算法设计与分析（2024年春季学期）
 Linear Programming

授课老师：栗师
南京大学计算机科学与技术系

Outline

(1) Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs
(2) Linear Programming Duality
(3) Integral Polytopes: Exact Algorithms Using LP
- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

Outline

(1) Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs
(2) Linear Programming Duality
(3) Integral Polytopes: Exact Algorithms Using LP
- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

Example of Linear Programming

$$
\begin{aligned}
\min \quad 7 x_{1} & +4 x_{2} \\
x_{1}+x_{2} & \geq 5 \\
x_{1}+2 x_{2} & \geq 6 \\
4 x_{1}+x_{2} & \geq 8 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- optimum point: $x_{1}=1, x_{2}=4$
- value $=7 \times 1+4 \times 4=23$

Standard Form of Linear Programming

$$
\begin{array}{r}
\min c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\
\sum A_{1,1} x_{1}+A_{1,2} x_{2}+\cdots+A_{1, n} x_{n} \geq b_{1} \\
\sum A_{2,1} x_{1}+A_{2,2} x_{2}+\cdots+A_{2, n} x_{n} \geq b_{2} \\
\vdots \quad \vdots \quad \vdots \\
\sum A_{m, 1} x_{1}+A_{m, 2} x_{2}+\cdots+A_{m, n} x_{n} \geq b_{m} \\
x_{1}, x_{2}, \cdots, x_{n} \geq 0
\end{array}
$$

Standard Form of Linear Programming

$$
\begin{aligned}
& \left.\begin{array}{rlrl}
\text { Let } x & =\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), & & \\
A & =\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right), \\
A_{2,1} & A_{1,2} & \cdots & A_{1, n} \\
\vdots & \vdots & \vdots & A_{2, n} \\
A_{m, 1} & A_{m, 2} & \cdots & A_{m, n}
\end{array}\right), \quad b=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right) . ~ \$ \\
& \text { Then, LP becomes min } \\
& c^{\mathrm{T}} x \quad \text { s.t. } \\
& A x \geq b \\
& x \geq 0
\end{aligned}
$$

- \geq means coordinate-wise greater than or equal to

Standard Form of Linear Programming

$$
\begin{array}{ccc}
\min & c^{\mathrm{T}} x & \text { s.t. } \\
& A x \geq b \\
& \\
x \geq 0
\end{array}
$$

- Linear programmings can be solved in polynomial time

Algorithm	Theory	Practice
Simplex Method	Exponential Time	Works Well
Ellipsoid Method	Polynomial Time	Slow
Internal Point Methods	Polynomial Time	Works Well

History

- [Fourier, 1827]: Fourier-Motzkin elimination method
- [Kantorovich, Koopmans 1939]: formulated the general linear programming problem
- [Dantzig 1946]: simplex method
- [Khachiyan 1979]: ellipsoid method, polynomial time, proved linear programming is in P
- [Karmarkar, 1984]: interior-point method, polynomial time, algorithm is pratical

Outline

(1) Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs
(2) Linear Programming Duality
(3) Integral Polytopes: Exact Algorithms Using LP
- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

Preliminaries

- feasible region: the set of x 's satisfying $A x \geq b, x \geq 0$
- feasible region is a polyhedron
- if every coordinate has an upper and lower bound in the polyhedron, then the polyhedron is a polytope

Preliminaries

- x is a convex combination of $x^{(1)}, x^{(2)}, \cdots, x^{(t)}$ if the following condition holds: there exist $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{t} \in[0,1]$ such that

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{t}=1, \quad \lambda_{1} x^{(1)}+\lambda_{2} x^{(2)}+\cdots+\lambda_{t} x^{(t)}=x
$$

- the set of convex combinations of $x^{(1)}, x^{(2)}, \cdots, x^{(t)}$ is called the convex hull of these points

Preliminaries

- let P be polytope, $x \in P$. If there are no other points $x^{\prime}, x^{\prime \prime} \in P$ such that x is a convex combination of x^{\prime} and $x^{\prime \prime}$, then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the convex hull of the vertices.

$$
P=\operatorname{convex}-\operatorname{hull}\left(\left\{x^{1}, x^{2}, x^{3}, x^{4}, x^{5}\right\}\right)
$$

Preliminaries

Lemma Let $x \in \mathbb{R}^{n}$ be an extreme point in a n-dimensional polytope. Then, there are n constraints in the definition of the polytope, such that x is the unique solution to the linear system obtained from the n constraints by replacing inequalities to equalities.

Lemma If the feasible region of a linear program is a polytope, then the opimum value can be attained at some vertex of the polytope.

Special cases (for minimization linear programs):

- if feasible region is empty, then its value is ∞
- if the feasible region is unbounded, then its value can be $-\infty$

Outline

(1) Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs
(2) Linear Programming Duality
(3) Integral Polytopes: Exact Algorithms Using LP
- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

Simplex Method

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- the number of iterations might be expoentially large; but algorithm runs fast in practice
- [Spielman-Teng,2002]: smoothed analysis

Interior Point Method

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution
- polynomial time

Ellipsoid Method

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
- yes: then the feasible region is not empty
- no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat
- polynomial time, but impractical

Q: The exact running time of these algorithms?

- it depends on many parameters: \#variables, \#constraints, \#(non-zero coefficients), magnitude of integers
- precision issue

Open Problem

Can linear programming be solved in strongly polynomial time algorithm?

Applications of Linear Programming

- domain: computer science, mathematics, operations research, economics
- types of problems: transportation, scheduling, clustering, network routing, resource allocation, facility location

Research Directions

- polynomial time exact algorithm
- polynomial time approximation algorithm
- sub-routines for the branch-and-bound method for integer programming
- other algorithmic models: online algorithm, distributed algorithms, dynamic algorithms, fast algorithms

Outline

(1) Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs
(2) Linear Programming Duality
(3) Integral Polytopes: Exact Algorithms Using LP
- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

$$
\begin{aligned}
\min \quad 7 x_{1} & +4 x_{2} \\
x_{1}+x_{2} & \geq 5 \\
x_{1}+2 x_{2} & \geq 6 \\
4 x_{1}+x_{2} & \geq 8 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- optimum point: $x_{1}=1, x_{2}=4$
- value $=7 \times 1+4 \times 4=23$

Q: How can we prove a lower bound for the value?

- $7 x_{1}+4 x_{2} \geq 2\left(x_{1}+x_{2}\right)+\left(x_{1}+2 x_{2}\right) \geq 2 \times 5+6=16$
- $7 x_{1}+4 x_{2} \geq\left(x_{1}+2 x_{2}\right)+1.5\left(4 x_{1}+x_{2}\right) \geq 6+1.5 \times 8=18$
- $7 x_{1}+4 x_{2} \geq\left(x_{1}+x_{2}\right)+\left(x_{1}+2 x_{2}\right)+\left(4 x_{1}+x_{2}\right) \geq 5+6+8=19$
- $7 x_{1}+4 x_{2} \geq 4\left(x_{1}+x_{2}\right) \geq 4 \times 5=20$
- $7 x_{1}+4 x_{2} \geq 3\left(x_{1}+x_{2}\right)+\left(4 x_{1}+x_{2}\right) \geq 3 \times 5+8=23$

Primal LP

$$
\min \quad 7 x_{1}+4 x_{2}
$$

$$
\begin{aligned}
x_{1}+x_{2} & \geq 5 \\
x_{1}+2 x_{2} & \geq 6 \\
4 x_{1}+x_{2} & \geq 8 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Dual LP

$$
\max \quad 5 y_{1}+6 y_{2}+8 y_{3} \quad \text { s.t. }
$$

$$
\begin{aligned}
y_{1}+y_{2}+4 y_{3} & \leq 7 \\
y_{1}+2 y_{2}+y_{3} & \leq 4 \\
y_{1}, y_{2} & \geq 0
\end{aligned}
$$

A way to prove lower bound on the value of primal LP

$$
\begin{aligned}
& \quad 7 x_{1}+4 x_{2} \quad\left(\text { if } 7 \geq y_{1}+y_{2}+4 y_{3} \text { and } 4 \geq y_{1}+2 y_{2}+y_{3}\right) \\
& \geq \\
& \geq y_{1}\left(x_{1}+x_{2}\right)+y_{2}\left(x_{1}+2 x_{2}\right)+y_{3}\left(4 x_{1}+x_{2}\right) \quad\left(\text { if } y_{1}, y_{2}, y_{3} \geq 0\right) \\
& \geq 5 y_{1}+6 y_{2}+8 y_{3} .
\end{aligned}
$$

- Goal: need to maximize $5 y_{1}+6 y_{2}+8 y_{3}$

Dual LP

min $\quad 7 x_{1}+4 x_{2}$

$$
\begin{aligned}
x_{1}+x_{2} & \geq 5 \\
x_{1}+2 x_{2} & \geq 6 \\
4 x_{1}+x_{2} & \geq 8 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

$\max \quad 5 y_{1}+6 y_{2}+8 y_{3} \quad$ s.t.

$$
\begin{aligned}
y_{1}+y_{2}+4 y_{3} & \leq 7 \\
y_{1}+2 y_{2}+y_{3} & \leq 4 \\
y_{1}, y_{2} & \geq 0
\end{aligned}
$$

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
4 & 1
\end{array}\right) \quad b=\left(\begin{array}{l}
5 \\
6 \\
8
\end{array}\right) \quad c=\binom{7}{4}
$$

$\min \quad c^{T} x \quad$ s.t.

$$
\max \quad b^{T} y \quad \text { s.t. }
$$

$$
\begin{aligned}
A x & \geq b \\
x & \geq 0
\end{aligned}
$$

$$
\begin{array}{r}
A^{T} y \leq c \\
y \geq 0
\end{array}
$$

Primal LP Dual LP

$$
\begin{array}{rrrr}
\min c^{T} x & \text { s.t. } & \max b^{T} y & \text { s.t. } \\
A x & \geq b & A^{T} y & \leq c \\
x & \geq 0 & y & \geq 0
\end{array}
$$

- $P=$ value of primal LP
- $D=$ value of dual LP

Theorem (weak duality theorem) $D \leq P$.
Theorem (strong duality theorem) $D=P$.

- Can always prove the optimality of the primal solution, by adding up primal constraints.

Proof of Strong Duality Theorem

Lemma (Variant of Farkas Lemma) $A x \leq b, x \geq 0$ is infeasible, if and only if $y^{\mathrm{T}} A \geq 0, y^{\mathrm{T}} b<0, y \geq 0$ is feasible.

- $\forall \epsilon>0,\binom{-A}{c^{\mathrm{T}}} x \leq\binom{-b}{P-\epsilon}, x \geq 0$ is infeasible
- There exists $y \in \mathbb{R}_{\geq 0}^{m}, \alpha \geq 0$, such that $\left(y^{\mathrm{T}}, \alpha\right)\binom{-A}{c^{\mathrm{T}}} \geq 0$,

$$
\left(y^{\mathrm{T}}, \alpha\right)\binom{-b}{P-\epsilon}<0
$$

- we can prove $\alpha>0$; assume $\alpha=1$
- $-y^{\mathrm{T}} A+c^{\mathrm{T}} \geq 0,-y^{\mathrm{T}} b+P-\epsilon<0 \Longleftrightarrow A^{\mathrm{T}} y \leq c, b^{\mathrm{T}} y>P-\epsilon$
- $\forall \epsilon>0, D>P-\epsilon \quad \Longrightarrow \quad D=P$ (since $D \leq P$)

Example

Primal LP

$$
\min \quad 5 x_{1}+6 x_{2}+x_{3} \quad \text { s.t. }
$$

$$
\begin{aligned}
2 x_{1}+5 x_{2}-3 x_{3} & \geq 2 \\
3 x_{1}-2 x_{2}+x_{3} & \geq 5 \\
x_{1}+2 x_{2}+3 x_{3} & \geq 7 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Primal Solution

$$
\begin{aligned}
& x_{1}=1.6, x_{2}=0.6 \\
& x_{3}=1.4, \text { value }=13
\end{aligned}
$$

Dual LP

$$
\max \quad 2 y_{1}+5 y_{2}+7 y_{3} \quad \text { s.t. }
$$

$$
\begin{aligned}
2 y_{1}+3 y_{2}+y_{3} & \leq 5 \\
5 y_{1}-2 y_{2}+2 y_{3} & \leq 6 \\
-3 y_{1}+y_{2}+3 y_{3} & \geq 1 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

Dual Solution

$$
\begin{aligned}
& y_{1}=1, y_{2}=5 / 8 \\
& y_{3}=9 / 8, \text { value }=13
\end{aligned}
$$

$5 x_{1}+6 x_{2}+x_{3}$
$\geq\left(2 x_{1}+5 x_{2}-3 x_{3}\right)+\frac{5}{8}\left(3 x_{1}-2 x_{2}+x_{3}\right)+\frac{9}{8}\left(x_{1}+2 x_{2}+3 x_{3}\right)$
$\geq 2+\frac{5}{8} \times 5+\frac{9}{8} \times 7$
$=13$

Outline

(1) Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs
(2) Linear Programming Duality
(3) Integral Polytopes: Exact Algorithms Using LP
- Bipartite Matching Polytope
- s - t Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

Def. A polytope $P \subseteq \mathbb{R}^{n}$ is said to be integral, if all vertices of P are in \mathbb{Z}^{n}.

- For some combinatorial optimization problems, a polynomial-sized LP $A x \leq b$ already defines an integral polytope, whose vertices correspond to valid integral solutions.
- Such a problem can be solved directly using the LP:

$$
\max / \min \quad c^{\mathrm{T}} x \quad A x \leq b .
$$

Outline

(1) Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs
(2) Linear Programming Duality
(3) Integral Polytopes: Exact Algorithms Using LP
- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

Maximum Weight Bipartite Matching

Input: bipartite graph $G=(L \uplus R, E)$ edge weights $w \in \mathbb{Z}_{>0}^{E}$
Output: a matching $M \subseteq E$ so as to maximize $\sum_{e \in M} w_{e}$

LP Relaxation

$$
\begin{gathered}
\max \quad \sum_{e \in E} w_{e} x_{e} \\
\sum_{e \in \delta(v)} x_{e} \leq 1 \quad \forall v \in L \cup R \\
x_{e} \geq 0 \quad \forall e \in E
\end{gathered}
$$

- In IP: $x_{e} \in\{0,1\}: e \in M$?
- $\chi^{M} \in\{0,1\}^{E}: \chi_{e}^{M}=1$ iff $e \in M$

Theorem The LP polytope is integral: It is the convex hull of $\left\{\chi^{M}: M\right.$ is a matching $\}$.

Theorem The LP polytope is integral: It is the convex hull of $\left\{\chi^{M}: M\right.$ is a matching $\}$.

Proof.

- take x in the polytope P
- prove: x non integral $\Longrightarrow x$ non-vertex
- find $x^{\prime}, x^{\prime \prime} \in P: x^{\prime} \neq x^{\prime \prime}, x=\frac{1}{2}\left(x^{\prime}+x^{\prime \prime}\right)$
- case 1: fractional edges contain a cycle
- color edges in cycle blue and red
- $x^{\prime}:+\epsilon$ for blue edges, $-\epsilon$ for red edges
- $x^{\prime \prime}:-\epsilon$ for blue edges, $+\epsilon$ for red edges
- case 2: fractional edges form a forest
- color edges in a leaf-leaf path blue and red
- $x^{\prime}:+\epsilon$ for blue edges, $-\epsilon$ for red edges
- $x^{\prime \prime}:-\epsilon$ for blue edges, $+\epsilon$ for red edges

Outline

(1) Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs
(2) Linear Programming Duality
(3) Integral Polytopes: Exact Algorithms Using LP
- Bipartite Matching Polytope
- s - t Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

Example: s-t Flow Polytope

Flow Network

- directed graph $G=(V, E)$, source $s \in V$, sink $t \in V$, edge capacities $c_{e} \in \mathbb{Z}_{>0}, \forall e \in E$
- s has no incoming edges, t has no outgoing edges

Def. A s-t flow is a vector $f \in \mathbb{R}_{\geq 0}^{E}$ satisfying the following conditions:

- $\forall e \in E, 0 \leq f_{e} \leq c_{e}$
(capacity constraints)
- $\forall v \in V \backslash\{s, t\}$,

$$
\sum_{c \in t a v e} f_{c}=\sum_{c \in \cos (t)} f_{0}
$$

(flow conservation)

The value of flow f is defined as:

$$
\operatorname{val}(f):=\sum_{e \in \delta \delta^{\mathrm{ou}}(s)} f_{e}=\sum_{e \in \delta^{\mathrm{in}}(t)} f_{e}
$$

Maximum Flow Problem

Input: flow network $(G=(V, E), c, s, t)$
Output: maximum value of a $s-t$ flow f

- Ford-Fulkerson method
- Maximum-Flow Min-Cut Theorem: value of the maximum flow is equal to the value of the minimum s - t cut
- [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva, 2022]: nearly linear-time algorithm

LP for Maximum Flow

$$
\begin{aligned}
& \max \sum_{e \in \delta_{\text {in }}(t)} x_{e} \\
& x_{e} \leq c_{e} \quad \forall e \in E \\
& \sum_{e \in \delta_{\text {out }}(v)} x_{e}-\sum_{e \in \delta_{\text {in }}(v)} x_{e}=0 \quad \forall v \in V \backslash\{s, t\} \\
& x_{e} \geq 0 \quad \forall e \in E
\end{aligned}
$$

Theorem The LP polytope is integral.

Sketch of Proof.

- Take any s-t flow x; consider fractional edges E^{\prime}
- Every $v \notin\{s, t\}$ must be incident to 0 or ≥ 2 edges in E^{\prime}
- Ignoring the directions of E^{\prime}, it contains a cycle, or a s - t path
- We can increase/decrease flow values along cyle/path

Outline

(1) Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs
(2) Linear Programming Duality
(3) Integral Polytopes: Exact Algorithms Using LP
- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

Weighted Interval Scheduling Problem

Input: n activities, activity i starts at time s_{i}, finishes at time f_{i}, and has weight $w_{i}>0$
i and j can be scheduled together iff $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: maximum weight subset of jobs that can be scheduled

- optimum value $=220$
- Classic Problem for Dynamic Programming

Weighted Interval Scheduling Problem

Linear Program

$\max \sum_{j \in[n]} x_{j} w_{j}$

$$
\begin{aligned}
\sum_{j \in[n]: t \in\left[s_{j}, f_{j}\right)} x_{j} \leq 1 & \forall t \in[T] \\
x_{j} & \geq 0
\end{aligned} \quad \forall j \in[n]
$$

Theorem The LP polytope is integral.

Def. A matrix $A \in \mathbb{R}^{m \times n}$ is said to be tototally unimodular
(TUM), if every sub-square of A has determinant in $\{-1,0,1\}$.

Theorem If a polytope P is defined by $A x \geq b, x \geq 0$ with a totally unimodular matrix A and integral b, then P is integral.

Lemma A matrix $A \in\{0,1\}^{m \times n}$ where the 1 's on every column form an interval is TUM.

- So, the matrix for the LP is TUM, and the polytope is integral ${ }_{40} / 49$

Theorem If a polytope P is defined by $A x \geq b, x \geq 0$ with a totally unimodular matrix A and integral b, then P is integral.

Proof.

- Every vertex $x \in P$ is the unique solution to the linear system (after permuting coordinates): $\left(\begin{array}{cc}A^{\prime} & 0 \\ 0 & I\end{array}\right) x=\binom{b^{\prime}}{0}$, where
- A^{\prime} is a square submatrix of A with $\operatorname{det}\left(A^{\prime}\right)= \pm 1, b^{\prime}$ is a sub-vector of b,
- and the rows for b^{\prime} are the same as the rows for A^{\prime}.
- Let $x=\binom{x^{1}}{x^{2}}$, so that $A^{\prime} x^{1}=b^{\prime}$ and $x^{2}=0$.
- Cramer's rule: $x_{i}^{1}=\frac{\operatorname{det}\left(A_{i}^{\prime} \mid b\right)}{\operatorname{det}\left(A^{\prime}\right)}$ for every $i \Longrightarrow x_{i}^{1}$ is integer $A_{i}^{\prime} \mid b$: the matrix of A^{\prime} with the i-th column replaced by b

Example for the Proof

$$
\begin{array}{r}
\left(\begin{array}{rrrrr}
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\
a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} \\
a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \geq\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{array}
$$

The following equation system may give a vertex:

$$
\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\
a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{3} \\
0 \\
0 \\
0
\end{array}\right)
$$

Example for the Proof

$$
\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\
a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{3} \\
0 \\
0 \\
0
\end{array}\right)
$$

Equivalently, the vertex satisfies

$$
\left(\begin{array}{ccccc}
a_{1,2} & a_{1,3} & 0 & 0 & 0 \\
a_{3,2} & a_{3,3} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{3} \\
0 \\
0 \\
0
\end{array}\right)
$$

Lemma Let $A^{\prime} \in\{0, \pm 1\}^{n \times n}$ such that every row of A^{\prime} contains at most one 1 and one -1 . Then $\operatorname{det}\left(A^{\prime}\right) \in\{0, \pm 1\}$.

Proof.

- wlog assume every row of A^{\prime} contains one 1 and one -1 - otherwise, we can reduce the matrix
- treat A^{\prime} as a directed graph: columns \equiv vertices, rows \equiv arcs
- \#edges $=$ \#vertices \Longrightarrow underlying undirected graph contains a cycle $\Longrightarrow \operatorname{det}\left(A^{\prime}\right)=0$

Lemma Let $A \in\{0, \pm 1\}^{m \times n}$ such that every row of A contains at most one 1 and one -1 . Then A is TUM.

Coro. The matrix for s - t flow polytope is TUM; thus, the polytope is integral.

Example for the Proof

$$
\begin{aligned}
& \left(\begin{array}{ccccccc}
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 1 \\
1 & 0 & 0 & 0 & -1 & 0 & 0
\end{array}\right)\left(\begin{array}{cccccc}
1 & -1 & 0 & 0 & 2 & 0 \\
0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 \\
1 & 0 & 0 & -1 & 4 & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & -1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
5 & 0 & 0
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Lemma A matrix $A \in\{0,1\}^{m \times n}$ where the 1 's on every row form an interval is TUM.

Proof.

- take any square submatrix A^{\prime} of A,
- the 1's on every row of A^{\prime} form an interval.
- $A^{\prime} M$ is a matrix satisfying condition of first lemma, where

$$
M=\left(\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
0 & 1 & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -1 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right) \cdot \operatorname{det}(M)=1
$$

- $\operatorname{det}\left(A^{\prime} M\right) \in\{0, \pm 1\} \Longrightarrow \operatorname{det}\left(A^{\prime}\right) \in\{0, \pm 1\}$.

Example for the Proof

$\left(\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0\end{array}\right)\left(\begin{array}{lllll}0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1\end{array}\right) \Longrightarrow\left(\begin{array}{ccccc}0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$

- (col $1, \operatorname{col} 2-\operatorname{col} 1, \operatorname{col} 3-\operatorname{col} 2, \operatorname{col} 4-\operatorname{col} 3, \operatorname{col} 5-\operatorname{col} 4)$
- every row has at most one 1 , at most one -1

Lemma The edge-vertex incidence matrix A of a bipartite graph is totally-unimodular.

Proof.

- $G=(L \uplus R, E)$: the bipartite graph
- A^{\prime} : obtained from A by negating columns correspondent to R
- each row of A^{\prime} has exactly one +1 , and exactly one -1
- $\Longrightarrow A^{\prime}$ is TUM $\Longleftrightarrow A$ is TUM

Example

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & -1 & 0
\end{array}\right)
$$

- remark: bipartiteness is needed. The edge-vertex incidence matrix $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$ of a triangle has determinant 2.

Coro. Bipartite matching polytope is integral.

