算法设计与分析(2024年春季学期) Network Flow

授课老师:栗师 南京大学计算机科学与技术系

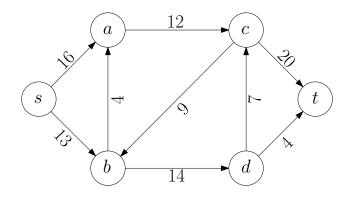
Outline

Network Flow

- 2 Ford-Fulkerson Method
- 3 Correctness of Ford-Fulkerson's Method and Maximum Flow Minimum Cut Theorem
- Running Time of Ford-Fulkerson-Type Algorithm
 Shortest Augmenting Path Algorithm
 - Capacity-Scaling Algorithm
- Bipartite Matching Problem
- $\bigcirc s$ -t Edge-Disjoint Paths Problem
- More Applications

Flow Network

- Abstraction of fluid flowing through edges
- Digraph G = (V, E) with source $s \in V$ and sink $t \in V$
 - $\bullet~{\rm No}~{\rm edges}~{\rm enter}~s$
 - No edges leave t
- Edge capacity $c_e \in \mathbb{R}_{>0}$ for every $e \in E$



Def. An *s*-*t* flow is a function $f : E \to \mathbb{R}$ such that

for every e ∈ E: 0 ≤ f(e) ≤ c_e (capacity conditions)
for every v ∈ V \ {s, t}:

$$\sum_{e \in \delta_{\rm in}(v)} f(e) = \sum_{e \in \delta_{\rm out}(v)} f(e).$$
 (conservation conditions)

The value of a flow f is

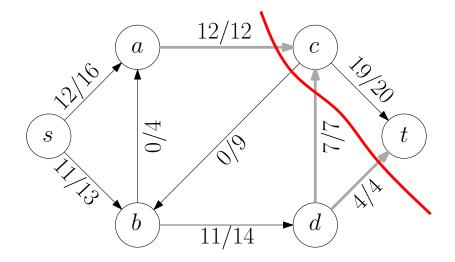
$$\mathsf{val}(f) := \sum_{e \in \delta_\mathsf{out}(s)} f(e).$$

Maximum Flow Problem

Input: directed network G = (V, E), capacity function $c: E \to \mathbb{R}_{>0}$, source $s \in V$ and sink $t \in V$

Output: an *s*-*t* flow *f* in *G* with the maximum val(f)

Maximum Flow Problem: Example



Outline

Network Flow

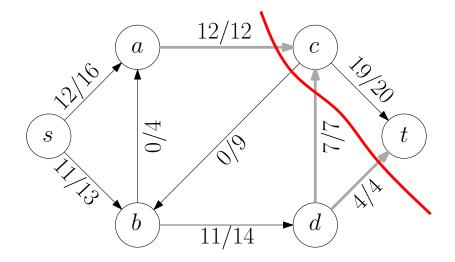
2 Ford-Fulkerson Method

- 3 Correctness of Ford-Fulkerson's Method and Maximum Flow Minimum Cut Theorem
- Running Time of Ford-Fulkerson-Type Algorithm
 Shortest Augmenting Path Algorithm
 - Shortest Augmenting Path Algorithm
 - Capacity-Scaling Algorithm
- Bipartite Matching Problem
- $\bigcirc s$ -t Edge-Disjoint Paths Problem
- More Applications

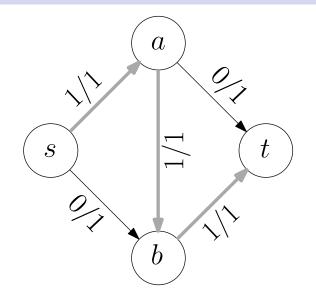
Greedy Algorithm

- Start with empty flow: f(e) = 0 for every $e \in E$
- Define the residual capacity of e to be $c_e f(e)$
- Find an augmenting path: a path from s to t, where all edges have positive residual capacity
- Augment flow along the path as much as possible
- Repeat until we got stuck

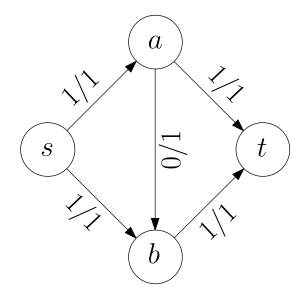
Greedy Algorithm: Example



Greedy Algorithm Does Not Always Give a Optimum Solution



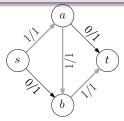
Fix the Issue: Allowing "Undo" Flow Sent



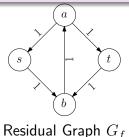
Assumption (u, v) and (v, u) are not both in E

Def. For a *s*-*t* flow *f*, the residual graph G_f of G = (V, E) w.r.t *f* contains:

- the vertex set V,
- for every $e = (u, v) \in E$ with $f(e) < c_e$, a forward edge e = (u, v), with residual capacity $c_f(e) = c_e f(e)$,
- for every $e = (u, v) \in E$ with f(e) > 0, a backward edge e' = (v, u), with residual capacity $c_f(e') = f(e)$.

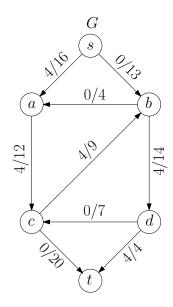


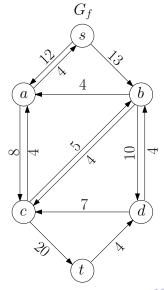
Original graph G and f



11/80

Residual Graph: One More Example



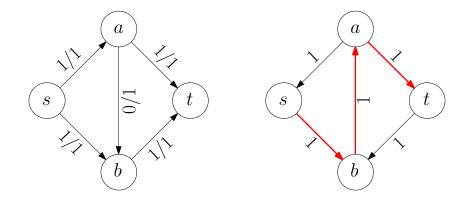


12/80

Augmenting the flow along a path P from s to t in G_f

 $\mathsf{Augment}(P)$ 1: $b \leftarrow \min_{e \in P} c_f(e)$ 2: for every $(u, v) \in P$ do if (u, v) is a forward edge then 3: $f(u, v) \leftarrow f(u, v) + b$ 4: else \triangleright (u, v) is a backward edge 5: $f(v, u) \leftarrow f(v, u) - b$ 6: 7: **return** *f*

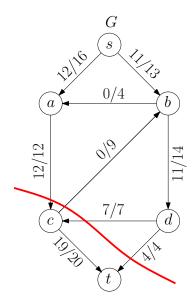
Example for Augmenting Along a Path

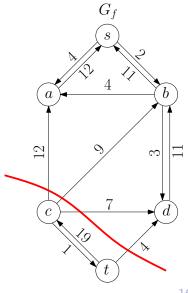


$\mathsf{Ford} ext{-}\mathsf{Fulkerson}(G, s, t, c)$

- 1: let $f(e) \leftarrow 0$ for every e in G
- 2: while there is a path from s to t in G_f do
- 3: let P be any simple path from s to t in G_f
- $\texttt{4:} \qquad f \gets \texttt{augment}(f, P)$
- 5: return f

Ford-Fulkerson: Example





16/80

Outline

Network Flow

2 Ford-Fulkerson Method

Correctness of Ford-Fulkerson's Method and Maximum Flow Minimum Cut Theorem

4 Running Time of Ford-Fulkerson-Type Algorithm

- Shortest Augmenting Path Algorithm
- Capacity-Scaling Algorithm
- Bipartite Matching Problem
- $\bigcirc s-t$ Edge-Disjoint Paths Problem
- More Applications

Correctness of Ford-Fulkerson's Method

- **(**) The procedure $\operatorname{augment}(f, P)$ maintains the two conditions:
 - for every $e \in E$: $0 \le f(e) \le c_e$ (capacity conditions)
 - for every $v \in V \setminus \{s, t\}$:

$$\sum_{e \in \delta_{in}(v)} f(e) = \sum_{e \in \delta_{out}(v)} f(e).$$
 (conservation conditions)

- **2** When Ford-Fulkerson's Method terminates, val(f) is maximized
- Sord-Fulkerson's Method will terminate

Correctness of Ford-Fulkerson's Method

• The procedure $\operatorname{augment}(f, P)$ maintains the two conditions:

- for every $e \in E$: $0 \le f(e) \le c_e$ (capacity conditions)
- for every $v \in V \setminus \{s, t\}$:

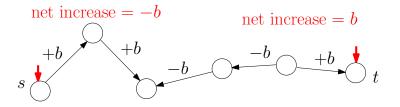
$$\sum_{e \in \delta_{in}(v)} f(e) = \sum_{e \in \delta_{out}(v)} f(e).$$
 (conservation conditions)

- **2** When Ford-Fulkerson's Method terminates, val(f) is maximized
- Sord-Fulkerson's Method will terminate

- for every $e \in E$: $0 \le f(e) \le c_e$
- for every $v \in V \setminus \{s, t\}$:

(capacity conditions)

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e).$$
 (conservation conditions)



- for an edge e correspondent to a forward edge : $b \leq c_e - f(e) \implies f(e) + b \leq c_e$
- for an edge e correspondent to a backward edge : $b \leq f(e) \implies f(e) b \geq 0$

Correctness of Ford-Fulkerson's Method

- **①** The procedure $\operatorname{augment}(f, P)$ maintains the two conditions:
 - for every $e \in E$: $0 \le f(e) \le c_e$ (capacity conditions)
 - for every $v \in V \setminus \{s, t\}$:

$$\sum_{e \in \delta_{in}(v)} f(e) = \sum_{e \in \delta_{out}(v)} f(e).$$
 (conservation conditions)

- **2** When Ford-Fulkerson's Method terminates, val(f) is maximized
- Isord-Fulkerson's Method will terminate

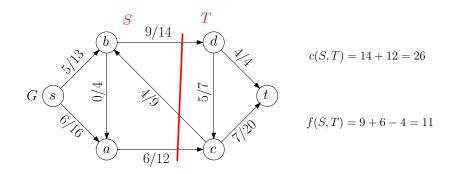
Def. An *s*-*t* cut of G = (V, E) is a pair $(S \subseteq V, T = V \setminus S)$ such that $s \in S$ and $t \in T$.

Def. The cut value of an *s*-*t* cut is

$$c(S,T) := \sum_{e=(u,v)\in E: u\in S, v\in T} c_e.$$

Def. Given an *s*-*t* flow *f* and an *s*-*t* cut (S, T), the net flow sent from *S* to *T* is

$$f(S,T) := \sum_{e=(u,v)\in E: u\in S, v\in T} f(e) - \sum_{e=(u,v)\in E: u\in T, v\in S} f(e).$$



Obs.
$$f(S,T) \leq c(S,T)$$
 s-t cut (S,T) .

Obs. f(S,T) = val(f) for any *s*-*t* flow *f* and any *s*-*t* cut (S,T).

Coro.
$$\operatorname{val}(f) \leq \min_{s \cdot t \text{ cut } (S,T)} c(S,T) \text{ for every } s \cdot t \text{ flow } f.$$

Coro.

$$\operatorname{val}(f) \leq \min_{s \cdot t \operatorname{cut}(S,T)} c(S,T)$$
 for every $s \cdot t$ flow f .

We will prove

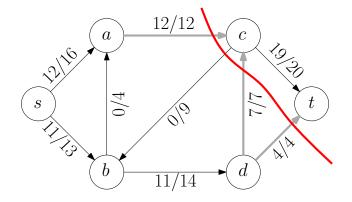
Main Lemma The flow f found by the Ford-Fulkerson's Method satisfies val(f) = c(S, T) for some s-t cut (S, T).

Corollary and Main Lemma implies

Maximum Flow Minimum Cut Theorem $\sup_{s \text{-}t \text{ flow } f} \operatorname{val}(f) = \min_{s \text{-}t \text{ cut } (S,T)} c(S,T).$

Maximum Flow Minimum Cut Theorem

$$\sup_{s \text{-}t \text{ flow } f} \operatorname{val}(f) = \min_{s \text{-}t \text{ cut } (S,T)} c(S,T).$$



Main Lemma The flow f found by the Ford-Fulkerson's Method satisfies

$$val(f) = c(S,T)$$
 for some s-t cut (S,T) .

Proof of Main Lemma.

- When algorithm terminates, no path from s to t in G_f ,
- What can we say about G_f ?
- There is a s-t cut (S,T), such that there are no edges from S to T
- For every $e = (u, v) \in E, u \in S, v \in T$, we have $f(e) = c_e$
- For every $e=(u,v)\in E, u\in T, v\in S,$ we have f(e)=0

Thus,

$$\begin{aligned} \mathsf{val}(f) &= f(S,T) = \sum_{e=(u,v)\in E, u\in S, v\in T} f(e) - \sum_{e=(u,v)\in E, u\in T, v\in S} f(e) = \\ &\sum_{e=(u,v)\in E, u\in S, v\in T} c_e = c(S,T). \end{aligned}$$

Correctness of Ford-Fulkerson's Method

- **(**) The procedure $\operatorname{augment}(f, P)$ maintains the two conditions:
 - for every $e \in E$: $0 \le f(e) \le c_e$ (capacity conditions)
 - for every $v \in V \setminus \{s, t\}$:

$$\sum_{e \in \delta_{in}(v)} f(e) = \sum_{e \in \delta_{out}(v)} f(e).$$
 (conservation conditions)

When Ford-Fulkerson's Method terminates, val(f) is maximized
Ford-Fulkerson's Method will terminate

Intuition:

- In every iteration, we increase the flow value by some amount
- There is a maximum flow value
- So the algorithm will finally reach the maximum value

However, the algorithm may not terminate if some capacities are irrational numbers. ("Pathological cases")

Lemma Ford-Fulkerson's Method will terminate if all capacities are integers.

Proof.

- The maximum flow value is finite (not ∞).
- In every iteration, we increase the flow value by at least 1.
- So the algorithm will terminate.
- Integers can be replaced by rational numbers.

Correctness of Ford-Fulkerson's Method

- **(**) The procedure $\operatorname{augment}(f, P)$ maintains the two conditions:
 - for every $e \in E$: $0 \le f(e) \le c_e$ (capacity conditions)
 - for every $v \in V \setminus \{s, t\}$:

$$\sum_{e \in \delta_{in}(v)} f(e) = \sum_{e \in \delta_{out}(v)} f(e).$$
 (conservation conditions)

- **2** When Ford-Fulkerson's Method terminates, val(f) is maximized
- Sord-Fulkerson's Method will terminate

Outline

- Network Flow
- 2 Ford-Fulkerson Method
- 3 Correctness of Ford-Fulkerson's Method and Maximum Flow Minimum Cut Theorem
- Running Time of Ford-Fulkerson-Type Algorithm
 Shortest Augmenting Path Algorithm
 - Capacity-Scaling Algorithm
- 5 Bipartite Matching Problem
- $\bigcirc s-t$ Edge-Disjoint Paths Problem
- More Applications

Running time of the Generic Ford-Fulkerson's Algorithm

Ford-Fulkerson(G, s, t, c)

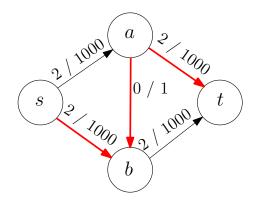
- 1: let $f(e) \leftarrow 0$ for every e in G
- 2: while there is a path from s to t in $G_f\ {\rm do}$
- 3: let P be any simple path from s to t in G_f

4:
$$f \leftarrow \mathsf{augment}(f, P)$$

5: **return** *f*

- $\bullet \ O(m)\text{-time}$ for Steps 3 and 4 in each iteration
- Total time = $O(m) \times$ number of iterations
- Assume all capacities are integers, then algorithm may run up to ${\rm val}(f^*)$ iterations, where f^* is the optimum flow
- Total time = $O(m \cdot \operatorname{val}(f^*))$
- Running time is "Pseudo-polynomial"

The Upper Bound on Running Time Is Tight!



Better choices for choosing augmentation paths:

- Choose the shortest augmentation path
- Choose the augmentation path with the largest bottleneck capacity

Outline

- Network Flow
- 2 Ford-Fulkerson Method
- 3 Correctness of Ford-Fulkerson's Method and Maximum Flow Minimum Cut Theorem
- Running Time of Ford-Fulkerson-Type Algorithm
 Shortest Augmenting Path Algorithm
 Capacity Scaling Algorithm
 - Capacity-Scaling Algorithm
- Bipartite Matching Problem
- $\bigcirc s-t$ Edge-Disjoint Paths Problem
- More Applications

shortest-augmenting-path (G, s, t, c)

- 1: let $f(e) \leftarrow 0$ for every e in G
- 2: while there is a path from s to t in G_f do
- 3: $P \leftarrow \text{breadth-first-search}(G_f, s, t)$
- $\texttt{4:} \qquad f \gets \texttt{augment}(f, P)$

5: **return** *f*

Due to [Dinitz 1970] and [Edmonds-Karp, 1970]

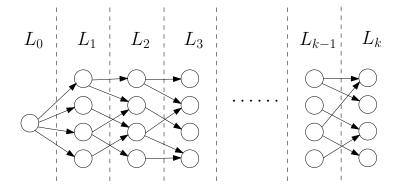
Running Time of Shortest Augmenting Path Algorithm

Lemma 1. Throughout the algorithm, length of shortest path from s to t in G_f never decreases. 2. After at most m shortest path augmentations, the length of the shortest path from s to t in G_f strictly increases.

- Length of shortest path is between $1 \mbox{ and } n-1$
- Algorithm takes at most O(mn) iterations
- Shortest path from s to t can be found in O(m) time using BFS

Theorem The shortest-augmenting-path algorithm runs in time $O(m^2n)$.

Proof of Lemma: Focus on G_f

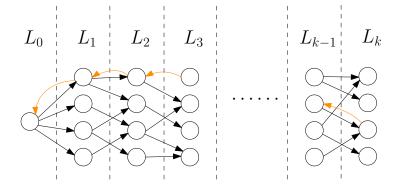


• Divide V into levels: L_i contains the set of vertices v such that the length of shortest path from s to v in G_f is i

37/80

- Forth edges : edges from L_i to L_{i+1} for some i
- Side edges : edges from L_i to L_i for some i
- Back edges: edges from L_i to L_j for some i > j
- No jump edges: edges from L_i to L_j for $j \ge i+2$

Proof of Lemma: Focus on G_f



- Assuming $t \in L_k$, shortest $s \to t$ path uses k forth edges
- After augmenting along the path, back edges will be added to G_f
- One forth edge will be removed from G_f
- In O(m) iterations, there will be no paths from s to t of length k in G_f.

Improving the ${\cal O}(m^2n)$ Running Time for Shortest Path Augmentation Algorithm

- $\bullet\,$ For some networks, $O(mn)\mbox{-}augmentations$ are necessary
- Idea for improved running time: reduce running time for each iteration
- Simple idea $\Rightarrow O(mn^2)$ [Dinic 1970]
- Dynamic Trees $\Rightarrow O(mn \log n)$ [Sleator-Tarjan 1983]

Outline

- Network Flow
- 2 Ford-Fulkerson Method
- 3 Correctness of Ford-Fulkerson's Method and Maximum Flow Minimum Cut Theorem
- Running Time of Ford-Fulkerson-Type Algorithm
 Shortest Augmenting Path Algorithm
 - Capacity-Scaling Algorithm
- 5 Bipartite Matching Problem
- $\bigcirc s-t$ Edge-Disjoint Paths Problem
- More Applications

Capacity-Scaling Algorithm

- Idea: find the augment path from s to t with the largest bottleneck capacity
- Assumption: Capacities are integers between 1 and C

capacity-scaling(G, s, t, c)

- 1: let $f(e) \leftarrow 0$ for every e in G
- 2: $\Delta \leftarrow \text{largest power of } 2 \text{ which is at most } C$
- 3: while $\Delta \geq 1~{\rm do}~{\rm do}$
- 4: while there exists an augmenting path P with bottleneck capacity at least $\Delta~{\rm do}$
- 5: $f \leftarrow \mathsf{augment}(f, P)$
- 6: $\Delta \leftarrow \Delta/2$

7: return f

Obs. The outer while loop repeats $1 + \lfloor \log_2 C \rfloor$ times.

Lemma At the beginning of Δ -scale phase, the value of the max-flow is at most val $(f) + 2m\Delta$.

- ullet Each augmentation increases the flow value by at least Δ
- Thus, there are at most 2m augmentations for Δ -scale phase.

Theorem The number of augmentations in the scaling max-flow algorithm is at most $O(m \log C)$. The running time of the algorithm is $O(m^2 \log C)$.

Assume all capacities are integers between 1 and C.

Ford-Fulkerson	$O(m^2C)$	pseudo-polynomial
Capacity-scaling:	$O(m^2 \log C)$	weakly-polynomial
Shortest-Path-Augmenting:	$O(m^2n)$	strongly-polynomial

• Polynomial : weakly-polynomial and strongly-polynomial

Algorithm	Year	Time	Description
Ford-Fulkerson	1956	O(mf)	Ford-Fulkerson Method.
Edmonds-Karp	1972	$O(nm^2)$	Shortest Augmenting Paths
Dinic	1970	$O(n^2m)$	SAP with blocking Flows
Goldberg-Tarjan	1988	$O(n^3)$	Generic Push-Relabel
Goldberg-Tarjan	1988	$O(n^2\sqrt{m})$	PR using highest-label nodes
Chen et al.	2022	$O(m^{1+o(1)})$	LP-solver, dynamic algorithms

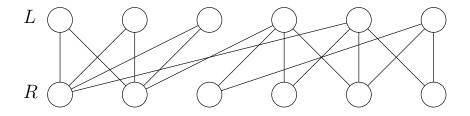
• Chen et al. [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva, 2022].

Outline

- Network Flow
- 2 Ford-Fulkerson Method
- 3 Correctness of Ford-Fulkerson's Method and Maximum Flow Minimum Cut Theorem
- Running Time of Ford-Fulkerson-Type Algorithm
 Shortest Augmenting Path Algorithm
 Capacity-Scaling Algorithm
- 5 Bipartite Matching Problem
- \bigcirc s-t Edge-Disjoint Paths Problem
- 7 More Applications

Bipartite Graphs

Def. A graph G = (V, E) is bipartite if the vertices V can be partitioned into two subsets L and R such that every edge in E is between a vertex in L and a vertex in R.

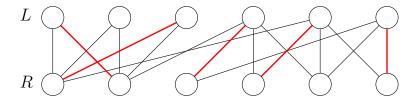


Def. Given a bipartite graph $G = (L \cup R, E)$, a matching in G is a set $M \subseteq E$ of edges such that every vertex in V is an endpoint of at most one edge in M.

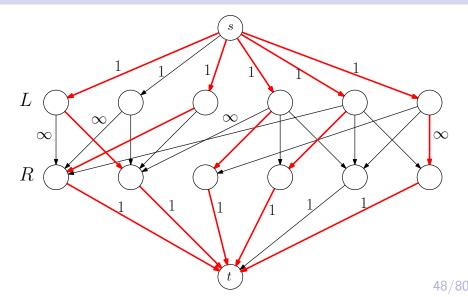
Maximum Bipartite Matching Problem

Input: bipartite graph $G = (L \cup R, E)$

Output: a matching M in G of the maximum size



Reduce Maximum Bipartite Matching to Maximum Flow Problem



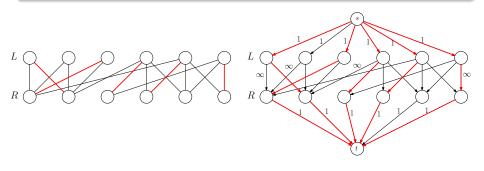
Reduce Maximum Bipartite Matching to Maximum Flow Problem

- Create a digraph $G' = (L \cup R \cup \{s,t\}, E')$ with capacity $c: E' \to \mathbb{R}_{\geq 0}$:
 - $\bullet\,$ Add a source s and a sink t
 - Add an edge from s to each vertex $u \in L$ of capacity 1
 - Add an edge from each vertex $v \in R$ to t of capacity 1
 - Direct all edges in E from L to R, and assign ∞ capacity (or capacity 1) to them
- Compute the maximum flow from s to t in G'
- The maximum flow gives a matching
- Running time:
 - Ford-Fulkerson: $O(m \times \max \text{ flow value}) = O(mn)$.
 - Hopcroft-Karp: $O(mn^{1/2})$ time

Lemma Size of max matching = value of max flow in G'

Proof. \leq .

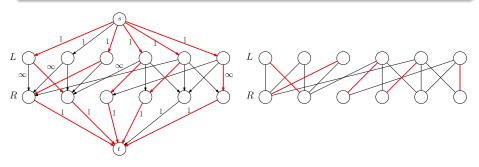
Given a maximum matching $M \subseteq E$, send a flow along each edge $e \in M$ and thus we have a flow of value |M|.



Lemma Size of max matching = value of max flow in G'

Proof. \geq .

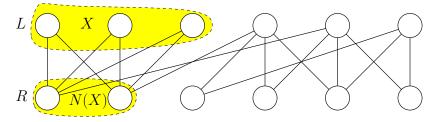
- The maximum flow f in G' is integral since all capacities are integral
- Let M to be the set of edges e from L to R with f(e)=1
- $\bullet~M$ is a matching of size that equals to the flow value



Perfect Matching

Def. Given a bipartite graph $G = (L \cup R, E)$ with |L| = |R|, a perfect matching M of G is a matching such that every vertex $v \in L \cup R$ participates in exactly one edge in M.

Assuming |L| = |R| = n, when does $G = (L \cup R, E)$ not have a perfect matching?



• For $X \subseteq L$, define $N(X) = \{v \in R : \exists u \in X, (u, v) \in E\}$ • |N(X)| < X for some $X \subseteq L \implies$ no perfect matching **Hall's Theorem** Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then G has a perfect matching if and only if $|N(X)| \ge |X|$ for every $X \subseteq L$.

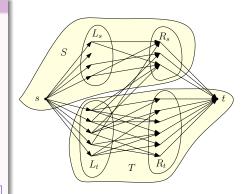
Proof. \Longrightarrow .

If G has a perfect matching, then vertices matched to $X \subseteq N(X)$; thus $|N(X)| \ge |X|$.

Hall's Theorem Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then G has a perfect matching if and only if $|N(X)| \ge |X|$ for every $X \subseteq L$.

Proof. ⇐.

- Contrapositive: if no perfect matching, then $\exists X \subseteq L, |N(X)| < |X|$
- Consider the network flow instance
- There is a s-t cut (S,T) of value at most n-1
- Define L_s, L_t, R_s, R_t as in figure



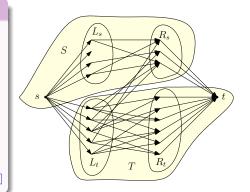
Hall's Theorem Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then G has a perfect matching if and only if $|N(X)| \ge |X|$ for every $X \subseteq L$.

Proof. ⇐.

- Contrapositive: if no perfect matching, then $\exists X \subseteq L, |N(X)| < |X|$
- No edges from L_s to R_t , since their capacities are ∞

•
$$c(S,T) = |L_t| + |R_s| < n$$

•
$$|N(L_s)| \le |R_s| < n - |L_t| = |L_s|.$$

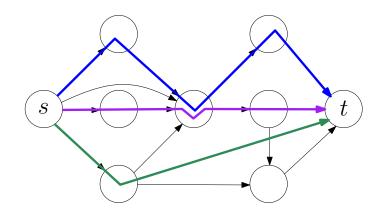


Outline

- Network Flow
- 2 Ford-Fulkerson Method
- 3 Correctness of Ford-Fulkerson's Method and Maximum Flow Minimum Cut Theorem
- Running Time of Ford-Fulkerson-Type Algorithm Shortest Augusting Dath Algorithm
 - Shortest Augmenting Path Algorithm
 - Capacity-Scaling Algorithm
- 5 Bipartite Matching Problem
- 6 s-t Edge-Disjoint Paths Problem
 - More Applications

s-t Edge Disjoint Paths

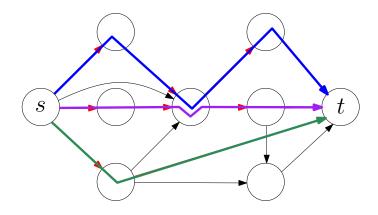
Input: a directed (or undirected) graph G = (V, E) and $s, t \in V$ Output: the maximum number of edge-disjoint paths from s to t in G



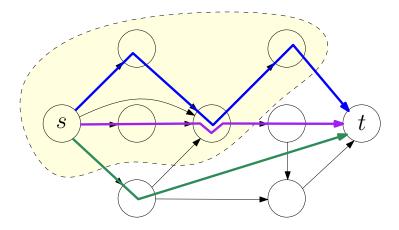
- Solving the maximum flow problem, where all capacities are 1
- All flow values are integral (i.e, either 0 or 1)

From flow to disjoint paths

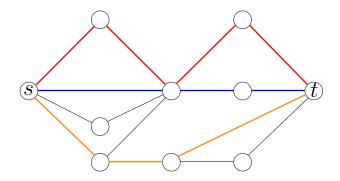
- $\bullet\,$ find an arbitrary $s \to t$ path where all edges have flow value 1
- $\bullet\,$ change the flow values of the path to 0 and repeat



Theorem The maximum number of edge disjoint paths from s to t equals the minimum value of an s-t cut (S, T).



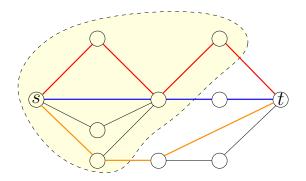
s-t Edge Disjoint Paths in Undirected Graphs



- \bullet an undirected edge \rightarrow two anti-parallel directed edges.
- Solving the s-t maximum flow problem in the directed graph
- Convert the flow to paths
- Issue: both e = (u, v) and e' = (v, u) are used
- Fix: if this happens we change $f(\boldsymbol{e})=f(\boldsymbol{e}')=0$

Menger's Theorem

Menger's Theorem In an undirected graph, the maximum number of edge-disjoint paths between s to t is equal to the minimum number of edges whose removal disconnects s and t.

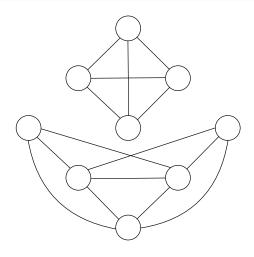


s-t connectivity measures how well s and t are connected.

Global Min-Cut Problem

Input: a connected graph G = (V, E)

Output: the minimum number of edges whose removal will disconnect G



Solving Global Min-Cut Using Maximum Flow

- 1: let G' be the directed graph obtained from G by replacing every edge with two anti-parallel edges
- 2: for every pair $s \neq t$ of vertices do
- 3: obtain the minimum cut separating s and t in G, by solving the maximum flow instance with graph G', source s and sink t
- 4: output the smallest minimum cut we found
- \bullet Need to solve $\Theta(n^2)$ maximum flow instances
- Can we do better?
- $\bullet\,$ Yes. We can fix s. We only need to enumerate t

Outline

- Network Flow
- 2 Ford-Fulkerson Method
- 3 Correctness of Ford-Fulkerson's Method and Maximum Flow Minimum Cut Theorem
- Running Time of Ford-Fulkerson-Type Algorithm
 Shortest Augmenting Path Algorithm
 - Capacity-Scaling Algorithm
- 5 Bipartite Matching Problem
- $\bigcirc s$ -t Edge-Disjoint Paths Problem
- 7 More Applications

Extension of Network Flow: Circulation Problem

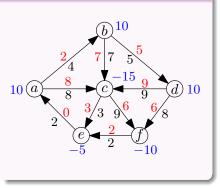
Input: A digraph
$$G = (V, E)$$

capacities $c \in \mathbb{Z}_{\geq 0}^{E}$
supply vector $d \in \mathbb{Z}^{V}$ with $\sum_{v \in V} d_{v} = 0$
Dutput: whether there exists $f : E \to \mathbb{Z}_{\geq 0}$ s.t.

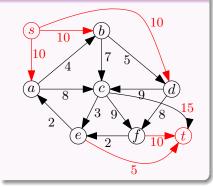
$$\sum_{e \in \delta^{\mathsf{out}}(v)} f(e) - \sum_{e \in \delta^{\mathsf{in}}(v)} f(e) = d_v \qquad \forall v \in V$$
$$0 \le f(e) \le c_e \qquad \forall e \in E$$

- d_v denotes the net supply of a good
- $d_v > 0$: there is a supply of d_v at v
- $d_v < 0$: there is a demand of $-d_v$ at v
- problem: whether we can match the supplies and demands without violating capacity constraints

Example



Reduction



Reduction to maximum flow

- $\bullet\,$ add a super-source s and a super-sink t to network
- for every $v \in V$ with $d_v > 0$: add edge (s, v) of capacity d_v
- for every $v \in V$ with $d_v < 0$: add edge (v, t) of capacity $-d_v$
- check if maximum flow has value $\sum_{v:d_v>0} d_v$

•
$$d(S) := \sum_{v \in S} d_v, \forall S \subseteq V.$$

• $c(S, V \setminus S) := \sum_{(u,v) \in E: u \in S, v \notin S} c_{(u,v)}.$

Lemma The instance is feasible if and only if for every $S \subseteq V$, $d(S) \leq c(S, V \setminus S)$.

Proof of "only if" direction.

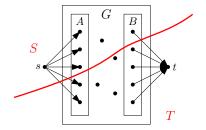
• if for some $S \subseteq V$, $c(S, V \setminus S) < d(S)$, then the demand in S can not be sent out of S.

• It remains to consider the "if" direction

Proof of "if" Direction

Lemma The instance is feasible if and only if for every $S \subseteq V$, $d(S) \leq c(S, V \setminus S)$.

- assume instance is infeasible: max-flow < d(A)
- $A := \{v \in V : d_v > 0\}$
- $B := \{ v \in V : d_v < 0 \}$
- $(S \ni s, T \ni t)$: min-cut



 $d(T \cap A) + |d(S \cap B)| + c(S \setminus \{s\}, T \setminus \{t\}) < d(A)$ $d(T \cap A) - d(S \cap B) + c(S \setminus \{s\}, T \setminus \{t\}) < d(A)$ $c(S \setminus \{s\}, T \setminus \{t\}) < d(S \cap A) + d(S \cap B) = d(S \setminus \{s\})$

• Define $S' = S \setminus \{s\}$: $d(S') > c(S', V \setminus S')$.

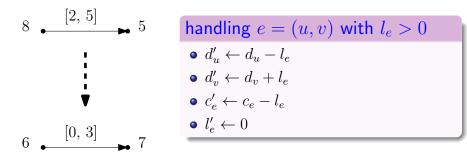
Circulation Problem with Capacity Lower Bounds

Input: A digraph
$$G = (V, E)$$

capacities $c \in \mathbb{Z}_{\geq 0}^{E}$
capacity lower bounds $l \in \mathbb{Z}_{\geq 0}^{E}$, $0 \leq l_{e} \leq c_{e}$
supply vector $d \in \mathbb{Z}^{V}$ with $\sum_{v \in V} d_{v} = 0$
Dutput: whether there exists $f : E \to \mathbb{Z}_{\geq 0}$ s.t.

$$\sum_{e \in \delta^{\mathsf{out}}(v)} f(e) - \sum_{e \in \delta^{\mathsf{in}}(v)} f(e) = d_v \qquad \forall v \in V$$
$$l_e \leq f(e) \leq c_e \qquad \forall e \in E$$

Removing Capacity Lower Bounds



• in old instance: flow is $f(e) \in [l_e, c_e] \implies f(e) - l_e \in [0, c_e - l_e]$ • in new instance: flow is $f(e) - l_e \in [0, c'_e]$

Survey Design

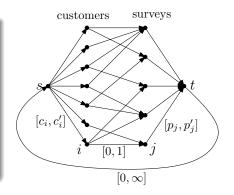
Input: integers $n, k \ge 1$ and $E \subseteq [n] \times [k]$ integers $0 \le c_i \le c'_i, \forall i \in [n]$ integers $0 \le p_j \le p'_j, \forall j \in [k]$ Output: $E' \subseteq E$ s.t. $c_i \le |\{j \in [k] : (i, j) \in E'\}| \le c'_i, \quad \forall i \in [n]$ $p_j \le |\{i \in [m] : (i, j) \in E'\}| \le p'_j, \quad \forall j \in [k]$

Background

- [n]: customers, [k]:products
- $ij \in E$: customer i purchased product j and can do a survey
- every customer i needs to do between c_i and c'_i surveys
- every product j needs to collect between p_j and p'_j surveys

Reduction to Circulation

- vertices $\{s,t\} \uplus [n] \uplus [k]$,
- $(i, j) \in E$: (i, j) with bounds [0, 1]
- $\forall i: (s,i)$ with bounds $[c_i, c'_i]$
- $\forall j: (j,t)$ with bounds $[p_j,p_i']$
- $\bullet~(t,s)$ with bounds $[0,\infty]$



Airline Scheduling

Input: a DAG G = (V, E)

Output: the minimum number of disjoint paths in G to cover all vertices

Background

- vertex : a flight
- edge (u, v): an aircraft that serves u can serve v immediately
- goal: minimize the number of aircrafts

Reduction to the Circulation Problem

- split v into (v_{in}, v_{out})
- add s, and $(s, v_{in}), \forall v$
- add $t\text{, and }(v_{\text{out}},t),\forall v$
- set lower and upper bounds
- add $t \to s$ of capacity k
- find minimum k s.t. instance is feasible

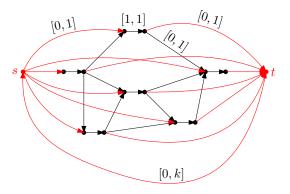


Image Segmentation

Input: A graph G = (V, E), with edge costs $c \in \mathbb{Z}_{\geq 0}^{E}$ two reward vectors $a, b \in \mathbb{Z}_{\geq 0}^{V}$ Output: a cut (A, B) of G so as to maximize

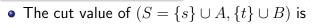
$$\sum_{v \in A} a_v + \sum_{v \in B} b_v - \sum_{(u,v) \in E: |\{u,v\} \cap A| = 1} c_{(u,v)}$$

Background

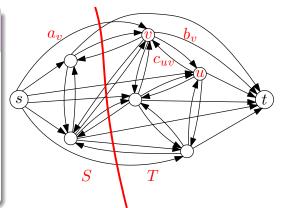
- a_v : the likelihood of v being a foreground pixel
- b_v : the likelihood of v being a background pixel
- $c_{(u,v)}$: the penalty for separating u and v
- need to maximize total reward total penalty

Reduction to Network Flow

- replace (u, v) with two anti-parallel arcs
- add source s and arcs $(s,v), \forall v$
- add sink t and arcs $(v,t), \forall v$
- set capacities



$$\sum_{v \in B} a_v + \sum_{v \in A} b_v + \sum_{(u,v) \in E: |\{u,v\} \cap A| = 1} c_{(u,v)}$$
$$= \sum_{v \in V} (a_v + b_v) - \left(\sum_{v \in A} a_v + \sum_{v \in B} b_v - \sum_{(u,v) \in E: |\{u,v\} \cap A| = 1} c_{(u,v)}\right)$$
$$76/80$$



• The cut value of $(S=\{s\}\cup A,\{t\}\cup B)$ is

$$\begin{split} &\sum_{v \in V} (a_v + b_v) - \Big(\sum_{v \in A} a_v + \sum_{v \in B} b_v - \sum_{(u,v) \in E: |\{u,v\} \cap A| = 1} c_{(u,v)}\Big) \\ &= \sum_{v \in V} (a_v + b_v) - \big(\text{objective of } (A, B)\big) \end{split}$$

• So, maximizing the objective of (A, B) is equivalent to minimizing the cut value.

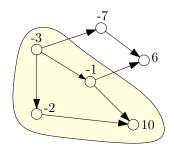
Project Selection

Input: A DAG G = (V, E)

revenue on vertices: $p \in \mathbb{Z}^V$; p_v 's could be negative. **Output:** A set $B \subseteq V$ satisfying the precedence constraints: $v \in B \implies u \in B, \quad \forall (u, v) \in E$

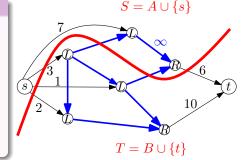
Motivation

- Motivation: (u, v) ∈ E: u is a prerequisite of v, to select v, we must select u
- Goal: maximize the revenue subject to the precedence constraint.



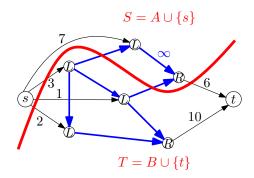
Reduction

- $\bullet\,$ add source s and sink t
- $p_v < 0$: (s, v) of capacity $-p_v$
- $p_v > 0$: (v, t) of capacity p_v
- $L = \{v : p_v < 0\}$
- $R = \{v : p_v > 0\}.$
- \bullet precedence edges: ∞ capacity



- min-cut $(S=\{s\}\cup A,T=\{t\}\cup B)$
- ullet no $\infty ext{-capacity}$ edges from A to B
- cut value is

$$\sum_{v \in B \cap L} (-p_v) + \sum_{v \in A \cap R} p_v = -\sum_{v \in B \cap L} p_v - \sum_{v \in B \cap R} p_v + \sum_{v \in R} p_v$$
$$= \sum_{v \in R} p_v - \sum_{v \in B} p_v$$



- B is a valid solution $\iff c(S,T) \neq \infty$
- \bullet when B is valid, $c(S,T) = \sum_{v \in R} p_v \sum_{v \in B} p_v$

• so, to maximize $\sum_{v \in B} p_v$, we need to minimize c(S,T).