算法设计与分析（2024年春季学期） Graph Basics

授课老师：栗师
南京大学计算机科学与技术系

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Testing Bipartiteness
(3) Topological Ordering

4 Bridges and 2-Edge-Connected Components

- $O(n+m)$-Time Algorithm to Find Bridges
- Related Concept: Cut Vertices
(5) Strong Connectivity in Directed Graphs
- Tarjan's $O(n+m)$-Time Algorithm for Finding SCCes

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs

(Undirected) Graph $G=(V, E)$

- E : pairwise relationships among V;
- (undirected) graphs: relationship is symmetric, E contains subsets of size 2

(Undirected) Graph $G=(V, E)$

- V : set of vertices (nodes);
- $V=\{1,2,3,4,5,6,7,8\}$
- E : pairwise relationships among V;
- (undirected) graphs: relationship is symmetric, E contains subsets of size 2
- $E=\{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{3,7\},\{3,8\}$, $\{4,5\},\{5,6\},\{7,8\}\}$

Directed Graph $G=(V, E)$

- $V=\{1,2,3,4,5,6,7,8\}$
- E : pairwise relationships among V;
- directed graphs: relationship is asymmetric, E contains ordered pairs

Directed Graph $G=(V, E)$

- $V=\{1,2,3,4,5,6,7,8\}$
- E : pairwise relationships among V;
- directed graphs: relationship is asymmetric, E contains ordered pairs
- $E=\{(1,2),(1,3),(3,2),(4,2),(2,5),(5,3),(3,7),(3,8)$, $(4,5),(5,6),(6,5),(8,7)\}$

Abuse of Notations

- For (undirected) graphs, we often use (i, j) to denote the set $\{i, j\}$.
- We call (i, j) an unordered pair; in this case $(i, j)=(j, i)$.

- $E=\{(1,2),(1,3),(2,3),(2,4),(2,5),(3,5),(3,7),(3,8)$, $(4,5),(5,6),(7,8)\}$
- Social Network: Undirected
- Transition Graph : Directed
- Road Network : Directed or Undirected
- Internet : Directed or Undirected

Representation of Graphs

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

- Adjacency matrix
- $n \times n$ matrix, $A[u, v]=1$ if $(u, v) \in E$ and $A[u, v]=0$ otherwise
- A is symmetric if graph is undirected

Representation of Graphs

- Adjacency matrix
- $n \times n$ matrix, $A[u, v]=1$ if $(u, v) \in E$ and $A[u, v]=0$ otherwise
- A is symmetric if graph is undirected
- Linked lists
- For every vertex v, there is a linked list containing all neighbours of v.

Representation of Graphs

- Adjacency matrix
- $n \times n$ matrix, $A[u, v]=1$ if $(u, v) \in E$ and $A[u, v]=0$ otherwise
- A is symmetric if graph is undirected
- Linked lists
- For every vertex v, there is a linked list containing all neighbours of v.
- If graph is static: store neighbors of all vertices in a length- $2 m$ array, where the neighbors of any vertex are consecutive.

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage		
time to check $(u, v) \in E$		
time to list all neighbours of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	
time to check $(u, v) \in E$		
time to list all neighbours of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$		
time to list all neighbours of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$	$O(1)$	
time to list all neighbours of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$	$O(1)$	$O\left(d_{u}\right)$
time to list all neighbours of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$	$O(1)$	$O\left(d_{u}\right)$
time to list all neighbours of v	$O(n)$	

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$	$O(1)$	$O\left(d_{u}\right)$
time to list all neighbours of v	$O(n)$	$O\left(d_{v}\right)$

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Testing Bipartiteness
(3) Topological Ordering
(4) Bridges and 2-Edge-Connected Components
- $O(n+m)$-Time Algorithm to Find Bridges
- Related Concept: Cut Vertices
(5) Strong Connectivity in Directed Graphs
- Tarjan's $O(n+m)$-Time Algorithm for Finding SCCes

Connectivity Problem

Input: graph $G=(V, E)$, (using linked lists)
two vertices $s, t \in V$
Output: whether there is a path connecting s to t in G

Connectivity Problem

Input: graph $G=(V, E)$, (using linked lists)
two vertices $s, t \in V$
Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t

Connectivity Problem

Input: graph $G=(V, E)$, (using linked lists) two vertices $s, t \in V$
Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
- Breadth-First Search (BFS)

Connectivity Problem

Input: graph $G=(V, E)$, (using linked lists) two vertices $s, t \in V$
Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
- Breadth-First Search (BFS)
- Depth-First Search (DFS)

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Implementing BFS using a Queue

BFS (s)

1: head $\leftarrow 1$, tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: while head \leq tail do
4: $\quad v \leftarrow$ queue[head], head \leftarrow head +1
5: \quad for all neighbours u of v do
6: \quad if u is "unvisited" then
7: \quad tail \leftarrow tail +1 , queue $[$ tail $]=u$
8: mark u as "visited"

- Running time: $O(n+m)$.

Example of BFS via Queue

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Implementing DFS using Recurrsion

DFS(s)

1: mark all vertices as "unvisited"
2: recursive-DFS(s)

recursive-DFS (v)

1: mark v as "visited"
2: for all neighbours u of v do
3: if u is unvisited then recursive-DFS (u)

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Testing Bipartiteness
(3) Topological Ordering
(4) Bridges and 2-Edge-Connected Components
- $O(n+m)$-Time Algorithm to Find Bridges
- Related Concept: Cut Vertices
(5) Strong Connectivity in Directed Graphs
- Tarjan's $O(n+m)$-Time Algorithm for Finding SCCes

Testing Bipartiteness: Applications of BFS

Def. A graph $G=(V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, we have either $u \in L, v \in R$ or $v \in L, u \in R$.

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report "not a bipartite graph" if contradiction was found

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report "not a bipartite graph" if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Testing Bipartiteness using BFS

BFS (s)

1: head $\leftarrow 1$, tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: while head \leq tail do
4: $\quad v \leftarrow$ queue $[$ head $]$, head \leftarrow head +1
5: \quad for all neighbours u of v do
6: if u is "unvisited" then
7:
tail \leftarrow tail +1 , queue $[$ tail $]=u$
8: mark u as "visited"

Testing Bipartiteness using BFS

test-bipartiteness (s)
1: head $\leftarrow 1$, tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: color $[s] \leftarrow 0$
4: while head \leq tail do
5: $\quad v \leftarrow$ queue[head], head \leftarrow head +1
6: for all neighbours u of v do
7 :
8:
9: if u is "unvisited" then tail \leftarrow tail +1, queue $[$ tail $]=u$ mark u as "visited"
10:
11:
12:

$$
\text { color }[u] \leftarrow 1-\text { color }[v]
$$

else if color $[u]=\operatorname{color}[v]$ then print(" G is not bipartite") and exit

Testing Bipartiteness using BFS

1: mark all vertices as "unvisited"
2: for each vertex $v \in V$ do
3: if v is "unvisited" then
4: \quad test-bipartiteness (v)
5: $\operatorname{print}($ " G is bipartite")

Testing Bipartiteness using BFS

1: mark all vertices as "unvisited"
2: for each vertex $v \in V$ do
3: if v is "unvisited" then
4: \quad test-bipartiteness (v)
5: $\operatorname{print}($ " G is bipartite")

Obs. Running time of algorithm $=O(n+m)$

Outline

(1) Graphs
(5) Connectivity and Graph Traversal

- Testing Bipartiteness
(3) Topological Ordering
(4) Bridges and 2-Edge-Connected Components
- $O(n+m)$-Time Algorithm to Find Bridges
- Related Concept: Cut Vertices
(5) Strong Connectivity in Directed Graphs
- Tarjan's $O(n+m)$-Time Algorithm for Finding SCCes

Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G=(V, E)$
Output: 1-to-1 function $\pi: V \rightarrow\{1,2,3 \cdots, n\}$, so that

- if $(u, v) \in E$ then $\pi(u)<\pi(v)$

Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G=(V, E)$
Output: 1-to-1 function $\pi: V \rightarrow\{1,2,3 \cdots, n\}$, so that

- if $(u, v) \in E$ then $\pi(u)<\pi(v)$

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- Maintain the in-degree d_{v} of vertices
- Maintain a queue (or stack) of vertices v with $d_{v}=0$

topological-sort (G)

1: let $d_{v} \leftarrow 0$ for every $v \in V$
2: for every $v \in V$ do
3: for every u such that $(v, u) \in E$ do
4: $\quad d_{u} \leftarrow d_{u}+1$
5: $S \leftarrow\left\{v: d_{v}=0\right\}, i \leftarrow 0$
6: while $S \neq \emptyset$ do
7: $\quad v \leftarrow$ arbitrary vertex in $S, S \leftarrow S \backslash\{v\}$
8: $\quad i \leftarrow i+1, \pi(v) \leftarrow i$
9: \quad for every u such that $(v, u) \in E$ do
10: $\quad d_{u} \leftarrow d_{u}-1$
11: if $d_{u}=0$ then add u to S
12: if $i<n$ then output "not a DAG"

- S can be represented using a queue or a stack
- Running time $=O(n+m)$

S as a Queue or a Stack

DS	Queue	Stack
Initialization	head $\leftarrow 1$, tail $\leftarrow 0$	top $\leftarrow 0$
Non-Empty?	head \leq tail	top >0
Add (v)	tail \leftarrow tail +1	top \leftarrow top +1
	$S[$ tail $\leftarrow v$	$S[$ top $\leftarrow \leftarrow v$
Retrieve v	$v \leftarrow S[$ head $]$	$v \leftarrow S[$ top $]$
	head $\leftarrow h e a d+1$	top \leftarrow top -1

Example

	a	b	c	d	e	f	g
degree	0	0	0	0	1	0	3

Example

	a	b	c	d	e	f	g
degree	0	0	0	0	1	0	3

Example

Example

Example

Example

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	1

Example

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	1

Example

(9)

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	0

Example

(9)

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	0

Example

(9)

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	0

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Testing Bipartiteness
(3) Topological Ordering

4 Bridges and 2-Edge-Connected Components

- $O(n+m)$-Time Algorithm to Find Bridges
- Related Concept: Cut Vertices
(5) Strong Connectivity in Directed Graphs
- Tarjan's $O(n+m)$-Time Algorithm for Finding SCCes

Def. Given $G=(V, E)$, $e \in E$ is called a bridge if the removal of e from G will increase its number of connected components.

Def. Given $G=(V, E)$, $e \in E$ is called a bridge if the removal of e from G will increase its number of connected components.

- When G is connected, $e \in E$ is a bridge iff its removal will disconnect G.

Def. Given $G=(V, E)$, $e \in E$ is called a bridge if the removal of e from G will increase its number of connected components.

- When G is connected, $e \in E$ is a bridge iff its removal will disconnect G.

Def. Given $G=(V, E)$, $e \in E$ is called a bridge if the removal of e from G will increase its number of connected components.

- When G is connected, $e \in E$ is a bridge iff its removal will disconnect G.

Def. A graph $G=(V, E)$ is 2-edge-connected if for every two $u, v \in V$, there are two edge disjoint paths connecting u and v.

Def. Given $G=(V, E)$, $e \in E$ is called a bridge if the removal of e from G will increase its number of connected components.

- When G is connected,
$e \in E$ is a bridge iff its removal will disconnect G.

Def. A graph $G=(V, E)$ is 2-edge-connected if for every two $u, v \in V$, there are two edge disjoint paths connecting u and v.

Def. Given $G=(V, E)$, $e \in E$ is called a bridge if the removal of e from G will increase its number of connected components.

- When G is connected, $e \in E$ is a bridge iff its removal will disconnect G.

Def. A graph $G=(V, E)$ is 2-edge-connected if for every two $u, v \in V$, there are two edge disjoint paths connecting u and v.

Def. Given $G=(V, E)$, $e \in E$ is called a bridge if the removal of e from G will increase its number of connected components.

- When G is connected, $e \in E$ is a bridge iff its removal will disconnect G.

Def. A graph $G=(V, E)$ is 2-edge-connected if for every two $u, v \in V$, there are two edge disjoint paths connecting u and v.

Def. Given $G=(V, E)$, $e \in E$ is called a bridge if the removal of e from G will increase its number of connected components.

- When G is connected,
$e \in E$ is a bridge iff its removal will disconnect G.

Def. A graph $G=(V, E)$ is 2-edge-connected if for every two $u, v \in V$, there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph $G=(V, E)$. Then, every connected component in ($V, E \backslash B$) is 2-edge-connected. Every such component is called a 2-edge-connected component of G.

Def. Given $G=(V, E)$, $e \in E$ is called a bridge if the removal of e from G will increase its number of connected components.

- When G is connected, $e \in E$ is a bridge iff its removal will disconnect G.

Def. A graph $G=(V, E)$ is 2-edge-connected if for every two $u, v \in V$, there are two edge disjoint paths connecting u and v.

Lemma Let B be the set of bridges in a graph $G=(V, E)$. Then, every connected component in ($V, E \backslash B$) is 2-edge-connected. Every such component is called a 2-edge-connected component of G.

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Testing Bipartiteness
(3) Topological Ordering

4 Bridges and 2-Edge-Connected Components

- $O(n+m)$-Time Algorithm to Find Bridges
- Related Concept: Cut Vertices
(5) Strong Connectivity in Directed Graphs
- Tarjan's $O(n+m)$-Time Algorithm for Finding SCCes

Vertical and Horizontal Edges

- $G=(V, E)$: connected graph
- $T=\left(V, E_{T}\right)$: rooted spanning tree of G

Vertical and Horizontal Edges

- $G=(V, E)$: connected graph
- $T=\left(V, E_{T}\right)$: rooted spanning tree of G
- $(u, v) \in E \backslash E_{T}$ is
- vertical if one of u and v is an ancestor of the other in T,
- horizontal otherwise.

- $G=(V, E)$: connected graph
T : a DFS tree for G

- $G=(V, E)$: connected graph

T : a DFS tree for G

Q: Can there be a horizontal edges (u, v) w.r.t T ?

- $G=(V, E)$: connected graph

T : a DFS tree for G

Q: Can there be a horizontal edges (u, v) w.r.t T ?

A: No!

- $G=(V, E)$: connected graph
- T : a DFS tree for G
- G contains only tree and vertical edges

- $G=(V, E)$: connected graph
- T : a DFS tree for G
- G contains only tree and vertical edges
- vertical edges: not bridges

because of this

vertical edge

- $G=(V, E)$: connected graph
- T : a DFS tree for G
- G contains only tree and vertical edges
- vertical edges: not bridges

Lemma

- $(u, v) \in T, u$ is parent
- (u, v) is not a bridge $\Longleftrightarrow \exists$ vertical edge connecting an (inclusive) descendant of v and an (inclusive) ancestor of u
because of this
vertical edge
- $G=(V, E)$: connected graph
- T : a DFS tree for G
- G contains only tree and vertical edges
- vertical edges: not bridges

Lemma

- $(u, v) \in T, u$ is parent
- (u, v) is not a bridge $\Longleftrightarrow \exists$ vertical edge connecting an (inclusive) descendant of v and an (inclusive) ancestor of u

35/52

- $v . l$: the level of vertex v in DFS tree

- v.l: the level of vertex v in DFS tree
- T_{v} : subtree rooted at v
- v.r: the smallest level that can be reached by a vertical edge from T_{v}

- $v . l$: the level of vertex v in DFS tree
- T_{v} : subtree rooted at v
- v.r: the smallest level that can be reached by a vertical edge from T_{v}
- (parent $(u), u)$ is a bridge if and only if $u . r \geq u . l$.

recursive-DFS (v)

1: mark v as "visited"
2: v.r $\leftarrow \infty$
3: for all neighbours u of v do
4: if u is unvisited then
$\triangleright u$ is a child of v
5: $\quad u . l \leftarrow v . l+1$
6: recursive-DFS(u)
7: \quad if $u . r \geq u . l$ then claim (v, u) is a bridge
8: \quad if $u . r<v . r$ then $v . r \leftarrow u . r$
9: \quad else if $u . l<v . l-1$ then $\quad \triangleright u$ is ancestor but not parent
10: \quad if $u . l<v . r$ then $v . r \leftarrow u . l$

finding-bridges

1: mark all vertices as "unvisited"
2: for every $v \in V$ do
3: if v is unvisited then
4: $v . l \leftarrow 0$
5: recursive-DFS (v)

- Running time: $O(n+m)$

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Testing Bipartiteness
(3) Topological Ordering

4 Bridges and 2-Edge-Connected Components

- $O(n+m)$-Time Algorithm to Find Bridges
- Related Concept: Cut Vertices
(5) Strong Connectivity in Directed Graphs
- Tarjan's $O(n+m)$-Time Algorithm for Finding SCCes

Cut vertices

Def. A vertex is a cut vertex of $G=(V, E)$ if its removal will increase the number of connected components of G.

Cut vertices

Def. A vertex is a cut vertex of $G=(V, E)$ if its removal will increase the number of connected components of G.

Cut vertices

Def. A vertex is a cut vertex of $G=(V, E)$ if its removal will increase the number of connected components of G.

Def. A graph $G=(V, E)$ is 2-(vertex-)connected (or biconnected) if for every $u, v \in V$, there are 2 internally-disjoint paths between u and v.

Cut vertices

Def. A vertex is a cut vertex of $G=(V, E)$ if its removal will increase the number of connected components of G.

Def. A graph $G=(V, E)$ is 2-(vertex-)connected (or biconnected) if for every $u, v \in V$, there are 2 internally-disjoint paths between u and v.

Cut vertices

Def. A vertex is a cut vertex of $G=(V, E)$ if its removal will increase the number of connected components of G.

Def. A graph $G=(V, E)$ is 2-(vertex-)connected (or biconnected) if for every $u, v \in V$, there are 2 internally-disjoint paths between u and v.

Cut vertices

Def. A vertex is a cut vertex of $G=(V, E)$ if its removal will increase the number of connected components of G.

Def. A graph $G=(V, E)$ is 2-(vertex-)connected (or biconnected) if for every $u, v \in V$, there are 2 internally-disjoint paths between u and v.

Cut vertices

Def. A vertex is a cut vertex of $G=(V, E)$ if its removal will increase the number of connected components of G.

Def. A graph $G=(V, E)$ is 2-(vertex-)connected (or biconnected) if for every $u, v \in V$, there are 2 internally-disjoint paths between u and v.

Lemma A graph $G=(V, E)$ with $|V| \geq 3$ does not contain a cut vertex, if and only if it is biconnected.

Q: How can we find the cut vertices?

Q: How can we find the cut vertices?

A: With a small modification to the algorithm for finding bridges.

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Testing Bipartiteness
(3) Topological Ordering
(4) Bridges and 2-Edge-Connected Components
- $O(n+m)$-Time Algorithm to Find Bridges
- Related Concept: Cut Vertices
(5) Strong Connectivity in Directed Graphs
- Tarjan's $O(n+m)$-Time Algorithm for Finding SCCes
- directed graph $G=(V, E)$.

- directed graph $G=(V, E)$.
- it may happen: there is a $u \rightarrow v$ path, but no $v \rightarrow u$ path.

- directed graph $G=(V, E)$.
- it may happen: there is a $u \rightarrow v$ path, but no $v \rightarrow u$ path.

Def. A directed graph $G=(V, E)$ is strongly connected if for every $u, v \in V$, there is a path from u to v in G.

- directed graph $G=(V, E)$.
- it may happen: there is a $u \rightarrow v$ path, but no $v \rightarrow u$ path.

Def. A directed graph $G=(V, E)$ is strongly connected if for every $u, v \in V$, there is a path from u to v in G.

Def. A strongly connected component (SCC) of a directed graph G is a maximal strongly connected subgraph of G.

- directed graph $G=(V, E)$.
- it may happen: there is a $u \rightarrow v$ path, but no $v \rightarrow u$ path.

Def. A directed graph $G=(V, E)$ is strongly connected if for every $u, v \in V$, there is a path from u to v in G.

Def. A strongly connected component (SCC) of a directed graph G is a maximal strongly connected subgraph of G.

- Define equivalence relation: u and v are related if they are reachable from each other
- equivalence class \equiv SCC
- directed graph $G=(V, E)$.
- it may happen: there is a $u \rightarrow v$ path, but no $v \rightarrow u$ path.

Def. A directed graph $G=(V, E)$ is strongly connected if for every $u, v \in V$, there is a path from u to v in G.

Def. A strongly connected component (SCC) of a directed graph G is a maximal strongly connected subgraph of G.

- Define equivalence relation: u and v are related if they are reachable from each other
- equivalence class \equiv SCC
- After contracting each SCC, G becomes a directed-acyclic (multi-)graph (DAG).

Q: How can we check if a directed graph $G=(V, E)$ is strongly-connected?

Q: How can we check if a directed graph $G=(V, E)$ is strongly-connected?

A:

- Run a traversal algorithm (either BFS or DFS) from s twice, one on G, one on G with all directions of edges reversed
- If we reached all vertices in both algorithms, then G is strongly-connected
- Otherwise, it is not.

Q: How can we check if a directed graph $G=(V, E)$ is strongly-connected?

A:

- Run a traversal algorithm (either BFS or DFS) from s twice, one on G, one on G with all directions of edges reversed
- If we reached all vertices in both algorithms, then G is strongly-connected
- Otherwise, it is not.

Q: How can we find all strongly-connected components (SCCes) of a directed graph G ?

Q: How can we check if a directed graph $G=(V, E)$ is strongly-connected?

A:

- Run a traversal algorithm (either BFS or DFS) from s twice, one on G, one on G with all directions of edges reversed
- If we reached all vertices in both algorithms, then G is strongly-connected
- Otherwise, it is not.

Q: How can we find all strongly-connected components (SCCes) of a directed graph G ?

A: A much harder problem. Tarjan's $O(n+m)$-time algorithm.

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Testing Bipartiteness
(3) Topological Ordering
(4) Bridges and 2-Edge-Connected Components
- $O(n+m)$-Time Algorithm to Find Bridges
- Related Concept: Cut Vertices
(5) Strong Connectivity in Directed Graphs
- Tarjan's $O(n+m)$-Time Algorithm for Finding SCCes

Type of Edges w.r.t a Directed DFS Tree

- directed graph, $G=(V, E)$, a DFS-tree T,
- assuming every vertex is reachable from the root of T

Type of Edges w.r.t a Directed DFS Tree

- directed graph, $G=(V, E)$, a DFS-tree T,
- assuming every vertex is reachable from the root of T

type of edges in G w.r.t T
- tree edges: edges in T

Type of Edges w.r.t a Directed DFS Tree

- directed graph, $G=(V, E)$, a DFS-tree T,
- assuming every vertex is reachable from the root of T

type of edges in G w.r.t T
- tree edges: edges in T
- upwards (vertical) edges
- downwards (vertical) edges

Type of Edges w.r.t a Directed DFS Tree

- directed graph, $G=(V, E)$, a DFS-tree T,
- assuming every vertex is reachable from the root of T

type of edges in G w.r.t T
- tree edges: edges in T
- upwards (vertical) edges
- downwards (vertical) edges
- leftwards horizontal edges

Type of Edges w.r.t a Directed DFS Tree

- directed graph, $G=(V, E)$, a DFS-tree T,
- assuming every vertex is reachable from the root of T

type of edges in G w.r.t T
- tree edges: edges in T
- upwards (vertical) edges
- downwards (vertical) edges
- leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

Type of Edges w.r.t a Directed DFS Tree

- directed graph, $G=(V, E)$, a DFS-tree T,
- assuming every vertex is reachable from the root of T

type of edges in G w.r.t T
- tree edges: edges in T
- upwards (vertical) edges
- downwards (vertical) edges
- leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

A: No!

Type of Edges w.r.t a Directed DFS Tree

- directed graph, $G=(V, E)$, a DFS-tree T,
- assuming every vertex is reachable from the root of T

type of edges in G w.r.t T
- tree edges: edges in T
- upwards (vertical) edges
- downwards (vertical) edges
- leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

A: No!

Lemma Suppose u and v are in the same SCC, and w is the lowest common ancestor (LCA) of u and v in T. Then w is the same SCC as u and v.

Lemma Suppose u and v are in the same SCC, and w is the lowest common ancestor (LCA) of u and v in T. Then w is the same SCC as u and v.

Proof.

- Idea: using leftward, upwards and tree edges, u can not reach v without touching w or its ancestors.

Lemma Suppose u and v are in the same SCC, and w is the lowest common ancestor (LCA) of u and v in T. Then w is the same SCC as u and v.

Proof.

- Idea: using leftward, upwards and tree edges, u can not reach v without touching w or its ancestors. \square

Lemma The vertices in every SCC of G induce a sub-tree in T.

An Intermediate Algorithm to Keep in Mind

1: build the DFS tree T
2: while T is not empty do
3: find the first vertex v in the posterior-order-traversal of T satisfying the following property: there are no edges from T_{v} to outside T_{v}
4: \quad claim vertices in T_{v} as a SCC, remove them from T and all edges incident to them from T and G

Illustration of Intermediate Algorithm

Illustration of Intermediate Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

Illustration of Tarjan's Algorithm

finding strongly connected components

1: statck \leftarrow empty stack, $i \leftarrow 0$
2: for every $v \in V$ do: $v . i \leftarrow \perp$, onstack $[i] \leftarrow$ false
3: for every $v \in V$ do
4: \quad if $v . i=\perp$ then recursive- $\operatorname{DFS}(v)$

recursive-DFS (v)

1: $i \leftarrow i+1, v \cdot i \leftarrow i, v \cdot r \leftarrow i$
2: stack.push (v), onstack $[v] \leftarrow$ true
3: for every outgoing edge (v, u) of v do
4: \quad if $u . i=\perp$ then recursive-DFS (u)
5: \quad if onstack $[u]$ and $u . r<v . r$ then $v . r \leftarrow u . r$
6: if $v . r=v . i$ then
7: pop all vertices in stack after v, including v itself
8: \quad set onstack of these vertices to be false
9: declare that these vertices form an SCC

Running time of the algorithm is $O(n+m)$.

