy f^{\text{new}} \rightarrow f^{\text{old}}
  8: return f^{\text{old}}
```

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

```
dynamic-programming (G, w, s)
 1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}
 2: for \ell \leftarrow 1 to n-1 do
    copv f \rightarrow f
 3:
 4: for each (u, v) \in E do
             if f[u] + w(u,v) < f[v] then
 5:
                 f[v] \leftarrow f[u] + w(u,v)
 6:
       copy f \to f
 8: return f
```

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

```
\begin{array}{l} \text{dynamic-programming}(G,w,s) \\ \text{1: } f[s] \leftarrow 0 \text{ and } f[v] \leftarrow \infty \text{ for any } v \in V \setminus \{s\} \\ \text{2: } \textbf{for } \ell \leftarrow 1 \text{ to } n-1 \text{ do} \\ \text{3: } \textbf{for } \text{ each } (u,v) \in E \text{ do} \\ \text{4: } \textbf{if } f[u] + w(u,v) < f[v] \text{ then} \\ \text{5: } f[v] \leftarrow f[u] + w(u,v) \\ \text{6: } \textbf{return } f \end{array}
```

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

$\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)$

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

5:

6: **return** *f*

```
Bellman-Ford(G, w, s)

1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u, v) \in E do

4: if f[u] + w(u, v) < f[v] then
```

• Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration

 $f[v] \leftarrow f[u] + w(u,v)$

```
Bellman-Ford(G, w, s)
```

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

- Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!

Bellman-Ford(G, w, s)

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

- Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges

Bellman-Ford(G, w, s)

- 1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
- 2: **for** $\ell \leftarrow 1$ to n-1 **do**
- 3: **for** each $(u, v) \in E$ **do**
- 4: **if** f[u] + w(u, v) < f[v] **then**
- 5: $f[v] \leftarrow f[u] + w(u, v)$
- 6: **return** *f*
- Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges
- ullet f[v] is always the length of some path from s to v

• After iteration ℓ :

length of shortest s-v path

$$\leq f[v]$$

 \leq length of shortest $s ext{-}v$ path using at most ℓ edges

• After iteration ℓ :

length of shortest s-v path

$$\leq f[v]$$

 \leq length of shortest $s ext{-}v$ path using at most ℓ edges

- Assuming there are no negative cycles:
 - length of shortest s-v path
 - = length of shortest s-v path using at most n-1 edges

• After iteration ℓ :

length of shortest s-v path

$$\leq f[v]$$

 \leq length of shortest $s ext{-}v$ path using at most ℓ edges

- Assuming there are no negative cycles:
 - length of shortest s-v path
 - = length of shortest s-v path using at most n-1 edges
- ullet So, assuming there are no negative cycles, after iteration n-1:

$$f[v] = \text{length of shortest } s\text{-}v \text{ path}$$

vertices	s	a	b	c	d
\overline{f}	0	∞	∞	∞	∞

vertices	s	a	b	c	d
\overline{f}	0	∞	∞	∞	∞

vertices	s	$\mid a \mid$	b	c	d
\overline{f}	0	6	∞	∞	∞

vertices	s	$\mid a \mid$	b	c	d
\overline{f}	0	6	∞	∞	∞

vertices	s	a	b	c	d
\overline{f}	0	6	7	∞	∞

vertices	s	a	b	c	d
\overline{f}	0	6	7	∞	∞

vertices	s	a	b	c	d
\overline{f}	0	6	7	∞	∞

vertices	s	$\mid a \mid$	b	c	d
\overline{f}	0	6	7	2	∞

vertices	s	$\mid a \mid$	b	c	d
\overline{f}	0	6	7	2	∞

vertices	s	a	b	c	d
\overline{f}	0	6	7	2	4

vertices	s	a	b	c	d
\overline{f}	0	6	7	2	4

vertices	s	$\mid a \mid$	b	c	d
\overline{f}	0	6	7	2	4

vertices	s	a	b	c	d
\overline{f}	0	2	7	2	4

vertices	s	a	b	c	d
\overline{f}	0	2	7	2	4

vertices	s	a	b	c	d
\overline{f}	0	2	7	2	4

vertices	s	a	b	c	d
\overline{f}	0	2	7	2	4

vertices	s	$\mid a \mid$	b	c	d
\overline{f}	0	2	7	2	4

vertices	s	a	b	c	d
\overline{f}	0	2	7	2	4

vertices	s	$\mid a \mid$	b	c	d
\overline{f}	0	2	7	-2	4

vertices	s	$\mid a \mid$	b	c	d
\overline{f}	0	2	7	-2	4

vertices	s	a	b	c	d
\overline{f}	0	2	7	-2	4

vertices	s	$\mid a \mid$	b	c	d
\overline{f}	0	2	7	-2	4

vertices	s	a	b	c	d
\overline{f}	0	2	7	-2	4

- end of iteration 1: 0, 2, 7, 2, 4
- end of iteration 2: 0, 2, 7, -2, 4

vertices	s	a	b	c	d
f	0	2	7	-2	4

- end of iteration 1: 0, 2, 7, 2, 4
- end of iteration 2: 0, 2, 7, -2, 4
- end of iteration 3: 0, 2, 7, -2, 4

vertices	s	a	b	c	d
\overline{f}	0	2	7	-2	4

- end of iteration 1: 0, 2, 7, 2, 4
- end of iteration 2: 0, 2, 7, -2, 4
- end of iteration 3: 0, 2, 7, -2, 4
- Algorithm terminates in 3 iterations, instead of 4.

Bellman-Ford Algorithm

$\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)$

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n do

3: updated \leftarrow \text{false}

4: for each (u,v) \in E do

5: if f[u] + w(u,v) < f[v] then

6: f[v] \leftarrow f[u] + w(u,v)

7: updated \leftarrow \text{true}

8: if not updated, then return f

9: output "negative cycle exists"
```

Bellman-Ford Algorithm

```
\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)
```

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n do

3: updated \leftarrow false

4: for each (u,v) \in E do

5: if f[u] + w(u,v) < f[v] then

6: f[v] \leftarrow f[u] + w(u,v), \ \pi[v] \leftarrow u

7: updated \leftarrow true

8: if not updated, then return f

9: output "negative cycle exists"
```

• $\pi[v]$: the parent of v in the shortest path tree

Bellman-Ford Algorithm

$\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)$

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n do

3: updated \leftarrow false

4: for each (u,v) \in E do

5: if f[u] + w(u,v) < f[v] then

6: f[v] \leftarrow f[u] + w(u,v), \pi[v] \leftarrow u

7: updated \leftarrow true

8: if not updated, then return f

9: output "negative cycle exists"
```

- $\pi[v]$: the parent of v in the shortest path tree
- Running time = O(nm)

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall
- Minimum Cost Arborescence

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph G = (V, E),

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph G = (V, E),

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

- 1: for every starting point $s \in V$ do
- 2: run Bellman-Ford(G, w, s)

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph G = (V, E),

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

- 1: for every starting point $s \in V$ do
- 2: run Bellman-Ford(G, w, s)
- Running time = $O(n^2m)$

Summary of Shortest Path Algorithms we learned

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- ullet DAG = directed acyclic graph U = undirected D = directed
- SS = single source AP = all pairs

• It is convenient to assume $V = \{1, 2, 3, \dots, n\}$

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

ullet First try: f[i,j] is length of shortest path from i to j

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- ullet First try: f[i,j] is length of shortest path from i to j
- ullet Issue: do not know in which order we compute f[i,j]'s

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- ullet First try: f[i,j] is length of shortest path from i to j
- ullet Issue: do not know in which order we compute f[i,j]'s
- $f^k[i,j]$: length of shortest path from i to j that only uses vertices $\{1,2,3,\cdots,k\}$ as intermediate vertices

Example for Definition of $f^k[i,j]$'s

$$f^{0}[1,4] = \infty$$

$$f^{1}[1,4] = \infty$$

$$f^{2}[1,4] = 140 \qquad (1 \to 2 \to 4)$$

$$f^{3}[1,4] = 90 \qquad (1 \to 3 \to 2 \to 4)$$

$$f^{4}[1,4] = 90 \qquad (1 \to 3 \to 2 \to 4)$$

$$f^{5}[1,4] = 60 \qquad (1 \to 3 \to 5 \to 4)$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} k = 0 \\ k = 1, 2, \dots, n \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0 \\ k = 1, 2, \dots, n \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \end{cases}$$

$$k = 1, 2, \dots, n$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min & \end{cases}$$
 $k = 1, 2, \dots, n$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \begin{cases} f^{k-1}[i,j] & k = 1, 2, \dots, n \end{cases} \end{cases}$$

Floyd-Warshall(G, w)

```
1: f^{0} \leftarrow w

2: for k \leftarrow 1 to n do

3: \operatorname{copy} f^{k-1} \to f^{k}

4: for i \leftarrow 1 to n do

5: for j \leftarrow 1 to n do

6: if f^{k-1}[i,k] + f^{k-1}[k,j] < f^{k}[i,j] then

7: f^{k}[i,j] \leftarrow f^{k-1}[i,k] + f^{k-1}[k,j]
```

Floyd-Warshall(G, w)

```
1: f^{\mathsf{old}} \leftarrow w

2: \mathbf{for} \ k \leftarrow 1 \ \mathsf{to} \ n \ \mathbf{do}

3: \mathsf{copy} \ f^{\mathsf{old}} \rightarrow f^{\mathsf{new}}

4: \mathbf{for} \ i \leftarrow 1 \ \mathsf{to} \ n \ \mathbf{do}

5: \mathbf{for} \ j \leftarrow 1 \ \mathsf{to} \ n \ \mathbf{do}

6: \mathbf{if} \ f^{\mathsf{old}}[i,k] + f^{\mathsf{old}}[k,j] < f^{\mathsf{new}}[i,j] \ \mathbf{then}

7: f^{\mathsf{new}}[i,j] \leftarrow f^{\mathsf{old}}[i,k] + f^{\mathsf{old}}[k,j]
```

```
1: f^{\text{old}} \leftarrow w

2: for k \leftarrow 1 to n do

3: \operatorname{copy} f^{\text{old}} \rightarrow f^{\text{new}}

4: for i \leftarrow 1 to n do

5: for j \leftarrow 1 to n do

6: if f^{\text{old}}[i, k] + f^{\text{old}}[k, j] < f^{\text{new}}[i, j] then

7: f^{\text{new}}[i, j] \leftarrow f^{\text{old}}[i, k] + f^{\text{old}}[k, j]
```

```
1: f \leftarrow w

2: for k \leftarrow 1 to n do

3: \operatorname{copy} f \to f

4: for i \leftarrow 1 to n do

5: for j \leftarrow 1 to n do

6: if f[i,k] + f[k,j] < f[i,j] then

7: f[i,j] \leftarrow f[i,k] + f[k,j]
```

```
1: f \leftarrow w

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j]
```

```
1: f \leftarrow w

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j]
```

Lemma Assume there are no negative cycles in G. After iteration k, for $i,j \in V$, f[i,j] is exactly the length of shortest path from i to j that only uses vertices in $\{1,2,3,\cdots,k\}$ as intermediate vertices.

```
1: f \leftarrow w

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j]
```

Lemma Assume there are no negative cycles in G. After iteration k, for $i,j\in V$, f[i,j] is exactly the length of shortest path from i to j that only uses vertices in $\{1,2,3,\cdots,k\}$ as intermediate vertices.

• Running time = $O(n^3)$.

	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	∞	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	∞	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 2, k = 1, j = 3

	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 2, k = 1, j = 3

	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 1, k = 2, j = 4

	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 1, k = 2, j = 4

	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

 \bullet i = 3, k = 2, j = 1,

	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

 \bullet i = 3, k = 2, j = 1,

	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 3, k = 2, j = 4

	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	60	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 3, k = 2, j = 4

	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	60	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 1, k = 3, j = 2

	1	2	3	4	5
1	0	40	30	140	∞
2	10	0	40	50	∞
3	20	10	0	60	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 1, k = 3, j = 2

Recovering Shortest Paths

Floyd-Warshall(G, w)

```
1: f \leftarrow w, \pi[i,j] \leftarrow \bot for every i,j \in V

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j], \pi[i,j] \leftarrow k
```

Recovering Shortest Paths

$\mathsf{Floyd} ext{-}\mathsf{Warshall}(G,w)$

```
1: f \leftarrow w, \pi[i,j] \leftarrow \bot for every i,j \in V

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j], \pi[i,j] \leftarrow k
```

print-path(i, j)

```
1: if \pi[i,j] = \bot then then
2: if i \neq j then print(i,",")
3: else
```

4: print-path $(i, \pi[i, j])$, print-path $(\pi[i, j], j)$

Detecting Negative Cycles

```
1: f \leftarrow w, \pi[i,j] \leftarrow \bot for every i,j \in V

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j], \pi[i,j] \leftarrow k
```

Detecting Negative Cycles

Floyd-Warshall (G, w)

```
1: f \leftarrow w, \pi[i, j] \leftarrow \bot for every i, j \in V
 2: for k \leftarrow 1 to n do
         for i \leftarrow 1 to n do
 3:
              for i \leftarrow 1 to n do
 4:
                   if f[i, k] + f[k, j] < f[i, j] then
 5:
                        f[i,j] \leftarrow f[i,k] + f[k,j], \pi[i,j] \leftarrow k
 6:
 7: for k \leftarrow 1 to n do
         for i \leftarrow 1 to n do
 8:
 9:
              for i \leftarrow 1 to n do
                   if f[i, k] + f[k, j] < f[i, j] then
10:
                        report "negative cycle exists" and exit
11:
```

Summary of Shortest Path Algorithms

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- ullet DAG = directed acyclic graph U = undirected D = directed
- ullet SS = single source AP = all pairs

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall
- Minimum Cost Arborescence

Minimum Cost Arborescence Problem

Input: a directed graph G = (V, E),

edge weights $w:\mathbb{E} \to \mathbb{R}_{\geq 0}$

 $\mathsf{root}\ r \in V$

Output: a minimum-cost sub-graph

 $T=(V,E^{\prime})$ of G that is an

arborescence with root r

Minimum Cost Arborescence Problem

Input: a directed graph G = (V, E),

edge weights $w:\mathbb{E} \to \mathbb{R}_{\geq 0}$

 $\mathsf{root}\ r \in V$

Output: a minimum-cost sub-graph $T=(V,E^\prime)$ of G that is an

I = (V, E') of G that is a arborescence with root r

Minimum Cost Arborescence Problem

Input: a directed graph G = (V, E),

edge weights $w: \mathbb{E} \to \mathbb{R}_{\geq 0}$

 $\mathsf{root}\ r \in V$

Output: a minimum-cost sub-graph $T=(V,E^\prime)$ of G that is an

arborescence with root \boldsymbol{r}

- ullet the root r does not have incoming edges.
- ullet every vertex is reachable from the root r.

- ullet the root r does not have incoming edges.
- ullet every vertex is reachable from the root r.
- For every $v \in V \setminus \{r\}$, define $l_v = \min_{e \in \delta_v^{\text{in}}} w(e)$.
- For every $v \in V \setminus \{r\}$ and $e \in \delta_v^{\text{in}}$, define $w'(e) = w(e) l_v$.

- ullet the root r does not have incoming edges.
- ullet every vertex is reachable from the root r.
- For every $v \in V \setminus \{r\}$, define $l_v = \min_{e \in \delta_v^{\text{in}}} w(e)$.
- For every $v \in V \setminus \{r\}$ and $e \in \delta_v^{\text{in}}$, define $w'(e) = w(e) l_v$.

- ullet the root r does not have incoming edges.
- ullet every vertex is reachable from the root r.
- For every $v \in V \setminus \{r\}$, define $l_v = \min_{e \in \delta_v^{\text{in}}} w(e)$.
- \bullet For every $v \in V \setminus \{r\}$ and $e \in \delta_v^{\mathrm{in}}$, define $w'(e) = w(e) l_v.$

$$l_a = 10$$

 $l_b = 1$
 $l_c = 5$
 $l_d = 3$
 $l_e = 6$

- ullet the root r does not have incoming edges.
- ullet every vertex is reachable from the root r.
- For every $v \in V \setminus \{r\}$, define $l_v = \min_{e \in \delta_v^{\text{in}}} w(e)$.
- For every $v \in V \setminus \{r\}$ and $e \in \delta_v^{\text{in}}$, define $w'(e) = w(e) l_v$.

- ullet the root r does not have incoming edges.
- ullet every vertex is reachable from the root r.
- For every $v \in V \setminus \{r\}$, define $l_v = \min_{e \in \delta_v^{\text{in}}} w(e)$.
- \bullet For every $v \in V \setminus \{r\}$ and $e \in \delta_v^{\mathrm{in}}$, define $w'(e) = w(e) l_v.$

Lemma The instances (G, w, r) and (G, w', r) have the same optimum solution.

Lemma The instances (G,w,r) and (G,w^{\prime},r) have the same optimum solution.

Lemma The instances (G, w, r) and (G, w', r) have the same optimum solution.

Proof.

Given any tree solution T, w(T)-w'(T) is always $\sum_{v\in V\setminus\{r\}}l_v$.

Lemma The instances (G, w, r) and (G, w', r) have the same optimum solution.

Proof.

Given any tree solution T, w(T)-w'(T) is always $\sum_{v\in V\setminus\{r\}}l_v$. \square

Lemma Let $(v_0, v_1, v_2, \cdots, v_p = v_0)$ be a cycle C of 0-cost edges in G. Then there is an optimum solution T, that contains all but one edges in C.

MCA(G, r, w)

- 1: $F^* \leftarrow \emptyset$
- 2: **for** every $v \in V \setminus \{r\}$ **do**
- 3: $l_v \leftarrow \min_{e \in \delta_v^{\text{in}}} w(e)$
- 4: **for** every edge e entering v **do**: $w'(e) \leftarrow w(e) l_v$
- 5: choose a 0-cost edge entering v, add it to (V, F^*)
- 6: **if** F^* form an arborescence **then return** F^*
- 7: **else**
- 8: **for** every cycle C in F^* **do**: contract C into a single node
- 9: let G' = (V', E') be the obtained graph.
- 10: $T' \leftarrow \mathsf{MCA}(G', r, w')$
- 11: extend T' to an aborescence T in G, by keeping all but one edges in every cycle C in F^* , and **return** T

 \bullet The running time of the algorithm is O(mn)

- The running time of the algorithm is O(mn)
- [Tarjan (1971)]: $O(\min(m \log n, n^2))$
- [Gabow, Galil, Spencer, Tarjan (1986)]: $O(n \log n + m)$
- [Mendelson, Tarjan, Thorup, Zwick (2006)]: $O(m \log \log n)$