算法设计与分析(2024年春季学期)

Graph Basics

授课老师: 栗师

南京大学计算机科学与技术系
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Bridges and 2-Edge-Connected Components
 - \(O(n + m)\)-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices

5. Strong Connectivity in Directed Graphs
 - Tarjan’s \(O(n + m)\)-Time Algorithm for Finding SCCes
Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs
(Undirected) Graph $G = (V, E)$

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$
Abuse of Notations

- For (undirected) graphs, we often use \((i, j)\) to denote the set \(\{i, j\}\).
- We call \((i, j)\) an unordered pair; in this case \((i, j) = (j, i)\).

\[
E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8), (4, 5), (5, 6), (7, 8)\}
\]
- Social Network: Undirected
- Transition Graph: Directed
- Road Network: Directed or Undirected
- Internet: Directed or Undirected
Representation of Graphs

- **Adjacency matrix**
 - $n \times n$ matrix, $A[u, v] = 1$ if $(u, v) \in E$ and $A[u, v] = 0$ otherwise
 - A is symmetric if graph is undirected

- **Linked lists**
 - For every vertex v, there is a linked list containing all **neighbours** of v.
 - If graph is static: store neighbors of all vertices in a length-2m array, where the neighbors of any vertex are consecutive.
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \(n \): number of vertices
- \(m \): number of edges, assuming \(n - 1 \leq m \leq n(n - 1)/2 \)
- \(d_v \): number of neighbors of \(v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>(O(n^2))</td>
<td>(O(m))</td>
</tr>
<tr>
<td>time to check ((u, v) \in E)</td>
<td>(O(1))</td>
<td>(O(d_u))</td>
</tr>
<tr>
<td>time to list all neighbours of (v)</td>
<td>(O(n))</td>
<td>(O(d_v))</td>
</tr>
</tbody>
</table>
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Bridges and 2-Edge-Connected Components
 - $O(n + m)$-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices

5. Strong Connectivity in Directed Graphs
 - Tarjan’s $O(n + m)$-Time Algorithm for Finding SCCes
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \ldots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Implementing BFS using a Queue

BFS(s)

1: head ← 1, tail ← 1, queue[1] ← s
2: mark s as “visited” and all other vertices as “unvisited”
3: while head ≤ tail do
4: v ← queue[head], head ← head + 1
5: for all neighbours u of v do
6: if u is “unvisited” then
7: tail ← tail + 1, queue[tail] = u
8: mark u as “visited”

- Running time: $O(n + m)$.
Example of BFS via Queue

![Graph and Queue Diagram]

- Graph:
 - Nodes: 1, 2, 3, 4, 5, 6, 7, 8
 - Edges: 2-3, 3-5, 3-8, 7-3, 4-1, 1-2, 2-5, 2-6, 5-6

- Queue:
 - Order: 1, 2, 3, 4, 5, 7, 8, 6

- Head and Tail Indicators
 - Head:
 - Marked on the queue
 - Tail:
 - Marked on the queue

- Vertex Indicators:
 - Node 2 is marked with a red arrow pointing towards node 6.
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Implementing DFS using Recursion

DFS(s)
1. mark all vertices as “unvisited”
2. recursive-DFS(s)

recursive-DFS(v)
1. mark v as “visited”
2. for all neighbours u of v do
3. if u is unvisited then recursive-DFS(u)
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Bridges and 2-Edge-Connected Components
 - $O(n + m)$-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices

5. Strong Connectivity in Directed Graphs
 - Tarjan’s $O(n + m)$-Time Algorithm for Finding SCCes
Def. A graph $G = (V, E)$ is a **bipartite graph** if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, we have either $u \in L, v \in R$ or $v \in L, u \in R$.
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...$
- Report “not a bipartite graph” if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component
Test Bipartiteness

bad edges!
Testing Bipartiteness using BFS

BFS(s)

1. $\text{head} \leftarrow 1$, $\text{tail} \leftarrow 1$, $\text{queue}[1] \leftarrow s$
2. mark s as “visited” and all other vertices as “unvisited”
3. $\text{color}[s] \leftarrow 0$
4. while $\text{head} \leq \text{tail}$ do
5. \hspace{1em} $v \leftarrow \text{queue}[\text{head}]$, $\text{head} \leftarrow \text{head} + 1$
6. \hspace{1em} for all neighbours u of v do
7. \hspace{2em} if u is “unvisited” then
8. \hspace{3em} $\text{tail} \leftarrow \text{tail} + 1$, $\text{queue}[\text{tail}] = u$
9. \hspace{3em} mark u as “visited”
10. \hspace{1em} else if $\text{color}[u] = \text{color}[v]$ then
11. \hspace{2em} print(“G is not bipartite”) and exit
Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: \textbf{for} each vertex $v \in V$ \textbf{do}
3: \hspace{1em} \textbf{if} v is “unvisited” \textbf{then}
4: \hspace{2em} test-bipartiteness(v)
5: \hspace{1em} print(“G is bipartite”)

\textbf{Obs.} Running time of algorithm = $O(n + m)$
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Bridges and 2-Edge-Connected Components
 - \(O(n + m)\)-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices

5. Strong Connectivity in Directed Graphs
 - Tarjan’s \(O(n + m)\)-Time Algorithm for Finding SCCes
Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G = (V, E)$

Output: 1-to-1 function $\pi : V \rightarrow \{1, 2, 3 \cdots, n\}$, so that
- if $(u, v) \in E$ then $\pi(u) < \pi(v)$
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$
topological-sort(G)

1: let $d_v \leftarrow 0$ for every $v \in V$
2: for every $v \in V$ do
3: for every u such that $(v, u) \in E$ do
4: $d_u \leftarrow d_u + 1$
5: $S \leftarrow \{v : d_v = 0\}$, $i \leftarrow 0$
6: while $S \neq \emptyset$ do
7: $v \leftarrow$ arbitrary vertex in S, $S \leftarrow S \setminus \{v\}$
8: $i \leftarrow i + 1$, $\pi(v) \leftarrow i$
9: for every u such that $(v, u) \in E$ do
10: $d_u \leftarrow d_u - 1$
11: if $d_u = 0$ then add u to S
12: if $i < n$ then output “not a DAG”

- S can be represented using a queue or a stack
- Running time $= O(n + m)$
S as a Queue or a Stack

<table>
<thead>
<tr>
<th>DS</th>
<th>Queue</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>$\text{head} \leftarrow 1$, $\text{tail} \leftarrow 0$</td>
<td>$\text{top} \leftarrow 0$</td>
</tr>
<tr>
<td>Non-Empty?</td>
<td>$\text{head} \leq \text{tail}$</td>
<td>$\text{top} > 0$</td>
</tr>
</tbody>
</table>
| Add(v) | $\text{tail} \leftarrow \text{tail} + 1$
| | $S[\text{tail}] \leftarrow v$ | $\text{top} \leftarrow \text{top} + 1$
| | | $S[\text{top}] \leftarrow v$ |
| Retrieve v | $v \leftarrow S[\text{head}]$
| | $\text{head} \leftarrow \text{head} + 1$ | $v \leftarrow S[\text{top}]$
| | | $\text{top} \leftarrow \text{top} - 1$ |
Example

queue: \[\begin{array}{cccccc}
 a & b & c & d & f & e & g \\
\end{array} \]

| degree | \hline
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

\[g \]
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Bridges and 2-Edge-Connected Components
 - $O(n + m)$-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices

5. Strong Connectivity in Directed Graphs
 - Tarjan’s $O(n + m)$-Time Algorithm for Finding SCCes
Def. Given $G = (V, E)$, $e \in E$ is called a bridge if the removal of e from G will increase its number of connected components.

- When G is connected, $e \in E$ is a bridge iff its removal will disconnect G.

Def. A graph $G = (V, E)$ is 2-edge-connected if for every two $u, v \in V$, there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph $G = (V, E)$. Then, every connected component in $(V, E \setminus B)$ is 2-edge-connected. Every such component is called a 2-edge-connected component of G.
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Bridges and 2-Edge-Connected Components
 - $O(n + m)$-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices

5. Strong Connectivity in Directed Graphs
 - Tarjan’s $O(n + m)$-Time Algorithm for Finding SCCes
Vertical and Horizontal Edges

- \(G = (V, E) \): connected graph
- \(T = (V, E_T) \): rooted spanning tree of \(G \)
- \((u, v) \in E \setminus E_T\) is
 - vertical if one of \(u \) and \(v \) is an ancestor of the other in \(T \),
 - horizontal otherwise.
$G = (V, E)$: connected graph

T: a DFS tree for G

Q: Can there be a horizontal edges (u, v) w.r.t T?

A: No!
- $G = (V, E)$: connected graph
- T: a DFS tree for G
- G contains only tree and vertical edges
- vertical edges: not bridges

Lemma
- $(u, v) \in T$, u is parent
- (u, v) is not a bridge $\iff \exists$ vertical edge connecting an (inclusive) descendant of v and an (inclusive) ancestor of u
- $v.l$: the level of vertex v in DFS tree
- T_v: subtree rooted at v
- $v.r$: the smallest level that can be reached by a vertical edge from T_v
- $(\text{parent}(u), u)$ is a bridge if and only if $u.r \geq u.l$.
recursive-DFS(v)

1: mark v as “visited”
2: $v.r \leftarrow \infty$
3: for all neighbours u of v do
4: \hspace{1em} if u is unvisited then $\triangleright u$ is a child of v
5: \hspace{2em} $u.l \leftarrow v.l + 1$
6: \hspace{2em} recursive-DFS(u)
7: \hspace{1em} if $u.r \geq u.l$ then claim (v, u) is a bridge
8: \hspace{2em} if $u.r < v.r$ then $v.r \leftarrow u.r$
9: \hspace{2em} else if $u.l < v.l - 1$ then $\triangleright u$ is ancestor but not parent
10: \hspace{2em} if $u.l < v.r$ then $v.r \leftarrow u.l$
finding-bridges

1: mark all vertices as “unvisited”
2: for every $v \in V$ do
3: if v is unvisited then
4: $v.l \leftarrow 0$
5: recursive-DFS(v)

- Running time: $O(n + m)$
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Bridges and 2-Edge-Connected Components
 - $O(n + m)$-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices

5. Strong Connectivity in Directed Graphs
 - Tarjan’s $O(n + m)$-Time Algorithm for Finding SCCes
Def. A vertex is a *cut vertex* of $G = (V, E)$ if its removal will increase the number of connected components of G.

Def. A graph $G = (V, E)$ is 2-(vertex-)connected (or biconnected) if for every $u, v \in V$, there are 2 internally-disjoint paths between u and v.

Lemma A graph $G = (V, E)$ with $|V| \geq 3$ does not contain a cut vertex, if and only if it is biconnected.
Q: How can we find the cut vertices?

A: With a small modification to the algorithm for finding bridges.
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Bridges and 2-Edge-Connected Components
 - $O(n + m)$-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices

5. Strong Connectivity in Directed Graphs
 - Tarjan’s $O(n + m)$-Time Algorithm for Finding SCCes
- directed graph $G = (V, E)$.
- it may happen: there is a $u \rightarrow v$ path, but no $v \rightarrow u$ path.

Def. A directed graph $G = (V, E)$ is strongly connected if for every $u, v \in V$, there is a path from u to v in G.

Def. A strongly connected component (SCC) of a directed graph G is a maximal strongly connected subgraph of G.

- Define equivalence relation: u and v are related if they are reachable from each other
- equivalence class \equiv SCC
- After contracting each SCC, G becomes a directed-acyclic (multi-)graph (DAG).
Q: How can we check if a directed graph $G = (V, E)$ is strongly-connected?

A:
- Run a traversal algorithm (either BFS or DFS) from s twice, one on G, one on G with all directions of edges reversed.
- If we reached all vertices in both algorithms, then G is strongly-connected.
- Otherwise, it is not.

Q: How can we find all strongly-connected components (SCCes) of a directed graph G?

A: A much harder problem. Tarjan’s $O(n + m)$-time algorithm.
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Bridges and 2-Edge-Connected Components
 - $O(n + m)$-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices

5. **Strong Connectivity in Directed Graphs**
 - Tarjan’s $O(n + m)$-Time Algorithm for Finding SCCes
Type of Edges w.r.t a Directed DFS Tree

- directed graph, $G = (V, E)$, a DFS-tree T,
- assuming every vertex is reachable from the root of T

Q: Can there be rightwards horizontal edges?

A: No!
Lemma Suppose \(u \) and \(v \) are in the same SCC, and \(w \) is the lowest common ancestor (LCA) of \(u \) and \(v \) in \(T \). Then \(w \) is the same SCC as \(u \) and \(v \).

Proof.

Idea: using leftward, upwards and tree edges, \(u \) can not reach \(v \) without touching \(w \) or its ancestors.

Lemma The vertices in every SCC of \(G \) induce a sub-tree in \(T \).
An Intermediate Algorithm to Keep in Mind

1. build the DFS tree T
2. while T is not empty do
3. find the first vertex v in the posterior-order-traversal of T
 satisfying the following property: there are no edges from T_v to outside T_v
4. claim vertices in T_v as a SCC, remove them from T and all edges incident to them from T and G
Illustration of Intermediate Algorithm
Illustration of Tarjan’s Algorithm
finding strongly connected components

1. \(\text{stack} \leftarrow \text{empty stack}, \ i \leftarrow 0 \)
2. for every \(v \in V \) do: \(v.i \leftarrow \bot, \ \text{onstack}[i] \leftarrow \text{false} \)
3. for every \(v \in V \) do
4. \quad if \(v.i = \bot \) then recursive-DFS(\(v \))

recursive-DFS(\(v \))

1. \(i \leftarrow i + 1, \ v.i \leftarrow i, \ v.r \leftarrow i \)
2. \(\text{stack}.\text{push}(v), \ \text{onstack}[v] \leftarrow \text{true} \)
3. for every outgoing edge \((v, u) \) of \(v \) do
4. \quad if \(u.i = \bot \) then recursive-DFS(\(u \))
5. \quad if \(\text{onstack}[u] \) and \(u.r < v.r \) then \(v.r \leftarrow u.r \)
6. \quad if \(v.r = v.i \) then
7. \quad pop all vertices in \(\text{stack} \) after \(v \), including \(v \) itself
8. \quad set \(\text{onstack} \) of these vertices to be \text{false}
9. \quad declare that these vertices form an SCC
Running time of the algorithm is \(O(n + m) \).