算法设计与分析(2024年春季学期) Graph Basics

授课老师: 栗师

南京大学计算机科学与技术系

Outline

Graphs

- Connectivity and Graph Traversal
 Testing Bipartiteness
- 3 Topological Ordering
- Bridges and 2-Edge-Connected Components
 O(n + m)-Time Algorithm to Find Bridges
 Related Concept: Cut Vertices
- Strong Connectivity in Directed Graphs
 Tarjan's O(n + m)-Time Algorithm for Finding SCCes

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs

(Undirected) Graph G = (V, E)

- V: set of vertices (nodes);
- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, ${\cal E}$ contains subsets of size 2

(Undirected) Graph G = (V, E)

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, ${\cal E}$ contains subsets of size 2
 - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$

Directed Graph G = (V, E)

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - \bullet directed graphs: relationship is asymmetric, E contains ordered pairs

Directed Graph G = (V, E)

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - \bullet directed graphs: relationship is asymmetric, E contains ordered pairs
 - $E = \{(1,2), (1,3), (3,2), (4,2), (2,5), (5,3), (3,7), (3,8), (4,5), (5,6), (6,5), (8,7)\}$

Abuse of Notations

- For (undirected) graphs, we often use (i, j) to denote the set $\{i, j\}$.
- We call (i, j) an unordered pair; in this case (i, j) = (j, i).

• $E = \{(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7), (3,8), (4,5), (5,6), (7,8)\}$

- Social Network : Undirected
- Transition Graph : Directed
- Road Network : Directed or Undirected
- Internet : Directed or Undirected

Representation of Graphs

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Adjacency matrix

- $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
- A is symmetric if graph is undirected

Representation of Graphs

- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - A is symmetric if graph is undirected
- Linked lists
 - For every vertex v, there is a linked list containing all neighbours of v.

Representation of Graphs

- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - A is symmetric if graph is undirected
- Linked lists
 - For every vertex v, there is a linked list containing all neighbours of v.
- If graph is static: store neighbors of all vertices in a length-2m array, where the neighbors of any vertex are consecutive. 7/52

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage		
time to check $(u,v) \in E$		
time to list all neighbours of v		

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	
time to check $(u, v) \in E$		
time to list all neighbours of v		

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$		
time to list all neighbours of v		

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	
time to list all neighbours of v		

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of v		

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of v	O(n)	

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of v	O(n)	$O(d_v)$

Outline

Graphs

Connectivity and Graph TraversalTesting Bipartiteness

3 Topological Ordering

- Bridges and 2-Edge-Connected Components
 O(n + m)-Time Algorithm to Find Bridges
 Related Concept: Cut Vertices
- 5 Strong Connectivity in Directed Graphs
 Tarjan's O(n + m)-Time Algorithm for Finding SCCes

Input: graph G = (V, E), (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

Input: graph G = (V, E), (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

• Algorithm: starting from *s*, search for all vertices that are reachable from *s* and check if the set contains *t*

Input: graph G = (V, E), (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from *s*, search for all vertices that are reachable from *s* and check if the set contains *t*
 - Breadth-First Search (BFS)

Input: graph G = (V, E), (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from *s*, search for all vertices that are reachable from *s* and check if the set contains *t*
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

Implementing BFS using a Queue

$\mathsf{BFS}(s)$

- 1: $head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$
- 2: mark s as "visited" and all other vertices as "unvisited"
- 3: while $head \leq tail$ do
- $\textbf{4:} \qquad v \leftarrow queue[head], head \leftarrow head + 1$
- 5: for all neighbours u of v do
- 6: **if** u is "unvisited" **then**
- 7: $tail \leftarrow tail + 1, queue[tail] = u$

8: mark *u* as "visited"

• Running time: O(n+m).

13/52

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Implementing DFS using Recurrsion

DFS(s)

- 1: mark all vertices as "unvisited"
- 2: recursive-DFS(s)

recursive-DFS(v)

- 1: mark v as "visited"
- 2: for all neighbours u of v do
- 3: **if** u is unvisited **then** recursive-DFS(u)

Outline

Graphs

Connectivity and Graph TraversalTesting Bipartiteness

3 Topological Ordering

- Bridges and 2-Edge-Connected Components
 O(n + m)-Time Algorithm to Find Bridges
 Related Concept: Cut Vertices
- 5 Strong Connectivity in Directed Graphs
 Tarjan's O(n + m)-Time Algorithm for Finding SCCes

Testing Bipartiteness: Applications of BFS

Def. A graph G = (V, E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, we have either $u \in L, v \in R$ or $v \in L, u \in R$.

• Taking an arbitrary vertex $s \in V$

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- $\bullet\,$ Neighbors of s must be in R

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- $\bullet\,$ Neighbors of neighbors of s must be in L

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of \boldsymbol{s} must be in \boldsymbol{L}

• • • •

- Taking an arbitrary vertex $s \in V$
- \bullet Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

• • • •

• Report "not a bipartite graph" if contradiction was found

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

• • • •

- Report "not a bipartite graph" if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component

$\mathsf{BFS}(s)$

1:
$$head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$$

2: mark s as "visited" and all other vertices as "unvisited"

3: while $head \leq tail$ do

$$\textbf{4:} \qquad v \leftarrow queue[head], head \leftarrow head + 1$$

- 5: for all neighbours u of v do
- 6: **if** *u* is "unvisited" **then**

7:
$$tail \leftarrow tail + 1, queue[tail] = u$$

8: mark u as "visited"

test-bipartiteness(s)

- 1: $head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$
- 2: mark s as "visited" and all other vertices as "unvisited"
- 3: $color[s] \leftarrow 0$
- 4: while $head \leq tail$ do
- 5: $v \leftarrow queue[head], head \leftarrow head + 1$
- 6: for all neighbours u of v do
- 7: **if** u is "unvisited" **then**
- 8: $tail \leftarrow tail + 1, queue[tail] = u$
- 9: mark *u* as "visited"

10:
$$color[u] \leftarrow 1 - color[v]$$

- 11: else if color[u] = color[v] then
- 12: print("G is not bipartite") and exit

- 1: mark all vertices as "unvisited"
- 2: for each vertex $v \in V$ do
- 3: **if** v is "unvisited" **then**
- 4: test-bipartiteness(v)
- 5: print("G is bipartite")

- 1: mark all vertices as "unvisited"
- 2: for each vertex $v \in V$ do
- 3: **if** v is "unvisited" **then**
- 4: test-bipartiteness(v)
- 5: print("G is bipartite")

Obs. Running time of algorithm = O(n + m)

Outline

Graphs

Connectivity and Graph Traversal
 Testing Bipartiteness

3 Topological Ordering

- Bridges and 2-Edge-Connected Components
 O(n + m)-Time Algorithm to Find Bridges
 Related Concept: Cut Vertices
- 5 Strong Connectivity in Directed Graphs
 Tarjan's O(n + m)-Time Algorithm for Finding SCCes

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function
$$\pi: V \to \{1, 2, 3 \cdots, n\}$$
, so that

• if $(u, v) \in E$ then $\pi(u) < \pi(v)$

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function
$$\pi: V \to \{1, 2, 3 \cdots, n\}$$
, so that

• if $(u,v) \in E$ then $\pi(u) < \pi(v)$

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$
topological-sort(G)

1:	let $d_v \leftarrow 0$ for every $v \in V$
2:	for every $v \in V$ do
3:	for every u such that $(v, u) \in E$ do
4:	$d_u \leftarrow d_u + 1$
5:	$S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$
6:	while $S \neq \emptyset$ do
7:	$v \leftarrow \text{arbitrary vertex in } S, S \leftarrow S \setminus \{v\}$
8:	$i \leftarrow i+1$, $\pi(v) \leftarrow i$
9:	for every u such that $(v, u) \in E$ do
10:	$d_u \leftarrow d_u - 1$
11:	if $d_u = 0$ then add u to S
12:	if $i < n$ then output "not a DAG"

 $\bullet \ S$ can be represented using a queue or a stack

• Running time
$$= O(n+m)$$

DS	Queue	Stack
Initialization	$head \leftarrow 1, tail \leftarrow 0$	$top \leftarrow 0$
Non-Empty?	$head \leq tail$	top > 0
Add(v)	$\begin{array}{l} tail \leftarrow tail + 1 \\ S[tail] \leftarrow v \end{array}$	$\begin{array}{l} top \leftarrow top + 1\\ S[top] \leftarrow v \end{array}$
Retrieve v	$v \leftarrow S[head]$ head \leftarrow head + 1	$v \leftarrow S[top] \\ top \leftarrow top - 1$

(g)

Outline

Graphs

Connectivity and Graph Traversal
 Testing Bipartiteness

3 Topological Ordering

- Bridges and 2-Edge-Connected Components
 O(n + m)-Time Algorithm to Find Bridges
 Related Concept: Cut Vertices
- 5 Strong Connectivity in Directed Graphs
 Tarjan's O(n + m)-Time Algorithm for Finding SCCes

• When G is connected, $e \in E$ is a bridge iff its removal will disconnect G.

• When G is connected, $e \in E$ is a bridge iff its removal will disconnect G.

• When G is connected, $e \in E$ is a bridge iff its removal will disconnect G.

When G is connected,
 e ∈ E is a bridge iff its
 removal will disconnect G.

When G is connected,
 e ∈ E is a bridge iff its
 removal will disconnect G.

When G is connected,
 e ∈ E is a bridge iff its
 removal will disconnect G.

When G is connected,
 e ∈ E is a bridge iff its
 removal will disconnect G.

Def. A graph G = (V, E) is 2-edge-connected if for every two $u, v \in V$, there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph G = (V, E). Then, every connected component in $(V, E \setminus B)$ is 2-edge-connected. Every such component is called a 2-edge-connected component of G.

• When G is connected, $e \in E$ is a bridge iff its removal will disconnect G.

Def. A graph G = (V, E) is 2-edge-connected if for every two $u, v \in V$, there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph G = (V, E). Then, every connected component in $(V, E \setminus B)$ is 2-edge-connected. Every such component is called a 2-edge-connected component of G.

Outline

Graphs

- Connectivity and Graph Traversal
 Testing Bipartiteness
- 3 Topological Ordering
- Bridges and 2-Edge-Connected Components
 O(n + m)-Time Algorithm to Find Bridges
 Related Concept: Cut Vertices
- 5 Strong Connectivity in Directed Graphs
 Tarjan's O(n + m)-Time Algorithm for Finding SCCes

Vertical and Horizontal Edges

- G = (V, E): connected graph
- $T = (V, E_T)$: rooted spanning tree of G

Vertical and Horizontal Edges

- G = (V, E): connected graph
- $T = (V, E_T)$: rooted spanning tree of G
- $(u,v) \in E \setminus E_T$ is
 - vertical if one of u and v is an ancestor of the other in T,
 - horizontal otherwise.

• G = (V, E): connected graph

T: a DFS tree for G

• G = (V, E): connected graph

 $T{:}\ {\rm a}\ {\rm DFS}\ {\rm tree}\ {\rm for}\ G$

Q: Can there be a horizontal edges (u, v) w.r.t T?

• G = (V, E): connected graph

T: a DFS tree for ${\cal G}$

A: No!

33/52
- G = (V, E): connected graph
- $\bullet~T:$ a DFS tree for G
- G contains only tree and vertical edges

- G = (V, E): connected graph
- $\bullet~T:$ a DFS tree for G
- G contains only tree and vertical edges
- vertical edges: not bridges

- G = (V, E): connected graph
- T: a DFS tree for G
- G contains only tree and vertical edges
- vertical edges: not bridges

Lemma

- $(u,v) \in T$, u is parent
- (u, v) is not a bridge $\iff \exists$ vertical edge connecting an (inclusive) descendant of v and an (inclusive) ancestor of u

- G = (V, E): connected graph
- T: a DFS tree for G
- G contains only tree and vertical edges
- vertical edges: not bridges

Lemma

- $(u,v) \in T$, u is parent
- (u, v) is not a bridge $\iff \exists$ vertical edge connecting an (inclusive) descendant of v and an (inclusive) ancestor of u

• v.l: the level of vertex v in DFS tree

- v.l: the level of vertex v in DFS tree
- T_v : subtree rooted at v
- *v.r*: the smallest level that can be reached by a vertical edge from *T_v*

- v.l: the level of vertex v in DFS tree
- T_v : subtree rooted at v
- *v.r*: the smallest level that can be reached by a vertical edge from *T_v*
- (parent(u), u) is a bridge if and only if $u.r \ge u.l.$

recursive-DFS(v)

1:	mark v as "visited"	
2:	$v.r \leftarrow \infty$	
3:	for all neighbours u of v do	
4:	if u is unvisited then	$\triangleright u$ is a child of v
5:	$u.l \leftarrow v.l + 1$	
6:	recursive-DFS (u)	
7:	if $u.r \ge u.l$ then claim (v, u) is a bridge	
8:	if $u.r < v.r$ then $v.r \leftarrow u.r$	
9:	else if $u.l < v.l - 1$ then	$\triangleright u$ is ancestor but not parent
10:	if $u.l < v.r$ then $v.r \leftarrow u$.1

finding-bridges

- 1: mark all vertices as "unvisited"
- 2: for every $v \in V$ do
- 3: **if** v is unvisited **then**
- 4: $v.l \leftarrow 0$
- 5: recursive-DFS(v)

• Running time: O(n+m)

Outline

Graphs

- Connectivity and Graph Traversal
 Testing Bipartiteness
- 3 Topological Ordering
- Bridges and 2-Edge-Connected Components
 O(n + m)-Time Algorithm to Find Bridges
 Related Concept: Cut Vertices
- 5 Strong Connectivity in Directed Graphs
 Tarjan's O(n + m)-Time Algorithm for Finding SCCes

Def. A vertex is a cut vertex of G = (V, E) if its removal will increase the number of connected components of G.

Def. A vertex is a cut vertex of G = (V, E) if its removal will increase the number of connected components of G.

Def. A vertex is a cut vertex of G = (V, E) if its removal will increase the number of connected components of G.

Def. A vertex is a cut vertex of G = (V, E) if its removal will increase the number of connected components of G.

Def. A vertex is a cut vertex of G = (V, E) if its removal will increase the number of connected components of G.

Def. A vertex is a cut vertex of G = (V, E) if its removal will increase the number of connected components of G.

Def. A vertex is a cut vertex of G = (V, E) if its removal will increase the number of connected components of G.

Def. A graph G = (V, E) is 2-(vertex-)connected (or biconnected) if for every $u, v \in V$, there are 2 internally-disjoint paths between u and v.

Lemma A graph G = (V, E)with $|V| \ge 3$ does not contain a cut vertex, if and only if it is biconnected.

Q: How can we find the cut vertices?

Q: How can we find the cut vertices?

A: With a small modification to the algorithm for finding bridges.

Outline

Graphs

- Connectivity and Graph Traversal
 Testing Bipartiteness
- 3 Topological Ordering
- Bridges and 2-Edge-Connected Components
 O(n + m)-Time Algorithm to Find Bridges
 Related Concept: Cut Vertices
- Strong Connectivity in Directed Graphs
 Tarjan's O(n + m)-Time Algorithm for Finding SCCes

• directed graph G = (V, E).

- directed graph G = (V, E).
- it may happen: there is a $u \rightarrow v$ path, but no $v \rightarrow u$ path.

- directed graph G = (V, E).
- it may happen: there is a $u \rightarrow v$ path, but no $v \rightarrow u$ path.

- directed graph G = (V, E).
- it may happen: there is a $u \to v$ path, but no $v \to u$ path.

Def. A strongly connected component (SCC) of a directed graph G is a maximal strongly connected subgraph of G.

- directed graph G = (V, E).
- it may happen: there is a $u \rightarrow v$ path, but no $v \rightarrow u$ path.

Def. A strongly connected component (SCC) of a directed graph G is a maximal strongly connected subgraph of G.

- Define equivalence relation: *u* and *v* are related if they are reachable from each other
- equivalence class \equiv SCC

- directed graph G = (V, E).
- it may happen: there is a $u \to v$ path, but no $v \to u$ path.

Def. A strongly connected component (SCC) of a directed graph G is a maximal strongly connected subgraph of G.

- Define equivalence relation: u and v are related if they are reachable from each other
- equivalence class \equiv SCC
- After contracting each SCC, G becomes a directed-acyclic (multi-)graph (DAG).

A:

- Run a traversal algorithm (either BFS or DFS) from *s* twice, one on *G*, one on *G* with all directions of edges reversed
- $\bullet\,$ If we reached all vertices in both algorithms, then G is strongly-connected
- Otherwise, it is not.

A:

- Run a traversal algorithm (either BFS or DFS) from *s* twice, one on *G*, one on *G* with all directions of edges reversed
- If we reached all vertices in both algorithms, then ${\cal G}$ is strongly-connected
- Otherwise, it is not.

Q: How can we find all strongly-connected components (SCCes) of a directed graph G?

A:

- Run a traversal algorithm (either BFS or DFS) from *s* twice, one on *G*, one on *G* with all directions of edges reversed
- If we reached all vertices in both algorithms, then ${\cal G}$ is strongly-connected
- Otherwise, it is not.

Q: How can we find all strongly-connected components (SCCes) of a directed graph G?

A: A much harder problem. Tarjan's O(n+m)-time algorithm.

Outline

Graphs

- Connectivity and Graph Traversal
 Testing Bipartiteness
- 3 Topological Ordering
- Bridges and 2-Edge-Connected Components
 O(n + m)-Time Algorithm to Find Bridges
 Related Concept: Cut Vertices
- Strong Connectivity in Directed Graphs
 Tarjan's O(n + m)-Time Algorithm for Finding SCCes

- directed graph, G = (V, E), a DFS-tree T,
- \bullet assuming every vertex is reachable from the root of T

- directed graph, G = (V, E), a DFS-tree T,
- \bullet assuming every vertex is reachable from the root of T

- directed graph, G = (V, E), a DFS-tree T,
- \bullet assuming every vertex is reachable from the root of T

type of edges in G w.r.t T

- tree edges: edges in T
- upwards (vertical) edges
- downwards (vertical) edges

- directed graph, G = (V, E), a DFS-tree T,
- \bullet assuming every vertex is reachable from the root of T

type of edges in G w.r.t T

- tree edges: edges in T
- upwards (vertical) edges
- downwards (vertical) edges
- leftwards horizontal edges
Type of Edges w.r.t a Directed DFS Tree

- directed graph, G = (V, E), a DFS-tree T,
- \bullet assuming every vertex is reachable from the root of T

type of edges in $G \ {\rm w.r.t} \ T$

- tree edges: edges in T
- upwards (vertical) edges
- downwards (vertical) edges
- leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

Type of Edges w.r.t a Directed DFS Tree

- directed graph, G = (V, E), a DFS-tree T,
- \bullet assuming every vertex is reachable from the root of T

type of edges in G w.r.t T

- tree edges: edges in T
- upwards (vertical) edges
- downwards (vertical) edges
- leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

A: No!

Type of Edges w.r.t a Directed DFS Tree

- directed graph, G = (V, E), a DFS-tree T,
- \bullet assuming every vertex is reachable from the root of T

type of edges in G w.r.t T

- tree edges: edges in T
- upwards (vertical) edges
- downwards (vertical) edges
- leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

A: No!

Lemma Suppose u and v are in the same SCC, and w is the lowest common ancestor (LCA) of u and v in T. Then w is the same SCC as u and v.

Lemma Suppose u and v are in the same SCC, and w is the lowest common ancestor (LCA) of u and v in T. Then w is the same SCC as u and v.

Proof.

 Idea: using leftward, upwards and tree edges, u can not reach v without touching w or its ancestors.

Lemma Suppose u and v are in the same SCC, and w is the lowest common ancestor (LCA) of u and v in T. Then w is the same SCC as u and v.

Proof.

 Idea: using leftward, upwards and tree edges, u can not reach v without touching w or its ancestors.

Lemma The vertices in every SCC of G induce a sub-tree in T.

An Intermediate Algorithm to Keep in Mind

- 1: build the DFS tree ${\cal T}$
- 2: while T is not empty do
- 3: find the first vertex v in the posterior-order-traversal of T satisfying the following property: there are no edges from T_v to outside T_v
- 4: claim vertices in T_v as a SCC, remove them from T and all edges incident to them from T and G

finding strongly connected components

- 1: $statck \leftarrow empty stack, i \leftarrow 0$
- 2: for every $v \in V$ do: $v.i \leftarrow \bot, onstack[i] \leftarrow$ false
- 3: for every $v \in V$ do
- 4: **if** $v.i = \bot$ **then** recursive-DFS(v)

recursive- $\mathsf{DFS}(v)$

1:
$$i \leftarrow i + 1, v.i \leftarrow i, v.r \leftarrow i$$

- 2: $stack.push(v), onstack[v] \leftarrow true$
- 3: for every outgoing edge $\left(v,u\right)$ of v do
- 4: **if** $u.i = \bot$ **then** recursive-DFS(u)
- 5: **if** onstack[u] and u.r < v.r **then** $v.r \leftarrow u.r$
- 6: if v.r = v.i then
- 7: pop all vertices in stack after v, including v itself
- 8: set onstack of these vertices to be false
- 9: declare that these vertices form an SCC

Running time of the algorithm is O(n+m).