算法设计与分析(2024年春季学期) Introduction and Syllabus

授课老师: 栗师 南京大学计算机科学与技术系

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

• Course Webpage: https://tcs.nju.edu.cn/shili/courses/2024spring-algo

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

What is an Algorithm?

• Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.

What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
- Computational problem: specifies the input/output relationship.
- An algorithm solves a computational problem if it produces the correct output for any given input.

Greatest Common Divisor

Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Greatest Common Divisor

Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:

• Input: 210, 270

• Output: 30

Greatest Common Divisor

Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:

• Input: 210, 270

• Output: 30

Algorithm: Euclidean algorithm

Greatest Common Divisor

Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:

• Input: 210, 270

• Output: 30

Algorithm: Euclidean algorithm

• $gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)$

Greatest Common Divisor

Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:

Input: 210, 270

• Output: 30

- Algorithm: Euclidean algorithm
- $gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)$
- $(270,210) \rightarrow (210,60) \rightarrow (60,30) \rightarrow (30,0)$

Sorting

Input: sequence of n numbers (a_1, a_2, \dots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such

that $a_1' \leq a_2' \leq \cdots \leq a_n'$

Sorting

Input: sequence of n numbers (a_1, a_2, \dots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such

that $a_1' \leq a_2' \leq \cdots \leq a_n'$

Example:

 $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$

• Output: 12, 15, 21, 35, 53, 59

Sorting

Input: sequence of n numbers (a_1, a_2, \dots, a_n)

Output: a permutation $(a'_1, a'_2, \dots, a'_n)$ of the input sequence such

that $a_1' \leq a_2' \leq \cdots \leq a_n'$

Example:

 \bullet Input: 53, 12, 35, 21, 59, 15

• Output: 12, 15, 21, 35, 53, 59

• Algorithms: insertion sort, merge sort, quicksort, ...

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$

Output: a shortest path from s to t in G

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$

Output: a shortest path from s to t in G

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$

Output: a shortest path from s to t in G

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$

Output: a shortest path from s to t in G

• Algorithm: Dijkstra's algorithm

Algorithm = Computer Program?

- Algorithm: "abstract", can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: "concrete", implementation of algorithm, using a particular programming language

Pseudo-Code

Pseudo-Code:

Euclidean(a, b)

1: while b > 0 do

2: $(a,b) \leftarrow (b, a \mod b)$

3: return a

```
C++ program:
int Euclidean(int a, int b){
      int c:
      while (b > 0){
         c = b:
         b = a \% b:
       a = c:
      return a;
```

• }

• Main focus: correctness, running time (efficiency)

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - ...

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - ...
- Why is it important to study the running time (efficiency) of an algorithm?

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
 - efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
- efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
- fundamental

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
- efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
- fundamental
- it is fun!

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

Sorting Problem

Input: sequence of n numbers (a_1, a_2, \dots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:

• Input: 53, 12, 35, 21, 59, 15

• Output: 12, 15, 21, 35, 53, 59

Insertion-Sort

ullet At the end of j-th iteration, the first j numbers are sorted.

```
iteration 1: 53, 12, 35, 21, 59, 15
iteration 2: 12, 53, 35, 21, 59, 15
iteration 3: 12, 35, 53, 21, 59, 15
iteration 4: 12, 21, 35, 53, 59, 15
iteration 5: 12, 21, 35, 53, 59, 15
iteration 6: 12, 15, 21, 35, 53, 59
```

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: for $j \leftarrow 2$ to n do
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j-1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i-1$
- 7: $A[i+1] \leftarrow key$

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $i \leftarrow 2$ to n **do**
- $key \leftarrow A[j]$ 2:
- 3: $i \leftarrow j 1$
- while i > 0 and A[i] > key do 4:
- $A[i+1] \leftarrow A[i]$ 5:
- $i \leftarrow i 1$ 6:
- $A[i+1] \leftarrow key$ 7:

- j = 6
- key = 15
- 21 35 53 59

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $j \leftarrow 2$ to n **do**
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j-1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$

- j = 6
- key = 15
- 12 21 35 53 59
 - \uparrow i

59

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $j \leftarrow 2$ to n **do**
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j-1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$

- j = 6
- key = 15
- 12 21 35 53
 - \uparrow i

59

59

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $i \leftarrow 2$ to n **do**
- $key \leftarrow A[j]$ 2:
- 3: $i \leftarrow j 1$
- while i > 0 and A[i] > key do 4:
- $A[i+1] \leftarrow A[i]$ 5:
- $i \leftarrow i 1$ 6:
- $A[i+1] \leftarrow key$ 7:

- j = 6
- key = 15
- 21 35 53

53

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $j \leftarrow 2$ to n **do**
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j-1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$

- j = 6
- key = 15
- 12 21 35 53
 - $\uparrow i$

59

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $i \leftarrow 2$ to n **do**
- $key \leftarrow A[j]$ 2:
- 3: $i \leftarrow j 1$
- while i > 0 and A[i] > key do 4:
- $A[i+1] \leftarrow A[i]$ 5:
- $i \leftarrow i 1$ 6:
- $A[i+1] \leftarrow key$ 7:

- j = 6
- key = 15
- 21 35 35

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $j \leftarrow 2$ to n **do**
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j 1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$

- j = 6
- key = 15
- 12 21 35 35
 - \uparrow_i

59

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $i \leftarrow 2$ to n **do**
- $key \leftarrow A[j]$ 2:
- 3: $i \leftarrow j 1$
- while i > 0 and A[i] > key do 4:
- $A[i+1] \leftarrow A[i]$ 5:
- $i \leftarrow i 1$ 6:
- $A[i+1] \leftarrow key$ 7:

- j = 6
- key = 15
- 12 21 **21** 35

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $j \leftarrow 2$ to n **do**
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j-1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$

- j = 6
- key = 15
- \bullet neg = 10

21 21 35

- \uparrow
 - i

59

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $i \leftarrow 2$ to n **do**
- $key \leftarrow A[j]$ 2:
- 3: $i \leftarrow j 1$
- while i > 0 and A[i] > key do 4:
- $A[i+1] \leftarrow A[i]$ 5:
- $i \leftarrow i 1$ 6:
- $A[i+1] \leftarrow key$ 7:

- j = 6
- key = 15
- **15** 21 35

59

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

Analysis of Insertion Sort

- Correctness
- Running time

Correctness of Insertion Sort

• Invariant: after iteration j of outer loop, A[1..j] is the sorted array for the original A[1..j].

```
after j=1:53,12,35,21,59,15

after j=2:12,53,35,21,59,15

after j=3:12,35,53,21,59,15

after j=4:12,21,35,53,59,15

after j=5:12,21,35,53,59,15

after j=6:12,15,21,35,53,59
```

• Q1: what is the size of input?

- Q1: what is the size of input?
- A1: Running time as the function of size

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph
- Q2: Which input?
 - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph
- Q2: Which input?
 - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
- A2: Worst-case analysis:
 - \bullet Running time for size n= worst running time over all possible arrays of length n

- Q3: How fast is the computer?
- Q4: Programming language?

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!

Important idea: asymptotic analysis

 Focus on growth of running-time as a function, not any particular value.

- Ignoring lower order terms
- Ignoring leading constant

- Ignoring lower order terms
- Ignoring leading constant

•
$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$

- Ignoring lower order terms
- Ignoring leading constant

•
$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$

•
$$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$$

- Ignoring lower order terms
- Ignoring leading constant

•
$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$

•
$$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$$

•
$$n^2/100 - 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$$

- Ignoring lower order terms
- Ignoring leading constant

•
$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$

•
$$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$$

•
$$n^2/100 - 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$$

•
$$n^2/100 - 3n + 10 = O(n^2)$$

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n^2 + 10 = O(n^2)$

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?
- to execute $a \leftarrow b + c$:
 - program 1 requires 10 instructions, or 10^{-8} seconds
 - program 2 requires 2 instructions, or 10^{-9} seconds

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?
- to execute $a \leftarrow b + c$:
 - program 1 requires 10 instructions, or 10^{-8} seconds
 - \bullet program 2 requires 2 instructions, or 10^{-9} seconds
 - \bullet they only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation

- Algorithm 1 runs in time $O(n^2)$
- ullet Algorithm 2 runs in time O(n)

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time O(n)
- Does not tell which algorithm is faster for a specific n!
- ullet Algorithm 2 will eventually beat algorithm 1 as n increases.

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time O(n)
- Does not tell which algorithm is faster for a specific n!
- ullet Algorithm 2 will eventually beat algorithm 1 as n increases.
- ullet For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4
- ullet For Algorithm 2: if we increase n by a factor of 2, running time increases by a factor of 2

```
insertion-sort(A, n)

1: for j \leftarrow 2 to n do

2: key \leftarrow A[j]

3: i \leftarrow j - 1

4: while i > 0 and A[i] > key do

5: A[i+1] \leftarrow A[i]

6: i \leftarrow i - 1

7: A[i+1] \leftarrow key
```

```
insertion-sort (A, n)

1: for j \leftarrow 2 to n do

2: key \leftarrow A[j]

3: i \leftarrow j - 1

4: while i > 0 and A[i] > key do

5: A[i+1] \leftarrow A[i]

6: i \leftarrow i - 1

7: A[i+1] \leftarrow key
```

• Worst-case running time for iteration j of the outer loop?

```
insertion-sort (A, n)

1: for j \leftarrow 2 to n do

2: key \leftarrow A[j]

3: i \leftarrow j - 1

4: while i > 0 and A[i] > key do

5: A[i+1] \leftarrow A[i]

6: i \leftarrow i - 1

7: A[i+1] \leftarrow key
```

• Worst-case running time for iteration j of the outer loop? Answer: O(j)

insertion-sort(A, n)

```
1: for j \leftarrow 2 to n do
2: key \leftarrow A[j]
3: i \leftarrow j - 1
4: while i > 0 and A[i] > key do
5: A[i+1] \leftarrow A[i]
6: i \leftarrow i - 1
7: A[i+1] \leftarrow key
```

- Worst-case running time for iteration j of the outer loop? Answer: O(j)
- Total running time = $\sum_{j=2}^n O(j) = O(\sum_{j=2}^n j)$ = $O(\frac{n(n+1)}{2} - 1) = O(n^2)$

Computation Model

Computation Model

- Random-Access Machine (RAM) model
 - \bullet reading and writing A[j] takes O(1) time

- Random-Access Machine (RAM) model
 - reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time

- Random-Access Machine (RAM) model
 - reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes O(1) time.

- Random-Access Machine (RAM) model
 - ullet reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes O(1) time.
- What is the precision of real numbers?

- Random-Access Machine (RAM) model
 - ullet reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes O(1) time.
- What is the precision of real numbers?
 Most of the time, we only consider integers.

- Random-Access Machine (RAM) model
 - reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes O(1) time.
- What is the precision of real numbers?
 Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?

- Random-Access Machine (RAM) model
 - ullet reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c,n^c]$, it is convenient to assume this takes O(1) time.
- What is the precision of real numbers?
 Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
- Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time

Questions?

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- Common Running times

Def. $f: \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:

• $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$?

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$?

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$?
- We only consider asymptotically positive functions.

$$\begin{aligned} O\text{-Notation} \ \ &For \ \text{a function} \ g(n), \\ O(g(n)) &= \big\{ \text{function} \ f: \ \exists c>0, n_0>0 \ \text{such that} \\ &\qquad \qquad f(n) \leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$$

```
O	ext{-Notation} For a function g(n), O(g(n)) = \left\{ \text{function } f: \exists c>0, n_0>0 \text{ such that} \right. \\ \left. f(n) \leq cg(n), \forall n \geq n_0 \right\}.
```

• In short, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.

$$O\text{-Notation For a function }g(n),$$

$$O(g(n)) = \big\{\text{function }f: \exists c>0, n_0>0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0\big\}.$$

• In short, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.

$$O\text{-Notation For a function }g(n),$$

$$O(g(n)) = \big\{ \text{function } f: \exists c>0, n_0>0 \text{ such that} \\ f(n) \leq cg(n), \forall n \geq n_0 \big\}.$$

• $3n^2 + 2n \in O(n^2 - 10n)$

$$O\text{-Notation}$$
 For a function $g(n)$,
$$O(g(n)) = \big\{ \text{function } f: \exists c>0, n_0>0 \text{ such that } \\ f(n) \leq cg(n), \forall n \geq n_0 \big\}.$$

• $3n^2 + 2n \in O(n^2 - 10n)$

Proof.

Let
$$c=4$$
 and $n_0=50$, for every $n>n_0=50$, we have,
$$3n^2+2n-c(n^2-10n)=3n^2+2n-4(n^2-10n)$$

$$=-n^2+42n\leq 0.$$

$$3n^2+2n\leq c(n^2-10n)$$

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \le cg(n), \forall n \ge n_0 \}.$$

• $3n^2 + 2n \in O(n^2 - 10n)$

$$O(g(n)) = \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that}$$

$$f(n) \le cg(n), \forall n \ge n_0 \big\}.$$

- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \le cg(n), \forall n \ge n_0 \}.$$

- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- $n^{100} \in O(2^n)$

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \le cg(n), \forall n \ge n_0 \}.$$

- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \le cg(n), \forall n \ge n_0 \}.$$

- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq		

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^2)$

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^2)$
- "=" is asymmetric: we do not write $O(n^2) = 3n^2 + 2n$

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^2)$
- "=" is asymmetric: we do not write $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. A student is Mike.

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^2)$
- "=" is asymmetric: we do not write $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. A student is Mike.
- We use "O(g(n)) = O(g'(n))" to denote " $O(g(n)) \subseteq O(g'(n))$ ".
- $O(3n^2 + 2n) = O(n^2)$

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^2)$
- "=" is asymmetric: we do not write $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. A student is Mike.
- We use "O(g(n)) = O(g'(n))" to denote " $O(g(n)) \subseteq O(g'(n))$ ".
- $O(3n^2 + 2n) = O(n^2)$
- Again, "=" is asymmetric.
- $O(n^3) = O(3n^2 + 2n)$ makes sense, but is wrong.
- Analogy: All students are people.

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^2)$
- "=" is asymmetric: we do not write $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. A student is Mike.
- We use "O(g(n)) = O(g'(n))" to denote " $O(g(n)) \subseteq O(g'(n))$ ".
- $O(3n^2 + 2n) = O(n^2)$
- Again, "=" is asymmetric.
- $O(n^3) = O(3n^2 + 2n)$ makes sense, but is wrong.
- Analogy: All students are people.
- Equalities can be chained: $3n^2 + 2n = O(n^2) = O(n^3)$.

Ω -Notation: Asymptotic Lower Bound

$$O\text{-Notation For a function }g(n),$$

$$O(g(n)) = \big\{\text{function }f: \exists c>0, n_0>0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0\big\}.$$

$$\Omega\text{-Notation For a function } g(n), \\ \Omega(g(n)) = \left\{ \text{function } f: \exists c>0, n_0>0 \text{ such that} \right. \\ \left. f(n) \geq cg(n), \forall n \geq n_0 \right\}.$$

Ω -Notation: Asymptotic Lower Bound

O-Notation For a function
$$g(n)$$
,
$$O(g(n)) = \left\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \right\}.$$

$$\Omega\text{-Notation For a function } g(n), \\ \Omega(g(n)) = \left\{ \text{function } f: \exists c>0, n_0>0 \text{ such that } \\ f(n) \geq cg(n), \forall n \geq n_0 \right\}.$$

• In short, $f(n) \in \Omega(g(n))$ if $f(n) \ge cg(n)$ for some c and large enough n.

Ω -Notation: Asymptotic Lower Bound

$$\Omega\text{-Notation For a function }g(n),$$

$$\Omega(g(n)) = \big\{\text{function }f: \exists c>0, n_0>0 \text{ such that }\\ f(n) \geq cg(n), \forall n \geq n_0\big\}.$$

Ω -Notation: Asymptotic Lower Bound

- Again, we use "=" instead of \in .
 - $4n^2 = \Omega(n-10)$
 - $3n^2 n + 10 = \Omega(n^2 20)$

Ω -Notation: Asymptotic Lower Bound

- Again, we use "=" instead of \in .
 - $4n^2 = \Omega(n-10)$
 - $3n^2 n + 10 = \Omega(n^2 20)$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	2	

Ω -Notation: Asymptotic Lower Bound

- Again, we use "=" instead of \in .
 - $4n^2 = \Omega(n-10)$
 - $3n^2 n + 10 = \Omega(n^2 20)$

Asymptotic Notations
$$O \Omega \Theta$$
Comparison Relations $S \Theta$

Theorem
$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n)).$$

$$\Theta ext{-Notation}$$
 For a function $g(n)$,
$$\Theta(g(n)) = \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \big\}.$$

$$\Theta$$
-Notation For a function $g(n)$,
$$\Theta(g(n)) = \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \big\}.$$

• $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".

$$\Theta$$
-Notation For a function $g(n)$,
$$\Theta(g(n)) = \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \big\}.$$

• $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".

$$\Theta$$
-Notation For a function $g(n)$,
$$\Theta(g(n)) = \left\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \right\}.$$

• $3n^2 + 2n = \Theta(n^2 - 20n)$

$$\Theta\text{-Notation For a function } g(n), \\ \Theta(g(n)) = \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}.$$

- $3n^2 + 2n = \Theta(n^2 20n)$
- $2^{n/3+100} = \Theta(2^{n/3})$

$$\Theta ext{-Notation}$$
 For a function $g(n)$,
$$\Theta(g(n)) = \left\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \right\}.$$

- $3n^2 + 2n = \Theta(n^2 20n)$
- $2^{n/3+100} = \Theta(2^{n/3})$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	=

$$\Theta\text{-Notation} \ \ \text{For a function} \ g(n), \\ \Theta(g(n)) = \left\{ \text{function} \ f: \exists c_2 \geq c_1 > 0, n_0 > 0 \ \text{such that} \right. \\ \left. c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \right\}.$$

- $3n^2 + 2n = \Theta(n^2 20n)$
- $2^{n/3+100} = \Theta(2^{n/3})$

Theorem
$$f(n) = \Theta(g(n))$$
 if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

o and ω -Notations

$$o\text{-Notation} \ \ \text{For a function} \ g(n),$$

$$o(g(n)) = \big\{ \text{function} \ f: \forall c>0, \exists n_0>0 \ \text{such that} \\ f(n) \leq cg(n), \forall n \geq n_0 \big\}.$$

$$\label{eq:objective} \begin{split} \omega\text{-Notation} \ \ & For \ \text{a} \ \ \text{function} \ \ g(n), \\ & \omega(g(n)) = \left\{ \text{function} \ \ f: \forall c>0, \exists n_0>0 \ \text{such that} \right. \\ & \left. f(n) \geq cg(n), \forall n \geq n_0 \right\}. \end{split}$$

Example:

- $3n^2 + 5n + 10 = o(n^2 \log n)$.
- $3n^2 + 5n + 10 = \omega(n^2/\log n)$.

Asymptotic Notations	O	Ω	Θ	0	ω
Comparison Relations	<	>	=	<	>

- $a \le b \iff b \ge a$
- $a = b \iff a \le b \text{ and } a \ge b$
- \bullet $a < b \implies a \le b$
- $a < b \iff b > a$

- $a \le b \iff b \ge a$
- $a = b \iff a \le b \text{ and } a \ge b$
- \bullet $a < b \implies a \le b$
- $a < b \iff b > a$

Correct Analogies

- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $\bullet \ f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \ \text{and} \ f(n) = \Omega(g(n))$
- $f(n) = o(g(n)) \implies f(n) = O(g(n))$
- $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$

- $a \le b$ or $a \ge b$
- $a < b \iff a = b \text{ or } a < b$

- $a \le b$ or $a \ge b$
- $a < b \iff a = b \text{ or } a < b$

Incorrect Analogies

- f(n) = O(g(n)) or $f(n) = \Omega(g(n))$
- $f(n) = O(g(n)) \iff f(n) = \Theta(g(n)) \text{ or } f(n) = o(g(n))$

Incorrect Analogy

 $\bullet \ f(n) = O(g(n)) \ \text{or} \ f(n) = \Omega(g(n))$

Incorrect Analogy

• f(n) = O(g(n)) or $f(n) = \Omega(g(n))$

$$f(n) = n^2$$

$$g(n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ n^3 & \text{if } n \text{ is even} \end{cases}$$

Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.

Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.
- $3n^2 10n 5 = O(5n^2 6n + 5)$ is correct, though weird
- $3n^2 10n 5 = O(n^2)$ is the most natural since n^2 is the simplest term we can have inside $O(\cdot)$.

Notice that O denotes asymptotic upper bound

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of insertion sort is $O(n^4)$.
- Usually we say: The running time of insertion sort is $O(n^2)$ and the bound is tight.
- Also correct: the worst-case running time of insertion sort is $\Theta(n^2)$.

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- Common Running times

Computing the sum of n numbers

sum(A, n)

1: $S \leftarrow 0$

2: for $i \leftarrow 1$ to n

3: $S \leftarrow S + A[i]$

4: return S

3 8 12 2	0 32 48
----------	-------------

Merge two sorted arrays

3

Merge two sorted arrays

3

Merge two sorted arrays

3 5


```
merge(B, C, n_1, n_2) \setminus B and C are sorted, with
length n_1 and n_2
 1: A \leftarrow []; i \leftarrow 1; j \leftarrow 1
 2: while i \leq n_1 and j \leq n_2 do
        if B[i] < C[j] then
 3:
            append B[i] to A; i \leftarrow i+1
 4:
        else
 5:
            append C[j] to A; j \leftarrow j+1
 6:
 7: if i \leq n_1 then append B[i..n_1] to A
 8: if j < n_2 then append C[j..n_2] to A
 9: return A
```

```
merge(B, C, n_1, n_2) \setminus B and C are sorted, with
length n_1 and n_2
 1: A \leftarrow []; i \leftarrow 1; j \leftarrow 1
 2: while i < n_1 and j < n_2 do
     if B[i] < C[j] then
 3:
            append B[i] to A; i \leftarrow i+1
 4:
      else
 5:
            append C[j] to A; j \leftarrow j+1
 6:
 7: if i < n_1 then append B[i..n_1] to A
 8: if j < n_2 then append C[j..n_2] to A
 9: return A
```

Running time = O(n) where $n = n_1 + n_2$.

```
merge-sort(A, n)

1: if n = 1 then

2: return A

3: B \leftarrow \text{merge-sort}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)

4: C \leftarrow \text{merge-sort}(A[\lfloor n/2 \rfloor + 1..n], n - \lfloor n/2 \rfloor)

5: return \text{merge}(B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor)
```

Merge-Sort

Merge-Sort

• Each level takes running time O(n)

Merge-Sort

- Each level takes running time O(n)
- There are $O(\log n)$ levels

Merge-Sort

- Each level takes running time O(n)
- There are $O(\log n)$ levels
- Running time = $O(n \log n)$

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

Closest Pair

```
Input: n points in plane: (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)
```

Output: the pair of points that are closest

closest-pair(x, y, n)

```
1: bestd \leftarrow \infty

2: for i \leftarrow 1 to n-1 do

3: for j \leftarrow i+1 to n do

4: d \leftarrow \sqrt{(x[i]-x[j])^2+(y[i]-y[j])^2}

5: if d < bestd then

6: besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d

7: return (besti, bestj)
```

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

closest-pair(x, y, n)

```
1: bestd \leftarrow \infty
```

2: **for** $i \leftarrow 1$ to n-1 **do**

3: **for**
$$j \leftarrow i + 1$$
 to n **do**

4:
$$d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$$

5: if d < best d then

6:
$$besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d$$

7: **return** (besti, bestj)

Closest pair can be solved in $O(n \log n)$ time!

$O(n^3)$ (Cubic) Running Time

Multiply two matrices of size $n \times n$

```
{\sf matrix-multiplication}(A,B,n)
```

```
1: C \leftarrow \text{matrix of size } n \times n, with all entries being 0
```

```
2: for i \leftarrow 1 to n do
```

3: **for**
$$j \leftarrow 1$$
 to n **do**

4: **for**
$$k \leftarrow 1$$
 to n **do**

5:
$$C[i,k] \leftarrow C[i,k] + A[i,j] \times B[j,k]$$

6: return C

Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Def. An independent set of a graph G=(V,E) is a subset $S\subseteq V$ of vertices such that for every $u,v\in S$, we have $(u,v)\notin E$.

Def. An independent set of a graph G=(V,E) is a subset $S\subseteq V$ of vertices such that for every $u,v\in S$, we have $(u,v)\notin E$.

Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the maximum independent set of ${\cal G}$

max-independent-set(G = (V, E))

- 1: $R \leftarrow \emptyset$
- 2: **for** every set $S \subseteq V$ **do**
- 3: $b \leftarrow \mathsf{true}$
- 4: for every $u, v \in S$ do
- 5: if $(u, v) \in E$ then $b \leftarrow$ false
- 6: if b and |S| > |R| then $R \leftarrow S$
- 7: return R

Running time = $O(2^n n^2)$.

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists


```
\mathsf{Hamiltonian}(G = (V, E))
```

```
1: for every permutation (p_1, p_2, \cdots, p_n) of V do
2: b \leftarrow true
3: for i \leftarrow 1 to n-1 do
4: if (p_i, p_{i+1}) \notin E then b \leftarrow false
5: if (p_n, p_1) \notin E then b \leftarrow false
6: if b then return (p_1, p_2, \cdots, p_n)
7: return "No Hamiltonian Cycle"
```

Running time = $O(n! \times n)$

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.

- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search(A, n, t)

- 1: $i \leftarrow 1, j \leftarrow n$
- 2: while $i \leq j$ do
- 3: $k \leftarrow \lfloor (i+j)/2 \rfloor$
- 4: if A[k] = t return true
- 5: if t < A[k] then $j \leftarrow k-1$ else $i \leftarrow k+1$
- 6: return false

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search(A, n, t)

- 1: $i \leftarrow 1, j \leftarrow n$
- 2: while $i \leq j$ do
- 3: $k \leftarrow \lfloor (i+j)/2 \rfloor$
- 4: if A[k] = t return true
- 5: if t < A[k] then $j \leftarrow k-1$ else $i \leftarrow k+1$
- 6: return false

Running time = $O(\log n)$

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n , $\log(n!)$
- $\log n$

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n , $\log(n!)$
- $\bullet \log n \quad n$

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n , $\log(n!)$
- $\bullet \log n \quad n \quad n^2$

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n , $\log(n!)$
- $\bullet \log n \quad n \log n \quad n^2$

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n , $\log(n!)$
- $\log n$ $n \log n$ n^2 n!

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n , $\log(n!)$
- $\log n$ $n \log n$ n^2 2^n n!

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n , $\log(n!)$
- $\log n$ $n \log n$ n^2 2^n e^n n!

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n , $\log(n!)$
- $\log n$ $n \log n$ n^2 2^n e^n n! n^n

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n , $\log(n!)$
- $\log n$ $n \{n \log n, \log(n!)\}$ n^2 2^n e^n n! n^n

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n , $\log(n!)$
- $\log n$ $n \{ n \log n, \log(n!) \}$ $n^2 2^n$ e^n n! n^n
- $\log n = o(n)$, $n = o(n \log n)$, $n \log n = \Theta(\log(n!))$
- $\log(n!) = o(n^2), \quad n^2 = o(2^n), \quad 2^n = o(e^n)$
- $\bullet \ e^n = o(n!), \quad n! = o(n^n)$

Terminologies

When we talk about upper bounds:

- Logarithmic time: $O(\lg n)$
- Linear time: O(n)
- Quadratic time: $O(n^2)$
- Cubic time: $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some c > 1
- Sub-linear time: o(n)
- Sub-quadratic time: $o(n^2)$

Terminologies

When we talk about upper bounds:

- Logarithmic time: $O(\lg n)$
- Linear time: O(n)
- Quadratic time: $O(n^2)$
- Cubic time: $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some c>1
- Sub-linear time: o(n)
- Sub-quadratic time: $o(n^2)$

When we talk about lower bounds:

- Super-linear time: $\omega(n)$
- Super-quadratic time: $\omega(n^2)$
- Super-polynomial time: $\bigcap_{k>0}\omega(n^k)=n^{\omega(1)}$

Goal of Algorithm Design

• Design algorithms to minimize the order of the running time.

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms
- Makes our life much easier! (E.g., the leading constant depends on the implementation, complier and computer architecture of computer.)

Q: Can constants really be ignored?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

Q: Can constants really be ignored?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

A:

- Sometimes no
- For most natural and simple algorithms, constants are not so big.
- Algorithm with lower order running time beats algorithm with higher order running time for reasonably large n.