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What is an Algorithm?

@ Donald Knuth: An algorithm is a finite, definite effective
procedure, with some input and some output.
e Computational problem: specifies the input/output relationship.

@ An algorithm solves a computational problem if it produces the
correct output for any given input.



Examples

Greatest Common Divisor
Input: two integers a,b > 0

Output: the greatest common divisor of a and b

Example:
Input: 210, 270
Output: 30

Algorithm: Euclidean algorithm
ged(270,210) = ged (210,270 mod 210) = ged(210, 60)
(270,210) — (210,60) — (60,30) — (30,0)



Examples

Sorting
Input: sequence of n numbers (ay,as, - ,a,)
Output: a permutation (a},al, - ,a’,) of the input sequence such

that ] <af <--- <a,

Example:
e Input: 53,12, 35,21,59,15
o Output: 12,15,21, 35,53, 59

@ Algorithms: insertion sort, merge sort, quicksort, ...



Examples

Shortest Path
Input: directed graph G = (V, E), s,t € V
Output: a shortest path from s to ¢ in G

@ Algorithm: Dijkstra’s algorithm



Algorithm = Computer Program?

@ Algorithm: “abstract”, can be specified using computer program,
English, pseudo-codes or flow charts.

o Computer program: “concrete”, implementation of algorithm,
using a particular programming language



Pseudo-Code

C++ program:
@ int Euclidean(int a, int b){

Pseudo-Code: ° int ¢;
° while (b > 0){
Euclidean(a, b) o c=b:
1: while b > 0 do ° b=a%b:
2: (a,b) < (b,a mod b) o 3= c
3: return a o )
) return a;
° }



Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)
@ Sometimes: memory usage

@ Not covered in the course: engineering side

extensibility

modularity

object-oriented model
user-friendliness (e.g, GUI)

e Why is it important to study the running time (efficiency) of an
algorithm?
@ feasible vs. infeasible
@ efficient algorithms: less engineering tricks needed, can use languages
aiming for easy programming (e.g, python)
© fundamental
Q it is fun!
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Input: sequence of n numbers (a1, as, - ,a,)

Output: a permutation (a},a), -+ ,al,) of the input sequence such

»'n

that a} <a) <.--<a),

@ Input: 53,12, 35, 21,59, 15
@ Output: 12,15, 21,35, 53,59
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Insertion-Sort

@ At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53,12, 35, 21,59, 15
iteration 2: 12,53, 35, 21,59, 15
iteration 3: 12,35,53, 21,59, 15
iteration 4: 12,21,35,53,59, 15
iteration 5: 12,21,35,53,59,15
iteration 6: 12,15,21,35,53,59



Example:
e Input: 53,12, 35,21,59,15
o Output: 12,15, 21, 35,53, 59

insertion-sort(A, n)

1. for j < 2 ton do

key < Alj]

i j—1

while i > 0 and A[i] > key do
Ali + 1] + A[i]
141—1

Ali + 1] < key

N

No g ks w

@ j=6
@ key =15

12 15 21 35 53
/]\

?

59
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Analysis of Insertion Sort

@ Correctness

@ Running time



Correctness of Insertion Sort

@ Invariant: after iteration j of outer loop, A[l..j] is the sorted array
for the original A[l..j].

after j =1:53,12,35,21,59,15
after j =2:12,53,35,21,59,15
after j = 3:12,35,53,21,59,15
after j =4:12,21,35,53,59,15
after j =5:12,21,35,53,59,15
after j =6 :12,15,21, 35,53, 59



Analyzing Running Time of Insertion Sort

@ QI1: what is the size of input?
@ Al: Running time as the function of size

@ possible definition of size :

e Sorting problem: # integers,
o Greatest common divisor: total length of two integers
o Shortest path in a graph: # edges in graph

@ Q2: Which input?

e For the insertion sort algorithm: if input array is already sorted in
ascending order, then algorithm runs much faster than when it is
sorted in descending order.

o A2: Worst-case analysis:

e Running time for size n = worst running time over all possible arrays
of length n



Analyzing Running Time of Insertion Sort

@ Q3: How fast is the computer?
@ Q4: Programming language?
@ A: They do not matter!

Important idea: asymptotic analysis

@ Focus on growth of running-time as a function, not any particular
value.




Asymptotic Analysis: O-notation

Informal way to define O-notation:

@ Ignoring lower order terms

Ignoring leading constant

3nd 4+ 2n? — 18n + 1028 = 3n® = n?
3n3 4+ 2n? — 18n + 1028 = O(n?)

n%/100 — 3n + 10 = n?/100 = n?
n?/100 — 3n + 10 = O(n?)



Asymptotic Analysis: O-notation

e 3n®+2n? — 18n + 1028 = O(n?)

e n2/100 — 3n* + 10 = O(n?)

O-notation allows us to ignore

@ architecture of computer

@ programming language

@ how we measure the running time: seconds or # instructions?

@ to execute a + b+ c:

e program 1 requires 10 instructions, or 10~® seconds

e program 2 requires 2 instructions, or 10~ seconds

e they only change by a constant in the running time, which will be
hidden by the O(-) notation



Asymptotic Analysis: O-notation

@ Algorithm 1 runs in time O(n?)
@ Algorithm 2 runs in time O(n)

@ Does not tell which algorithm is faster for a specific n!

@ Algorithm 2 will eventually beat algorithm 1 as n increases.

@ For Algorithm 1: if we increase n by a factor of 2, running time
increases by a factor of 4

@ For Algorithm 2: if we increase n by a factor of 2, running time
increases by a factor of 2



Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1: for j < 2ton do

key < Alj]

i -1

while i > 0 and Ai] > key do
Ali + 1] + Ali]
141—1

Ali 4+ 1] « key

N

No g s w

@ Worst-case running time for iteration j of the outer loop?
Answer: O(j)

o Total running time = > 7, O(j) = O(3_7_, 7)
_ O(n (n+1) . 1) — O(n2)



Computation Model

@ Random-Access Machine (RAM) model
o reading and writing A[j] takes O(1) time

@ Basic operations such as addition, subtraction and multiplication
take O(1) time

@ Each integer (word) has clogn bits, ¢ > 1 large enough

e Reason: often we need to read the integer n and handle integers
within range [—n® n¢], it is convenient to assume this takes O(1)
time.

@ What is the precision of real numbers?
Most of the time, we only consider integers.
@ Can we do better than insertion sort asymptotically?

@ Yes: merge sort, quicksort and heap sort take O(nlogn) time



Questions?
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Asymptotically Positive Functions

Def. f:N — R is an asymptotically positive function if:
@ Jng > 0 such that ¥n > ny we have f(n) >0

In other words, f(n) is positive for large enough n.
n?—n—30 Yes
AR Yes

100n — n?/10 + 507 No

We only consider asymptotically positive functions.



O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) <cg(n),¥n > no}.

@ In short, f(n) € O(g(n)) if f(n) < cg(n) for some ¢ > 0 and
every large enough n.




O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),¥n >ne}.

e 3n? +2n € O(n* — 10n)

Proof.

Let ¢ =4 and ng = 50, for every n > ny = 50, we have,
3n? 4+ 2n — c(n? — 10n) = 3n? + 2n — 4(n® — 10n)
= —n?+42n <0.
3n? 4+ 2n < ¢(n? — 10n)



O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),Yn > no}.

e 3n%+2n € O(n* — 10n)
e 3n?+2n € O(n® — 5n?)
e n' e O(2")
e n® ¢ O(10n?)

Qe

Asymptotic Notations \ O
Comparison Relations ‘ <



Conventions

We use “f(n) = O(g(n))" to denote “f(n) € O(g(n))”
3n? 4+ 2n = O(n?)

e “=" is asymmetric: we do not write O(n?) = 3n? + 2n
Analogy: Mike is a student. A-student-isMike:

We use “O(g(n)) = O(g'(n))" to denote “O(g(n)) C O(¢'(n))".
O(3n? + 2n) = O(n?)

Again, “=" is asymmetric.
O(n?) = O(3n? + 2n) makes sense, but is wrong.

Analogy: All students are people.
Equalities can be chained: 3n? + 2n = O(n?) = O(n?).



(2-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) <cg(n),¥n > no}.

2-Notation For a function g(n),
Q(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) > cg(n),¥n > ne}.

@ In short, f(n) € Q(g(n)) if f(n) > cg(n) for some ¢ and large
enough n.



(2-Notation: Asymptotic Lower Bound

(2-Notation For a function g(n),
Q(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) > cg(n),¥n > ne}.

fn)




(2-Notation: Asymptotic Lower Bound

@ Again, we use “=" instead of €.
o 4n% = Q(n — 10)
o 3n? —n+10 = Q(n? — 20)

Asymptotic Notations | O |
Comparison Relations | < |

(n)

Qe
>

Theorem f(n) =0(g(n)) < g(n)=Q(

[y
\._/




©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
©(g(n)) = {function f: ez > ¢; > 0,ng > 0 such that

c1g(n) < f(n) < cag(n),¥n > ng}.

e f(n) =0©(g(n)), then for large enough n, we have “f(n) ~ g(n)".

I
no



©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
O(g(n)) = {function f : ez > ¢ > 0,ng > 0 such that

aig(n) < f(n) < cag(n).¥n > o}

@ 3n?+2n = O(n? — 20n)
° 2n/3+100 — @(271/3)

@

Asymptotic Notations \ @) \ Q
<|>

Comparison Relations ‘

Theorem f(n) = 0O(g(n)) if and only if
f(n) = 0O(g(n)) and f(n) = Q(g(n)).



o and w-Notations

o-Notation For a function g(n),
o(g(n)) = {function f : Ve > 0,3ng > 0 such that

f(n) < cg(n),¥n > ng}.

w-Notation For a function g(n),
w(g(n)) = {function f : Vc > 0,3ng > 0 such that

f(n) > cg(n),¥n > ng}.
Example:

@ 3n?+5n+ 10 = o(n*logn).
@ 3n% +5n+ 10 = w(n?/logn).

Asymptotic Notations ‘ O
<

Q|
Comparison Relations ‘ >



Asymptotic Notations ‘ @] ‘ Q ‘ S} ‘
Comparison Relations ‘ < ‘ > ‘ = ‘

Facts on Comparison Relations
ea<b <= b>a
ea=b<= a<banda>b
ea<b = a<b

ea<b << b>a

Correct Analogies
o f(n) =0(g(n) < (n)ZQ(f(n))
o f(n)=6(g9(n)) < f( (

o f(n) =o(g(n)) = (n) IO(g(n)
o f(n)=o(g(n)) <




Asymptotic Notations ‘ O
<

Q|
Comparison Relations ‘ >

Facts on Comparison Relations
ea<bora>b
e a<b << a=bora<b

Incorrect Analogies
° f(n) =0(g(n)) or f(n) =g(n))
o f(n) =0(g(n)) <= f(n) =0(g(n)) or f(n) = o(g(n))




o f(n)=0(g(n)) or f(n) =Q(g(n))
f(n) =n’
o= {ly e

42/63



Recall: Informal way to define O-notation

@ ignoring lower order terms: 3n? — 10n — 5 — 3n?

@ ignoring leading constant: 3n? — n?

@ 3n? —10n — 5= 0(n?)

@ In the formal definition of O(-), nothing tells us to ignore lower
order terms and leading constant.

@ 3n? —10n — 5 = O(5n* — 6n + 5) is correct, though weird

@ 3n? —10n — 5 = O(n?) is the most natural since n? is the
simplest term we can have inside O(-).



Notice that O denotes asymptotic upper bound

@ n? +2n = O(n?) is correct.

@ The following sentence is correct: the running time of insertion
sort is O(n?).

@ Usually we say: The running time of insertion sort is O(n?) and
the bound is tight.

@ Also correct: the worst-case running time of insertion sort is

O(n?).
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O(n) (Linear) Running Time

Computing the sum of n numbers

sum(A,n)
1: S0
2: fori< 1ton
3: S« S+ A[Z]
4: return S




O(n) (Linear) Running Time

o Merge two sorted arrays

38112

20

32

48

25

29

12

20

25

29

32

48




O(n) (Linear) Running Time

merge(B, C,ny, ny) \\ B and C are sorted, with
length n; and ns

LA[;i+1, 5«1
2: while i < n; and j < ny, do
3 if B[i] < C[j] then
4 append Bli] to A; i <1+ 1
5: else
6 append Cljlto A; j+ j+1
7: if i < ny then append Bli..ny] to A
8: if j < my then append C[j..ns] to A
9: return A

Running time = O(n) where n = ny + no.



O(nlogn) Running Time

merge-sort(A, n)

1. if n =1 then

2: return A
. B+ merge—sort(A[l..Ln/ZJ], Ln/2j>
4: C merge—sort(A[[n/Zj +1.n],n— Ln/2j>
5. return merge(B,C, [n/2|,n — |n/2])

w




O(nlogn) Running Time

@ Merge-Sort

iy

A[l 2]‘ AJ3. 4 %[7 8|

ﬁﬁ

@ Each level takes running time O(n

@ There are O(logn) levels

@ Running time = O(nlogn)



O(n?) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (z1,y1), (z2,¥2), ", (Tn, Yn)
Output: the pair of points that are closest
° °
S
°
L °
°
° L4 ° °
L °



O(n?) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (z1,1), (¥2,92),** , (¥n, Yn)
Output: the pair of points that are closest

closest-pair(z, y,n)

1: bestd + oo

2. fori<1ton—1do

3: for j«—i+1tondo

4 d + /(@[i] — 2[5])? + (y[i] - yls])?
5: if d < bestd then
6
7:

besti < i, bestj < 7, bestd < d
return (besti, bestyj)

Closest pair can be solved in O(nlogn) time!



O(n?) (Cubic) Running Time

Multiply two matrices of size n x n

matrix-multiplication(A, B, n)
1: C' < matrix of size n x n, with all entries being 0
2: for i < 1 ton do

3 for j + 1 ton do

4: for k < 1 ton do

5 Cli, k] + Ci, k] + A[i, j] x B[j, k]|

6: return C




Beyond Polynomial Time: 2"

Def. An independent set of a graph G = (V, F) is a subset S C V
of vertices such that for every u,v € S, we have (u,v) ¢ FE.




Beyond Polynomial Time: 2"

Maximum Independent Set Problem
Input: graph G = (V, E)
Output: the maximum independent set of G

max-independent-set(G = (V, F))
1. R+ 0
2: for every set S C V do
3: b < true
4 for every u,v € S do
5: if (u,v) € E then b < false
6 if b and |S| > |R| then R < S
7: return R

Running time = O(2"n?).



Beyond Polynomial Time: n!

Hamiltonian Cycle Problem
Input: a graph with n vertices
Output: a cycle that visits each node exactly once,

or say no such cycle exists




Beyond Polynomial Time: n!

Hamiltonian(G = (V, E))

1. for every permutation (p1,ps2, -+ ,p,) of V do
2 b < true

3 fori< 1ton—1do

4: if (ps,pir1) ¢ E then b« false

5 if (pn,p1) ¢ E then b < false

6 if b then return (p1,p2, -+ ,Pn)

7

return “No Hamiltonian Cycle”

Running time = O(n! x n)



O(logn) (Logarithmic) Running Time

@ Binary search

o Input: sorted array A of size n, an integer t;

e Output: whether t appears in A.

e E.g, search 35 in the following array:

25

29

37

38

42

46

92

99

61

63

75

79




O(logn) (Logarithmic) Running Time

Binary search
@ Input: sorted array A of size n, an integer t;

@ Output: whether t appears in A.

binary-search(A, n, t)

Li+1,7n

2: while 7 < j do

3 ke [(i+5)/2)

4: if A[k] =t return true

5 if t < Alk] then j <k —1lelsei<+ k+1
6: return false

Running time = O(logn)



Comparing the Orders of Running Times

@ Sort the functions from smallest to largest asymptotically
logn, n, n? mnlogn, n!, 2%, e, n", log(n!)
e logn n {nlogn, log(n!)} n? 2" " n! n"

logn =o0(n), n=o(nlogn), nlogn = O(log(n!))
log(n!) = o(n?), n?=o0(2"), 2"=o(e")

e" =o(n!), nl=o(n")



Terminologies

When we talk about upper bounds:
@ Logarithmic time: O(Ign)

@ Linear time: O(n)

@ Quadratic time: O(n?)

@ Cubic time: O(n?)

e Polynomial time: O(n*) for some constant k
@ Exponential time: O(c") for some ¢ > 1

@ Sub-linear time: o(n)

°

Sub-quadratic time: o(n?)

When we talk about lower bounds:
@ Super-linear time: w(n)
@ Super-quadratic time: w(n?)

o Super-polynomial time: (., w(n*) = n*®



Goal of Algorithm Design

@ Design algorithms to minimize the order of the running time.

@ Using asymptotic analysis allows us to ignore the leading
constants and lower order terms

@ Makes our life much easier! (E.g., the leading constant depends
on the implementation, complier and computer architecture of
computer.)



Q: Can constants really be ignored?

@ e.g, how can we compare an algorithm with running time 0.1n?
with an algorithm with running time 1000n7

A:
@ Sometimes no
@ For most natural and simple algorithms, constants are not so big.

@ Algorithm with lower order running time beats algorithm with
higher order running time for reasonably large n.
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