# 算法设计与分析（2024年春季学期） <br> Introduction and Syllabus 

授课老师：栗师
南京大学计算机科学与技术系

## Outline

(1) Syllabus

(2) Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
(3) Asymptotic Notations

4 Common Running times

- Course Webpage:
https://tcs.nju.edu.cn/shili/courses/2024spring-algo


## Outline

## (1) Syllabus

(2) Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort


## (3) Asymptotic Notations

## 4 Common Running times

## Outline

## (1) Syllabus

(2) Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
(3) Asymptotic Notations

4 Common Running times

## What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.


## What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
- Computational problem: specifies the input/output relationship.
- An algorithm solves a computational problem if it produces the correct output for any given input.


## Examples

## Greatest Common Divisor

Input: two integers $a, b>0$
Output: the greatest common divisor of $a$ and $b$

## Examples

Greatest Common Divisor
Input: two integers $a, b>0$
Output: the greatest common divisor of $a$ and $b$
Example:

- Input: 210, 270
- Output: 30


## Examples

Greatest Common Divisor
Input: two integers $a, b>0$
Output: the greatest common divisor of $a$ and $b$
Example:

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm


## Examples

## Greatest Common Divisor

Input: two integers $a, b>0$
Output: the greatest common divisor of $a$ and $b$
Example:

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm
- $\operatorname{gcd}(270,210)=\operatorname{gcd}(210,270 \bmod 210)=\operatorname{gcd}(210,60)$


## Examples

## Greatest Common Divisor

Input: two integers $a, b>0$
Output: the greatest common divisor of $a$ and $b$

## Example:

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm
- $\operatorname{gcd}(270,210)=\operatorname{gcd}(210,270 \bmod 210)=\operatorname{gcd}(210,60)$
- $(270,210) \rightarrow(210,60) \rightarrow(60,30) \rightarrow(30,0)$


## Examples

## Sorting

Input: sequence of $n$ numbers $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$
Output: a permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{n}^{\prime}\right)$ of the input sequence such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}$

## Examples

## Sorting

Input: sequence of $n$ numbers $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$
Output: a permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{n}^{\prime}\right)$ of the input sequence such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}$

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$


## Examples

## Sorting

Input: sequence of $n$ numbers $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$
Output: a permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{n}^{\prime}\right)$ of the input sequence such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}$

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
- Algorithms: insertion sort, merge sort, quicksort, ...


## Examples

## Shortest Path

Input: directed graph $G=(V, E), s, t \in V$
Output: a shortest path from $s$ to $t$ in $G$

## Examples

## Shortest Path

Input: directed graph $G=(V, E), s, t \in V$
Output: a shortest path from $s$ to $t$ in $G$


## Examples

## Shortest Path

Input: directed graph $G=(V, E), s, t \in V$
Output: a shortest path from $s$ to $t$ in $G$


## Examples

## Shortest Path

Input: directed graph $G=(V, E), s, t \in V$
Output: a shortest path from $s$ to $t$ in $G$


- Algorithm: Dijkstra's algorithm


## Algorithm = Computer Program?

- Algorithm: "abstract", can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: "concrete", implementation of algorithm, using a particular programming language


## Pseudo-Code

C++ program:

- int Euclidean(int a, int b)\{

Pseudo-Code:
Euclidean $(a, b)$
1: while $b>0$ do
2: $\quad(a, b) \leftarrow(b, a \bmod b)$
3: return $a$

- int c;
- while $(b>0)\{$
$\mathrm{c}=\mathrm{b}$;
$b=a \% b ;$

$$
\mathrm{a}=\mathrm{c} ;
$$

\}
return a;

- \}


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
- extensibility
- modularity
- object-oriented model
- user-friendliness (e.g, GUI)
- ...


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
- extensibility
- modularity
- object-oriented model
- user-friendliness (e.g, GUI)
- Why is it important to study the running time (efficiency) of an algorithm?


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
- extensibility
- modularity
- object-oriented model
- user-friendliness (e.g, GUI)
- Why is it important to study the running time (efficiency) of an algorithm?
(1) feasible vs. infeasible


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
- extensibility
- modularity
- object-oriented model
- user-friendliness (e.g, GUI)
- Why is it important to study the running time (efficiency) of an algorithm?
(1) feasible vs. infeasible
(2) efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
- extensibility
- modularity
- object-oriented model
- user-friendliness (e.g, GUI)
- Why is it important to study the running time (efficiency) of an algorithm?
(1) feasible vs. infeasible
(2) efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
(3) fundamental


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
- extensibility
- modularity
- object-oriented model
- user-friendliness (e.g, GUI)
- Why is it important to study the running time (efficiency) of an algorithm?
(1) feasible vs. infeasible
(2) efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
(3) fundamental
(0) it is fun!


## Outline

## (1) Syllabus

(2) Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort


## (3) Asymptotic Notations

## 4 Common Running times

## Sorting Problem

Input: sequence of $n$ numbers $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$
Output: a permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{n}^{\prime}\right)$ of the input sequence such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}$

## Example:

- Input: $53,12,35,21,59,15$
- Output: $12,15,21,35,53,59$


## Insertion-Sort

- At the end of $j$-th iteration, the first $j$ numbers are sorted.
iteration 1: $53,12,35,21,59,15$
iteration 2: $12,53,35,21,59,15$
iteration 3: $12,35,53,21,59,15$
iteration 4: $12,21,35,53,59,15$
iteration 5: $12,21,35,53,59,15$
iteration 6: 12, 15, 21, 35, 53, 59


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$


## insertion-sort $(A, n)$

1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- key $=15$
$\begin{array}{llllll}12 & 21 & 35 & 53 & 59 & 15\end{array}$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- key $=15$
$\begin{array}{llllll}12 & 21 & 35 & 53 & 59 & 59\end{array}$



## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- key $=15$
$\begin{array}{llllll}12 & 21 & 35 & 53 & 59 & 59\end{array}$ $\uparrow$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- key $=15$
$\begin{array}{llllll}12 & 21 & 35 & 53 & 53 & 59\end{array}$ $\uparrow$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- key $=15$
$\begin{array}{llllll}12 & 21 & 35 & 53 & 53 & 59\end{array}$ $\uparrow$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- key $=15$
$\begin{array}{llllll}12 & 21 & 35 & 35 & 53 & 59\end{array}$ $\uparrow$
$i$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- key $=15$
$\begin{array}{llllll}12 & 21 & 35 & 35 & 53 & 59\end{array}$ $\uparrow$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- $k e y=15$
$\begin{array}{llllll}12 & 21 & 21 & 35 & 53 & 59\end{array}$ $\uparrow$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- $k e y=15$
$\begin{array}{llllll}12 & 21 & 21 & 35 & 53 & 59\end{array}$
$\uparrow$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- $k e y=15$
$\begin{array}{llllll}12 & 15 & 21 & 35 & 53 & 59\end{array}$


## Outline

## (1) Syllabus

(2) Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
(3) Asymptotic Notations

4 Common Running times

## Analysis of Insertion Sort

- Correctness
- Running time


## Correctness of Insertion Sort

- Invariant: after iteration $j$ of outer loop, $A[1 . . j]$ is the sorted array for the original $A[1 . . j]$.

$$
\begin{aligned}
& \text { after } j=1: 53,12,35,21,59,15 \\
& \text { after } j=2: 12,53,35,21,59,15 \\
& \text { after } j=3: 12,35,53,21,59,15 \\
& \text { after } j=4: 12,21,35,53,59,15 \\
& \text { after } j=5: 12,21,35,53,59,15 \\
& \text { after } j=6: 12,15,21,35,53,59
\end{aligned}
$$

## Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?


## Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size


## Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
- Sorting problem: \# integers,
- Greatest common divisor: total length of two integers
- Shortest path in a graph: \# edges in graph


## Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
- Sorting problem: \# integers,
- Greatest common divisor: total length of two integers
- Shortest path in a graph: \# edges in graph
- Q2: Which input?
- For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.


## Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
- Sorting problem: \# integers,
- Greatest common divisor: total length of two integers
- Shortest path in a graph: \# edges in graph
- Q2: Which input?
- For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
- A2: Worst-case analysis:
- Running time for size $n=$ worst running time over all possible arrays of length $n$


## Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?


## Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!


## Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!


## Important idea: asymptotic analysis

- Focus on growth of running-time as a function, not any particular value.


## Asymptotic Analysis: $O$-notation

Informal way to define $O$-notation:

- Ignoring lower order terms
- Ignoring leading constant


## Asymptotic Analysis: $O$-notation

Informal way to define $O$-notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3 n^{3}+2 n^{2}-18 n+1028 \Rightarrow 3 n^{3} \Rightarrow n^{3}$


## Asymptotic Analysis: $O$-notation

Informal way to define $O$-notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3 n^{3}+2 n^{2}-18 n+1028 \Rightarrow 3 n^{3} \Rightarrow n^{3}$
- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$


## Asymptotic Analysis: $O$-notation

Informal way to define $O$-notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3 n^{3}+2 n^{2}-18 n+1028 \Rightarrow 3 n^{3} \Rightarrow n^{3}$
- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$
- $n^{2} / 100-3 n+10 \Rightarrow n^{2} / 100 \Rightarrow n^{2}$


## Asymptotic Analysis: $O$-notation

Informal way to define $O$-notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3 n^{3}+2 n^{2}-18 n+1028 \Rightarrow 3 n^{3} \Rightarrow n^{3}$
- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$
- $n^{2} / 100-3 n+10 \Rightarrow n^{2} / 100 \Rightarrow n^{2}$
- $n^{2} / 100-3 n+10=O\left(n^{2}\right)$


## Asymptotic Analysis: $O$-notation

- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$
- $n^{2} / 100-3 n^{2}+10=O\left(n^{2}\right)$


## Asymptotic Analysis: $O$-notation

- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$
- $n^{2} / 100-3 n^{2}+10=O\left(n^{2}\right)$
$O$-notation allows us to ignore
- architecture of computer
- programming language
- how we measure the running time: seconds or \# instructions?


## Asymptotic Analysis: $O$-notation

- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$
- $n^{2} / 100-3 n^{2}+10=O\left(n^{2}\right)$
$O$-notation allows us to ignore
- architecture of computer
- programming language
- how we measure the running time: seconds or \# instructions?
- to execute $a \leftarrow b+c$ :
- program 1 requires 10 instructions, or $10^{-8}$ seconds
- program 2 requires 2 instructions, or $10^{-9}$ seconds


## Asymptotic Analysis: $O$-notation

- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$
- $n^{2} / 100-3 n^{2}+10=O\left(n^{2}\right)$
$O$-notation allows us to ignore
- architecture of computer
- programming language
- how we measure the running time: seconds or \# instructions?
- to execute $a \leftarrow b+c$ :
- program 1 requires 10 instructions, or $10^{-8}$ seconds
- program 2 requires 2 instructions, or $10^{-9}$ seconds
- they only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation


## Asymptotic Analysis: $O$-notation

- Algorithm 1 runs in time $O\left(n^{2}\right)$
- Algorithm 2 runs in time $O(n)$


## Asymptotic Analysis: $O$-notation

- Algorithm 1 runs in time $O\left(n^{2}\right)$
- Algorithm 2 runs in time $O(n)$
- Does not tell which algorithm is faster for a specific $n$ !
- Algorithm 2 will eventually beat algorithm 1 as $n$ increases.


## Asymptotic Analysis: $O$-notation

- Algorithm 1 runs in time $O\left(n^{2}\right)$
- Algorithm 2 runs in time $O(n)$
- Does not tell which algorithm is faster for a specific $n$ !
- Algorithm 2 will eventually beat algorithm 1 as $n$ increases.
- For Algorithm 1: if we increase $n$ by a factor of 2 , running time increases by a factor of 4
- For Algorithm 2: if we increase $n$ by a factor of 2, running time increases by a factor of 2


## Asymptotic Analysis of Insertion Sort

```
insertion-sort( }A,n
    1: for }j\leftarrow2\mathrm{ to }n\mathrm{ do
    2: }\quadkey\leftarrowA[j
    3:
    4: while }i>0\mathrm{ and }A[i]>key d
    5: }\quadA[i+1]\leftarrowA[i
    6:
        i\leftarrowi-1
    7: }\quadA[i+1]\leftarrowke
```


## Asymptotic Analysis of Insertion Sort

```
insertion-sort( }A,n
    1: for }j\leftarrow2\mathrm{ to }n\mathrm{ do
    2: }\quadkey\leftarrowA[j
    3: }\quadi\leftarrowj-
    4: while }i>0\mathrm{ and }A[i]>key d
    5: }\quadA[i+1]\leftarrowA[i
    6:
        i\leftarrowi-1
    7:}\quadA[i+1]\leftarrowke
```

- Worst-case running time for iteration $j$ of the outer loop?


## Asymptotic Analysis of Insertion Sort

```
insertion-sort( }A,n
    1: for }j\leftarrow2\mathrm{ to }n\mathrm{ do
    2: }\quadkey\leftarrowA[j
    3: }\quadi\leftarrowj-
    4: while }i>0\mathrm{ and }A[i]>key d
    5: }\quadA[i+1]\leftarrowA[i
    6:
    i\leftarrowi-1
    7:}\quadA[i+1]\leftarrowke
```

- Worst-case running time for iteration $j$ of the outer loop? Answer: $O(j)$


## Asymptotic Analysis of Insertion Sort

## insertion-sort $(A, n)$

| 1: | for $j \leftarrow 2$ to $n$ do |
| :--- | :--- |
| 2: | key $\leftarrow A[j]$ |
| 3: | $i \leftarrow j-1$ |
| 4: | while $i>0$ and $A[i]>k e y$ do |
| 5: | $A[i+1] \leftarrow A[i]$ |
| 6: | $i \leftarrow i-1$ |
| 7: | $A[i+1] \leftarrow$ key |

- Worst-case running time for iteration $j$ of the outer loop? Answer: $O(j)$
- Total running time $=\sum_{j=2}^{n} O(j)=O\left(\sum_{j=2}^{n} j\right)$
$=O\left(\frac{n(n+1)}{2}-1\right)=O\left(n^{2}\right)$

Computation Model

## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time


## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time


## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
- Reason: often we need to read the integer $n$ and handle integers within range $\left[-n^{c}, n^{c}\right]$, it is convenient to assume this takes $O(1)$ time.


## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
- Reason: often we need to read the integer $n$ and handle integers within range $\left[-n^{c}, n^{c}\right]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers?


## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
- Reason: often we need to read the integer $n$ and handle integers within range $\left[-n^{c}, n^{c}\right]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers? Most of the time, we only consider integers.


## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
- Reason: often we need to read the integer $n$ and handle integers within range $\left[-n^{c}, n^{c}\right]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers? Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?


## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
- Reason: often we need to read the integer $n$ and handle integers within range $\left[-n^{c}, n^{c}\right]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers? Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
- Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time

Questions?

## Outline

## (1) Syllabus

(2) Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
(3) Asymptotic Notations

4 Common Running times

## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30$


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30 \quad$ Yes


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30 \quad$ Yes
- $2^{n}-n^{20}$


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30 \quad$ Yes
- $2^{n}-n^{20} \quad$ Yes


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30 \quad$ Yes
- $2^{n}-n^{20} \quad$ Yes
- $100 n-n^{2} / 10+50$ ?


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30 \quad$ Yes
- $2^{n}-n^{20} \quad$ Yes
- $100 n-n^{2} / 10+50$ ?


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30 \quad$ Yes
- $2^{n}-n^{20} \quad$ Yes
- $100 n-n^{2} / 10+50$ ? No
- We only consider asymptotically positive functions.


## $O$-Notation: Asymptotic Upper Bound

$O$-Notation For a function $g(n)$,
$O(g(n))=\left\{\right.$ function $f: \exists c>0, n_{0}>0$ such that

$$
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\} .
$$

## O-Notation: Asymptotic Upper Bound

$O$-Notation For a function $g(n)$,

$$
\begin{aligned}
O(g(n))=\{\text { function } f: & \exists c>0, n_{0}>0 \text { such that } \\
& \left.f(n) \leq c g(n), \forall n \geq n_{0}\right\} .
\end{aligned}
$$

- In short, $f(n) \in O(g(n))$ if $f(n) \leq c g(n)$ for some $c>0$ and every large enough $n$.


## O-Notation: Asymptotic Upper Bound

$O$-Notation For a function $g(n)$,

$$
O(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that }
$$

$$
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\} .
$$

- In short, $f(n) \in O(g(n))$ if $f(n) \leq c g(n)$ for some $c>0$ and every large enough $n$.



## $O$-Notation: Asymptotic Upper Bound

$O$-Notation For a function $g(n)$,

$$
\begin{aligned}
& O(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that } \\
&\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}
\end{aligned}
$$

- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$


## $O$-Notation: Asymptotic Upper Bound

$O$-Notation For a function $g(n)$,

$$
\begin{array}{r}
O(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that } \\
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}
\end{array}
$$

- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$


## Proof.

Let $c=4$ and $n_{0}=50$, for every $n>n_{0}=50$, we have,

$$
\begin{aligned}
& 3 n^{2}+2 n-c\left(n^{2}-10 n\right)=3 n^{2}+2 n-4\left(n^{2}-10 n\right) \\
& =-n^{2}+42 n \leq 0 \\
& 3 n^{2}+2 n \leq c\left(n^{2}-10 n\right)
\end{aligned}
$$

$O$-Notation For a function $g(n)$,

$$
\begin{array}{r}
O(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that } \\
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}
\end{array}
$$

- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$
$O$-Notation For a function $g(n)$,

$$
\begin{array}{r}
O(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that } \\
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}
\end{array}
$$

- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$
- $3 n^{2}+2 n \in O\left(n^{3}-5 n^{2}\right)$
$O$-Notation For a function $g(n)$,
$O(g(n))=\left\{\right.$ function $f: \exists c>0, n_{0}>0$ such that

$$
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}
$$

- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$
- $3 n^{2}+2 n \in O\left(n^{3}-5 n^{2}\right)$
- $n^{100} \in O\left(2^{n}\right)$
$O$-Notation For a function $g(n)$,

$$
\begin{array}{r}
O(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that } \\
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}
\end{array}
$$

- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$
- $3 n^{2}+2 n \in O\left(n^{3}-5 n^{2}\right)$
- $n^{100} \in O\left(2^{n}\right)$
- $n^{3} \notin O\left(10 n^{2}\right)$
$O$-Notation For a function $g(n)$,
$O(g(n))=\left\{\right.$ function $f: \exists c>0, n_{0}>0$ such that

$$
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\} .
$$

- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$
- $3 n^{2}+2 n \in O\left(n^{3}-5 n^{2}\right)$
- $n^{100} \in O\left(2^{n}\right)$
- $n^{3} \notin O\left(10 n^{2}\right)$

$$
\begin{array}{l|l|l|l}
\text { Asymptotic Notations } & O & \Omega & \Theta \\
\hline \text { Comparison Relations } & \leq & &
\end{array}
$$

## Conventions

- We use " $f(n)=O(g(n))$ " to denote " $f(n) \in O(g(n))$ "
- $3 n^{2}+2 n=O\left(n^{2}\right)$


## Conventions

- We use " $f(n)=O(g(n))$ " to denote " $f(n) \in O(g(n))$ "
- $3 n^{2}+2 n=O\left(n^{2}\right)$
- " $=$ " is asymmetric: we do not write $O\left(n^{2}\right)=3 n^{2}+2 n$


## Conventions

- We use " $f(n)=O(g(n))$ " to denote " $f(n) \in O(g(n))$ "
- $3 n^{2}+2 n=O\left(n^{2}\right)$
- " $=$ " is asymmetric: we do not write $O\left(n^{2}\right)=3 n^{2}+2 n$
- Analogy: Mike is a student. A student is Mike.


## Conventions

- We use " $f(n)=O(g(n))$ " to denote " $f(n) \in O(g(n))$ "
- $3 n^{2}+2 n=O\left(n^{2}\right)$
- " $=$ " is asymmetric: we do not write $O\left(n^{2}\right)=3 n^{2}+2 n$
- Analogy: Mike is a student. A student is Mike.
- We use " $O(g(n))=O\left(g^{\prime}(n)\right)$ " to denote " $O(g(n)) \subseteq O\left(g^{\prime}(n)\right)$ ".
- $O\left(3 n^{2}+2 n\right)=O\left(n^{2}\right)$


## Conventions

- We use " $f(n)=O(g(n))$ " to denote " $f(n) \in O(g(n))$ "
- $3 n^{2}+2 n=O\left(n^{2}\right)$
- " $=$ " is asymmetric: we do not write $O\left(n^{2}\right)=3 n^{2}+2 n$
- Analogy: Mike is a student. A student is Mike.
- We use " $O(g(n))=O\left(g^{\prime}(n)\right)$ " to denote " $O(g(n)) \subseteq O\left(g^{\prime}(n)\right)$ ".
- $O\left(3 n^{2}+2 n\right)=O\left(n^{2}\right)$
- Again, " $=$ " is asymmetric.
- $O\left(n^{3}\right)=O\left(3 n^{2}+2 n\right)$ makes sense, but is wrong.
- Analogy: All students are people.


## Conventions

- We use " $f(n)=O(g(n))$ " to denote " $f(n) \in O(g(n))$ "
- $3 n^{2}+2 n=O\left(n^{2}\right)$
- " $=$ " is asymmetric: we do not write $O\left(n^{2}\right)=3 n^{2}+2 n$
- Analogy: Mike is a student. A student is Mike.
- We use " $O(g(n))=O\left(g^{\prime}(n)\right)$ " to denote " $O(g(n)) \subseteq O\left(g^{\prime}(n)\right)$ ".
- $O\left(3 n^{2}+2 n\right)=O\left(n^{2}\right)$
- Again, " $=$ " is asymmetric.
- $O\left(n^{3}\right)=O\left(3 n^{2}+2 n\right)$ makes sense, but is wrong.
- Analogy: All students are people.
- Equalities can be chained: $3 n^{2}+2 n=O\left(n^{2}\right)=O\left(n^{3}\right)$.


## $\Omega$-Notation: Asymptotic Lower Bound

$O$-Notation For a function $g(n)$,

$$
\begin{array}{r}
O(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that } \\
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}
\end{array}
$$

$\Omega$-Notation For a function $g(n)$,

$$
\begin{array}{r}
\Omega(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that } \\
\left.f(n) \geq c g(n), \forall n \geq n_{0}\right\} .
\end{array}
$$

## $\Omega$-Notation: Asymptotic Lower Bound

$O$-Notation For a function $g(n)$,

$$
\begin{array}{r}
O(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that } \\
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}
\end{array}
$$

$\Omega$-Notation For a function $g(n)$,

$$
\begin{array}{r}
\Omega(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that } \\
\left.f(n) \geq c g(n), \forall n \geq n_{0}\right\} .
\end{array}
$$

- In short, $f(n) \in \Omega(g(n))$ if $f(n) \geq c g(n)$ for some $c$ and large enough $n$.


## $\Omega$-Notation: Asymptotic Lower Bound

$\Omega$-Notation For a function $g(n)$,

$$
\begin{aligned}
& \Omega(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that } \\
& \left.f(n) \geq c g(n), \forall n \geq n_{0}\right\} .
\end{aligned}
$$



## $\Omega$-Notation: Asymptotic Lower Bound

- Again, we use " $=$ " instead of $\in$.
- $4 n^{2}=\Omega(n-10)$
- $3 n^{2}-n+10=\Omega\left(n^{2}-20\right)$


## $\Omega$-Notation: Asymptotic Lower Bound

- Again, we use " $=$ " instead of $\in$.
- $4 n^{2}=\Omega(n-10)$
- $3 n^{2}-n+10=\Omega\left(n^{2}-20\right)$

| Asymptotic Notations | $O$ | $\Omega$ | $\Theta$ |
| :--- | :--- | :--- | :--- |
| Comparison Relations | $\leq$ | $\geq$ |  |

## $\Omega$-Notation: Asymptotic Lower Bound

- Again, we use " $=$ " instead of $\in$.
- $4 n^{2}=\Omega(n-10)$
- $3 n^{2}-n+10=\Omega\left(n^{2}-20\right)$


Theorem $f(n)=O(g(n)) \Leftrightarrow g(n)=\Omega(f(n))$.

## $\Theta$-Notation: Asymptotic Tight Bound

$\Theta$-Notation For a function $g(n)$,

$$
\begin{aligned}
& \Theta(g(n))=\left\{\text { function } f: \exists c_{2} \geq c_{1}>0, n_{0}>0\right. \text { such that } \\
& \\
& \left.c_{1} g(n) \leq f(n) \leq c_{2} g(n), \forall n \geq n_{0}\right\}
\end{aligned}
$$

## $\Theta$-Notation: Asymptotic Tight Bound

$\Theta$-Notation For a function $g(n)$,

$$
\begin{aligned}
& \Theta(g(n))=\left\{\text { function } f: \exists c_{2} \geq c_{1}>0, n_{0}>0\right. \text { such that } \\
& \left.\qquad c_{1} g(n) \leq f(n) \leq c_{2} g(n), \forall n \geq n_{0}\right\}
\end{aligned}
$$

- $f(n)=\Theta(g(n))$, then for large enough $n$, we have " $f(n) \approx g(n)$ ".


## $\Theta$-Notation: Asymptotic Tight Bound

$\Theta$-Notation For a function $g(n)$,

$$
\begin{aligned}
& \Theta(g(n))=\left\{\text { function } f: \exists c_{2} \geq c_{1}>0, n_{0}>0\right. \text { such that } \\
& \\
& \left.c_{1} g(n) \leq f(n) \leq c_{2} g(n), \forall n \geq n_{0}\right\}
\end{aligned}
$$

- $f(n)=\Theta(g(n))$, then for large enough $n$, we have " $f(n) \approx g(n)$ ".



## $\Theta$-Notation: Asymptotic Tight Bound

$\Theta$-Notation For a function $g(n)$,
$\Theta(g(n))=\left\{\right.$ function $f: \exists c_{2} \geq c_{1}>0, n_{0}>0$ such that

$$
\left.c_{1} g(n) \leq f(n) \leq c_{2} g(n), \forall n \geq n_{0}\right\}
$$

- $3 n^{2}+2 n=\Theta\left(n^{2}-20 n\right)$


## $\Theta$-Notation: Asymptotic Tight Bound

$\Theta$-Notation For a function $g(n)$,
$\Theta(g(n))=\left\{\right.$ function $f: \exists c_{2} \geq c_{1}>0, n_{0}>0$ such that

$$
\left.c_{1} g(n) \leq f(n) \leq c_{2} g(n), \forall n \geq n_{0}\right\}
$$

- $3 n^{2}+2 n=\Theta\left(n^{2}-20 n\right)$
- $2^{n / 3+100}=\Theta\left(2^{n / 3}\right)$


## $\Theta$-Notation: Asymptotic Tight Bound

$\Theta$-Notation For a function $g(n)$,
$\Theta(g(n))=\left\{\right.$ function $f: \exists c_{2} \geq c_{1}>0, n_{0}>0$ such that

$$
\left.c_{1} g(n) \leq f(n) \leq c_{2} g(n), \forall n \geq n_{0}\right\}
$$

- $3 n^{2}+2 n=\Theta\left(n^{2}-20 n\right)$
- $2^{n / 3+100}=\Theta\left(2^{n / 3}\right)$

| Asymptotic Notations | $O$ | $\Omega$ | $\Theta$ |
| :--- | :--- | :--- | :--- |
| Comparison Relations | $\leq$ | $\geq$ | $=$ |

## $\Theta$-Notation: Asymptotic Tight Bound

$\Theta$-Notation For a function $g(n)$,

$$
\begin{aligned}
\Theta(g(n))=\left\{\text { function } f: \exists c_{2} \geq\right. & c_{1}>0, n_{0}>0 \text { such that } \\
& \left.c_{1} g(n) \leq f(n) \leq c_{2} g(n), \forall n \geq n_{0}\right\} .
\end{aligned}
$$

- $3 n^{2}+2 n=\Theta\left(n^{2}-20 n\right)$
- $2^{n / 3+100}=\Theta\left(2^{n / 3}\right)$

| Asymptotic Notations | $O$ | $\Omega$ | $\Theta$ |
| :--- | :--- | :--- | :--- |
| Comparison Relations | $\leq$ | $\geq$ | $=$ |

Theorem $f(n)=\Theta(g(n))$ if and only if

$$
f(n)=O(g(n)) \text { and } f(n)=\Omega(g(n))
$$

## $o$ and $\omega$-Notations

$o$-Notation For a function $g(n)$,

$$
\begin{aligned}
& o(g(n))=\left\{\text { function } f: \forall c>0, \exists n_{0}>0\right. \text { such that } \\
& \\
& \left.f(n) \leq c g(n), \forall n \geq n_{0}\right\} .
\end{aligned}
$$

$\omega$-Notation For a function $g(n)$,

$$
\begin{aligned}
\omega(g(n))=\{\text { function } f: & \forall c>0, \exists n_{0}>0 \text { such that } \\
& \left.f(n) \geq c g(n), \forall n \geq n_{0}\right\} .
\end{aligned}
$$

Example:

- $3 n^{2}+5 n+10=o\left(n^{2} \log n\right)$.
- $3 n^{2}+5 n+10=\omega\left(n^{2} / \log n\right)$.

| Asymptotic Notations | $O$ | $\Omega$ | $\Theta$ | $o$ | $\omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison Relations | $\leq$ | $\geq$ | $=$ | $<$ | $>$ |


| Asymptotic Notations | $O$ | $\Omega$ | $\Theta$ | $o$ | $\omega$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Comparison Relations | $\leq$ | $\geq$ | $=$ | $<$ | $>$ |

## Facts on Comparison Relations

- $a \leq b \Longleftrightarrow b \geq a$
- $a=b \Longleftrightarrow a \leq b$ and $a \geq b$
- $a<b \Longrightarrow a \leq b$
- $a<b \Longleftrightarrow b>a$

| Asymptotic Notations | $O$ | $\Omega$ | $\Theta$ | $o$ | $\omega$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Comparison Relations | $\leq$ | $\geq$ | $=$ | $<$ | $>$ |

## Facts on Comparison Relations

- $a \leq b \Longleftrightarrow b \geq a$
- $a=b \Longleftrightarrow a \leq b$ and $a \geq b$
- $a<b \Longrightarrow a \leq b$
- $a<b \Longleftrightarrow b>a$


## Correct Analogies

- $f(n)=O(g(n)) \Longleftrightarrow g(n)=\Omega(f(n))$
- $f(n)=\Theta(g(n)) \Longleftrightarrow f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
- $f(n)=o(g(n)) \Longrightarrow f(n)=O(g(n))$
- $f(n)=o(g(n)) \Longleftrightarrow g(n)=\omega(f(n))$


Facts on Comparison Relations

- $a \leq b$ or $a \geq b$
- $a \leq b \Longleftrightarrow a=b$ or $a<b$

| Asymptotic Notations | $O$ | $\Omega$ | $\Theta$ | $o$ | $\omega$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Comparison Relations | $\leq$ | $\geq$ | $=$ | $<$ | $>$ |

## Facts on Comparison Relations

- $a \leq b$ or $a \geq b$
- $a \leq b \Longleftrightarrow a=b$ or $a<b$


## Incorrect Analogies

- $f(n)=O(g(n))$ or $f(n)=\Omega(g(n))$
- $f(n)=O(g(n)) \Longleftrightarrow f(n)=\Theta(g(n))$ or $f(n)=o(g(n))$


## Incorrect Analogy

- $f(n)=O(g(n))$ or $f(n)=\Omega(g(n))$


## Incorrect Analogy

- $f(n)=O(g(n))$ or $f(n)=\Omega(g(n))$

$$
\begin{aligned}
& f(n)=n^{2} \\
& g(n)= \begin{cases}1 & \text { if } n \text { is odd } \\
n^{3} & \text { if } n \text { is even }\end{cases}
\end{aligned}
$$

## Recall: Informal way to define $O$-notation

- ignoring lower order terms: $3 n^{2}-10 n-5 \rightarrow 3 n^{2}$
- ignoring leading constant: $3 n^{2} \rightarrow n^{2}$
- $3 n^{2}-10 n-5=O\left(n^{2}\right)$
- In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.


## Recall: Informal way to define $O$-notation

- ignoring lower order terms: $3 n^{2}-10 n-5 \rightarrow 3 n^{2}$
- ignoring leading constant: $3 n^{2} \rightarrow n^{2}$
- $3 n^{2}-10 n-5=O\left(n^{2}\right)$
- In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.
- $3 n^{2}-10 n-5=O\left(5 n^{2}-6 n+5\right)$ is correct, though weird
- $3 n^{2}-10 n-5=O\left(n^{2}\right)$ is the most natural since $n^{2}$ is the simplest term we can have inside $O(\cdot)$.


## Notice that $O$ denotes asymptotic upper bound

- $n^{2}+2 n=O\left(n^{3}\right)$ is correct.
- The following sentence is correct: the running time of insertion sort is $O\left(n^{4}\right)$.
- Usually we say: The running time of insertion sort is $O\left(n^{2}\right)$ and the bound is tight.
- Also correct: the worst-case running time of insertion sort is $\Theta\left(n^{2}\right)$.


## Outline

## (1) Syllabus

(2) Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
(3) Asymptotic Notations

4 Common Running times

## $O(n)$ (Linear) Running Time

Computing the sum of $n$ numbers

```
sum}(A,n
    1: }S\leftarrow
    2: for }i\leftarrow1\mathrm{ to }
    3:
    4: return S
```


## $O(n)$ (Linear) Running Time

- Merge two sorted arrays

| 3 | 8 | 12 | 20 | 32 | 48 |
| :--- | :--- | :--- | :--- | :--- | :--- |


| 5 | 7 | 9 | 25 | 29 |
| :--- | :--- | :--- | :--- | :--- |

## $O(n)$ (Linear) Running Time

- Merge two sorted arrays



## $O(n)$ (Linear) Running Time

- Merge two sorted arrays



## $O(n)$ (Linear) Running Time

- Merge two sorted arrays



## $O(n)$ (Linear) Running Time

- Merge two sorted arrays


| 3 | 5 |
| :--- | :--- |

## $O(n)$ (Linear) Running Time

- Merge two sorted arrays


| 3 | 5 |
| :--- | :--- |

## $O(n)$ (Linear) Running Time

- Merge two sorted arrays


| 3 | 5 | 7 |
| :--- | :--- | :--- |

## $O(n)$ (Linear) Running Time

- Merge two sorted arrays


$$
\begin{array}{|l|l|l|}
\hline 3 & 5 & 7 \\
\hline
\end{array}
$$

## $O(n)$ (Linear) Running Time

- Merge two sorted arrays


$$
\begin{array}{|l|l|l|l|}
\hline 3 & 5 & 7 & 8 \\
\hline
\end{array}
$$

## $O(n)$ (Linear) Running Time

- Merge two sorted arrays


$$
\begin{array}{|l|l|l|l|}
\hline 3 & 5 & 7 & 8 \\
\hline
\end{array}
$$

## $O(n)$ (Linear) Running Time

- Merge two sorted arrays


$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\
\hline
\end{array}
$$

## $O(n)$ (Linear) Running Time

- Merge two sorted arrays


$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\hline
\end{array}
$$

## $O(n)$ (Linear) Running Time

merge $\left(B, C, n_{1}, n_{2}\right) \quad \backslash \backslash B$ and $C$ are sorted, with length $n_{1}$ and $n_{2}$
1: $A \leftarrow[] ; i \leftarrow 1 ; j \leftarrow 1$
2: while $i \leq n_{1}$ and $j \leq n_{2}$ do
3: $\quad$ if $B[i] \leq C[j]$ then
4: $\quad$ append $B[i]$ to $A ; i \leftarrow i+1$
5: else
6: $\quad$ append $C[j]$ to $A ; j \leftarrow j+1$
7: if $i \leq n_{1}$ then append $B\left[i . . n_{1}\right]$ to $A$
8: if $j \leq n_{2}$ then append $C\left[j . . n_{2}\right]$ to $A$
9: return $A$

## $O(n)$ (Linear) Running Time

merge $\left(B, C, n_{1}, n_{2}\right) \quad \backslash \backslash B$ and $C$ are sorted, with length $n_{1}$ and $n_{2}$
1: $A \leftarrow[] ; i \leftarrow 1 ; j \leftarrow 1$
2: while $i \leq n_{1}$ and $j \leq n_{2}$ do
3: $\quad$ if $B[i] \leq C[j]$ then
4: $\quad$ append $B[i]$ to $A ; i \leftarrow i+1$
5: else
6: $\quad$ append $C[j]$ to $A ; j \leftarrow j+1$
7: if $i \leq n_{1}$ then append $B\left[i . . n_{1}\right]$ to $A$
8: if $j \leq n_{2}$ then append $C\left[j . . n_{2}\right]$ to $A$
9: return $A$
Running time $=O(n)$ where $n=n_{1}+n_{2}$.

## $O(n \log n)$ Running Time

## merge-sort( $A, n$ )

1: if $n=1$ then
2: return $A$
3: $B \leftarrow$ merge-sort $(A[1 . .\lfloor n / 2\rfloor\rfloor,\lfloor n / 2\rfloor)$
4: $C \leftarrow$ merge-sort $(A[\lfloor n / 2\rfloor+1 . . n\rfloor, n-\lfloor n / 2\rfloor)$
5: return merge $(B, C,\lfloor n / 2\rfloor, n-\lfloor n / 2\rfloor)$

## $O(n \log n)$ Running Time

- Merge-Sort



## $O(n \log n)$ Running Time

- Merge-Sort

- Each level takes running time $O(n)$


## $O(n \log n)$ Running Time

- Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\log n)$ levels


## $O(n \log n)$ Running Time

- Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\log n)$ levels
- Running time $=O(n \log n)$


## $O\left(n^{2}\right)$ (Quardatic) Running Time

## Closest Pair

Input: $n$ points in plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$
Output: the pair of points that are closest


## $O\left(n^{2}\right)$ (Quardatic) Running Time

## Closest Pair

Input: $n$ points in plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$
Output: the pair of points that are closest


## $O\left(n^{2}\right)$ (Quardatic) Running Time

## Closest Pair

Input: $n$ points in plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$
Output: the pair of points that are closest
closest-pair $(x, y, n)$
1: bestd $\leftarrow \infty$
2: for $i \leftarrow 1$ to $n-1$ do
3: $\quad$ for $j \leftarrow i+1$ to $n$ do
4: $\quad d \leftarrow \sqrt{(x[i]-x[j])^{2}+(y[i]-y[j])^{2}}$
5: $\quad$ if $d<$ bestd then
6:

$$
\text { besti } \leftarrow i, \text { best } j \leftarrow j, \text { bestd } \leftarrow d
$$

7: return (besti, bestj)

## $O\left(n^{2}\right)$ (Quardatic) Running Time

## Closest Pair

Input: $n$ points in plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$
Output: the pair of points that are closest
closest-pair $(x, y, n)$
1: bestd $\leftarrow \infty$
2: for $i \leftarrow 1$ to $n-1$ do
3: $\quad$ for $j \leftarrow i+1$ to $n$ do
4: $\quad d \leftarrow \sqrt{(x[i]-x[j])^{2}+(y[i]-y[j])^{2}}$
5: if $d<$ bestd then
6: $\quad$ besti $\leftarrow i$, best $j \leftarrow j$, bestd $\leftarrow d$
7: return (besti,bestj)
Closest pair can be solved in $O(n \log n)$ time!

## $O\left(n^{3}\right)$ (Cubic) Running Time

Multiply two matrices of size $n \times n$

## matrix-multiplication $(A, B, n)$

1: $C \leftarrow$ matrix of size $n \times n$, with all entries being 0
2: for $i \leftarrow 1$ to $n$ do
3: $\quad$ for $j \leftarrow 1$ to $n$ do
4: $\quad$ for $k \leftarrow 1$ to $n$ do
5:

$$
C[i, k] \leftarrow C[i, k]+A[i, j] \times B[j, k]
$$

6: return $C$

## Beyond Polynomial Time: $2^{n}$

Def. An independent set of a graph $G=(V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

## Beyond Polynomial Time: $2^{n}$

Def. An independent set of a graph $G=(V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.


## Beyond Polynomial Time: $2^{n}$

Def. An independent set of a graph $G=(V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.


## Beyond Polynomial Time: $2^{n}$

## Maximum Independent Set Problem

Input: graph $G=(V, E)$
Output: the maximum independent set of $G$

## max-independent-set $(G=(V, E))$

1: $R \leftarrow \emptyset$
2: for every set $S \subseteq V$ do
3: $\quad b \leftarrow$ true
4: $\quad$ for every $u, v \in S$ do
5: $\quad$ if $(u, v) \in E$ then $b \leftarrow$ false
6: $\quad$ if $b$ and $|S|>|R|$ then $R \leftarrow S$
7: return $R$
Running time $=O\left(2^{n} n^{2}\right)$.

## Beyond Polynomial Time: $n$ !

## Hamiltonian Cycle Problem

Input: a graph with $n$ vertices
Output: a cycle that visits each node exactly once, or say no such cycle exists


## Beyond Polynomial Time: $n$ !

## Hamiltonian Cycle Problem

Input: a graph with $n$ vertices
Output: a cycle that visits each node exactly once, or say no such cycle exists


## Beyond Polynomial Time: $n$ !

## Hamiltonian $(G=(V, E))$

1: for every permutation $\left(p_{1}, p_{2}, \cdots, p_{n}\right)$ of $V$ do
2: $\quad b \leftarrow$ true
3: $\quad$ for $i \leftarrow 1$ to $n-1$ do
4: $\quad$ if $\left(p_{i}, p_{i+1}\right) \notin E$ then $b \leftarrow$ false
5: $\quad$ if $\left(p_{n}, p_{1}\right) \notin E$ then $b \leftarrow$ false
6: $\quad$ if $b$ then return $\left(p_{1}, p_{2}, \cdots, p_{n}\right)$
7: return "No Hamiltonian Cycle"
Running time $=O(n!\times n)$

## $O(\log n)$ (Logarithmic) Running Time

## $O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.


## $O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.
- E.g, search 35 in the following array:

| 3 | 8 | 10 | 25 | 29 | 37 | 38 | 42 | 46 | 52 | 59 | 61 | 63 | 75 | 79 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## $O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.
- E.g, search 35 in the following array:



## $O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.
- E.g, search 35 in the following array:



## $O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.
- E.g, search 35 in the following array:



## $O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.
- E.g, search 35 in the following array:



## $O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.
- E.g, search 35 in the following array:



## $O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.
- E.g, search 35 in the following array:



## $O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.
- E.g, search 35 in the following array:



## $O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.
- E.g, search 35 in the following array:



## $O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.
- E.g, search 35 in the following array:



## $O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.
- E.g, search 35 in the following array:



## $O(\log n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.


## binary-search $(A, n, t)$

1: $i \leftarrow 1, j \leftarrow n$
2: while $i \leq j$ do
3: $\quad k \leftarrow\lfloor(i+j) / 2\rfloor$
4: $\quad$ if $A[k]=t$ return true
5: $\quad$ if $t<A[k]$ then $j \leftarrow k-1$ else $i \leftarrow k+1$
6: return false

## $O(\log n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.


## binary-search $(A, n, t)$

1: $i \leftarrow 1, j \leftarrow n$
2: while $i \leq j$ do
3: $\quad k \leftarrow\lfloor(i+j) / 2\rfloor$
4: $\quad$ if $A[k]=t$ return true
5: $\quad$ if $t<A[k]$ then $j \leftarrow k-1$ else $i \leftarrow k+1$
6: return false
Running time $=O(\log n)$

## Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically $\log n, \quad n, n^{2}, n \log n, n!, 2^{n}, e^{n}, n^{n}, \log (n!)$
- $\log n$


## Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically $\log n, \quad n, n^{2}, \quad n \log n, n!, 2^{n}, e^{n}, n^{n}, \log (n!)$
- $\log n \quad n$


## Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically $\log n, \quad n, n^{2}, n \log n, n!, 2^{n}, e^{n}, n^{n}, \log (n!)$
- $\log n \quad n \quad n^{2}$


## Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically $\log n, \quad n, n^{2}, \quad n \log n, n!, 2^{n}, e^{n}, n^{n}, \log (n!)$
- $\log n \quad n \quad n \log n \quad n^{2}$


## Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically $\log n, \quad n, n^{2}, n \log n, n!, 2^{n}, e^{n}, n^{n}, \log (n!)$
- $\log n \quad n \quad n \log n \quad n^{2} \quad n!$


## Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically $\log n, \quad n, n^{2}, n \log n, n!, 2^{n}, e^{n}, n^{n}, \log (n!)$
- $\log n \quad n \quad n \log n \quad n^{2} \quad 2^{n} \quad n!$


## Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically $\log n, \quad n, n^{2}, n \log n, n!, 2^{n}, e^{n}, n^{n}, \log (n!)$
- $\log n \quad n \quad n \log n \quad n^{2} \quad 2^{n} \quad e^{n} \quad n!$


## Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically $\log n, \quad n, n^{2}, n \log n, n!, 2^{n}, e^{n}, n^{n}, \log (n!)$
- $\log n \quad n \quad n \log n \quad n^{2} \quad 2^{n} \quad e^{n} \quad n!\quad n^{n}$


## Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically $\log n, \quad n, n^{2}, n \log n, n!, 2^{n}, e^{n}, n^{n}, \log (n!)$
- $\log n \quad n \quad\{n \log n, \log (n!)\} \quad n^{2} \quad 2^{n} \quad e^{n} \quad n!\quad n^{n}$


## Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically $\log n, \quad n, n^{2}, n \log n, n!, 2^{n}, e^{n}, n^{n}, \log (n!)$
- $\log n \quad n \quad\{n \log n, \log (n!)\} \quad n^{2} \quad 2^{n} \quad e^{n} \quad n!\quad n^{n}$
- $\log n=o(n), \quad n=o(n \log n), \quad n \log n=\Theta(\log (n!))$
- $\log (n!)=o\left(n^{2}\right), \quad n^{2}=o\left(2^{n}\right), \quad 2^{n}=o\left(e^{n}\right)$
- $e^{n}=o(n!), \quad n!=o\left(n^{n}\right)$


## Terminologies

When we talk about upper bounds:

- Logarithmic time: $O(\lg n)$
- Linear time: $O(n)$
- Quadratic time: $O\left(n^{2}\right)$
- Cubic time: $O\left(n^{3}\right)$
- Polynomial time: $O\left(n^{k}\right)$ for some constant $k$
- Exponential time: $O\left(c^{n}\right)$ for some $c>1$
- Sub-linear time: o( $n$ )
- Sub-quadratic time: $o\left(n^{2}\right)$


## Terminologies

When we talk about upper bounds:

- Logarithmic time: $O(\lg n)$
- Linear time: $O(n)$
- Quadratic time: $O\left(n^{2}\right)$
- Cubic time: $O\left(n^{3}\right)$
- Polynomial time: $O\left(n^{k}\right)$ for some constant $k$
- Exponential time: $O\left(c^{n}\right)$ for some $c>1$
- Sub-linear time: o( $n$ )
- Sub-quadratic time: $o\left(n^{2}\right)$

When we talk about lower bounds:

- Super-linear time: $\omega(n)$
- Super-quadratic time: $\omega\left(n^{2}\right)$
- Super-polynomial time: $\bigcap_{k>0} \omega\left(n^{k}\right)=n^{\omega(1)}$


## Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.


## Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms
- Makes our life much easier! (E.g., the leading constant depends on the implementation, complier and computer architecture of computer.)

Q: Can constants really be ignored?

- e.g, how can we compare an algorithm with running time $0.1 n^{2}$ with an algorithm with running time $1000 n$ ?

Q: Can constants really be ignored?

- e.g, how can we compare an algorithm with running time $0.1 n^{2}$ with an algorithm with running time $1000 n$ ?

A:

- Sometimes no
- For most natural and simple algorithms, constants are not so big.
- Algorithm with lower order running time beats algorithm with higher order running time for reasonably large $n$.

