算法设计与分析(2024年春季学期)

NP-Completeness

授课老师: 栗师
南京大学计算机科学与技术系
The topics we discussed so far are **positive results**: how to design efficient algorithms for solving a given problem.

NP-Completeness provides **negative results**: some problems cannot be solved efficiently.

Q: Why do we study negative results?

- A given problem X cannot be solved in polynomial time.
- Without knowing it, you will have to keep trying to find polynomial time algorithm for solving X. All our efforts are doomed!
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

- For natural problems, if there is an $O(n^k)$-time algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega(2^{nc})$ for some c
- Do not need to worry about the computational model
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Dealing with NP-Hard Problems
6. Summary
Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Example: Hamiltonian Cycle Problem

The graph is called the Petersen Graph. It has no HC.
Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \log n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is **NP-hard**: it is unlikely that it can be solved in polynomial time.
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the size of the maximum independent set of G

- Maximum Independent Set is NP-hard
Formula Satisfiability

Input: boolean formula with n variables, with \lor, \land, \neg operators.

Output: whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable

- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.

- Formula Satisfiability is NP-hard
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Dealing with NP-Hard Problems
6. Summary
Def. A problem X is called a **decision problem** if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.

Fact. For each optimization problem X, there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X', we can solve the original problem X in polynomial time.
Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

Output: whether there is an independent set of size at least k
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 111101111100011111000011000001
 11000011011111111000001
The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

- (0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)
- Encode the sequence into a binary string as before
Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care whether the running time is polynomial or not.
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.

Def. An algorithm \(A \) solves a problem \(X \) if, \(A(s) = X(s) \) for any binary string \(s \).

Def. \(A \) has a polynomial running time if there is a polynomial function \(p(\cdot) \) so that for every string \(s \), the algorithm \(A \) terminates on \(s \) in at most \(p(|s|) \) steps.
Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
- Certifier: check if the given set is really an independent set
The Complexity Class NP

Def. B is an **efficient certifier** for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t, and outputs 0 or 1.
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a **certificate**.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.
HC (Hamiltonian Cycle) ∈ NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- Certifier B: $B(G, S) = 1$ if and only if S gives an HC in G
- Clearly, B runs in polynomial time
- $\text{HC}(G) = 1$ \iff $\exists S, B(G, S) = 1$
MIS (Maximum Independent Set) \(\in \text{NP} \)

- **Input:** graph \(G = (V, E) \) and integer \(k \)
- **Certificate:** a set \(S \subseteq V \) of size \(k \)
- \(|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|) \) for some polynomial function \(p \)
- **Certifier** \(B \): \(B((G, k), S) = 1 \) if and only if \(S \) is an independent set in \(G \)
- Clearly, \(B \) runs in polynomial time
- **MIS**\((G, k) = 1 \iff \exists S, B((G, k), S) = 1 \)
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat ∈ NP?
\begin{itemize}
 \item \textbf{Input:} graph $G = (V, E)$
 \item \textbf{Output:} whether G does not contain a Hamiltonian cycle
 \begin{itemize}
 \item Is $\overline{HC} \in \text{NP}$?
 \item Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
 \item Unlikely
 \item Alice can only convince Bob that G is a no-instance
 \item $\overline{HC} \in \text{Co-NP}$
 \end{itemize}
\end{itemize}
The Complexity Class Co-NP

Def. For a problem X, the problem \overline{X} is the problem such that $\overline{X}(s) = 1$ if and only if $X(s) = 0$.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in \text{NP}$.
Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

- **Input:** a boolean formula
- **Output:** whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \(\in\) Co-NP
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$

Similarly, $P \subseteq Co-NP$, thus $P \subseteq NP \cap Co-NP$
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently

We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.
We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:

- if $P \neq NP$, then $HC \notin P$
- $HC \notin P$, unless $P = NP$
Is $NP = Co-NP$?

- Again, a big open problem
- Most researchers believe $NP \neq Co-NP$.
4 Possibilities of Relationships

Notice that $X \in \text{NP} \iff \overline{X} \in \text{Co-NP}$ and $\text{P} \subseteq \text{NP} \cap \text{Co-NP}$

- $\text{P} = \text{NP} = \text{Co-NP}$
- $\text{NP} = \text{Co-NP}$
- $\text{P} = \text{NP} \cap \text{Co-NP}$
- $\text{NP} \cap \text{Co-NP} \subseteq \text{NP} \subseteq \text{P} \subseteq \text{Co-NP}$

People commonly believe we are in the 4th scenario.
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Dealing with NP-Hard Problems
6. Summary
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_P \text{HC}$.

Obs. G has a HP from s to t if and only if graph on right side has a HC.
NP-Completeness

Definition. A problem X is called \textbf{NP-complete} if

1. $X \in \text{NP}$, and
2. $Y \leq_{\text{P}} X$ for every $Y \in \text{NP}$.

Theorem. If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Dealing with NP-Hard Problems
6. Summary
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

- How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?

- No! There is indeed a large family of natural NP-complete problems.
Circuit Satisfiability (Circuit-Sat)

Input: a circuit

Output: whether the circuit is satisfiable
key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

Then, we can show that any problem $Y \in \text{NP}$ can be reduced to Circuit-Sat.

We prove $\text{HC} \leq_P \text{Circuit-Sat}$ as an example.
Let $\text{check-HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: $\text{check-HC}(G, S)$ returns 1 if S is a Hamiltonian cycle in G and 0 otherwise.

G is a yes-instance if and only if there is an S such that $\text{check-HC}(G, S)$ returns 1.

Construct a circuit C' for the algorithm check-HC

hard-wire the instance G to the circuit C' to obtain the circuit C

G is a yes-instance if and only if C is satisfiable.
\(Y \leq_P \text{Circuit-Sat, For Every } Y \in \text{NP} \)

- Let check-\(Y(s, t) \) be the certifier for problem \(Y \): check-\(Y(s, t) \) returns 1 if \(t \) is a valid certificate for \(s \).
- \(s \) is a yes-instance if and only if there is a \(t \) such that check-\(Y(s, t) \) returns 1
- Construct a circuit \(C' \) for the algorithm check-\(Y \)
- hard-wire the instance \(s \) to the circuit \(C' \) to obtain the circuit \(C \)
- \(s \) is a yes-instance if and only if \(C \) is satisfiable

\textbf{Theorem} Circuit-Sat is NP-complete.
Reductions of NP-Complete Problems

- Circuit-Sat
 - 3-Sat
 - Clique
 - Ind-Set
 - Vertex-Cover
 - Set-Cover
 - HC
 - 3D-Matching
 - Subset-Sum
 - Knapsack
 - TSP
 - 3-Coloring
3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$
- Clause: disjunction ("or") of at most 3 literals: $x_3 \lor \neg x_4,$ $x_1 \lor x_8 \lor \neg x_9,$ $\neg x_2 \lor \neg x_5 \lor x_7$
- 3-CNF formula: conjunction ("and") of clauses:
 $$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$
3-Sat

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal
- Assignment $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, $x_4 = 0$ satisfies
 $$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$
Associate every wire with a new variable

The circuit is equivalent to the following formula:

\[(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}\]
Circuit-Sat \leq_P 3-Sat

$$(\neg x_4 = x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$
$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$
$$\land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$x_5 = x_1 \lor x_2 \iff$

$$(x_1 \lor x_2 \lor \neg x_5) \land$$
$$(x_1 \lor \neg x_2 \lor x_5) \land$$
$$(\neg x_1 \lor x_2 \lor x_5) \land$$
$$(\neg x_1 \lor \neg x_2 \lor x_5)$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \iff x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \leq_P 3-Sat

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit
- Thus, Circuit-Sat \leq_P 3-Sat
Reductions of NP-Complete Problems

- Circuit-Sat
- 3-Sat
- Ind-Set
- HC
- 3D-Matching
- Subset-Sum
- TSP
- Knapsack
- 3-Coloring
- Vertex-Cover
- Set-Cover
- Ind-Set
- Clique
Recall: Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem

Input: $G = (V, E), k$

Output: whether there is an independent set of size k in G
3-Sat \leq_P Ind-Set

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in the same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k = \#$ clauses

3-Sat instance is yes-instance \iff Ind-Set instance is yes-instance:
- satisfying assignment \Rightarrow independent set of size k
- independent set of size k \Rightarrow satisfying assignment
Satisfying Assignment \Rightarrow IS of Size k

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals
- An IS of size k
IS of Size $k \Rightarrow$ Satisfying Assignment

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
- If $\neg x_i$ is selected in IS, set $x_i = 0$
- Otherwise, set x_i arbitrarily
Reductions of NP-Complete Problems

- Circuit-Sat
 - 3-Sat
 - 3-Coloring
 - Knapsack
 - Subset-Sum
 - TSP
 - HC
 - Ind-Set
 - Vertex-Cover
 - Set-Cover
 - 3D-Matching
- Clique
- Ind-Set
- Subset-Sum
- TSP
Def. A **clique** in an undirected graph $G = (V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$.

Clique Problem

Input: $G = (V, E)$ and integer $k > 0$,

Output: whether there exists a clique of size k in G.

- What is the relationship between Clique and Ind-Set?
Clique $= P$ Ind-Set

Def. Given a graph $G = (V, E)$, define $\overline{G} = (V, \overline{E})$ be the graph such that $(u, v) \in \overline{E}$ if and only if $(u, v) \notin E$.

Obs. S is an independent set in G if and only if S is a clique in \overline{G}.
Reductions of NP-Complete Problems
Vertex-Cover

Def. Given a graph $G = (V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover Problem

Input: $G = (V, E)$ and integer k

Output: whether there is a vertex cover of G of size at most k
Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of $G = (V, E)$ if and only if $V \setminus S$ is an independent set of G.
Reductions of NP-Complete Problems

Circuit-Sat

3-Sat

Clique → Ind-Set

Vertex-Cover

Set-Cover

HC → TSP

3D-Matching → Subset-Sum → Knapsack

3-Coloring
Set Cover

Input: \(S_1, S_2, \cdots, S_M \subseteq [N] \) with \(\bigcup_{i \in [m]} S_i = [N] \)

Output: The smallest set \(I \subseteq [M] \) satisfying \(\bigcup_{i \in I} S_i = [N] \)

- decision version: given \(t \), does there exist a solution \(I \) with \(|I| \leq t \)?

Vertex Cover \(\leq_p \) Set Cover

- \(m \) edges \(\iff \) \(N \) elements
- \(n \) vertices \(\iff \) \(M \) sets
- vertex is incident to edge \(e \) \(\iff \) set contains element

- Vertex cover is the special case of set cover where each element appears in exactly two sets.
Reductions of NP-Complete Problems

- Circuit-Sat
- 3-Sat
- 3D-Matching
- Subset-Sum
- TSP
- Knapsack
- 3-Coloring
- Clique
- Ind-Set
- Vertex-Cover
- Set-Cover
- HC
- 3D-Matching
- Subset-Sum
- Knapsack
Def. A k-coloring of $G = (V, E)$ is a function $f : V \to \{1, 2, 3, \ldots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v)$. G is k-colorable if there is a k-coloring of G.

Input: a graph $G = (V, E)$

Output: whether G is k-colorable or not
2-Coloring Problem

Observation: A graph G is 2-colorable if and only if it is bipartite.

Question: How do we check if a graph G is 2-colorable?

Answer: We check if G is bipartite.
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

$x_1 \lor \neg x_2 \lor x_3$

Graph with True and False Coloring
Reductions of NP-Complete Problems

- Circuit-Sat
- 3-Sat
- Ind-Set
- Vertex-Cover
- HC
- 3D-Matching
- Subset-Sum
- TSP
- Knapsack
- 3-Coloring
- Clique
- Ind-Set
- 3-Sat
- Vertex-Cover
- HC
- 3D-Matching
- Subset-Sum
- TSP
- Knapsack
- 3-Coloring
- Clique
Recall: Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

- We consider Hamiltonian Cycle Problem in directed graphs
- Exercise: HC-directed \leq_P HC
3-Sat \leq_P Directed-HC

- Vertices s, t
- A long enough double-path P_i for each variable x_i
- Edges from s to P_1
- Edges from P_n to t
- Edges from P_i to P_{i+1}
- $x_i = 1 \iff$ traverse P_i from left to right
- e.g., $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$
3-Sat \leq_P Directed-HC

There are exactly 2^n different Hamiltonian cycles, each correspondent to one assignment of variables.

Add a vertex for each clause, so that the vertex can be visited only if one of the literals is satisfied.
A Path Should Be Long Enough

\[\leq 3k + 1 \text{ vertices} \]

- \(k \): number of clauses
Yes-Instance for 3-Sat \Rightarrow Yes-Instance for Di-HC

\[c_1 = x_1 \lor \overline{x}_2 \lor x_3 \]

- In base graph, construct an HC according to the satisfying assignment.
- For every clause, one literal is satisfied.
- Visit the vertex for the clause by taking a "detour" from the path for the literal.
Yes-Instance for Di-HC ⇒ Yes-Instance for 3-Sat

- Idea: for each path P_i, must follow the left-to-right or right-to-right pattern.
- To visit vertex b, can either go $a-b-c$ or $b-c-a$
- Created “chunks” of 3 vertices.
- Directions of the chunks must be the same
- Can not take a detour to some other path
Reductions of NP-Complete Problems

- Circuit-Sat
- 3-Sat
- Ind-Set
- Vertex-Cover
- HC
- 3D-Matching
- Subset-Sum
- TSP
- Set-Cover
- Knapsack
- 3-Coloring
- Clique
- Ind-Set
- Vertex-Cover
- Clique
Traveling Salesman Problem

- A salesman needs to visit n cities $1, 2, 3, \cdots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost

Travelling Salesman Problem (TSP)

Input: a graph $G = (V, E)$, weights $w : E \rightarrow \mathbb{R}_{\geq 0}$, and $L > 0$

Output: whether there is a tour of length at most D
HC \leq_P TSP

Obs. There is a Hamilton cycle in G if and only if there is a tour for the salesman of length $n = |V|$.
Reductions of NP-Complete Problems
3D-Matching

Input: \(|X| = |Y| = |Z| = n, (x_1, y_1, z_1), (x_2, y_2, z_2), \cdots, (x_m, y_m, z_m) \in X \times Y \times Z**

Output: whether there exists \(S \subseteq [m], |S| = n\) such that

\[\{x_i : i \in S\} = X, \{y_i : i \in S\} = Y, \{z_i : i \in S\} = Z\]
A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- In general, algorithm for Y can call the algorithm for X many times.
- However, for most reductions, we call algorithm for X only once.
- That is, for a given instance s_Y for Y, we only construct one instance s_X for X.

A Strategy of Polynomial Reduction

- Given an instance \(s_Y \) of problem \(Y \), show how to construct in polynomial time an instance \(s_X \) of problem such that:
 - \(s_Y \) is a yes-instance of \(Y \) \(\Rightarrow \) \(s_X \) is a yes-instance of \(X \)
 - \(s_X \) is a yes-instance of \(X \) \(\Rightarrow \) \(s_Y \) is a yes-instance of \(Y \)
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Dealing with NP-Hard Problems
6. Summary
Q: How far away are we from proving or disproving \(P = NP \)?

- Try to prove an “unconditional” lower bound on running time of algorithm solving a NP-complete problem.

For 3-Sat problem:
- Assume the number of clauses is \(\Theta(n) \), \(n \) = number variables
- Best algorithm runs in time \(O(c^n) \) for some constant \(c > 1 \)
- Best lower bound is \(\Omega(n) \)

- Essentially we have no techniques for proving lower bound for running time
Dealing with NP-Hard Problems

- Faster exponential time algorithms
- Solving the problem for special cases
- Fixed parameter tractability
- Approximation algorithms
Faster Exponential Time Algorithms

3-SAT:
- Brute-force: $O(2^n \cdot \text{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:
- Brute-force: $O(n! \cdot \text{poly}(n))$
- Better algorithm: $O(2^n \cdot \text{poly}(n))$
- In practice: TSP Solver can solve Euclidean TSP instances with more than 100,000 vertices
Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on:

- trees
- bounded tree-width graphs
- interval graphs
- ...
Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)

Brute-force algorithm: $O(kn^{k+1})$

Better running time: $O(2^k \cdot kn)$

Running time is $f(k)n^c$ for some c independent of k

Vertex-Cover is fixed-parameter tractable.
Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in *polynomial time*

- **Approximation ratio** is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution

- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time

- There is an 2-approximation for the vertex cover problem: *we can efficiently find a vertex cover whose size is at most 2 times that of the optimal vertex cover*
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Dealing with NP-Hard Problems
6. Summary
Summary

- We consider decision problems
- Inputs are encoded as \(\{0, 1\} \)-strings

Def. The complexity class \(P \) is the set of decision problems \(X \) that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class \(NP \) is the set of problems for which Alice can convince Bob a yes instance is a yes instance.
Summary

Def. B is an **efficient certifier** for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a **certificate**.

Def. The complexity class **NP** is the set of all problems for which there exists an efficient certifier.
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. A problem X is called NP-complete if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

- If any NP-complete problem can be solved in polynomial time, then $P = NP$
- Unless $P = NP$, a NP-complete problem can not be solved in polynomial time
Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is an efficient certifier.

Given a problem $X \in \text{NP}$, let $B(s, t)$ be the certifier.
- Convert $B(s, t)$ to a circuit and hard-wire s to the input gates
- s is a yes-instance if and only if the resulting circuit is satisfiable

Proof of NP-Completeness for other problems by reductions