算法设计与分析（2024年春季学期）
 NP－Completeness

授课老师：栗师
南京大学计算机科学与技术系

NP-Completeness Theory

- The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.
- NP-Completeness provides negative results: some problems can not be solved efficiently.

Q: Why do we study negative results?

- A given problem X cannot be solved in polynomial time.
- Without knowing it, you will have to keep trying to find polynomial time algorithm for solving X. All our efforts are doomed!

Efficient $=$ Polynomial Time

- Polynomial time: $O\left(n^{k}\right)$ for any constant $k>0$
- Example: $O(n), O\left(n^{2}\right), O\left(n^{2.5} \log n\right), O\left(n^{100}\right)$
- Not polynomial time: $O\left(2^{n}\right), O\left(n^{\log n}\right)$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient $=$ Polynomial Time

- For natural problems, if there is an $O\left(n^{k}\right)$-time algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega\left(2^{n^{c}}\right)$ for some c
- Do not need to worry about the computational model

Outline

(1) Some Hard Problems
(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Dealing with NP-Hard Problems
(6) Summary

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

 Input: graph $G=(V, E)$Output: whether G contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

- The graph is called the Petersen Graph. It has no HC.

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle
Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m)=2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is NP-hard: it is unlikely that it can be solved in polynomial time.

Maximum Independent Set Problem

Def. An independent set of $G=(V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G=(V, E)$
Output: the size of the maximum independent set of G

- Maximum Independent Set is NP-hard

Formula Satisfiability

Formula Satisfiability

Input: boolean formula with n variables, with \vee, \wedge, \neg operators.
Output: whether the boolean formula is satisfiable

- Example: $\neg\left(\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right) \vee x_{1} \vee\left(\neg x_{2} \wedge x_{3}\right)\right)$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.
- Formula Satisfiablity is NP-hard

Outline

(1) Some Hard Problems

(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Dealing with NP-Hard Problems
(6) Summary

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes $/ \mathrm{no}$).

- When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X^{\prime} of the problem. If we have a polynomial time algorithm for the decision version X^{\prime}, we can solve the original problem X in polynomial time.

Optimization to Decision

Shortest Path

Input: graph $G=(V, E)$, weight w, s, t and a bound L
Output: whether there is a path from s to t of length at most L
Maximum Independent Set
Input: a graph G and a bound k
Output: whether there is an independent set of size at least k

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: $(3,6,100,9,60)$
- Binary: $(11,110,1100100,1001,111100)$
- String: 11110111100011111000011000001 110000110111111111000001

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

- ($0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)$
- Encode the sequence into a binary string as before

Encoding

Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a "natural" encoding. We only care whether the running time is polynomial or not

Define Problem as a Function $X:\{0,1\}^{*} \rightarrow\{0,1\}$

Def. A decision problem X is a function mapping $\{0,1\}^{*}$ to $\{0,1\}$ such that for any $s \in\{0,1\}^{*}, X(s)$ is the correct output for input s.

- $\{0,1\}^{*}$: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, $A(s)=X(s)$ for any binary string s

Def. A has a polynomial running time if there is a polynomial function $p(\cdot)$ so that for every string s, the algorithm A terminates on s in at most $p(|s|)$ steps.

Complexity Class P

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- The decision versions of interval scheduling, shortest path and minimum spanning tree all in P .

Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given a graph $G=(V, E)$ with a HC , how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given graph $G=(V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
- Certifier: check if the given set is really an independent set

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t, and outputs 0 or 1 .
- there is a polynomial function p such that, $X(s)=1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
The string t such that $B(s, t)=1$ is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

HC (Hamiltonian Cycle) \in NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- |encoding $(S) \mid \leq p(|\operatorname{encoding}(G)|)$ for some polynomial function p
- Certifier $B: B(G, S)=1$ if and only if S gives an HC in G
- Clearly, B runs in polynomial time
- $\mathrm{HC}(G)=1 \quad \Longleftrightarrow \quad \exists S, B(G, S)=1$

MIS (Maximum Independent Set) \in NP

- Input: graph $G=(V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- \mid encoding $(S) \mid \leq p(|\operatorname{encoding}(G, k)|)$ for some polynomial function p
- Certifier $B: B((G, k), S)=1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
- $\operatorname{MIS}(G, k)=1 \quad \Longleftrightarrow \quad \exists S, B((G, k), S)=1$

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates
Output: whether there is an assignment such that the output is 1 ?

- Is Circuit-Sat \in NP?

$\overline{\mathrm{HC}}$

Input: graph $G=(V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathrm{HC}} \in \mathrm{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance
- $\overline{\mathrm{HC}} \in$ Co-NP

The Complexity Class Co-NP

Def. For a problem X, the problem \bar{X} is the problem such that $\bar{X}(s)=1$ if and only if $X(s)=0$.

Def. Co-NP is the set of decision problems X such that $\bar{X} \in \mathrm{NP}$.

Def. A tautology is a boolean formula that always evaluates to 1 .

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. $\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right) \vee x_{1} \vee\left(\neg x_{2} \wedge x_{3}\right)$ is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \in Co-NP

$P \subseteq N P$

- Let $X \in \mathrm{P}$ and $X(s)=1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathrm{P}$, Bob can check whether $X(s)=1$ by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in N P$ and $\mathrm{P} \subseteq \mathrm{NP}$
- Similarly, $\mathrm{P} \subseteq$ Co-NP, thus $\mathrm{P} \subseteq \mathrm{NP} \cap$ Co-NP

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq N P$ and prove that problems do not have polynomial time algorithms.
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
- if $P \neq N P$, then $H C \notin P$
- $\mathrm{HC} \notin \mathrm{P}$, unless $\mathrm{P}=\mathrm{NP}$

Is NP = Co-NP?

- Again, a big open problem
- Most researchers believe NP \neq Co-NP.

4 Possibilities of Relationships

Notice that $X \in \mathrm{NP} \Longleftrightarrow \bar{X} \in$ Co-NP and $\mathrm{P} \subseteq \mathrm{NP} \cap$ Co-NP

- People commonly believe we are in the 4th scenario

Outline

(1) Some Hard Problems

(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Dealing with NP-Hard Problems
(6) Summary

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

To prove positive results:
Suppose $Y \leq_{P} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:
Suppose $Y \leq_{P} X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G=(V, E)$ and $s, t \in V$
Output: whether there is a Hamiltonian path from s to t in G

Lemma $\mathrm{HP} \leq_{p} \mathrm{HC}$.

Obs. G has a HP from s to t if and only if graph on right side has a HC.

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

Theorem If X is NP-complete and $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

Outline

(1) Some Hard Problems

(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Dealing with NP-Hard Problems
(6) Summary

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{p}} X$ for every $Y \in \mathrm{NP}$.

- How can we find a problem $X \in$ NP such that every problem $Y \in$ NP is polynomial time reducible to X ? Are we asking for too much?
- No! There is indeed a large family of natural NP-complete problems

The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit
Output: whether the circuit is satisfiable

Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs $0 / 1$ with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

Time $T \square \square$

- Then, we can show that any problem $Y \in$ NP can be reduced to Circuit-Sat.
- We prove $\mathrm{HC} \leq_{P}$ Circuit-Sat as an example.

$\mathrm{HC} \leq_{P}$ Circuit-Sat

- Let check-HC (G, S) be the certifier for the Hamiltonian cycle problem: check- $\mathrm{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that check- $\mathrm{HC}(G, S)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-HC
- hard-wire the instance G to the circuit C^{\prime} to obtain the circuit C
- G is a yes-instance if and only if C is satisfiable

$Y \leq_{P}$ Circuit-Sat, For Every $Y \in$ NP

- Let check-Y (s, t) be the certifier for problem Y : check- $\mathrm{Y}(s, t)$ returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that check- $\mathrm{Y}(s, t)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-Y
- hard-wire the instance s to the circuit C^{\prime} to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: $x_{1}, x_{2}, \cdots, x_{n}$
- Literals: x_{i} or $\neg x_{i}$
- Clause: disjunction ("or") of at most 3 literals: $x_{3} \vee \neg x_{4}$, $x_{1} \vee x_{8} \vee \neg x_{9}, \quad \neg x_{2} \vee \neg x_{5} \vee x_{7}$
- 3-CNF formula: conjunction ("and") of clauses: $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)$

3-Sat

3-Sat

Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal
- Assignment $x_{1}=1, x_{2}=1, x_{3}=0, x_{4}=0$ satisfies $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)$

Circuit-Sat $\leq{ }_{P}$ 3-Sat

- Associate every wire with a new variable
- The circuit is equivalent to the following formula:

$$
\begin{aligned}
& \left(x_{4}=\neg x_{3}\right) \wedge\left(x_{5}=x_{1} \vee x_{2}\right) \wedge\left(x_{6}=\neg x_{4}\right) \\
& \wedge\left(x_{7}=x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{8}=x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{9}=x_{6} \vee x_{7}\right) \wedge\left(x_{10}=x_{8} \wedge x_{9} \wedge x_{7}\right) \wedge x_{10}
\end{aligned}
$$

Circuit-Sat $\leq{ }_{P}$ 3-Sat

$$
\begin{aligned}
& \left(x_{4}=\neg x_{3}\right) \wedge\left(x_{5}=x_{1} \vee x_{2}\right) \wedge\left(x_{6}=\neg x_{4}\right) \\
& \wedge\left(x_{7}=x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{8}=x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{9}=x_{6} \vee x_{7}\right) \wedge\left(x_{10}=x_{8} \wedge x_{9} \wedge x_{7}\right) \wedge x_{10}
\end{aligned}
$$

Convert each clause to a 3-CNF

$$
\begin{aligned}
& x_{5}=x_{1} \vee x_{2} \quad \Leftrightarrow \\
& \left(x_{1} \vee x_{2} \vee \neg x_{5}\right) \\
& \left(x_{1} \vee \neg x_{2} \vee x_{5}\right) \\
& \left(\neg x_{1} \vee x_{2} \vee x_{5}\right) \\
& \left(\neg x_{1} \vee \neg x_{2} \vee x_{5}\right)
\end{aligned}
$$

x_{1}	x_{2}	x_{5}	$x_{5} \leftrightarrow x_{1} \vee x_{2}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat $\leq{ }_{P}$ 3-Sat

- Circuit \Longleftrightarrow Formula \Longleftrightarrow 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit
- Thus, Circuit-Sat \leq_{P} 3-Sat

Reductions of NP-Complete Problems

Recall: Independent Set Problem

Def. An independent set of $G=(V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem

Input: $G=(V, E), k$
Output: whether there is an independent set of size k in G

3-Sat \leq_{P} Ind-Set

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k=$ \#clauses

3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:

- satisfying assignment \Rightarrow independent set of size k
- independent set of size $k \Rightarrow$ satisfying assignment

Satisfying Assignment \Rightarrow IS of Size k

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals
- An IS of size k

IS of Size $k \Rightarrow$ Satisfying Assignment

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_{i} is selected in IS, set $x_{i}=1$
- If $\neg x_{i}$ is selected in IS, set $x_{i}=0$
- Otherwise, set x_{i} arbitrarily

Reductions of NP-Complete Problems

Def. A clique in an undirected graph $G=(V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$

Clique Problem

Input: $G=(V, E)$ and integer $k>0$,
Output: whether there exists a clique of size k in G

- What is the relationship between Clique and Ind-Set?

Clique $={ }_{P}$ Ind-Set

Def. Given a graph $G=(V, E)$, define $\bar{G}=(V, \bar{E})$ be the graph such that $(u, v) \in \bar{E}$ if and only if $(u, v) \notin E$.

Obs. S is an independent set in G if and only if S is a clique in \bar{G}.

Reductions of NP-Complete Problems

Vertex-Cover

Def. Given a graph $G=(V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover Problem

Input: $G=(V, E)$ and integer k
Output: whether there is a vertex cover of G of size at most k

Vertex-Cover $={ }_{P}$ Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of $G=(V, E)$ if and only if $V \backslash S$ is an independent set of G.

Reductions of NP-Complete Problems

k-coloring problem

Def. A k-coloring of $G=(V, E)$ is a function $f: V \rightarrow\{1,2,3, \cdots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v) . G$ is k-colorable if there is a k-coloring of G.

k-coloring problem
Input: a graph $G=(V, E)$
Output: whether G is k-colorable or not

2-Coloring Problem

Obs. A graph G is 2-colorable if and only if it is bipartite.
Q: How do we check if a graph G is 2-colorable?
A: We check if G is bipartite.

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

Reductions of NP-Complete Problems

Recall: Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle

- We consider Hamiltonian Cycle Problem in directed graphs
- Exercise: HC-directed $\leq_{P} \mathrm{HC}$

3-Sat \leq_{P} Directed-HC

- Vertices s, t
- A long enough double-path P_{i} for each variable x_{i}
- Edges from s to P_{1}
- Edges from P_{n} to t
- Edges from P_{i} to P_{i+1}
- $x_{i}=1 \Longleftrightarrow$ traverse P_{i} from left to right
- e.g,

$$
x_{1}=1, x_{2}=1, x_{3}=0, x_{4}=0
$$

3-Sat \leq_{P} Directed-HC

- There are exactly 2^{n} different Hamiltonian cycles, each correspondent to one assignment of variables
- Add a vertex for each clause, so that the vertex can be visited only if one of the literals is satisfied.

A Path Should Be Long Enough

- k : number of clauses

Yes-Instance for 3-Sat \Rightarrow Yes-Instance for Di-HC

- In base graph, construct an HC according to the satisfying assignment
- For every clause, one literal is satisfied
- Visit the vertex for the clause by taking a "detour" from the path for the literal

Yes-Instance for Di-HC \Rightarrow Yes-Instance for 3-Sat

- Idea: for each path P_{i}, must follow the left-to-right or right-to-right pattern.
- To visit vertex b, can either go $a-b-c$ or $b-c-a$
- Created "chunks" of 3 vertices.
- Directions of the chunks must be the same
- Can not take a detour to some other path

Reductions of NP-Complete Problems

Traveling Salesman Problem

- A salesman needs to visit n cities $1,2,3, \cdots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost

Travelling Salesman Problem (TSP)

Input: a graph $G=(V, E)$, weights $w: E \rightarrow \mathbb{R}_{\geq 0}$, and $L>0$
Output: whether there is a tour of length at most D

$\mathrm{HC} \leq_{P} \mathrm{TSP}$

Obs. There is a Hamilton cycle in G if and only if there is a tour for the salesman of length $n=|V|$.

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

- In general, algorithm for Y can call the algorithm for X many times.
- However, for most reductions, we call algorithm for X only once
- That is, for a given instance s_{Y} for Y, we only construct one instance s_{X} for X

A Strategy of Polynomial Reduction

- Given an instance s_{Y} of problem Y, show how to construct in polynomial time an instance s_{X} of problem such that:
- s_{Y} is a yes-instance of $Y \Rightarrow s_{X}$ is a yes-instance of X
- s_{X} is a yes-instance of $X \Rightarrow s_{Y}$ is a yes-instance of Y

Outline

(1) Some Hard Problems

(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Dealing with NP-Hard Problems
(6) Summary

Q: How far away are we from proving or disproving $\mathrm{P}=\mathrm{NP}$?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
- Assume the number of clauses is $\Theta(n), n=$ number variables
- Best algorithm runs in time $O\left(c^{n}\right)$ for some constant $c>1$
- Best lower bound is $\Omega(n)$
- Essentially we have no techniques for proving lower bound for running time

Dealing with NP-Hard Problems

- Faster exponential time algorithms
- Solving the problem for special cases
- Fixed parameter tractability
- Approximation algorithms

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- $2^{n} \rightarrow 1.844^{n} \rightarrow 1.3334^{n}$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n!$ • poly $(n))$
- Better algorithm: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- In practice: TSP Solver can solve Euclidean TSP instances with more than 100,000 vertices

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs
- interval graphs
- ...

Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O\left(k n^{k+1}\right)$
- Better running time: $O\left(2^{k} \cdot k n\right)$
- Running time is $f(k) n^{c}$ for some c independent of k
- Vertex-Cover is fixed-parameter tractable.

Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time
- There is an 2-approximation for the vertex cover problem: we can efficiently find a vertex cover whose size is at most 2 times that of the optimal vertex cover

Outline

(1) Some Hard Problems

(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Dealing with NP-Hard Problems
(6) Summary

Summary

- We consider decision problems
- Inputs are encoded as $\{0,1\}$-strings

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class NP is the set of problems for which Alice can convince Bob a yes instance is a yes instance

Summary

Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $X(s)=1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
The string t such that $B(s, t)=1$ is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

Summary

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

- If any NP-complete problem can be solved in polynomial time, then $P=N P$
- Unless $P=N P$, a NP-complete problem can not be solved in polynomial time

Summary

Summary

Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is a efficient certifier.
- Given a problem $X \in \mathrm{NP}$, let $B(s, t)$ be the certifier
- Convert $B(s, t)$ to a circuit and hard-wire s to the input gates
- s is a yes-instance if and only if the resulting circuit is satisfiable
- Proof of NP-Completeness for other problems by reductions

