
算法设计与分析(2024年春季学期)

Graph Basics

授课老师: 栗师

南京大学计算机科学与技术系

2/52

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Bridges and 2-Edge-Connected Components
O(n+m)-Time Algorithm to Find Bridges
Related Concept: Cut Vertices

5 Strong Connectivity in Directed Graphs
Tarjan’s O(n+m)-Time Algorithm for Finding SCCes

3/52

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs

4/52

(Undirected) Graph G = (V,E)

1

2 3

4 5

7

8

6

V : set of vertices (nodes);

V = {1, 2, 3, 4, 5, 6, 7, 8}

E: pairwise relationships among V ;

(undirected) graphs: relationship is symmetric, E contains subsets of
size 2

E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7}, {3, 8},
{4, 5}, {5, 6}, {7, 8}}

4/52

(Undirected) Graph G = (V,E)

1

2 3

4 5

7

8

6

V : set of vertices (nodes);

V = {1, 2, 3, 4, 5, 6, 7, 8}
E: pairwise relationships among V ;

(undirected) graphs: relationship is symmetric, E contains subsets of
size 2
E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7}, {3, 8},
{4, 5}, {5, 6}, {7, 8}}

4/52

Directed Graph G = (V,E)

1

2 3

4 5

7

8

6

V : set of vertices (nodes);

V = {1, 2, 3, 4, 5, 6, 7, 8}
E: pairwise relationships among V ;

directed graphs: relationship is asymmetric, E contains ordered pairs

E = {(1, 2), (1, 3), (3, 2), (4, 2), (2, 5), (5, 3), (3, 7), (3, 8),
(4, 5), (5, 6), (6, 5), (8, 7)}

4/52

Directed Graph G = (V,E)

1

2 3

4 5

7

8

6

V : set of vertices (nodes);

V = {1, 2, 3, 4, 5, 6, 7, 8}
E: pairwise relationships among V ;

directed graphs: relationship is asymmetric, E contains ordered pairs
E = {(1, 2), (1, 3), (3, 2), (4, 2), (2, 5), (5, 3), (3, 7), (3, 8),
(4, 5), (5, 6), (6, 5), (8, 7)}

5/52

Abuse of Notations

For (undirected) graphs, we often use (i, j) to denote the set
{i, j}.
We call (i, j) an unordered pair; in this case (i, j) = (j, i).

1

2 3

4 5

7

8

6

E = {(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8),
(4, 5), (5, 6), (7, 8)}

6/52

Social Network : Undirected

Transition Graph : Directed

Road Network : Directed or Undirected

Internet : Directed or Undirected

7/52

Representation of Graphs

1

2 3

4 5

7

8

6

0 1

1 0

1 0

1 1

1 1

0 1

0 0

0 0

0 0

1 0

0 0

0 0

1 0

1 0

1 1

0 0

0 1

0 0

1 1

0 0

0 0

0 0

1 0

1 0

0 1

1 0

0 0

0 0

0 0

0 0

0 1

1 0

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Adjacency matrix
n× n matrix, A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0 otherwise
A is symmetric if graph is undirected

Linked lists
For every vertex v, there is a linked list containing all neighbours of v.

If graph is static: store neighbors of all vertices in a length-2m
array, where the neighbors of any vertex are consecutive.

7/52

Representation of Graphs

1

2 3

4 5

7

8

6

2 3

1 3

1 2

2 5

5

3 8

8

3 7

2 3

5 7

4 5

4 6

1:

2:

3:

4:

5:

6:

7:

8:

Adjacency matrix
n× n matrix, A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0 otherwise
A is symmetric if graph is undirected

Linked lists
For every vertex v, there is a linked list containing all neighbours of v.

If graph is static: store neighbors of all vertices in a length-2m
array, where the neighbors of any vertex are consecutive.

7/52

Representation of Graphs

1

2 3

4 5

7

8

6

1:

2:

3:

4:

5:

6:

7:

8:

2 3

1 3 4 5

1 2 85 7

2 5

2 3 4 6

5

3 8

3 7

d : (2, 4, 5, 2, 4, 1, 2, 2)

Adjacency matrix
n× n matrix, A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0 otherwise
A is symmetric if graph is undirected

Linked lists
For every vertex v, there is a linked list containing all neighbours of v.

If graph is static: store neighbors of all vertices in a length-2m
array, where the neighbors of any vertex are consecutive.

8/52

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage

O(n2) O(m)

time to check (u, v) ∈ E

O(1) O(du)

time to list all neighbours of v

O(n) O(dv)

8/52

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2)

O(m)

time to check (u, v) ∈ E

O(1) O(du)

time to list all neighbours of v

O(n) O(dv)

8/52

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) ∈ E

O(1) O(du)

time to list all neighbours of v

O(n) O(dv)

8/52

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) ∈ E O(1)

O(du)

time to list all neighbours of v

O(n) O(dv)

8/52

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) ∈ E O(1) O(du)

time to list all neighbours of v

O(n) O(dv)

8/52

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) ∈ E O(1) O(du)

time to list all neighbours of v O(n)

O(dv)

8/52

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) ∈ E O(1) O(du)

time to list all neighbours of v O(n) O(dv)

9/52

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Bridges and 2-Edge-Connected Components
O(n+m)-Time Algorithm to Find Bridges
Related Concept: Cut Vertices

5 Strong Connectivity in Directed Graphs
Tarjan’s O(n+m)-Time Algorithm for Finding SCCes

10/52

Connectivity Problem

Input: graph G = (V,E), (using linked lists)

two vertices s, t ∈ V

Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t

Breadth-First Search (BFS)
Depth-First Search (DFS)

10/52

Connectivity Problem

Input: graph G = (V,E), (using linked lists)

two vertices s, t ∈ V

Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t

Breadth-First Search (BFS)
Depth-First Search (DFS)

10/52

Connectivity Problem

Input: graph G = (V,E), (using linked lists)

two vertices s, t ∈ V

Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t

Breadth-First Search (BFS)

Depth-First Search (DFS)

10/52

Connectivity Problem

Input: graph G = (V,E), (using linked lists)

two vertices s, t ∈ V

Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t

Breadth-First Search (BFS)
Depth-First Search (DFS)

11/52

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 ∪ L1 ∪ · · · ∪ Lj and
have an edge to a vertex in Lj

11/52

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 ∪ L1 ∪ · · · ∪ Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6

11/52

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 ∪ L1 ∪ · · · ∪ Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6

11/52

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 ∪ L1 ∪ · · · ∪ Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6

11/52

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 ∪ L1 ∪ · · · ∪ Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6

12/52

Implementing BFS using a Queue

BFS(s)

1: head← 1, tail← 1, queue[1]← s
2: mark s as “visited” and all other vertices as “unvisited”
3: while head ≤ tail do
4: v ← queue[head], head← head+ 1
5: for all neighbours u of v do
6: if u is “unvisited” then
7: tail← tail + 1, queue[tail] = u
8: mark u as “visited”

Running time: O(n+m).

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

1

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

1

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

21

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 31

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v 2 31

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v 2 3 41

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v 2 3 4 51

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v
2 3 4 51

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v
2 3 4 5 71

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v
2 3 4 5 7 81

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 3 4 5 7 81

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head
v

2 3 4 5 7 81

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head
v

2 3 4 5 7 8 61

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 3 4 5 7 8 61

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head
v

2 3 4 5 7 8 61

13/52

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 3 4 5 7 8 61

14/52

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

14/52

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/52

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/52

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/52

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/52

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/52

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/52

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/52

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/52

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/52

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/52

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

15/52

Implementing DFS using Recurrsion

DFS(s)

1: mark all vertices as “unvisited”
2: recursive-DFS(s)

recursive-DFS(v)

1: mark v as “visited”
2: for all neighbours u of v do
3: if u is unvisited then recursive-DFS(u)

16/52

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Bridges and 2-Edge-Connected Components
O(n+m)-Time Algorithm to Find Bridges
Related Concept: Cut Vertices

5 Strong Connectivity in Directed Graphs
Tarjan’s O(n+m)-Time Algorithm for Finding SCCes

17/52

Testing Bipartiteness: Applications of BFS

Def. A graph G = (V,E) is a bipartite
graph if there is a partition of V into two
sets L and R such that for every edge
(u, v) ∈ E, we have either u ∈ L, v ∈ R
or v ∈ L, u ∈ R.

18/52

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V

Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

18/52

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V

Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

18/52

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V

Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

18/52

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V

Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

18/52

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V

Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·

Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

18/52

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V

Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

18/52

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V

Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

19/52

Test Bipartiteness

19/52

Test Bipartiteness

19/52

Test Bipartiteness

19/52

Test Bipartiteness

19/52

Test Bipartiteness

19/52

Test Bipartiteness

19/52

Test Bipartiteness

19/52

Test Bipartiteness

19/52

Test Bipartiteness

19/52

Test Bipartiteness

19/52

Test Bipartiteness

bad edges!

20/52

Testing Bipartiteness using BFS

BFS(s)

1: head← 1, tail← 1, queue[1]← s
2: mark s as “visited” and all other vertices as “unvisited”
3: while head ≤ tail do
4: v ← queue[head], head← head+ 1
5: for all neighbours u of v do
6: if u is “unvisited” then
7: tail← tail + 1, queue[tail] = u
8: mark u as “visited”

20/52

Testing Bipartiteness using BFS

test-bipartiteness(s)

1: head← 1, tail← 1, queue[1]← s
2: mark s as “visited” and all other vertices as “unvisited”
3: color[s]← 0
4: while head ≤ tail do
5: v ← queue[head], head← head+ 1
6: for all neighbours u of v do
7: if u is “unvisited” then
8: tail← tail + 1, queue[tail] = u
9: mark u as “visited”
10: color[u]← 1− color[v]
11: else if color[u] = color[v] then
12: print(“G is not bipartite”) and exit

21/52

Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex v ∈ V do
3: if v is “unvisited” then
4: test-bipartiteness(v)

5: print(“G is bipartite”)

Obs. Running time of algorithm = O(n+m)

21/52

Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex v ∈ V do
3: if v is “unvisited” then
4: test-bipartiteness(v)

5: print(“G is bipartite”)

Obs. Running time of algorithm = O(n+m)

22/52

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Bridges and 2-Edge-Connected Components
O(n+m)-Time Algorithm to Find Bridges
Related Concept: Cut Vertices

5 Strong Connectivity in Directed Graphs
Tarjan’s O(n+m)-Time Algorithm for Finding SCCes

23/52

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V,E)

Output: 1-to-1 function π : V → {1, 2, 3 · · · , n}, so that

if (u, v) ∈ E then π(u) < π(v)

a b

c d e f

g h i

23/52

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V,E)

Output: 1-to-1 function π : V → {1, 2, 3 · · · , n}, so that

if (u, v) ∈ E then π(u) < π(v)

1

2

3

4 5

6 7

89

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

a b

c d e f

g h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

a b

d e f

g h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

a b

d e f

g h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

a b

d e f

h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

a b

d e f

h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

a b

e f

h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

a b

e f

h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 b

e f

h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 b

e f

h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

e f

h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

e f

h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 f

h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 f

h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

h i

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

8h

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

8h

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

89

24/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

89

25/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

Use linked-lists of outgoing edges

Maintain the in-degree dv of vertices

Maintain a queue (or stack) of vertices v with dv = 0

25/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

Use linked-lists of outgoing edges

Maintain the in-degree dv of vertices

Maintain a queue (or stack) of vertices v with dv = 0

25/52

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

Use linked-lists of outgoing edges

Maintain the in-degree dv of vertices

Maintain a queue (or stack) of vertices v with dv = 0

26/52

topological-sort(G)

1: let dv ← 0 for every v ∈ V
2: for every v ∈ V do
3: for every u such that (v, u) ∈ E do
4: du ← du + 1

5: S ← {v : dv = 0}, i← 0
6: while S ̸= ∅ do
7: v ← arbitrary vertex in S, S ← S \ {v}
8: i← i+ 1, π(v)← i
9: for every u such that (v, u) ∈ E do
10: du ← du − 1
11: if du = 0 then add u to S

12: if i < n then output “not a DAG”

S can be represented using a queue or a stack

Running time = O(n+m)

27/52

S as a Queue or a Stack

DS Queue Stack

Initialization head← 1, tail← 0 top← 0

Non-Empty? head ≤ tail top > 0

Add(v) tail← tail + 1
S[tail]← v

top← top+ 1
S[top]← v

Retrieve v v ← S[head]
head← head+ 1

v ← S[top]
top← top− 1

28/52

Example

a b c d f g

degree

e

queue:

a

b c

d

e

f

g
0 1 1 1 12 3

tail

head

a

28/52

Example

a b c d f g

degree

e

queue:

a

b c

d

e

f

g
0 1 1 1 12 3

tail

head

a

28/52

Example

a b c d f g

degree

e

queue:
b c

d

e

f

g
0 0 0 1 12 3

tail

head

a

28/52

Example

a b c d f g

degree

e

queue:
b c

d

e

f

g
0 0 0 1 12 3

tail

head

a b c

28/52

Example

a b c d f g

degree

e

queue:
b c

d

e

f

g
0 0 0 1 12 3

tail

head

a b c

28/52

Example

a b c d f g

degree

e

queue:
c

d

e

f

g
0 0 0 1 1 1 3

tail

head

a b c

28/52

Example

a b c d f g

degree

e

queue:
c

d

e

f

g
0 0 0 1 1 1 3

tail

head

a b c

28/52

Example

a b c d f g

degree

e

queue:

d

e

f

g
0 0 0 0 01 3

tail

head

a b c

28/52

Example

a b c d f g

degree

e

queue:

d

e

f

g
0 0 0 0 01 3

tail

head

a b c d f

28/52

Example

a b c d f g

degree

e

queue:

d

e

f

g
0 0 0 0 01 3

tail

head

a b c d f

28/52

Example

a b c d f g

degree

e

queue:

e

f

g
0 0 0 0 0 0 2

tail

head

a b c d f

28/52

Example

a b c d f g

degree

e

queue:

e

f

g
0 0 0 0 0 0 2

tail

head

a b c d ef

28/52

Example

a b c d f g

degree

e

queue:

e

f

g
0 0 0 0 0 0 2

tail

head

a b c d ef

28/52

Example

a b c d f g

degree

e

queue:

e g
0 0 0 0 0 0 1

tail

head

a b c d ef

28/52

Example

a b c d f g

degree

e

queue:

e g
0 0 0 0 0 0 1

tail

head

a b c d ef

28/52

Example

a b c d f g

degree

e

queue:

g
0 0 0 0 0 0 0

tail

head

a b c d ef

28/52

Example

a b c d f g

degree

e

queue:

g
0 0 0 0 0 0 0

tail

head

a b c d ef g

28/52

Example

a b c d f g

degree

e

queue:

g
0 0 0 0 0 0 0

tail

a b c d ef g

head

29/52

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Bridges and 2-Edge-Connected Components
O(n+m)-Time Algorithm to Find Bridges
Related Concept: Cut Vertices

5 Strong Connectivity in Directed Graphs
Tarjan’s O(n+m)-Time Algorithm for Finding SCCes

30/52

Def. Given G = (V,E),
e ∈ E is called a bridge if the
removal of e from G will
increase its number of
connected components.

When G is connected,
e ∈ E is a bridge iff its
removal will disconnect G.

Def. A graph G = (V,E) is 2-edge-connected if for every two
u, v ∈ V , there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph G = (V,E). Then,
every connected component in (V,E \B) is 2-edge-connected. Every
such component is called a 2-edge-connected component of G.

30/52

Def. Given G = (V,E),
e ∈ E is called a bridge if the
removal of e from G will
increase its number of
connected components.

When G is connected,
e ∈ E is a bridge iff its
removal will disconnect G.

Def. A graph G = (V,E) is 2-edge-connected if for every two
u, v ∈ V , there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph G = (V,E). Then,
every connected component in (V,E \B) is 2-edge-connected. Every
such component is called a 2-edge-connected component of G.

30/52

Def. Given G = (V,E),
e ∈ E is called a bridge if the
removal of e from G will
increase its number of
connected components.

When G is connected,
e ∈ E is a bridge iff its
removal will disconnect G.

Def. A graph G = (V,E) is 2-edge-connected if for every two
u, v ∈ V , there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph G = (V,E). Then,
every connected component in (V,E \B) is 2-edge-connected. Every
such component is called a 2-edge-connected component of G.

30/52

Def. Given G = (V,E),
e ∈ E is called a bridge if the
removal of e from G will
increase its number of
connected components.

When G is connected,
e ∈ E is a bridge iff its
removal will disconnect G.

Def. A graph G = (V,E) is 2-edge-connected if for every two
u, v ∈ V , there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph G = (V,E). Then,
every connected component in (V,E \B) is 2-edge-connected. Every
such component is called a 2-edge-connected component of G.

30/52

Def. Given G = (V,E),
e ∈ E is called a bridge if the
removal of e from G will
increase its number of
connected components.

When G is connected,
e ∈ E is a bridge iff its
removal will disconnect G.

Def. A graph G = (V,E) is 2-edge-connected if for every two
u, v ∈ V , there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph G = (V,E). Then,
every connected component in (V,E \B) is 2-edge-connected. Every
such component is called a 2-edge-connected component of G.

30/52

Def. Given G = (V,E),
e ∈ E is called a bridge if the
removal of e from G will
increase its number of
connected components.

When G is connected,
e ∈ E is a bridge iff its
removal will disconnect G.

Def. A graph G = (V,E) is 2-edge-connected if for every two
u, v ∈ V , there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph G = (V,E). Then,
every connected component in (V,E \B) is 2-edge-connected. Every
such component is called a 2-edge-connected component of G.

30/52

Def. Given G = (V,E),
e ∈ E is called a bridge if the
removal of e from G will
increase its number of
connected components.

When G is connected,
e ∈ E is a bridge iff its
removal will disconnect G.

Def. A graph G = (V,E) is 2-edge-connected if for every two
u, v ∈ V , there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph G = (V,E). Then,
every connected component in (V,E \B) is 2-edge-connected. Every
such component is called a 2-edge-connected component of G.

30/52

Def. Given G = (V,E),
e ∈ E is called a bridge if the
removal of e from G will
increase its number of
connected components.

When G is connected,
e ∈ E is a bridge iff its
removal will disconnect G.

Def. A graph G = (V,E) is 2-edge-connected if for every two
u, v ∈ V , there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph G = (V,E). Then,
every connected component in (V,E \B) is 2-edge-connected. Every
such component is called a 2-edge-connected component of G.

30/52

Def. Given G = (V,E),
e ∈ E is called a bridge if the
removal of e from G will
increase its number of
connected components.

When G is connected,
e ∈ E is a bridge iff its
removal will disconnect G.

Def. A graph G = (V,E) is 2-edge-connected if for every two
u, v ∈ V , there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph G = (V,E). Then,
every connected component in (V,E \B) is 2-edge-connected. Every
such component is called a 2-edge-connected component of G.

31/52

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Bridges and 2-Edge-Connected Components
O(n+m)-Time Algorithm to Find Bridges
Related Concept: Cut Vertices

5 Strong Connectivity in Directed Graphs
Tarjan’s O(n+m)-Time Algorithm for Finding SCCes

32/52

Vertical and Horizontal Edges

G = (V,E): connected graph

T = (V,ET): rooted spanning tree of G

(u, v) ∈ E \ ET is

vertical if one of u and v is an ancestor of the other in T ,
horizontal otherwise.

tree edges
root

32/52

Vertical and Horizontal Edges

G = (V,E): connected graph

T = (V,ET): rooted spanning tree of G

(u, v) ∈ E \ ET is

vertical if one of u and v is an ancestor of the other in T ,
horizontal otherwise.

tree edges
horizontal edges

vertical edges

root

33/52

G = (V,E): connected graph T : a DFS tree for G

Q: Can there be a
horizontal edges
(u, v) w.r.t T?

A: No!

33/52

G = (V,E): connected graph T : a DFS tree for G

Q: Can there be a
horizontal edges
(u, v) w.r.t T?

A: No!

33/52

G = (V,E): connected graph T : a DFS tree for G

Q: Can there be a
horizontal edges
(u, v) w.r.t T?

A: No!

34/52

G = (V,E): connected graph

T : a DFS tree for G

G contains only tree and
vertical edges

vertical edges: not bridges

Lemma

(u, v) ∈ T , u is parent

(u, v) is not a bridge ⇐⇒ ∃ vertical edge connecting an
(inclusive) descendant of v and an (inclusive) ancestor of u

34/52

G = (V,E): connected graph

T : a DFS tree for G

G contains only tree and
vertical edges

vertical edges: not bridges

Lemma

(u, v) ∈ T , u is parent

(u, v) is not a bridge ⇐⇒ ∃ vertical edge connecting an
(inclusive) descendant of v and an (inclusive) ancestor of u

34/52

G = (V,E): connected graph

T : a DFS tree for G

G contains only tree and
vertical edges

vertical edges: not bridges

not a bridge

because of this
vertical edge

Lemma

(u, v) ∈ T , u is parent

(u, v) is not a bridge ⇐⇒ ∃ vertical edge connecting an
(inclusive) descendant of v and an (inclusive) ancestor of u

34/52

G = (V,E): connected graph

T : a DFS tree for G

G contains only tree and
vertical edges

vertical edges: not bridges

not a bridge

because of this

bridge

vertical edge

Lemma

(u, v) ∈ T , u is parent

(u, v) is not a bridge ⇐⇒ ∃ vertical edge connecting an
(inclusive) descendant of v and an (inclusive) ancestor of u

35/52

v.l: the level of vertex v
in DFS tree

Tv: subtree rooted at v

v.r: the smallest level
that can be reached by a
vertical edge from Tv

(parent(u), u) is a
bridge if and only if
u.r ≥ u.l.

35/52

v.l: the level of vertex v
in DFS tree

Tv: subtree rooted at v

v.r: the smallest level
that can be reached by a
vertical edge from Tv

(parent(u), u) is a
bridge if and only if
u.r ≥ u.l.

0

1

2

3

4

5

levels

35/52

v.l: the level of vertex v
in DFS tree

Tv: subtree rooted at v

v.r: the smallest level
that can be reached by a
vertical edge from Tv

(parent(u), u) is a
bridge if and only if
u.r ≥ u.l.

0

1

2

3

4

5

r values

2

2

2

2 1

1

1

0

0

0 0

0 2

2

0

levels

35/52

v.l: the level of vertex v
in DFS tree

Tv: subtree rooted at v

v.r: the smallest level
that can be reached by a
vertical edge from Tv

(parent(u), u) is a
bridge if and only if
u.r ≥ u.l.

0

1

2

3

4

5

r values

2

2

2

2 1

1

1

0

0

0 0

0 2

2

0

levels

36/52

recursive-DFS(v)

1: mark v as “visited”
2: v.r ←∞
3: for all neighbours u of v do
4: if u is unvisited then ▷ u is a child of v
5: u.l← v.l + 1
6: recursive-DFS(u)
7: if u.r ≥ u.l then claim (v, u) is a bridge

8: if u.r < v.r then v.r ← u.r
9: else if u.l < v.l − 1 then ▷ u is ancestor but not parent

10: if u.l < v.r then v.r ← u.l

37/52

finding-bridges
1: mark all vertices as “unvisited”
2: for every v ∈ V do
3: if v is unvisited then
4: v.l← 0
5: recursive-DFS(v)

Running time: O(n+m)

38/52

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Bridges and 2-Edge-Connected Components
O(n+m)-Time Algorithm to Find Bridges
Related Concept: Cut Vertices

5 Strong Connectivity in Directed Graphs
Tarjan’s O(n+m)-Time Algorithm for Finding SCCes

39/52

Cut vertices

Def. A vertex is a cut vertex of
G = (V,E) if its removal will
increase the number of connected
components of G.

Def. A graph G = (V,E) is
2-(vertex-)connected (or
biconnected) if for every u, v ∈ V ,
there are 2 internally-disjoint
paths between u and v.

Lemma A graph G = (V,E)
with |V | ≥ 3 does not contain a
cut vertex, if and only if it is
biconnected.

39/52

Cut vertices

Def. A vertex is a cut vertex of
G = (V,E) if its removal will
increase the number of connected
components of G.

Def. A graph G = (V,E) is
2-(vertex-)connected (or
biconnected) if for every u, v ∈ V ,
there are 2 internally-disjoint
paths between u and v.

Lemma A graph G = (V,E)
with |V | ≥ 3 does not contain a
cut vertex, if and only if it is
biconnected.

39/52

Cut vertices

Def. A vertex is a cut vertex of
G = (V,E) if its removal will
increase the number of connected
components of G.

Def. A graph G = (V,E) is
2-(vertex-)connected (or
biconnected) if for every u, v ∈ V ,
there are 2 internally-disjoint
paths between u and v.

Lemma A graph G = (V,E)
with |V | ≥ 3 does not contain a
cut vertex, if and only if it is
biconnected.

39/52

Cut vertices

Def. A vertex is a cut vertex of
G = (V,E) if its removal will
increase the number of connected
components of G.

Def. A graph G = (V,E) is
2-(vertex-)connected (or
biconnected) if for every u, v ∈ V ,
there are 2 internally-disjoint
paths between u and v.

Lemma A graph G = (V,E)
with |V | ≥ 3 does not contain a
cut vertex, if and only if it is
biconnected.

39/52

Cut vertices

Def. A vertex is a cut vertex of
G = (V,E) if its removal will
increase the number of connected
components of G.

Def. A graph G = (V,E) is
2-(vertex-)connected (or
biconnected) if for every u, v ∈ V ,
there are 2 internally-disjoint
paths between u and v.

Lemma A graph G = (V,E)
with |V | ≥ 3 does not contain a
cut vertex, if and only if it is
biconnected.

39/52

Cut vertices

Def. A vertex is a cut vertex of
G = (V,E) if its removal will
increase the number of connected
components of G.

Def. A graph G = (V,E) is
2-(vertex-)connected (or
biconnected) if for every u, v ∈ V ,
there are 2 internally-disjoint
paths between u and v.

Lemma A graph G = (V,E)
with |V | ≥ 3 does not contain a
cut vertex, if and only if it is
biconnected.

39/52

Cut vertices

Def. A vertex is a cut vertex of
G = (V,E) if its removal will
increase the number of connected
components of G.

Def. A graph G = (V,E) is
2-(vertex-)connected (or
biconnected) if for every u, v ∈ V ,
there are 2 internally-disjoint
paths between u and v.

Lemma A graph G = (V,E)
with |V | ≥ 3 does not contain a
cut vertex, if and only if it is
biconnected.

40/52

Q: How can we find the cut vertices?

A: With a small modification to the algorithm for finding bridges.

40/52

Q: How can we find the cut vertices?

A: With a small modification to the algorithm for finding bridges.

41/52

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Bridges and 2-Edge-Connected Components
O(n+m)-Time Algorithm to Find Bridges
Related Concept: Cut Vertices

5 Strong Connectivity in Directed Graphs
Tarjan’s O(n+m)-Time Algorithm for Finding SCCes

42/52

directed graph G = (V,E).

it may happen: there is a u→ v path, but no v → u path.

Def. A directed graph G = (V,E) is strongly connected if for every
u, v ∈ V , there is a path from u to v in G.

Def. A strongly connected component (SCC) of a directed graph G
is a maximal strongly connected subgraph of G.

Define equivalence relation: u
and v are related if they are
reachable from each other

equivalence class ≡ SCC

After contracting each SCC, G
becomes a directed-acyclic
(multi-)graph (DAG).

42/52

directed graph G = (V,E).
it may happen: there is a u→ v path, but no v → u path.

Def. A directed graph G = (V,E) is strongly connected if for every
u, v ∈ V , there is a path from u to v in G.

Def. A strongly connected component (SCC) of a directed graph G
is a maximal strongly connected subgraph of G.

u

v

Define equivalence relation: u
and v are related if they are
reachable from each other

equivalence class ≡ SCC

After contracting each SCC, G
becomes a directed-acyclic
(multi-)graph (DAG).

42/52

directed graph G = (V,E).
it may happen: there is a u→ v path, but no v → u path.

Def. A directed graph G = (V,E) is strongly connected if for every
u, v ∈ V , there is a path from u to v in G.

Def. A strongly connected component (SCC) of a directed graph G
is a maximal strongly connected subgraph of G.

u

v

Define equivalence relation: u
and v are related if they are
reachable from each other

equivalence class ≡ SCC

After contracting each SCC, G
becomes a directed-acyclic
(multi-)graph (DAG).

42/52

directed graph G = (V,E).
it may happen: there is a u→ v path, but no v → u path.

Def. A directed graph G = (V,E) is strongly connected if for every
u, v ∈ V , there is a path from u to v in G.

Def. A strongly connected component (SCC) of a directed graph G
is a maximal strongly connected subgraph of G.

Define equivalence relation: u
and v are related if they are
reachable from each other

equivalence class ≡ SCC

After contracting each SCC, G
becomes a directed-acyclic
(multi-)graph (DAG).

42/52

directed graph G = (V,E).
it may happen: there is a u→ v path, but no v → u path.

Def. A directed graph G = (V,E) is strongly connected if for every
u, v ∈ V , there is a path from u to v in G.

Def. A strongly connected component (SCC) of a directed graph G
is a maximal strongly connected subgraph of G.

Define equivalence relation: u
and v are related if they are
reachable from each other

equivalence class ≡ SCC

After contracting each SCC, G
becomes a directed-acyclic
(multi-)graph (DAG).

42/52

directed graph G = (V,E).
it may happen: there is a u→ v path, but no v → u path.

Def. A directed graph G = (V,E) is strongly connected if for every
u, v ∈ V , there is a path from u to v in G.

Def. A strongly connected component (SCC) of a directed graph G
is a maximal strongly connected subgraph of G.

1

2

3

4

5

6

Define equivalence relation: u
and v are related if they are
reachable from each other

equivalence class ≡ SCC

After contracting each SCC, G
becomes a directed-acyclic
(multi-)graph (DAG).

43/52

Q: How can we check if a directed graph G = (V,E) is
strongly-connected?

A:

Run a traversal algorithm (either BFS or DFS) from s twice, one
on G, one on G with all directions of edges reversed

If we reached all vertices in both algorithms, then G is
strongly-connected

Otherwise, it is not.

Q: How can we find all strongly-connected components (SCCes) of
a directed graph G?

A: A much harder problem. Tarjan’s O(n+m)-time algorithm.

43/52

Q: How can we check if a directed graph G = (V,E) is
strongly-connected?

A:

Run a traversal algorithm (either BFS or DFS) from s twice, one
on G, one on G with all directions of edges reversed

If we reached all vertices in both algorithms, then G is
strongly-connected

Otherwise, it is not.

Q: How can we find all strongly-connected components (SCCes) of
a directed graph G?

A: A much harder problem. Tarjan’s O(n+m)-time algorithm.

43/52

Q: How can we check if a directed graph G = (V,E) is
strongly-connected?

A:

Run a traversal algorithm (either BFS or DFS) from s twice, one
on G, one on G with all directions of edges reversed

If we reached all vertices in both algorithms, then G is
strongly-connected

Otherwise, it is not.

Q: How can we find all strongly-connected components (SCCes) of
a directed graph G?

A: A much harder problem. Tarjan’s O(n+m)-time algorithm.

43/52

Q: How can we check if a directed graph G = (V,E) is
strongly-connected?

A:

Run a traversal algorithm (either BFS or DFS) from s twice, one
on G, one on G with all directions of edges reversed

If we reached all vertices in both algorithms, then G is
strongly-connected

Otherwise, it is not.

Q: How can we find all strongly-connected components (SCCes) of
a directed graph G?

A: A much harder problem. Tarjan’s O(n+m)-time algorithm.

44/52

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Bridges and 2-Edge-Connected Components
O(n+m)-Time Algorithm to Find Bridges
Related Concept: Cut Vertices

5 Strong Connectivity in Directed Graphs
Tarjan’s O(n+m)-Time Algorithm for Finding SCCes

45/52

Type of Edges w.r.t a Directed DFS Tree

directed graph, G = (V,E), a DFS-tree T ,

assuming every vertex is reachable from the root of T

type of edges in G w.r.t T
tree edges: edges in T

upwards (vertical) edges

downwards (vertical) edges

leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

A: No!

45/52

Type of Edges w.r.t a Directed DFS Tree

directed graph, G = (V,E), a DFS-tree T ,

assuming every vertex is reachable from the root of T

type of edges in G w.r.t T
tree edges: edges in T

upwards (vertical) edges

downwards (vertical) edges

leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

A: No!

45/52

Type of Edges w.r.t a Directed DFS Tree

directed graph, G = (V,E), a DFS-tree T ,

assuming every vertex is reachable from the root of T

type of edges in G w.r.t T
tree edges: edges in T

upwards (vertical) edges

downwards (vertical) edges

leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

A: No!

45/52

Type of Edges w.r.t a Directed DFS Tree

directed graph, G = (V,E), a DFS-tree T ,

assuming every vertex is reachable from the root of T

type of edges in G w.r.t T
tree edges: edges in T

upwards (vertical) edges

downwards (vertical) edges

leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

A: No!

45/52

Type of Edges w.r.t a Directed DFS Tree

directed graph, G = (V,E), a DFS-tree T ,

assuming every vertex is reachable from the root of T

type of edges in G w.r.t T
tree edges: edges in T

upwards (vertical) edges

downwards (vertical) edges

leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

A: No!

45/52

Type of Edges w.r.t a Directed DFS Tree

directed graph, G = (V,E), a DFS-tree T ,

assuming every vertex is reachable from the root of T

type of edges in G w.r.t T
tree edges: edges in T

upwards (vertical) edges

downwards (vertical) edges

leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

A: No!

45/52

Type of Edges w.r.t a Directed DFS Tree

directed graph, G = (V,E), a DFS-tree T ,

assuming every vertex is reachable from the root of T

type of edges in G w.r.t T
tree edges: edges in T

upwards (vertical) edges

downwards (vertical) edges

leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

A: No!

46/52

Lemma Suppose u and v are in the
same SCC, and w is the lowest common
ancestor (LCA) of u and v in T . Then w
is the same SCC as u and v.

Proof.
Idea: using leftward, upwards and tree
edges, u can not reach v without
touching w or its ancestors.

u
v

w

Lemma The vertices in every SCC of G induce a sub-tree in T .

46/52

Lemma Suppose u and v are in the
same SCC, and w is the lowest common
ancestor (LCA) of u and v in T . Then w
is the same SCC as u and v.

Proof.
Idea: using leftward, upwards and tree
edges, u can not reach v without
touching w or its ancestors.

u
v

w

Lemma The vertices in every SCC of G induce a sub-tree in T .

46/52

Lemma Suppose u and v are in the
same SCC, and w is the lowest common
ancestor (LCA) of u and v in T . Then w
is the same SCC as u and v.

Proof.
Idea: using leftward, upwards and tree
edges, u can not reach v without
touching w or its ancestors.

u
v

w

Lemma The vertices in every SCC of G induce a sub-tree in T .

47/52

1

2

3

4 5

6

7

8

9

10

11

12 13

14 15

16

17

18

48/52

An Intermediate Algorithm to Keep in Mind
1: build the DFS tree T
2: while T is not empty do
3: find the first vertex v in the posterior-order-traversal of T

satisfying the following property: there are no edges from Tv to
outside Tv

4: claim vertices in Tv as a SCC, remove them from T and all
edges incident to them from T and G

49/52

Illustration of Intermediate Algorithm

18

14 17

16

15

3

1 2

7

5

4

6

11

13

10

8 9

12

49/52

Illustration of Intermediate Algorithm

18

14 17

16

15

3

1 2

7

5

4

6

11

13

10

8 9

12

49/52

Illustration of Intermediate Algorithm

18

14 17

16

15

7

5

4

6

11

13

10

8 9

12

49/52

Illustration of Intermediate Algorithm

18

14 17

16

15

7

5

4

6

11

13

10

8 9

12

49/52

Illustration of Intermediate Algorithm

18

14 17

16

1511

13

10

8 9

12

49/52

Illustration of Intermediate Algorithm

18

14 17

16

1511

13

10

8 9

12

49/52

Illustration of Intermediate Algorithm

18

14 17

16

15

13

10

8 9

12

49/52

Illustration of Intermediate Algorithm

18

14 17

16

15

13

10

8 9

12

49/52

Illustration of Intermediate Algorithm

18

14 17

16

15

49/52

Illustration of Intermediate Algorithm

18

14 17

16

15

49/52

Illustration of Intermediate Algorithm

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 3

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 53

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 53

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 53 3

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 53 3

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 53 3

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7 2

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7 2

2

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

2

2

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

2

2 2

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

2

2 2

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12
10

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13
10

10

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13
10 10

10

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13
10 10

10

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13

14

10 10

10

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13

14

10 10

10

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13

14 15

10 10

10

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13

14 15

10 10

10

10

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13

14 15

10 10

10

10

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13

14 15

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13

14 15

1

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13

14 15

16

17

18

1

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13

14 15

16

17

18

1

16

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13

14 15

16

17

18

1

16

16

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13

14 15

16

17

18

1

16

16

1

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13

14 15

16

17

18

1

16

16

1

50/52

Illustration of Tarjan’s Algorithm

1

2

3

4 5

6

7

8

9

10

11

12 13

14 15

16

17

18

51/52

finding strongly connected components
1: statck ← empty stack, i← 0
2: for every v ∈ V do: v.i← ⊥, onstack[i]← false

3: for every v ∈ V do
4: if v.i = ⊥ then recursive-DFS(v)

recursive-DFS(v)
1: i← i+ 1, v.i← i, v.r ← i
2: stack.push(v), onstack[v]← true
3: for every outgoing edge (v, u) of v do
4: if u.i = ⊥ then recursive-DFS(u)

5: if onstack[u] and u.r < v.r then v.r ← u.r

6: if v.r = v.i then
7: pop all vertices in stack after v, including v itself
8: set onstack of these vertices to be false
9: declare that these vertices form an SCC

52/52

Running time of the algorithm is O(n+m).

	Graphs
	Connectivity and Graph Traversal
	Testing Bipartiteness

	Topological Ordering
	Bridges and 2-Edge-Connected Components
	O(n + m)-Time Algorithm to Find Bridges
	Related Concept: Cut Vertices

	Strong Connectivity in Directed Graphs
	Tarjan's O(n + m)-Time Algorithm for Finding SCCes

