
算法设计与分析(2024年春季学期)

Linear Programming

授课老师: 栗师

南京大学计算机科学与技术系



2/49

Outline

1 Linear Programming
Introduction
Preliminaries
Methods for Solving Linear Programs

2 Linear Programming Duality

3 Integral Polytopes: Exact Algorithms Using LP
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem and Totally Unimodular
Matrices



3/49

Outline

1 Linear Programming
Introduction
Preliminaries
Methods for Solving Linear Programs

2 Linear Programming Duality

3 Integral Polytopes: Exact Algorithms Using LP
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem and Totally Unimodular
Matrices



4/49

Example of Linear Programming

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum point: x1 = 1, x2 = 4

value = 7× 1 + 4× 4 = 23

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

6

9

7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6



4/49

Example of Linear Programming

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum point: x1 = 1, x2 = 4

value = 7× 1 + 4× 4 = 23

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

6

9

7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6



4/49

Example of Linear Programming

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum point: x1 = 1, x2 = 4

value = 7× 1 + 4× 4 = 23

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

6

9

7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6



4/49

Example of Linear Programming

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum point: x1 = 1, x2 = 4

value = 7× 1 + 4× 4 = 23

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

6

9

7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6



4/49

Example of Linear Programming

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum point: x1 = 1, x2 = 4

value = 7× 1 + 4× 4 = 23



4/49

Example of Linear Programming

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum point: x1 = 1, x2 = 4

value = 7× 1 + 4× 4 = 23



4/49

Example of Linear Programming

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum point: x1 = 1, x2 = 4

value = 7× 1 + 4× 4 = 23



5/49

Standard Form of Linear Programming

min c1x1 + c2x2 + · · ·+ cnxn s.t.∑
A1,1x1 + A1,2x2 + · · ·+ A1,nxn ≥ b1∑
A2,1x1 + A2,2x2 + · · ·+ A2,nxn ≥ b2

...
...

...
...∑

Am,1x1 + Am,2x2 + · · ·+ Am,nxn ≥ bm

x1, x2, · · · , xn ≥ 0



6/49

Standard Form of Linear Programming

Let x =


x1

x2
...
xn

 , c =


c1
c2
...
cn

 ,

A =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

...
...

...
Am,1 Am,2 · · · Am,n

 , b =


b1
b2
...
bm

 .

Then, LP becomes min cTx s.t.
Ax ≥ b

x ≥ 0

≥ means coordinate-wise greater than or equal to



7/49

Standard Form of Linear Programming

min cTx s.t.

Ax ≥ b

x ≥ 0

Linear programmings can be solved in polynomial time

Algorithm Theory Practice

Simplex Method Exponential Time Works Well

Ellipsoid Method Polynomial Time Slow

Internal Point Methods Polynomial Time Works Well



8/49

History

[Fourier, 1827]: Fourier-Motzkin elimination method

[Kantorovich, Koopmans 1939]: formulated the general linear
programming problem

[Dantzig 1946]: simplex method

[Khachiyan 1979]: ellipsoid method, polynomial time, proved
linear programming is in P

[Karmarkar, 1984]: interior-point method, polynomial time,
algorithm is pratical



8/49

History

[Fourier, 1827]: Fourier-Motzkin elimination method

[Kantorovich, Koopmans 1939]: formulated the general linear
programming problem

[Dantzig 1946]: simplex method

[Khachiyan 1979]: ellipsoid method, polynomial time, proved
linear programming is in P

[Karmarkar, 1984]: interior-point method, polynomial time,
algorithm is pratical



9/49

Outline

1 Linear Programming
Introduction
Preliminaries
Methods for Solving Linear Programs

2 Linear Programming Duality

3 Integral Polytopes: Exact Algorithms Using LP
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem and Totally Unimodular
Matrices



10/49

Preliminaries

feasible region: the set of x’s satisfying
Ax ≥ b, x ≥ 0

feasible region is a polyhedron

if every coordinate has an upper and lower
bound in the polyhedron, then the
polyhedron is a polytope

Polyhedron



10/49

Preliminaries

feasible region: the set of x’s satisfying
Ax ≥ b, x ≥ 0

feasible region is a polyhedron

if every coordinate has an upper and lower
bound in the polyhedron, then the
polyhedron is a polytope

Polyhedron



10/49

Preliminaries

feasible region: the set of x’s satisfying
Ax ≥ b, x ≥ 0

feasible region is a polyhedron

if every coordinate has an upper and lower
bound in the polyhedron, then the
polyhedron is a polytope

Polyhedron Polytope



11/49

Preliminaries

x is a convex combination of x(1), x(2), · · · , x(t) if the following
condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1] such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the set of convex combinations of x(1), x(2), · · · , x(t) is called the
convex hull of these points

x1 x2



11/49

Preliminaries

x is a convex combination of x(1), x(2), · · · , x(t) if the following
condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1] such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the set of convex combinations of x(1), x(2), · · · , x(t) is called the
convex hull of these points

x1 x2



11/49

Preliminaries

x is a convex combination of x(1), x(2), · · · , x(t) if the following
condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1] such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the set of convex combinations of x(1), x(2), · · · , x(t) is called the
convex hull of these points

x1 x2

2
3x

1 + 1
3x

2



11/49

Preliminaries

x is a convex combination of x(1), x(2), · · · , x(t) if the following
condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1] such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the set of convex combinations of x(1), x(2), · · · , x(t) is called the
convex hull of these points

x1 x2

2
3x

1 + 1
3x

2

x1

x2 x3



11/49

Preliminaries

x is a convex combination of x(1), x(2), · · · , x(t) if the following
condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1] such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the set of convex combinations of x(1), x(2), · · · , x(t) is called the
convex hull of these points

x1 x2

2
3x

1 + 1
3x

2

x1

x2 x3

0.3x1 + 0.6x2 + 0.1x3



11/49

Preliminaries

x is a convex combination of x(1), x(2), · · · , x(t) if the following
condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1] such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the set of convex combinations of x(1), x(2), · · · , x(t) is called the
convex hull of these points

x1 x2

2
3x

1 + 1
3x

2

x1

x2 x3

0.3x1 + 0.6x2 + 0.1x3



11/49

Preliminaries

x is a convex combination of x(1), x(2), · · · , x(t) if the following
condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1] such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the set of convex combinations of x(1), x(2), · · · , x(t) is called the
convex hull of these points

x1 x2

x1

x2 x3

convex-hull({x1, x2})
convex-hull({x1, x2, x3})



11/49

Preliminaries

x is a convex combination of x(1), x(2), · · · , x(t) if the following
condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1] such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the set of convex combinations of x(1), x(2), · · · , x(t) is called the
convex hull of these points

x1 x2

x1

x2 x3

convex-hull({x1, x2})
convex-hull({x1, x2, x3})



11/49

Preliminaries

x is a convex combination of x(1), x(2), · · · , x(t) if the following
condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1] such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the set of convex combinations of x(1), x(2), · · · , x(t) is called the
convex hull of these points

x1 x2

x1

x2 x3

convex-hull({x1, x2})
convex-hull({x1, x2, x3})



12/49

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

P



12/49

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

P



12/49

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

P



12/49

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

not a vertex

P



12/49

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

not a vertex

P



12/49

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

not a vertex

P



12/49

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

not a vertex

not a vertex

P



12/49

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

vertices

P



12/49

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

vertices

P



12/49

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

x1

x2

x3
x4

x5

P

P = convex-hull({x1, x2, x3, x4, x5})



13/49

Preliminaries

Lemma Let x ∈ Rn be an extreme
point in a n-dimensional polytope. Then,
there are n constraints in the definition of
the polytope, such that x is the unique
solution to the linear system obtained
from the n constraints by replacing
inequalities to equalities.

x1

x2

Feasible Region
x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

x2 ≤ 9

x1 ≤ 7

x1 ≥ 0

x2 ≥ 0

Lemma If the feasible region of a linear program is a polytope, then
the opimum value can be attained at some vertex of the polytope.

Special cases (for minimization linear programs):

if feasible region is empty, then its value is ∞
if the feasible region is unbounded, then its value can be −∞



13/49

Preliminaries

Lemma Let x ∈ Rn be an extreme
point in a n-dimensional polytope. Then,
there are n constraints in the definition of
the polytope, such that x is the unique
solution to the linear system obtained
from the n constraints by replacing
inequalities to equalities.

x1

x2

Feasible Region
x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

x2 ≤ 9

x1 ≤ 7

x1 ≥ 0

x2 ≥ 0

x1 = 0

4x1 + x2 = 8

Lemma If the feasible region of a linear program is a polytope, then
the opimum value can be attained at some vertex of the polytope.

Special cases (for minimization linear programs):

if feasible region is empty, then its value is ∞
if the feasible region is unbounded, then its value can be −∞



13/49

Preliminaries

Lemma Let x ∈ Rn be an extreme
point in a n-dimensional polytope. Then,
there are n constraints in the definition of
the polytope, such that x is the unique
solution to the linear system obtained
from the n constraints by replacing
inequalities to equalities.

x1

x2

Feasible Region
x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

x2 ≤ 9

x1 ≤ 7

x1 ≥ 0

x2 ≥ 0

x1 = 0

4x1 + x2 = 8

x1 + x2 = 5
x1 + 2x2 = 6

Lemma If the feasible region of a linear program is a polytope, then
the opimum value can be attained at some vertex of the polytope.

Special cases (for minimization linear programs):

if feasible region is empty, then its value is ∞
if the feasible region is unbounded, then its value can be −∞



13/49

Preliminaries

Lemma Let x ∈ Rn be an extreme
point in a n-dimensional polytope. Then,
there are n constraints in the definition of
the polytope, such that x is the unique
solution to the linear system obtained
from the n constraints by replacing
inequalities to equalities.

x1

x2

Feasible Region
x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

x2 ≤ 9

x1 ≤ 7

x1 ≥ 0

x2 ≥ 0

x1 = 0

4x1 + x2 = 8

x1 + x2 = 5
x1 + 2x2 = 6

Lemma If the feasible region of a linear program is a polytope, then
the opimum value can be attained at some vertex of the polytope.

Special cases (for minimization linear programs):

if feasible region is empty, then its value is ∞
if the feasible region is unbounded, then its value can be −∞



13/49

Preliminaries

Lemma Let x ∈ Rn be an extreme
point in a n-dimensional polytope. Then,
there are n constraints in the definition of
the polytope, such that x is the unique
solution to the linear system obtained
from the n constraints by replacing
inequalities to equalities.

x1

x2

Feasible Region
x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

x2 ≤ 9

x1 ≤ 7

x1 ≥ 0

x2 ≥ 0

x1 = 0

4x1 + x2 = 8

x1 + x2 = 5
x1 + 2x2 = 6

Lemma If the feasible region of a linear program is a polytope, then
the opimum value can be attained at some vertex of the polytope.

Special cases (for minimization linear programs):

if feasible region is empty, then its value is ∞
if the feasible region is unbounded, then its value can be −∞



14/49

Outline

1 Linear Programming
Introduction
Preliminaries
Methods for Solving Linear Programs

2 Linear Programming Duality

3 Integral Polytopes: Exact Algorithms Using LP
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem and Totally Unimodular
Matrices



15/49

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis



15/49

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis



15/49

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis



15/49

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis



15/49

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis



15/49

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis



15/49

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis



15/49

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis



15/49

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis



16/49

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so that
the solution is not too close to
the boundary

the final solution will be
arbitrarily close to the optimum
solution

polynomial time



16/49

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so that
the solution is not too close to
the boundary

the final solution will be
arbitrarily close to the optimum
solution

polynomial time



16/49

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so that
the solution is not too close to
the boundary

the final solution will be
arbitrarily close to the optimum
solution

polynomial time



16/49

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so that
the solution is not too close to
the boundary

the final solution will be
arbitrarily close to the optimum
solution

polynomial time



16/49

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so that
the solution is not too close to
the boundary

the final solution will be
arbitrarily close to the optimum
solution

polynomial time



16/49

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so that
the solution is not too close to
the boundary

the final solution will be
arbitrarily close to the optimum
solution

polynomial time



16/49

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so that
the solution is not too close to
the boundary

the final solution will be
arbitrarily close to the optimum
solution

polynomial time



16/49

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so that
the solution is not too close to
the boundary

the final solution will be
arbitrarily close to the optimum
solution

polynomial time



16/49

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so that
the solution is not too close to
the boundary

the final solution will be
arbitrarily close to the optimum
solution

polynomial time



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



17/49

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains the
feasible region

query a separation oracle if the center
of ellipsid is in the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical



18/49

Q: The exact running time of these algorithms?

it depends on many parameters: #variables, #constraints,
#(non-zero coefficients), magnitude of integers

precision issue

Open Problem
Can linear programming be solved in strongly polynomial time
algorithm?



18/49

Q: The exact running time of these algorithms?

it depends on many parameters: #variables, #constraints,
#(non-zero coefficients), magnitude of integers

precision issue

Open Problem
Can linear programming be solved in strongly polynomial time
algorithm?



18/49

Q: The exact running time of these algorithms?

it depends on many parameters: #variables, #constraints,
#(non-zero coefficients), magnitude of integers

precision issue

Open Problem
Can linear programming be solved in strongly polynomial time
algorithm?



19/49

Applications of Linear Programming

domain: computer science, mathematics, operations research,
economics

types of problems: transportation, scheduling, clustering, network
routing, resource allocation, facility location

Research Directions
polynomial time exact algorithm

polynomial time approximation algorithm

sub-routines for the branch-and-bound method for integer
programming

other algorithmic models: online algorithm, distributed algorithms,
dynamic algorithms, fast algorithms



19/49

Applications of Linear Programming

domain: computer science, mathematics, operations research,
economics

types of problems: transportation, scheduling, clustering, network
routing, resource allocation, facility location

Research Directions
polynomial time exact algorithm

polynomial time approximation algorithm

sub-routines for the branch-and-bound method for integer
programming

other algorithmic models: online algorithm, distributed algorithms,
dynamic algorithms, fast algorithms



20/49

Outline

1 Linear Programming
Introduction
Preliminaries
Methods for Solving Linear Programs

2 Linear Programming Duality

3 Integral Polytopes: Exact Algorithms Using LP
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem and Totally Unimodular
Matrices



21/49

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum point: x1 = 1, x2 = 4

value = 7× 1 + 4× 4 = 23

Q: How can we prove a lower bound for the value?

7x1 + 4x2 ≥ 2(x1 + x2) + (x1 + 2x2) ≥ 2× 5 + 6 = 16

7x1 + 4x2 ≥ (x1 + 2x2) + 1.5(4x1 + x2) ≥ 6 + 1.5× 8 = 18

7x1 +4x2 ≥ (x1 + x2)+ (x1 +2x2)+ (4x1 + x2) ≥ 5+ 6+8 = 19

7x1 + 4x2 ≥ 4(x1 + x2) ≥ 4× 5 = 20

7x1 + 4x2 ≥ 3(x1 + x2) + (4x1 + x2) ≥ 3× 5 + 8 = 23



21/49

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum point: x1 = 1, x2 = 4

value = 7× 1 + 4× 4 = 23

Q: How can we prove a lower bound for the value?

7x1 + 4x2 ≥ 2(x1 + x2) + (x1 + 2x2) ≥ 2× 5 + 6 = 16

7x1 + 4x2 ≥ (x1 + 2x2) + 1.5(4x1 + x2) ≥ 6 + 1.5× 8 = 18

7x1 +4x2 ≥ (x1 + x2)+ (x1 +2x2)+ (4x1 + x2) ≥ 5+ 6+8 = 19

7x1 + 4x2 ≥ 4(x1 + x2) ≥ 4× 5 = 20

7x1 + 4x2 ≥ 3(x1 + x2) + (4x1 + x2) ≥ 3× 5 + 8 = 23



22/49

Primal LP
min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

Dual LP

max 5y1 + 6y2 + 8y3 s.t.

y1 + y2 + 4y3 ≤ 7

y1 + 2y2 + y3 ≤ 4

y1, y2 ≥ 0

A way to prove lower bound on the value of primal LP

7x1 + 4x2 (if 7 ≥ y1 + y2 + 4y3 and 4 ≥ y1 + 2y2 + y3)

≥ y1(x1 + x2) + y2(x1 + 2x2) + y3(4x1 + x2) (if y1, y2, y3 ≥ 0)

≥ 5y1 + 6y2 + 8y3.

Goal: need to maximize 5y1 + 6y2 + 8y3



22/49

Primal LP
min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

Dual LP

max 5y1 + 6y2 + 8y3 s.t.

y1 + y2 + 4y3 ≤ 7

y1 + 2y2 + y3 ≤ 4

y1, y2 ≥ 0

A way to prove lower bound on the value of primal LP

7x1 + 4x2 (if 7 ≥ y1 + y2 + 4y3 and 4 ≥ y1 + 2y2 + y3)

≥ y1(x1 + x2) + y2(x1 + 2x2) + y3(4x1 + x2) (if y1, y2, y3 ≥ 0)

≥ 5y1 + 6y2 + 8y3.

Goal: need to maximize 5y1 + 6y2 + 8y3



22/49

Primal LP
min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

Dual LP

max 5y1 + 6y2 + 8y3 s.t.

y1 + y2 + 4y3 ≤ 7

y1 + 2y2 + y3 ≤ 4

y1, y2 ≥ 0

A way to prove lower bound on the value of primal LP

7x1 + 4x2 (if 7 ≥ y1 + y2 + 4y3 and 4 ≥ y1 + 2y2 + y3)

≥ y1(x1 + x2) + y2(x1 + 2x2) + y3(4x1 + x2) (if y1, y2, y3 ≥ 0)

≥ 5y1 + 6y2 + 8y3.

Goal: need to maximize 5y1 + 6y2 + 8y3



23/49

Primal LP
min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

Dual LP

max 5y1 + 6y2 + 8y3 s.t.

y1 + y2 + 4y3 ≤ 7

y1 + 2y2 + y3 ≤ 4

y1, y2 ≥ 0

A =

 1 1
1 2
4 1

 b =

 5
6
8

 c =

(
7
4

)

min cTx s.t.

Ax ≥ b

x ≥ 0

max bTy s.t.

ATy ≤ c

y ≥ 0



24/49

Primal LP

min cTx s.t.

Ax ≥ b

x ≥ 0

Dual LP

max bTy s.t.

ATy ≤ c

y ≥ 0

P = value of primal LP

D = value of dual LP

Theorem (weak duality theorem) D ≤ P .

Theorem (strong duality theorem) D = P .

Can always prove the optimality of the primal solution, by adding
up primal constraints.



25/49

Proof of Strong Duality Theorem

Lemma (Variant of Farkas Lemma) Ax ≤ b, x ≥ 0 is infeasible, if
and only if yTA ≥ 0, yTb < 0, y ≥ 0 is feasible.

∀ϵ > 0,

(
−A
cT

)
x ≤

(
−b

P − ϵ

)
, x ≥ 0 is infeasible

There exists y ∈ Rm
≥0, α ≥ 0, such that (yT, α)

(
−A
cT

)
≥ 0,

(yT, α)

(
−b

P − ϵ

)
< 0

we can prove α > 0; assume α = 1

−yTA+ cT ≥ 0,−yTb+ P − ϵ < 0 ⇐⇒ ATy ≤ c, bTy > P − ϵ

∀ϵ > 0, D > P − ϵ =⇒ D = P (since D ≤ P )



25/49

Proof of Strong Duality Theorem

Lemma (Variant of Farkas Lemma) Ax ≤ b, x ≥ 0 is infeasible, if
and only if yTA ≥ 0, yTb < 0, y ≥ 0 is feasible.

∀ϵ > 0,

(
−A
cT

)
x ≤

(
−b

P − ϵ

)
, x ≥ 0 is infeasible

There exists y ∈ Rm
≥0, α ≥ 0, such that (yT, α)

(
−A
cT

)
≥ 0,

(yT, α)

(
−b

P − ϵ

)
< 0

we can prove α > 0; assume α = 1

−yTA+ cT ≥ 0,−yTb+ P − ϵ < 0 ⇐⇒ ATy ≤ c, bTy > P − ϵ

∀ϵ > 0, D > P − ϵ =⇒ D = P (since D ≤ P )



25/49

Proof of Strong Duality Theorem

Lemma (Variant of Farkas Lemma) Ax ≤ b, x ≥ 0 is infeasible, if
and only if yTA ≥ 0, yTb < 0, y ≥ 0 is feasible.

∀ϵ > 0,

(
−A
cT

)
x ≤

(
−b

P − ϵ

)
, x ≥ 0 is infeasible

There exists y ∈ Rm
≥0, α ≥ 0, such that (yT, α)

(
−A
cT

)
≥ 0,

(yT, α)

(
−b

P − ϵ

)
< 0

we can prove α > 0; assume α = 1

−yTA+ cT ≥ 0,−yTb+ P − ϵ < 0 ⇐⇒ ATy ≤ c, bTy > P − ϵ

∀ϵ > 0, D > P − ϵ =⇒ D = P (since D ≤ P )



25/49

Proof of Strong Duality Theorem

Lemma (Variant of Farkas Lemma) Ax ≤ b, x ≥ 0 is infeasible, if
and only if yTA ≥ 0, yTb < 0, y ≥ 0 is feasible.

∀ϵ > 0,

(
−A
cT

)
x ≤

(
−b

P − ϵ

)
, x ≥ 0 is infeasible

There exists y ∈ Rm
≥0, α ≥ 0, such that (yT, α)

(
−A
cT

)
≥ 0,

(yT, α)

(
−b

P − ϵ

)
< 0

we can prove α > 0; assume α = 1

−yTA+ cT ≥ 0,−yTb+ P − ϵ < 0 ⇐⇒ ATy ≤ c, bTy > P − ϵ

∀ϵ > 0, D > P − ϵ =⇒ D = P (since D ≤ P )



25/49

Proof of Strong Duality Theorem

Lemma (Variant of Farkas Lemma) Ax ≤ b, x ≥ 0 is infeasible, if
and only if yTA ≥ 0, yTb < 0, y ≥ 0 is feasible.

∀ϵ > 0,

(
−A
cT

)
x ≤

(
−b

P − ϵ

)
, x ≥ 0 is infeasible

There exists y ∈ Rm
≥0, α ≥ 0, such that (yT, α)

(
−A
cT

)
≥ 0,

(yT, α)

(
−b

P − ϵ

)
< 0

we can prove α > 0; assume α = 1

−yTA+ cT ≥ 0,−yTb+ P − ϵ < 0 ⇐⇒ ATy ≤ c, bTy > P − ϵ

∀ϵ > 0, D > P − ϵ =⇒ D = P (since D ≤ P )



25/49

Proof of Strong Duality Theorem

Lemma (Variant of Farkas Lemma) Ax ≤ b, x ≥ 0 is infeasible, if
and only if yTA ≥ 0, yTb < 0, y ≥ 0 is feasible.

∀ϵ > 0,

(
−A
cT

)
x ≤

(
−b

P − ϵ

)
, x ≥ 0 is infeasible

There exists y ∈ Rm
≥0, α ≥ 0, such that (yT, α)

(
−A
cT

)
≥ 0,

(yT, α)

(
−b

P − ϵ

)
< 0

we can prove α > 0; assume α = 1

−yTA+ cT ≥ 0,−yTb+ P − ϵ < 0 ⇐⇒ ATy ≤ c, bTy > P − ϵ

∀ϵ > 0, D > P − ϵ =⇒ D = P (since D ≤ P )



26/49

Example

Primal LP

min 5x1 + 6x2 + x3 s.t.

2x1 + 5x2 − 3x3 ≥ 2

3x1 − 2x2 + x3 ≥ 5

x1 + 2x2 + 3x3 ≥ 7

x1, x2, x3 ≥ 0

Primal Solution
x1 = 1.6, x2 = 0.6

x3 = 1.4, value = 13

Dual LP

max 2y1 + 5y2 + 7y3 s.t.

2y1 + 3y2 + y3 ≤ 5

5y1 − 2y2 + 2y3 ≤ 6

−3y1 + y2 + 3y3 ≥ 1

y1, y2, y3 ≥ 0

Dual Solution
y1 = 1, y2 = 5/8

y3 = 9/8, value = 13



27/49

5x1 + 6x2 + x3

≥ (2x1 + 5x2 − 3x3) +
5

8
(3x1 − 2x2 + x3) +

9

8
(x1 + 2x2 + 3x3)

≥ 2 +
5

8
× 5 +

9

8
× 7

= 13



28/49

Outline

1 Linear Programming
Introduction
Preliminaries
Methods for Solving Linear Programs

2 Linear Programming Duality

3 Integral Polytopes: Exact Algorithms Using LP
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem and Totally Unimodular
Matrices



29/49

Def. A polytope P ⊆ Rn is said to be integral, if all vertices of P
are in Zn.

For some combinatorial optimization problems, a polynomial-sized
LP Ax ≤ b already defines an integral polytope, whose vertices
correspond to valid integral solutions.

Such a problem can be solved directly using the LP:

max /min cTx Ax ≤ b.



29/49

Def. A polytope P ⊆ Rn is said to be integral, if all vertices of P
are in Zn.

For some combinatorial optimization problems, a polynomial-sized
LP Ax ≤ b already defines an integral polytope, whose vertices
correspond to valid integral solutions.

Such a problem can be solved directly using the LP:

max /min cTx Ax ≤ b.



29/49

Def. A polytope P ⊆ Rn is said to be integral, if all vertices of P
are in Zn.

For some combinatorial optimization problems, a polynomial-sized
LP Ax ≤ b already defines an integral polytope, whose vertices
correspond to valid integral solutions.

Such a problem can be solved directly using the LP:

max /min cTx Ax ≤ b.



30/49

Outline

1 Linear Programming
Introduction
Preliminaries
Methods for Solving Linear Programs

2 Linear Programming Duality

3 Integral Polytopes: Exact Algorithms Using LP
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem and Totally Unimodular
Matrices



31/49

Maximum Weight Bipartite Matching

Input: bipartite graph G = (L ⊎R,E)

edge weights w ∈ ZE
>0

Output: a matching M ⊆ E so as to
maximize

∑
e∈M we

5
3

4

LP Relaxation

max
∑
e∈E

wexe∑
e∈δ(v)

xe ≤ 1 ∀v ∈ L ∪R

xe ≥ 0 ∀e ∈ E

In IP: xe ∈ {0, 1}: e ∈ M?

χM ∈ {0, 1}E: χM
e = 1 iff

e ∈ M

Theorem The LP polytope is
integral: It is the convex hull of
{χM : M is a matching}.



31/49

Maximum Weight Bipartite Matching

Input: bipartite graph G = (L ⊎R,E)

edge weights w ∈ ZE
>0

Output: a matching M ⊆ E so as to
maximize

∑
e∈M we

5
3

4

LP Relaxation

max
∑
e∈E

wexe∑
e∈δ(v)

xe ≤ 1 ∀v ∈ L ∪R

xe ≥ 0 ∀e ∈ E

In IP: xe ∈ {0, 1}: e ∈ M?

χM ∈ {0, 1}E: χM
e = 1 iff

e ∈ M

Theorem The LP polytope is
integral: It is the convex hull of
{χM : M is a matching}.



31/49

Maximum Weight Bipartite Matching

Input: bipartite graph G = (L ⊎R,E)

edge weights w ∈ ZE
>0

Output: a matching M ⊆ E so as to
maximize

∑
e∈M we

5
3

4

LP Relaxation

max
∑
e∈E

wexe∑
e∈δ(v)

xe ≤ 1 ∀v ∈ L ∪R

xe ≥ 0 ∀e ∈ E

In IP: xe ∈ {0, 1}: e ∈ M?

χM ∈ {0, 1}E: χM
e = 1 iff

e ∈ M

Theorem The LP polytope is
integral: It is the convex hull of
{χM : M is a matching}.



31/49

Maximum Weight Bipartite Matching

Input: bipartite graph G = (L ⊎R,E)

edge weights w ∈ ZE
>0

Output: a matching M ⊆ E so as to
maximize

∑
e∈M we

xiji
j

LP Relaxation

max
∑
e∈E

wexe∑
e∈δ(v)

xe ≤ 1 ∀v ∈ L ∪R

xe ≥ 0 ∀e ∈ E

In IP: xe ∈ {0, 1}: e ∈ M?

χM ∈ {0, 1}E: χM
e = 1 iff

e ∈ M

Theorem The LP polytope is
integral: It is the convex hull of
{χM : M is a matching}.



31/49

Maximum Weight Bipartite Matching

Input: bipartite graph G = (L ⊎R,E)

edge weights w ∈ ZE
>0

Output: a matching M ⊆ E so as to
maximize

∑
e∈M we

xiji
j

∑
j xij ≤ 1

∑
i xij ≤ 1

LP Relaxation

max
∑
e∈E

wexe∑
e∈δ(v)

xe ≤ 1 ∀v ∈ L ∪R

xe ≥ 0 ∀e ∈ E

In IP: xe ∈ {0, 1}: e ∈ M?

χM ∈ {0, 1}E: χM
e = 1 iff

e ∈ M

Theorem The LP polytope is
integral: It is the convex hull of
{χM : M is a matching}.



31/49

Maximum Weight Bipartite Matching

Input: bipartite graph G = (L ⊎R,E)

edge weights w ∈ ZE
>0

Output: a matching M ⊆ E so as to
maximize

∑
e∈M we

xiji
j

∑
j xij ≤ 1

∑
i xij ≤ 1

LP Relaxation

max
∑
e∈E

wexe∑
e∈δ(v)

xe ≤ 1 ∀v ∈ L ∪R

xe ≥ 0 ∀e ∈ E

In IP: xe ∈ {0, 1}: e ∈ M?

χM ∈ {0, 1}E: χM
e = 1 iff

e ∈ M

Theorem The LP polytope is
integral: It is the convex hull of
{χM : M is a matching}.



32/49

Theorem The LP polytope is integral: It is the convex hull of
{χM : M is a matching}.

Proof.

take x in the polytope P

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in a leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1



32/49

Theorem The LP polytope is integral: It is the convex hull of
{χM : M is a matching}.

Proof.
take x in the polytope P

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in a leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1



32/49

Theorem The LP polytope is integral: It is the convex hull of
{χM : M is a matching}.

Proof.
take x in the polytope P

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in a leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1



32/49

Theorem The LP polytope is integral: It is the convex hull of
{χM : M is a matching}.

Proof.
take x in the polytope P

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in a leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1



32/49

Theorem The LP polytope is integral: It is the convex hull of
{χM : M is a matching}.

Proof.
take x in the polytope P

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in a leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1



32/49

Theorem The LP polytope is integral: It is the convex hull of
{χM : M is a matching}.

Proof.
take x in the polytope P

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red

x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in a leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1



32/49

Theorem The LP polytope is integral: It is the convex hull of
{χM : M is a matching}.

Proof.
take x in the polytope P

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in a leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1

±ϵ

±ϵ

±ϵ

∓ϵ

∓ϵ ∓ϵ



32/49

Theorem The LP polytope is integral: It is the convex hull of
{χM : M is a matching}.

Proof.
take x in the polytope P

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in a leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1



32/49

Theorem The LP polytope is integral: It is the convex hull of
{χM : M is a matching}.

Proof.
take x in the polytope P

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in a leaf-leaf path blue and red

x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1



32/49

Theorem The LP polytope is integral: It is the convex hull of
{χM : M is a matching}.

Proof.
take x in the polytope P

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in a leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1

∓ϵ

±ϵ

±ϵ

∓ϵ



33/49

Outline

1 Linear Programming
Introduction
Preliminaries
Methods for Solving Linear Programs

2 Linear Programming Duality

3 Integral Polytopes: Exact Algorithms Using LP
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem and Totally Unimodular
Matrices



34/49

Example: s-t Flow Polytope

Flow Network
directed graph G = (V,E), source s ∈ V , sink t ∈ V , edge
capacities ce ∈ Z>0,∀e ∈ E

s has no incoming edges, t has no outgoing edges

s t

a

b d

c12

14

9

4 7

16

13

20

4



35/49

Def. A s-t flow is a vector f ∈ RE
≥0 satisfying the following

conditions:

∀e ∈ E, 0 ≤ fe ≤ ce (capacity constraints)

∀v ∈ V \ {s, t},∑
e∈δin(v)

fe =
∑

e∈δout(v)

fe (flow conservation)

The value of flow f is defined as:

val(f) :=
∑

e∈δout(s)

fe =
∑

e∈δin(t)

fe



36/49

Maximum Flow Problem
Input: flow network (G = (V,E), c, s, t)

Output: maximum value of a s-t flow f

s t

a

b d

c12

14

9

4 7

16

13

20

4

Ford-Fulkerson method

Maximum-Flow Min-Cut
Theorem: value of the
maximum flow is equal to the
value of the minimum s-t cut

[Chen-Kyng-Liu-Peng-
Gutenberg-Sachdeva, 2022]:
nearly linear-time algorithm



36/49

Maximum Flow Problem
Input: flow network (G = (V,E), c, s, t)

Output: maximum value of a s-t flow f

s t

a

b d

c
0/12

0/14

0/
90/
4

0/
7

0/
16

0/13

0/20

0/
4

Ford-Fulkerson method

Maximum-Flow Min-Cut
Theorem: value of the
maximum flow is equal to the
value of the minimum s-t cut

[Chen-Kyng-Liu-Peng-
Gutenberg-Sachdeva, 2022]:
nearly linear-time algorithm



36/49

Maximum Flow Problem
Input: flow network (G = (V,E), c, s, t)

Output: maximum value of a s-t flow f

s t

a

b d

c
0/12

0/14

0/
90/
4

0/
7

0/
16

0/13

0/20

0/
4

Ford-Fulkerson method

Maximum-Flow Min-Cut
Theorem: value of the
maximum flow is equal to the
value of the minimum s-t cut

[Chen-Kyng-Liu-Peng-
Gutenberg-Sachdeva, 2022]:
nearly linear-time algorithm



36/49

Maximum Flow Problem
Input: flow network (G = (V,E), c, s, t)

Output: maximum value of a s-t flow f

s t

a

b d

c
0/12

0/14

0/
90/
4

0/
7

0/
16

0/13

0/20

0/
4

Ford-Fulkerson method

Maximum-Flow Min-Cut
Theorem: value of the
maximum flow is equal to the
value of the minimum s-t cut

[Chen-Kyng-Liu-Peng-
Gutenberg-Sachdeva, 2022]:
nearly linear-time algorithm



36/49

Maximum Flow Problem
Input: flow network (G = (V,E), c, s, t)

Output: maximum value of a s-t flow f

s t

a

b d

c
0/12

0/14

0/
90/
4

0/
7

0/
16

0/13

0/20

0/
4

Ford-Fulkerson method

Maximum-Flow Min-Cut
Theorem: value of the
maximum flow is equal to the
value of the minimum s-t cut

[Chen-Kyng-Liu-Peng-
Gutenberg-Sachdeva, 2022]:
nearly linear-time algorithm



37/49

LP for Maximum Flow

max
∑

e∈δin(t)

xe

xe ≤ ce ∀e ∈ E∑
e∈δout(v)

xe −
∑

e∈δin(v)

xe = 0 ∀v ∈ V \ {s, t}

xe ≥ 0 ∀e ∈ E

Theorem The LP polytope is integral.

Sketch of Proof.
Take any s-t flow x; consider fractional edges E ′

Every v /∈ {s, t} must be incident to 0 or ≥ 2 edges in E ′

Ignoring the directions of E ′, it contains a cycle, or a s-t path

We can increase/decrease flow values along cyle/path



37/49

LP for Maximum Flow

max
∑

e∈δin(t)

xe

xe ≤ ce ∀e ∈ E∑
e∈δout(v)

xe −
∑

e∈δin(v)

xe = 0 ∀v ∈ V \ {s, t}

xe ≥ 0 ∀e ∈ E

Theorem The LP polytope is integral.

Sketch of Proof.
Take any s-t flow x; consider fractional edges E ′

Every v /∈ {s, t} must be incident to 0 or ≥ 2 edges in E ′

Ignoring the directions of E ′, it contains a cycle, or a s-t path

We can increase/decrease flow values along cyle/path



37/49

LP for Maximum Flow

max
∑

e∈δin(t)

xe

xe ≤ ce ∀e ∈ E∑
e∈δout(v)

xe −
∑

e∈δin(v)

xe = 0 ∀v ∈ V \ {s, t}

xe ≥ 0 ∀e ∈ E

Theorem The LP polytope is integral.

Sketch of Proof.
Take any s-t flow x; consider fractional edges E ′

Every v /∈ {s, t} must be incident to 0 or ≥ 2 edges in E ′

Ignoring the directions of E ′, it contains a cycle, or a s-t path

We can increase/decrease flow values along cyle/path



38/49

Outline

1 Linear Programming
Introduction
Preliminaries
Methods for Solving Linear Programs

2 Linear Programming Duality

3 Integral Polytopes: Exact Algorithms Using LP
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem and Totally Unimodular
Matrices



39/49

Weighted Interval Scheduling Problem
Input: n activities, activity i starts at time si, finishes at time fi,

and has weight wi > 0

i and j can be scheduled together iff [si, fi) and [sj, fj)
are disjoint

Output: maximum weight subset of jobs that can be scheduled

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

optimum value= 220

Classic Problem for Dynamic Programming



39/49

Weighted Interval Scheduling Problem
Input: n activities, activity i starts at time si, finishes at time fi,

and has weight wi > 0

i and j can be scheduled together iff [si, fi) and [sj, fj)
are disjoint

Output: maximum weight subset of jobs that can be scheduled

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

optimum value= 220

Classic Problem for Dynamic Programming



40/49

Weighted Interval Scheduling Problem

Linear Program

max
∑
j∈[n]

xjwj∑
j∈[n]:t∈[sj ,fj)

xj ≤ 1 ∀t ∈ [T ]

xj ≥ 0 ∀j ∈ [n]

Theorem The LP polytope is
integral.

Def. A matrix A ∈ Rm×n is said
to be tototally unimodular
(TUM), if every sub-square of A
has determinant in {−1, 0, 1}.

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a totally
unimodular matrix A and integral b, then P is integral.

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every column
form an interval is TUM.

So, the matrix for the LP is TUM, and the polytope is integral.



40/49

Weighted Interval Scheduling Problem

Linear Program

max
∑
j∈[n]

xjwj∑
j∈[n]:t∈[sj ,fj)

xj ≤ 1 ∀t ∈ [T ]

xj ≥ 0 ∀j ∈ [n]

Theorem The LP polytope is
integral.

Def. A matrix A ∈ Rm×n is said
to be tototally unimodular
(TUM), if every sub-square of A
has determinant in {−1, 0, 1}.

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a totally
unimodular matrix A and integral b, then P is integral.

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every column
form an interval is TUM.

So, the matrix for the LP is TUM, and the polytope is integral.



40/49

Weighted Interval Scheduling Problem

Linear Program

max
∑
j∈[n]

xjwj∑
j∈[n]:t∈[sj ,fj)

xj ≤ 1 ∀t ∈ [T ]

xj ≥ 0 ∀j ∈ [n]

Theorem The LP polytope is
integral.

Def. A matrix A ∈ Rm×n is said
to be tototally unimodular
(TUM), if every sub-square of A
has determinant in {−1, 0, 1}.

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a totally
unimodular matrix A and integral b, then P is integral.

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every column
form an interval is TUM.

So, the matrix for the LP is TUM, and the polytope is integral.



40/49

Weighted Interval Scheduling Problem

Linear Program

max
∑
j∈[n]

xjwj∑
j∈[n]:t∈[sj ,fj)

xj ≤ 1 ∀t ∈ [T ]

xj ≥ 0 ∀j ∈ [n]

Theorem The LP polytope is
integral.

Def. A matrix A ∈ Rm×n is said
to be tototally unimodular
(TUM), if every sub-square of A
has determinant in {−1, 0, 1}.

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a totally
unimodular matrix A and integral b, then P is integral.

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every column
form an interval is TUM.

So, the matrix for the LP is TUM, and the polytope is integral.



40/49

Weighted Interval Scheduling Problem

Linear Program

max
∑
j∈[n]

xjwj∑
j∈[n]:t∈[sj ,fj)

xj ≤ 1 ∀t ∈ [T ]

xj ≥ 0 ∀j ∈ [n]

Theorem The LP polytope is
integral.

Def. A matrix A ∈ Rm×n is said
to be tototally unimodular
(TUM), if every sub-square of A
has determinant in {−1, 0, 1}.

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a totally
unimodular matrix A and integral b, then P is integral.

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every column
form an interval is TUM.

So, the matrix for the LP is TUM, and the polytope is integral.



41/49

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a totally
unimodular matrix A and integral b, then P is integral.

Proof.

Every vertex x ∈ P is the unique solution to the linear system

(after permuting coordinates):

(
A′ 0
0 I

)
x =

(
b′

0

)
, where

A′ is a square submatrix of A with det(A′) = ±1, b′ is a sub-vector
of b,
and the rows for b′ are the same as the rows for A′.

Let x =

(
x1

x2

)
, so that A′x1 = b′ and x2 = 0.

Cramer’s rule: x1
i =

det(A′
i|b)

det(A′)
for every i =⇒ x1

i is integer

A′
i|b: the matrix of A′ with the i-th column replaced by b



41/49

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a totally
unimodular matrix A and integral b, then P is integral.

Proof.
Every vertex x ∈ P is the unique solution to the linear system

(after permuting coordinates):

(
A′ 0
0 I

)
x =

(
b′

0

)
, where

A′ is a square submatrix of A with det(A′) = ±1, b′ is a sub-vector
of b,
and the rows for b′ are the same as the rows for A′.

Let x =

(
x1

x2

)
, so that A′x1 = b′ and x2 = 0.

Cramer’s rule: x1
i =

det(A′
i|b)

det(A′)
for every i =⇒ x1

i is integer

A′
i|b: the matrix of A′ with the i-th column replaced by b



41/49

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a totally
unimodular matrix A and integral b, then P is integral.

Proof.
Every vertex x ∈ P is the unique solution to the linear system

(after permuting coordinates):

(
A′ 0
0 I

)
x =

(
b′

0

)
, where

A′ is a square submatrix of A with det(A′) = ±1, b′ is a sub-vector
of b,
and the rows for b′ are the same as the rows for A′.

Let x =

(
x1

x2

)
, so that A′x1 = b′ and x2 = 0.

Cramer’s rule: x1
i =

det(A′
i|b)

det(A′)
for every i =⇒ x1

i is integer

A′
i|b: the matrix of A′ with the i-th column replaced by b



41/49

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a totally
unimodular matrix A and integral b, then P is integral.

Proof.
Every vertex x ∈ P is the unique solution to the linear system

(after permuting coordinates):

(
A′ 0
0 I

)
x =

(
b′

0

)
, where

A′ is a square submatrix of A with det(A′) = ±1, b′ is a sub-vector
of b,
and the rows for b′ are the same as the rows for A′.

Let x =

(
x1

x2

)
, so that A′x1 = b′ and x2 = 0.

Cramer’s rule: x1
i =

det(A′
i|b)

det(A′)
for every i =⇒ x1

i is integer

A′
i|b: the matrix of A′ with the i-th column replaced by b



42/49

Example for the Proof

a1,1 a1,2 a1,3 a1,4 a1,5
a2,1 a2,2 a2,3 a2,4 a2,5
a3,1 a3,2 a3,3 a3,4 a3,5



x1

x2

x3

x4

x5

 ≥

b1
b2
b3


x1, x2, x3, x4, x5 ≥ 0

The following equation system may give a vertex:
a1,1 a1,2 a1,3 a1,4 a1,5
a3,1 a3,2 a3,3 a3,4 a3,5
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



x1

x2

x3

x4

x5

 =


b1
b3
0
0
0





42/49

Example for the Proof

a1,1 a1,2 a1,3 a1,4 a1,5
a2,1 a2,2 a2,3 a2,4 a2,5
a3,1 a3,2 a3,3 a3,4 a3,5



x1

x2

x3

x4

x5

 ≥

b1
b2
b3


x1, x2, x3, x4, x5 ≥ 0

The following equation system may give a vertex:
a1,1 a1,2 a1,3 a1,4 a1,5
a3,1 a3,2 a3,3 a3,4 a3,5
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



x1

x2

x3

x4

x5

 =


b1
b3
0
0
0





43/49

Example for the Proof


a1,1 a1,2 a1,3 a1,4 a1,5
a3,1 a3,2 a3,3 a3,4 a3,5
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



x1

x2

x3

x4

x5

 =


b1
b3
0
0
0



Equivalently, the vertex satisfies
a1,2 a1,3 0 0 0
a3,2 a3,3 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x2

x3

x1

x4

x5

 =


b1
b3
0
0
0





43/49

Example for the Proof


a1,1 a1,2 a1,3 a1,4 a1,5
a3,1 a3,2 a3,3 a3,4 a3,5
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



x1

x2

x3

x4

x5

 =


b1
b3
0
0
0


Equivalently, the vertex satisfies

a1,2 a1,3 0 0 0
a3,2 a3,3 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x2

x3

x1

x4

x5

 =


b1
b3
0
0
0





44/49

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains at
most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.

wlog assume every row of A′ contains one 1 and one −1

otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph contains a
cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains at
most one 1 and one −1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the polytope
is integral.



44/49

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains at
most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.
wlog assume every row of A′ contains one 1 and one −1

otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph contains a
cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains at
most one 1 and one −1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the polytope
is integral.



44/49

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains at
most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.
wlog assume every row of A′ contains one 1 and one −1

otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph contains a
cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains at
most one 1 and one −1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the polytope
is integral.



44/49

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains at
most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.
wlog assume every row of A′ contains one 1 and one −1

otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph contains a
cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains at
most one 1 and one −1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the polytope
is integral.



44/49

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains at
most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.
wlog assume every row of A′ contains one 1 and one −1

otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph contains a
cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains at
most one 1 and one −1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the polytope
is integral.



44/49

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains at
most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.
wlog assume every row of A′ contains one 1 and one −1

otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph contains a
cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains at
most one 1 and one −1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the polytope
is integral.



44/49

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains at
most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.
wlog assume every row of A′ contains one 1 and one −1

otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph contains a
cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains at
most one 1 and one −1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the polytope
is integral.



45/49

Example for the Proof

1 −1 0 0 0 0 0
0 −1 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 1 −1 0 0
0 0 −1 0 0 1 0
0 0 0 0 −1 0 1
1 0 0 0 −1 0 0



1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)



45/49

Example for the Proof

1 −1 0 0 0 0 0
0 −1 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 1 −1 0 0
0 0 −1 0 0 1 0
0 0 0 0 −1 0 1
1 0 0 0 −1 0 0



1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)



45/49

Example for the Proof


1 −1 0 0 0 0
0 −1 1 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 −1 0 1
1 0 0 −1 0 0



1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)



45/49

Example for the Proof


1 −1 0 0 0 0
0 −1 1 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 −1 0 1
1 0 0 −1 0 0



1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)



45/49

Example for the Proof


1 −1 0 0 0
0 −1 1 0 0
0 0 1 −1 0
0 0 0 −1 1
1 0 0 −1 0



1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)



45/49

Example for the Proof


1 −1 0 0 0
0 −1 1 0 0
0 0 1 −1 0
0 0 0 −1 1
1 0 0 −1 0


1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)



45/49

Example for the Proof


1 −1 0 0 0
0 −1 1 0 0
0 0 1 −1 0
0 0 0 −1 1
1 0 0 −1 0


1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)



45/49

Example for the Proof


1 −1 0 0 0
0 −1 1 0 0
0 0 1 −1 0
0 0 0 −1 1
1 0 0 −1 0


1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)



46/49

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row form
an interval is TUM.

Proof.

take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.



46/49

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row form
an interval is TUM.

Proof.
take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.



46/49

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row form
an interval is TUM.

Proof.
take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.



46/49

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row form
an interval is TUM.

Proof.
take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.



46/49

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row form
an interval is TUM.

Proof.
take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.



47/49

Example for the Proof


0 1 1 1 0 0
1 1 1 1 0 0
0 0 1 1 1 1
0 0 0 0 1 1
0 0 0 1 1 0
0 1 1 1 1 0



=⇒


0 1 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0



(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1



47/49

Example for the Proof


0 1 1 1 0 0
1 1 1 1 0 0
0 0 1 1 1 1
0 0 0 0 1 1
0 0 0 1 1 0
0 1 1 1 1 0



=⇒


0 1 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0



(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1



47/49

Example for the Proof


0 1 1 1 0
1 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 1 1 1 1



=⇒


0 1 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0


(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1



47/49

Example for the Proof


0 1 1 1 0
1 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 1 1 1 1



=⇒


0 1 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0



(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1



47/49

Example for the Proof


0 1 1 1 0
1 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 1 1 1 1

 =⇒


0 1 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0


(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1



47/49

Example for the Proof


0 1 1 1 0
1 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 1 1 1 1

 =⇒


0 1 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0


(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1



48/49

Lemma The edge-vertex incidence matrix A of a bipartite graph is
totally-unimodular.

Proof.

G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1

=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 1 0 0
1 0 0 0 0 1
1 0 0 0 1 0





48/49

Lemma The edge-vertex incidence matrix A of a bipartite graph is
totally-unimodular.

Proof.
G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1

=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 1 0 0
1 0 0 0 0 1
1 0 0 0 1 0





48/49

Lemma The edge-vertex incidence matrix A of a bipartite graph is
totally-unimodular.

Proof.
G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1

=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 1 0 0
1 0 0 0 0 1
1 0 0 0 1 0





48/49

Lemma The edge-vertex incidence matrix A of a bipartite graph is
totally-unimodular.

Proof.
G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1

=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 1 0 0
1 0 0 0 0 1
1 0 0 0 1 0





48/49

Lemma The edge-vertex incidence matrix A of a bipartite graph is
totally-unimodular.

Proof.
G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1

=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 1 0 0
1 0 0 0 0 1
1 0 0 0 1 0





48/49

Lemma The edge-vertex incidence matrix A of a bipartite graph is
totally-unimodular.

Proof.
G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1

=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 1 0 0
1 0 0 0 0 1
1 0 0 0 1 0





48/49

Lemma The edge-vertex incidence matrix A of a bipartite graph is
totally-unimodular.

Proof.
G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1

=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 1 0 0
1 0 0 0 0 1
1 0 0 0 1 0





48/49

Lemma The edge-vertex incidence matrix A of a bipartite graph is
totally-unimodular.

Proof.
G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1

=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 −1 0 0
1 0 0 0 −1 0
1 0 0 0 0 −1
1 0 0 −1 0 0
1 0 0 0 0 −1
1 0 0 0 −1 0





49/49

remark: bipartiteness is needed. The edge-vertex incidence matrix0 1 1
1 0 1
1 1 0

 of a triangle has determinant 2.

Coro. Bipartite matching polytope is integral.



49/49

remark: bipartiteness is needed. The edge-vertex incidence matrix0 1 1
1 0 1
1 1 0

 of a triangle has determinant 2.

Coro. Bipartite matching polytope is integral.


	Linear Programming
	Introduction
	Preliminaries
	Methods for Solving Linear Programs

	Linear Programming Duality
	Integral Polytopes: Exact Algorithms Using LP
	Bipartite Matching Polytope
	s-t Flow Polytope
	Weighted Interval Scheduling Problem and Totally Unimodular Matrices


