算法设计与分析(2024年春季学期)

Introduction and Syllabus

授课老师: 栗师
南京大学计算机科学与技术系
Outline

1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Course Webpage:
https://tcs.nju.edu.cn/shili/courses/2024spring-algo
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
- Computational problem: specifies the input/output relationship.
- An algorithm solves a computational problem if it produces the correct output for any given input.
Examples

Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b

Example:

Input: 210, 270

Output: 30

Algorithm: Euclidean algorithm

\[
gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)
\]

\[
(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)
\]
Examples

Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b

Example:
- **Input:** 210, 270
- **Output:** 30
Examples

Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b

Example:

- **Input:** 210, 270
- **Output:** 30

- **Algorithm:** Euclidean algorithm
Examples

Greatest Common Divisor

Input: two integers \(a, b > 0\)

Output: the greatest common divisor of \(a\) and \(b\)

Example:

- **Input:** 210, 270
- **Output:** 30

Algorithm: Euclidean algorithm

\[
gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)
\]
Examples

Greatest Common Divisor

Input: two integers \(a, b > 0 \)

Output: the greatest common divisor of \(a \) and \(b \)

Example:

- Input: 210, 270
- Output: 30

Algorithm: Euclidean algorithm

- \(\text{gcd}(270, 210) = \text{gcd}(210, 270 \mod 210) = \text{gcd}(210, 60) \)
- \((270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0) \)
Examples

Sorting

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

Example:

Input:

53, 12, 35, 21, 59, 15

Output:

12, 15, 21, 35, 53, 59
Examples

Sorting

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n \)

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59
Examples

Sorting

Input: sequence of n numbers (a_1, a_2, \cdots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

- Algorithms: insertion sort, merge sort, quicksort, ...
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G

```
s
3

16

1

5

4

2

3

4

10

t
```
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G

Algorithm: Dijkstra’s algorithm
Algorithm = Computer Program?

- Algorithm: “abstract”, can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: “concrete”, implementation of algorithm, using a particular programming language
Pseudo-Code:

Euclidean\((a, b)\)

1: \textbf{while} \(b > 0\) \textbf{do}
2: \hspace{1em} \((a, b) \leftarrow (b, a \mod b)\)
3: \hspace{1em} \textbf{return} \(a\)

C++ program:

```cpp
int Euclidean(int a, int b) {
    int c;
    while (b > 0) {
        c = b;
        b = a % b;
        a = c;
    }
    return a;
}
```
Main focus: correctness, running time (efficiency)
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
3. fundamental
4. it is fun!
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

- Why is it important to study the running time (efficiency) of an algorithm?
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...
- Why is it important to study the running time (efficiency) of an algorithm?
- feasible vs. infeasible
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?
1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - …

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
4. it is fun!
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Sorting Problem

Input: sequence of \(n\) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

Example:
- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59
Insertion-Sort

At the end of j-th iteration, the first j numbers are sorted.

iteration 1: $53, 12, 35, 21, 59, 15$
iteration 2: $12, 53, 35, 21, 59, 15$
iteration 3: $12, 35, 53, 21, 59, 15$
iteration 4: $12, 21, 35, 53, 59, 15$
iteration 5: $12, 21, 35, 53, 59, 15$
iteration 6: $12, 15, 21, 35, 53, 59$
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort \((A, n)\)

1. **for** \(j \leftarrow 2\) to \(n\) **do**
2. \(key \leftarrow A[j]\)
3. \(i \leftarrow j - 1\)
4. **while** \(i > 0\) and \(A[i] > key\) **do**
5. \(A[i + 1] \leftarrow A[i]\)
6. \(i \leftarrow i - 1\)
7. \(A[i + 1] \leftarrow key\)
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(\(A, n\))

1: \textbf{for} \(j \leftarrow 2 \text{ to } n\) \textbf{do}
2: \hspace{1em} \textit{key} \leftarrow A[j]
3: \hspace{1em} \textit{i} \leftarrow j - 1
4: \hspace{1em} \textbf{while} \(i > 0\) and \(A[i] > \textit{key}\) \textbf{do}
5: \hspace{2em} A[i + 1] \leftarrow A[i]
6: \hspace{2em} \textit{i} \leftarrow \textit{i} - 1
7: \hspace{1em} A[i + 1] \leftarrow \textit{key}

- \(j = 6\)
- \(\textit{key} = 15\)

\begin{tabular}{cccccccc}
12 & 21 & 35 & 53 & 59 & 15 & \uparrow \\
\end{tabular}

\hspace{1em} i
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1: for $j \leftarrow 2$ to n do
2: \hspace{1em} key $\leftarrow A[j]$
3: \hspace{1em} $i \leftarrow j - 1$
4: \hspace{1em} while $i > 0$ and $A[i] > key$ do
5: \hspace{2em} $A[i + 1] \leftarrow A[i]$
6: \hspace{1em} $i \leftarrow i - 1$
7: \hspace{1em} $A[i + 1] \leftarrow key$

- $j = 6$
- $key = 15$

12 21 35 53 59 59

↑

i
Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1: for $j \leftarrow 2$ to n do
2: $key \leftarrow A[j]$
3: $i \leftarrow j - 1$
4: while $i > 0$ and $A[i] > key$ do
5: $A[i + 1] \leftarrow A[i]$
6: $i \leftarrow i - 1$
7: $A[i + 1] \leftarrow key$

- $j = 6$
- $key = 15$

12 21 35 53 59 59

↑

i
Example:
- **Input**: 53, 12, 35, 21, 59, 15
- **Output**: 12, 15, 21, 35, 53, 59

insertion-sort\((A, n)\)

1: \(\textbf{for } j \leftarrow 2 \text{ to } n \textbf{ do} \)
2: \(\texttt{key} \leftarrow A[j] \)
3: \(i \leftarrow j - 1 \)
4: \(\textbf{while } i > 0 \text{ and } A[i] > \texttt{key} \textbf{ do} \)
5: \(A[i + 1] \leftarrow A[i] \)
6: \(i \leftarrow i - 1 \)
7: \(A[i + 1] \leftarrow \texttt{key} \)

- \(j = 6\)
- \(\texttt{key} = 15\)

12 21 35 53 53 59
↑

\(i\)
Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1. **for** \(j \leftarrow 2 \) **to** \(n \) **do**
2. \(\text{key} \leftarrow A[j] \)
3. \(i \leftarrow j - 1 \)
4. **while** \(i > 0 \) **and** \(A[i] > \text{key} \) **do**
5. \(A[i + 1] \leftarrow A[i] \)
6. \(i \leftarrow i - 1 \)
7. \(A[i + 1] \leftarrow \text{key} \)

- \(j = 6 \)
- \(\text{key} = 15 \)

12 21 35 53 53 59

\[\uparrow \]

\[i \]
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1: for $j \leftarrow 2$ to n do
2: $key \leftarrow A[j]$
3: $i \leftarrow j - 1$
4: while $i > 0$ and $A[i] > key$ do
5: $A[i + 1] \leftarrow A[i]$
6: $i \leftarrow i - 1$
7: $A[i + 1] \leftarrow key$

- $j = 6$
- $key = 15$
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

```plaintext
insertion-sort(A, n)

1: for j ← 2 to n do
2:   key ← A[j]
3:   i ← j − 1
4:   while i > 0 and A[i] > key do
6:     i ← i − 1
7:   A[i + 1] ← key
```

- $j = 6$
- $key = 15$

12 21 35 35 53 59

\uparrow

i
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1: **for** $j \leftarrow 2$ **to** n **do**
2: $key \leftarrow A[j]$
3: $i \leftarrow j - 1$
4: **while** $i > 0$ **and** $A[i] > key$ **do**
5: $A[i + 1] \leftarrow A[i]$
6: $i \leftarrow i - 1$
7: $A[i + 1] \leftarrow key$

- $j = 6$
- $key = 15$

12 21 21 35 53 59

↑

i
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort\((A, n)\)

1: \textbf{for} \(j \leftarrow 2\) to \(n\) \textbf{do} \\
2: \hspace{1em} \textit{key} \leftarrow A[j] \\
3: \hspace{1em} i \leftarrow j - 1 \\
4: \hspace{1em} \textbf{while} i > 0 \textbf{ and } A[i] > key \textbf{ do} \\
5: \hspace{2em} A[i + 1] \leftarrow A[i] \\
6: \hspace{2em} i \leftarrow i - 1 \\
7: \hspace{1em} A[i + 1] \leftarrow \textit{key} \\

\(j = 6\) \\
\(key = 15\) \\
12 21 21 35 53 59 \\
\(\uparrow\) \\
\(i\)
Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1. **for** $j \leftarrow 2$ **to** n **do**
2. \hspace{1em} $key \leftarrow A[j]$
3. \hspace{1em} $i \leftarrow j - 1$
4. **while** $i > 0$ **and** $A[i] > key$ **do**
5. \hspace{2em} $A[i + 1] \leftarrow A[i]$
6. \hspace{2em} $i \leftarrow i - 1$
7. \hspace{1em} $A[i + 1] \leftarrow key$

- $j = 6$
- $key = 15$

12, 15, 21, 35, 53, 59

↑

i
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Analysis of Insertion Sort

- Correctness
- Running time
Correctness of Insertion Sort

- Invariant: after iteration \(j \) of outer loop, \(A[1..j] \) is the sorted array for the original \(A[1..j] \).

 - after \(j = 1 \): 53, 12, 35, 21, 59, 15
 - after \(j = 2 \): 12, 53, 35, 21, 59, 15
 - after \(j = 3 \): 12, 35, 53, 21, 59, 15
 - after \(j = 4 \): 12, 21, 35, 53, 59, 15
 - after \(j = 5 \): 12, 21, 35, 53, 59, 15
 - after \(j = 6 \): 12, 15, 21, 35, 53, 59
Analyzing Running Time of Insertion Sort

Q1: what is the size of input?
Analyzing Running Time of Insertion Sort

Q1: what is the size of input?
A1: Running time as the function of size

Q2: Which input?
For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.

A2: Worst-case analysis: Running time for size n = worst running time over all possible arrays of length n
Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size:
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph
Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size:
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph

- Q2: Which input?
 - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
Analyzing Running Time of Insertion Sort

- **Q1:** what is the size of input?
- **A1:** Running time as the function of size
- **possible definition of size:**
 - Sorting problem: \# integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: \# edges in graph

- **Q2:** Which input?
 - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.

- **A2:** Worst-case analysis:
 - Running time for size $n =$ worst running time over all possible arrays of length n
Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?
Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!
Analyzing Running Time of Insertion Sort

Q3: How fast is the computer?
Q4: Programming language?
A: They do not matter!

Important idea: asymptotic analysis
- Focus on growth of running-time as a function, not any particular value.
Asymptotic Analysis: \(O \)-notation

Informal way to define \(O \)-notation:

- Ignoring lower order terms
- Ignoring leading constant
Asymptotic Analysis: O-notation

Informal way to define O-notation:

- Ignoring lower order terms
- Ignoring leading constant

$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
Asymptotic Analysis: O-notation

Informal way to define O-notation:

- Ignoring lower order terms
- Ignoring leading constant

$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$

$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
Asymptotic Analysis: O-notation

Informal way to define O-notation:

- Ignoring lower order terms
- Ignoring leading constant

$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$
$$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$$

$$n^2/100 - 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$$
Asymptotic Analysis: O-notation

Informal way to define O-notation:

- Ignoring lower order terms
- Ignoring leading constant

- $3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$
- $n^2/100 - 3n + 10 = O(n^2)$
Asymptotic Analysis: O-notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$
Asymptotic Analysis: O-notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or \# instructions?
Asymptotic Analysis: O-notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?

to execute $a \leftarrow b + c$:

- program 1 requires 10 instructions, or 10^{-8} seconds
- program 2 requires 2 instructions, or 10^{-9} seconds
Asymptotic Analysis: O-notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or $\#$ instructions?

To execute $a \leftarrow b + c$:

- program 1 requires 10 instructions, or 10^{-8} seconds
- program 2 requires 2 instructions, or 10^{-9} seconds

They only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation
Asymptotic Analysis: O-notation

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time $O(n)$
Algorithm 1 runs in time $O(n^2)$
Algorithm 2 runs in time $O(n)$
Does not tell which algorithm is faster for a specific n!
Algorithm 2 will eventually beat algorithm 1 as n increases.
Algorithm 1 runs in time $O(n^2)$
Algorithm 2 runs in time $O(n)$

Does not tell which algorithm is faster for a specific n!
Algorithm 2 will eventually beat algorithm 1 as n increases.

For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4
For Algorithm 2: if we increase n by a factor of 2, running time increases by a factor of 2
Asymptotic Analysis of Insertion Sort

\textbf{insertion-sort}(A, n)

1: \textbf{for} \ j \leftarrow 2 \ \textbf{to} \ n \ \textbf{do}
2: \ \ \ \textit{key} \leftarrow A[j]
3: \ \ i \leftarrow j - 1
4: \ \ \textbf{while} \ i > 0 \ \textbf{and} \ A[i] > key \ \textbf{do}
5: \ \ \ \ A[i + 1] \leftarrow A[i]
6: \ \ \ i \leftarrow i - 1
7: \ \ A[i + 1] \leftarrow key

Worst-case running time for iteration \(j\) of the outer loop?

Answer: \(O(j)\)

Total running time = \(\sum_{j=2}^{n} O(j) = O(P_{n}^{j=2} j) = O(n(\frac{n}{2} - 1)) = O(n^2)\)
Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1: for j ← 2 to n do
2: key ← A[j]
3: i ← j − 1
4: while i > 0 and A[i] > key do
6: i ← i − 1
7: A[i + 1] ← key

- Worst-case running time for iteration j of the outer loop?
Asymptotic Analysis of Insertion Sort

insertion-sort(\(A, n\))

1: for \(j \leftarrow 2\) to \(n\) do
2: \(key \leftarrow A[j]\)
3: \(i \leftarrow j - 1\)
4: while \(i > 0\) and \(A[i] > key\) do
5: \(A[i + 1] \leftarrow A[i]\)
6: \(i \leftarrow i - 1\)
7: \(A[i + 1] \leftarrow key\)

- Worst-case running time for iteration \(j\) of the outer loop?
 Answer: \(O(j)\)
Asymptotic Analysis of Insertion Sort

\[
\text{insertion-sort}(A, n)
\]

1: \textbf{for} \ j \leftarrow 2 \ \text{to} \ n \ \textbf{do}
2: \quad \text{key} \leftarrow A[j]
3: \quad i \leftarrow j - 1
4: \quad \textbf{while} \ i > 0 \ \text{and} \ A[i] > \text{key} \ \textbf{do}
5: \quad \quad A[i + 1] \leftarrow A[i]
6: \quad \quad i \leftarrow i - 1
7: \quad A[i + 1] \leftarrow \text{key}

- Worst-case running time for iteration \(j \) of the outer loop?
 Answer: \(O(j) \)

- Total running time
 \[
 \sum_{j=2}^{n} O(j) = O(\sum_{j=2}^{n} j)
 \]
 \[
 = O\left(\frac{n(n+1)}{2} - 1\right) = O(n^2)
 \]
Computation Model

Random-Access Machine (RAM) model

- Reading and writing $A[j]$ takes $O(1)$ time.

- Basic operations such as addition, subtraction, and multiplication also take $O(1)$ time.

- Each integer (word) has $c \log n$ bits, where $c \geq 1$ is sufficiently large enough. This is often required to read the integer n and handle integers within the range $[-n^c, n^c]$. It is convenient to assume this takes $O(1)$ time.

What is the precision of real numbers?

- Most of the time, we only consider integers.

- Can we do better than insertion sort asymptotically?
 - Yes: merge sort, quicksort, and heap sort take $O(n \log n)$ time.
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time

Basic operations such as addition, subtraction and multiplication take $O(1)$ time.

Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough.

Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.

What is the precision of real numbers?

Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time.
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.

What is the precision of real numbers?

Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time.
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers?
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers?
 - Most of the time, we only consider integers.
Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time

Basic operations such as addition, subtraction and multiplication take $O(1)$ time

Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.

What is the precision of real numbers?
 - Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.

- What is the precision of real numbers?
 - Most of the time, we only consider integers.

- Can we do better than insertion sort asymptotically?
 - Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time
Questions?
Outline

1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Asymptotically Positive Functions

Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:
- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$
Asymptotically Positive Functions

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

- In other words, $f(n)$ is positive for large enough n.

We only consider asymptotically positive functions.
Def. \(f : \mathbb{N} \rightarrow \mathbb{R} \) is an asymptotically positive function if:

- \(\exists n_0 > 0 \) such that \(\forall n > n_0 \) we have \(f(n) > 0 \)

- In other words, \(f(n) \) is positive for large enough \(n \).
- \(n^2 - n - 30 \)
Asymptotically Positive Functions

Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

- In other words, $f(n)$ is positive for large enough n.
- $n^2 - n - 30$ Yes

We only consider asymptotically positive functions.
Asymptotically Positive Functions

Def. \(f : \mathbb{N} \to \mathbb{R} \) is an asymptotically positive function if:

- \(\exists n_0 > 0 \) such that \(\forall n > n_0 \) we have \(f(n) > 0 \)

- In other words, \(f(n) \) is positive for large enough \(n \).
- \(n^2 - n - 30 \) Yes
- \(2^n - n^{20} \)

We only consider asymptotically positive functions.
Asymptotically Positive Functions

Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an **asymptotically positive function** if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

- In other words, $f(n)$ is positive for large enough n.
- $n^2 - n - 30$ Yes
- $2^n - n^{20}$ Yes
Asymptotically Positive Functions

Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

In other words, $f(n)$ is positive for large enough n.

- $n^2 - n - 30$ Yes
- $2^n - n^{20}$ Yes
- $100n - n^2 / 10 + 50$?
Asymptotically Positive Functions

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

In other words, $f(n)$ is positive for large enough n.

- $n^2 - n - 30$ Yes
- $2^n - n^{20}$ Yes
- $100n - n^2 / 10 + 50$ No

We only consider asymptotically positive functions.
Asymptotically Positive Functions

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

- In other words, $f(n)$ is positive for large enough n.

- $n^2 - n - 30$ \hspace{1cm} Yes
- $2^n - n^{20}$ \hspace{1cm} Yes
- $100n - n^2 / 10 + 50? \hspace{1cm} No$

- We only consider asymptotically positive functions.
O-Notation: Asymptotic Upper Bound

O-Notation For a function $g(n)$,

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]
O-Notation: Asymptotic Upper Bound

O-Notation For a function \(g(n) \),

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

- In short, \(f(n) \in O(g(n)) \) if \(f(n) \leq cg(n) \) for some \(c > 0 \) and every large enough \(n \).
O-Notation: Asymptotic Upper Bound

O-Notation For a function $g(n)$,

\[O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \} . \]

- In short, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c > 0$ and every large enough n.
O-Notation: Asymptotic Upper Bound

O-Notation For a function \(g(n) \),

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

- \(3n^2 + 2n \in O(n^2 - 10n) \)
O-Notation: Asymptotic Upper Bound

O-Notation For a function \(g(n) \),
\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq c g(n), \forall n \geq n_0 \}.
\]

- \(3n^2 + 2n \in O(n^2 - 10n) \)

Proof.

Let \(c = 4 \) and \(n_0 = 50 \), for every \(n > n_0 = 50 \), we have,
\[
3n^2 + 2n - c(n^2 - 10n) = 3n^2 + 2n - 4(n^2 - 10n) \\
= -n^2 + 42n \leq 0.
\]
\[
3n^2 + 2n \leq c(n^2 - 10n)
\]
O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n \in O(n^2 - 10n)$
O-Notation For a function \(g(n) \),

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

- \(3n^2 + 2n \in O(n^2 - 10n) \)
- \(3n^2 + 2n \in O(n^3 - 5n^2) \)
O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$
O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conventions

- We use “\(f(n) = O(g(n))\)” to denote “\(f(n) \in O(g(n))\)”
- \(3n^2 + 2n = O(n^2)\)
We use “\(f(n) = O(g(n))\)” to denote “\(f(n) \in O(g(n))\)”

\[3n^2 + 2n = O(n^2)\]

“\(=\)” is asymmetric: we do not write \(O(n^2) = 3n^2 + 2n\)
Conventions

- We use “$f(n) = O(g(n))$” to denote “$f(n) \in O(g(n))$”
- $3n^2 + 2n = O(n^2)$
- “=” is asymmetric: we do not write $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. A student is Mike.
Conventions

- We use “$f(n) = O(g(n))$” to denote “$f(n) \in O(g(n))$”
- $3n^2 + 2n = O(n^2)$
- “=” is asymmetric: we do not write $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. A student is Mike.
- We use “$O(g(n)) = O(g'(n))$” to denote “$O(g(n)) \subseteq O(g'(n))$”.
- $O(3n^2 + 2n) = O(n^2)$
Conventions

- We use “\(f(n) = O(g(n)) \)” to denote “\(f(n) \in O(g(n)) \)”
- \(3n^2 + 2n = O(n^2) \)
- “=” is asymmetric: we do not write \(O(n^2) = 3n^2 + 2n \)
- Analogy: Mike is a student. A student is Mike.
- We use “\(O(g(n)) = O(g'(n)) \)” to denote “\(O(g(n)) \subseteq O(g'(n)) \)”.
- \(O(3n^2 + 2n) = O(n^2) \)
- Again, “=” is asymmetric.
- \(O(n^3) = O(3n^2 + 2n) \) makes sense, but is wrong.
- Analogy: All students are people.
We use \(f(n) = O(g(n)) \) to denote \(f(n) \in O(g(n)) \)

\[3n^2 + 2n = O(n^2) \]

\(= \) is asymmetric: we do not write \(O(n^2) = 3n^2 + 2n \)

Analogy: Mike is a student. A student is Mike.

We use \(O(g(n)) = O(g'(n)) \) to denote \(O(g(n)) \subseteq O(g'(n)) \).

\[O(3n^2 + 2n) = O(n^2) \]

Again, \(= \) is asymmetric.

\[O(n^3) = O(3n^2 + 2n) \text{ makes sense, but is wrong.} \]

Analogy: All students are people.

Equalities can be chained: \(3n^2 + 2n = O(n^2) = O(n^3) \).
Ω-Notation: Asymptotic Lower Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

Ω-Notation For a function $g(n)$,

$$\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$
Ω-Notation For a function $g(n)$,

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

Ω-Notation For a function $g(n)$,

\[
Ω(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.
\]

- In short, $f(n) \in Ω(g(n))$ if $f(n) \geq cg(n)$ for some c and large enough n.
Ω-Notation: Asymptotic Lower Bound

Ω-Notation For a function \(g(n) \),

\[
\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.
\]
Again, we use “=” instead of \(\in \).

- \(4n^2 = \Omega(n - 10) \)
- \(3n^2 - n + 10 = \Omega(n^2 - 20) \)
Again, we use “=” instead of \in.

- $4n^2 = \Omega(n - 10)$
- $3n^2 - n + 10 = \Omega(n^2 - 20)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td></td>
</tr>
</tbody>
</table>
Again, we use “=” instead of \in.

- $4n^2 = \Omega(n - 10)$
- $3n^2 - n + 10 = \Omega(n^2 - 20)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td></td>
</tr>
</tbody>
</table>

Theorem $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$.
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \left\{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \right\}.$$

f(n) = \Theta(g(n))$, then for large enough n, we have $f(n) \approx g(n)$.
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function \(g(n) \),

\[
\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.
\]

- \(f(n) = \Theta(g(n)) \), then for large enough \(n \), we have \(f(n) \approx g(n) \).
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \left\{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \right.$$

$$c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \right\}.$$

- $f(n) = \Theta(g(n))$, then for large enough n, we have “$f(n) \approx g(n)$.”
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \{ \text{ function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that }$$

$$c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n = \Theta(n^2 - 20n)$
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \{\text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0\}.$$

- $3n^2 + 2n = \Theta(n^2 - 20n)$
- $2^{n/3} + 100 = \Theta(2^{n/3})$
\(\Theta\)-Notation: Asymptotic Tight Bound

\(\Theta\)-Notation For a function \(g(n)\),

\[
\Theta(g(n)) = \left\{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \right\}.
\]

- \(3n^2 + 2n = \Theta(n^2 - 20n)\)
- \(2^{n/3+100} = \Theta(2^{n/3})\)

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>(\Omega)</th>
<th>(\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>(\leq)</td>
<td>(\geq)</td>
</tr>
</tbody>
</table>
θ-Notation: Asymptotic Tight Bound

θ-Notation For a function $g(n)$,

\[\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}. \]

- $3n^2 + 2n = \Theta(n^2 - 20n)$
- $2^{n/3+100} = \Theta(2^{n/3})$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Theorem $f(n) = \Theta(g(n))$ if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.
o and ω-Notations

o-Notation For a function $g(n)$,

$$o(g(n)) = \left\{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \right\}.$$

ω-Notation For a function $g(n)$,

$$ω(g(n)) = \left\{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \right\}.$$

Example:

- $3n^2 + 5n + 10 = o(n^2 \log n)$.
- $3n^2 + 5n + 10 = ω(n^2 / \log n)$.

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>$Ω$</th>
<th>$Θ$</th>
<th>o</th>
<th>$ω$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
<td>$<$</td>
<td>$>$</td>
</tr>
</tbody>
</table>
Asymptotic Notations

<table>
<thead>
<tr>
<th>Comparison Relations</th>
<th>(O)</th>
<th>(\Omega)</th>
<th>(\Theta)</th>
<th>(o)</th>
<th>(\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq)</td>
<td>(\geq)</td>
<td>(=)</td>
<td>(<)</td>
<td>(>)</td>
<td></td>
</tr>
</tbody>
</table>

Facts on Comparison Relations

- \(a \leq b \iff b \geq a \)
- \(a = b \iff a \leq b \) and \(a \geq b \)
- \(a < b \implies a \leq b \)
- \(a < b \iff b > a \)
Asymptotic Notations

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
<th>o</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
<td>$<$</td>
<td>$>$</td>
</tr>
</tbody>
</table>

Facts on Comparison Relations

- $a \leq b \iff b \geq a$
- $a = b \iff a \leq b$ and $a \geq b$
- $a < b \implies a \leq b$
- $a < b \iff b > a$

Correct Analogies

- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
- $f(n) = o(g(n)) \implies f(n) = O(g(n))$
- $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$
Asymptotic Notations

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
<th>o</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
<td>$<$</td>
<td>$>$</td>
</tr>
</tbody>
</table>

Facts on Comparison Relations

- $a \leq b$ or $a \geq b$
- $a \leq b \iff a = b$ or $a < b$
Asymptotic Notations

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
<th>o</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
<td>$<$</td>
<td>$>$</td>
</tr>
</tbody>
</table>

Facts on Comparison Relations

- $a \leq b$ or $a \geq b$
- $a \leq b \iff a = b$ or $a < b$

Incorrect Analogies

- $f(n) = O(g(n))$ or $f(n) = \Omega(g(n))$
- $f(n) = O(g(n)) \iff f(n) = \Theta(g(n))$ or $f(n) = o(g(n))$
Incorrect Analogy

- $f(n) = O(g(n))$ or $f(n) = \Omega(g(n))$
Incorrect Analogy

\[f(n) = O(g(n)) \text{ or } f(n) = \Omega(g(n)) \]

\[f(n) = n^2 \]

\[g(n) = \begin{cases}
1 & \text{if } n \text{ is odd} \\
3n^3 & \text{if } n \text{ is even}
\end{cases} \]
Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$

In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.
Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$

In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.

- $3n^2 - 10n - 5 = O(5n^2 - 6n + 5)$ is correct, though weird
- $3n^2 - 10n - 5 = O(n^2)$ is the most natural since n^2 is the simplest term we can have inside $O(\cdot)$.
Notice that O denotes asymptotic upper bound

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of insertion sort is $O(n^4)$.
- Usually we say: The running time of insertion sort is $O(n^2)$ and the bound is tight.
- Also correct: the worst-case running time of insertion sort is $\Theta(n^2)$.
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Computing the sum of n numbers

\textbf{sum}(A, n)

1: $S \leftarrow 0$
2: for $i \leftarrow 1$ to n
3: \hspace{1em} $S \leftarrow S + A[i]$
4: return S
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>32</td>
<td>48</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

```
3  8  12 20 32 48
5  7  9 25 29
```
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

```
3 8 12 20 32 48
5 7 9 25 29
3
```
Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29
\end{array}
\]
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

```
3 8 12 20 32 48
5 7 9 25 29
3 5
```
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

```
  3  8  12  20  32  48
  5  7  9  25  29
  3  5
```
Merge two sorted arrays

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>32</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

\[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[
\begin{array}{cccc}
3 & 5 & 7 & 8 \\
\end{array}
\]
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

```
3 8 12 20 32 48
5 7 9 25 29
3 5 7 8
```
\(O(n) \) (Linear) Running Time

- Merge two sorted arrays

\[
\begin{array}{cccccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\
\end{array}
\]
Merge two sorted arrays

\[\begin{array}{cccccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\end{array}\]
$O(n)$ (Linear) Running Time

**merge(B, C, n_1, n_2) \[\] B and C are sorted, with length n_1 and n_2

1. $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$
2. **while** $i \leq n_1$ and $j \leq n_2$ **do**
3. \hspace{1em} if $B[i] \leq C[j]$ **then**
4. \hspace{2em} append $B[i]$ to A; $i \leftarrow i + 1$
5. \hspace{1em} else
6. \hspace{2em} append $C[j]$ to A; $j \leftarrow j + 1$
7. if $i \leq n_1$ then append $B[i..n_1]$ to A
8. if $j \leq n_2$ then append $C[j..n_2]$ to A
9. return A

Running time = $O(n)$ where $n = n_1 + n_2$.
merge(B, C, n_1, n_2) \ \ \ \ B and C are sorted, with length n_1 and n_2

1: $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$
2: \textbf{while} $i \leq n_1$ and $j \leq n_2$ \textbf{do}
3: \hspace{1em} \textbf{if} $B[i] \leq C[j]$ \textbf{then}
4: \hspace{2em} append $B[i]$ to A; $i \leftarrow i + 1$
5: \hspace{1em} \textbf{else}
6: \hspace{2em} append $C[j]$ to A; $j \leftarrow j + 1$
7: \hspace{1em} \textbf{if} $i \leq n_1$ \textbf{then} append $B[i..n_1]$ to A
8: \hspace{1em} \textbf{if} $j \leq n_2$ \textbf{then} append $C[j..n_2]$ to A
9: \hspace{1em} \textbf{return} A

Running time = $O(n)$ where $n = n_1 + n_2$.
$O(n \log n)$ Running Time

merge-sort(A, n)

1. if $n = 1$ then
2. return A
3. $B \leftarrow$ merge-sort($A[1..\lceil n/2 \rceil], \lceil n/2 \rceil$)
4. $C \leftarrow$ merge-sort($A[\lfloor n/2 \rfloor + 1..n], n - \lfloor n/2 \rfloor$)
5. return merge($B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor$)
$O(n \log n)$ Running Time

- Merge-Sort
$O(n \log n)$ Running Time

- Merge-Sort

Each level takes running time $O(n)$
$O(n \log n)$ Running Time

- **Merge-Sort**

Each level takes running time $O(n)$

There are $O(\log n)$ levels
$O(n \log n)$ Running Time

- **Merge-Sort**

 ![Merge-Sort Diagram]

 - Each level takes running time $O(n)$
 - There are $O(\log n)$ levels
 - Running time $= O(n \log n)$
$O(n^2)$ (Quadratic) Running Time

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest

```python
closest-pair(x, y, n)
1: bestd ← ∞
2: for i ← 1 to n − 1 do
3:     for j ← i + 1 to n do
4:         d ← \sqrt{(x[i] − x[j])^2 + (y[i] − y[j])^2}
5:             if d < bestd then
6:                 besti ← i, bestj ← j, bestd ← d
7: return (besti, bestj)
```

Closest pair can be solved in \(O(n^2) \) (Quadratic) Running Time!
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

```
closest-pair(x, y, n)
1: bestd ← ∞
2: for $i$ ← 1 to $n - 1$ do
3:   for $j$ ← $i + 1$ to $n$ do
4:     $d$ ← $\sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$
5:       if $d < bestd$ then
6:         $besti$ ← $i$, $bestj$ ← $j$, $bestd$ ← $d$
7: return $(besti, bestj)$
```

Closest pair can be solved in $O(n \log n)$ time!
Multiply two matrices of size $n \times n$

matrix-multiplication(A, B, n)

1: $C \leftarrow$ matrix of size $n \times n$, with all entries being 0
2: \textbf{for} $i \leftarrow 1$ to n \textbf{do}
3: \hspace{0.2cm} \textbf{for} $j \leftarrow 1$ to n \textbf{do}
4: \hspace{0.4cm} \textbf{for} $k \leftarrow 1$ to n \textbf{do}
5: \hspace{0.6cm} $C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]$
6: \textbf{return} C
Beyond Polynomial Time: 2^n

Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.
Beyond Polynomial Time: 2^n

Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

![Graph Diagram](image-url)
Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.
Maximum Independent Set Problem

Input: graph $G = (V, E)$
Output: the maximum independent set of G

max-independent-set($G = (V, E)$)

1. $R \leftarrow \emptyset$
2. for every set $S \subseteq V$ do
3. $b \leftarrow true$
4. for every $u, v \in S$ do
5. if $(u, v) \in E$ then $b \leftarrow false$
6. if b and $|S| > |R|$ then $R \leftarrow S$
7. return R

Running time = $O(2^n n^2)$.

Beyond Polynomial Time: 2^n
Beyond Polynomial Time: \(n! \)

Hamiltonian Cycle Problem

Input: a graph with \(n \) vertices

Output: a cycle that visits each node exactly once, or say no such cycle exists
Beyond Polynomial Time: $n!$

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once, or say no such cycle exists.
Beyond Polynomial Time: \(n! \)

Hamiltonian \((G = (V, E))\)

1. for every permutation \((p_1, p_2, \cdots, p_n)\) of \(V\) do
2. \(b \leftarrow \text{true} \)
3. for \(i \leftarrow 1\) to \(n - 1\) do
4. \(\text{if } (p_i, p_{i+1}) \notin E \text{ then } b \leftarrow \text{false} \)
5. \(\text{if } (p_n, p_1) \notin E \text{ then } b \leftarrow \text{false} \)
6. \(\text{if } b \text{ then return } (p_1, p_2, \cdots, p_n) \)
7. return “No Hamiltonian Cycle”

Running time = \(O(n! \times n)\)
$O(\log n)$ (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;
Output: whether t appears in A.

E.g., search 35 in the following array:
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.

$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

```
3  8  10  25  29  37  38  42  46  52  59  61  63  75  79
```
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g., search 35 in the following array:
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

```
  3  8  10  25  29  37  38  42  46  52  59  61  63  75  79
```
O(log n) (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

```
3  8  10  25  29  37  38  42  46  52  59  61  63  75  79
```

$42 > 35$
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.

- E.g., search 35 in the following array:

```
3 8 10 25 29 37 38 42 46 52 59 61 63 75 79
```
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

```
3  8  10  25  29  37  38  42  46  52  59  61  63  75  79
```

25 < 35
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.

- E.g, search 35 in the following array:

```
3 8 10 25 29 37 38 42 46 52 59 61 63 75 79
```
Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

E.g, search 35 in the following array:

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>10</td>
<td>25</td>
<td>29</td>
<td>37</td>
<td>38</td>
<td>42</td>
<td>46</td>
<td>52</td>
<td>59</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>79</td>
</tr>
</tbody>
</table>
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>10</td>
<td>25</td>
<td>29</td>
<td>37</td>
<td>38</td>
<td>42</td>
<td>46</td>
<td>52</td>
<td>59</td>
<td>61</td>
<td>63</td>
<td>75</td>
<td>79</td>
<td></td>
</tr>
</tbody>
</table>
Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

```pseudo
binary-search(A, n, t)
1: $i \leftarrow 1, j \leftarrow n$
2: while $i \leq j$ do
3: \hspace{1em} $k \leftarrow \lfloor (i + j)/2 \rfloor$
4: \hspace{1em} if $A[k] = t$ return true
5: \hspace{1em} if $t < A[k]$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
6: return false
```

$O(\log n)$ (Logarithmic) Running Time
$O(\log n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search(A, n, t)

1. $i \leftarrow 1, j \leftarrow n$
2. while $i \leq j$ do
3. $k \leftarrow \lfloor (i + j)/2 \rfloor$
4. if $A[k] = t$ return true
5. if $t < A[k]$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
6. return false

Running time $= O(\log n)$
Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically
 \(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n, \ \log(n!) \)

- \(\log n \)
Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically
 \(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n, \ \log(n!) \)

- \(\log n \quad n \)
Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically: \(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n, \ \log(n!)\)

- \(\log n, \ n, \ n^2\)
Comparing the Orders of Running Times

Sort the functions from smallest to largest asymptotically:

- $\log n$, n, n^2, $n \log n$, $n!$, 2^n, e^n, n^n, $\log(n!)$

- $\log n$, n, $n \log n$, n^2
Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically
 \[\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n, \ \log(n!) \]

- \[\log n \ n \ n \log n \ n^2 \ n! \]
Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically
 \(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n, \ \log(n!) \)

- \(\log n \quad n \quad n \log n \quad n^2 \quad 2^n \quad n! \)
Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically
 \[\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n, \ \log(n!) \]

- \[\log n \ n \ n \log n \ n^2 \ 2^n \ e^n \ n! \]
Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically
 \(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n, \ \log(n!) \)

- \(\log n \ \ n \ \ n \log n \ \ n^2 \ \ 2^n \ \ e^n \ \ n! \ \ n^n \)
Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically:
 \[\log n, \quad n, \quad n^2, \quad n \log n, \quad n!, \quad 2^n, \quad e^n, \quad n^n, \quad \log(n!) \]

- \[\log n \quad n \quad \{n \log n, \log(n!}\} \quad n^2 \quad 2^n \quad e^n \quad n! \quad n^n \]
Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically
 \(\log n, \quad n, \quad n^2, \quad n \log n, \quad n!, \quad 2^n, \quad e^n, \quad n^n, \quad \log(n!) \)

- \(\log n, \quad n, \quad \{n \log n, \log(n!))\} \quad n^2, \quad 2^n, \quad e^n, \quad n!, \quad n^n \)

- \(\log n = o(n), \quad n = o(n \log n), \quad n \log n = \Theta(\log(n!)) \)

- \(\log(n!) = o(n^2), \quad n^2 = o(2^n), \quad 2^n = o(e^n) \)

- \(e^n = o(n!), \quad n! = o(n^n) \)
Terminologies

When we talk about upper bounds:

- Logarithmic time: $O(lg \, n)$
- Linear time: $O(n)$
- Quadratic time: $O(n^2)$
- Cubic time: $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some $c > 1$
- Sub-linear time: $o(n)$
- Sub-quadratic time: $o(n^2)$
Terminologies

When we talk about upper bounds:

- Logarithmic time: \(O(lg\ n) \)
- Linear time: \(O(n) \)
- Quadratic time: \(O(n^2) \)
- Cubic time: \(O(n^3) \)
- Polynomial time: \(O(n^k) \) for some constant \(k \)
- Exponential time: \(O(c^n) \) for some \(c > 1 \)
- Sub-linear time: \(o(n) \)
- Sub-quadratic time: \(o(n^2) \)

When we talk about lower bounds:

- Super-linear time: \(\omega(n) \)
- Super-quadratic time: \(\omega(n^2) \)
- Super-polynomial time: \(\bigcap_{k>0} \omega(n^k) = n^{\omega(1)} \)
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.

- Makes our life much easier! (E.g., the leading constant depends on the implementation, compiler and computer architecture of computer.)
Q: Can constants really be ignored?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?
Q: Can constants really be ignored?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
- Sometimes no
- For most natural and simple algorithms, constants are not so big.
- Algorithm with lower order running time beats algorithm with higher order running time for **reasonably large** n.