算法设计与分析(2024年春季学期) Final Review

授课老师: 栗师南京大学计算机科学与技术系

Outline

Introduction

What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
- Algorithm: "abstract", can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: "concrete", implementation of algorithm, using a particular programming language

Def. $f: \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:

• $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

O-Notation For a function
$$g(n)$$
, $O(g(n)) = \{ \text{function } f :$

 $O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \le cg(n), \forall n \ge n_0 \}.$

• We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ "

$$\Omega$$
-Notation For a function $g(n)$,
$$\Omega(g(n)) = \{ \text{function } f: \exists c>0, n_0>0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$

 Θ -**Notation** For a function g(n),

$$\Theta(g(n)) = \big\{ \text{function } f: \exists c_2 \ge c_1 > 0, n_0 > 0 \text{ such that}$$

$$c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0 \big\}.$$

o-Notation For a function g(n),

$$o(g(n)) = \{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \le cg(n), \forall n \ge n_0 \}.$$

$$\omega$$
-Notation For a function $g(n)$,
$$\omega(g(n)) = \{ \text{function } f: \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) > cg(n), \forall n > n_0 \}.$$

Running Times

- \bullet Linear time: compute the summation/max/min of an array of n elements
- $O(n \log n)$ Running Time: merge-sort, counting-inversion, D&C algorithms with recurrence T(n) = 2T(n/2) + O(n).
- $O(n^2)$ (Quadratic) time: enumerating pairs of elements in an array of size n
- \bullet ${\cal O}(n^3)$ (Cubic) time: naive algorithm for computing matrix multiplication
- Beyond polynomial time: $2^{O(n)}$ and O(n!)

Outline

- ② Graph Basics
 - Connectivity and Graph Traversal
 - Topological Ordering
 - Finding Bridges

Representation of Graphs

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
	1							
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - ullet A is symmetric if graph is undirected
- Linked lists
 - ullet For every vertex v, there is a linked list containing all neighbours of v.

Representation of Graphs

- 1: 2→3 6: 5 2: 1→3→4→5 7: 3→8
- 3: 1 →2 →5 →7 →8
- 4: 2→5 8: 3→7
- 5: 2→3→4→6

- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - A is symmetric if graph is undirected
- Linked lists
 - ullet For every vertex v, there is a linked list containing all neighbours of v.

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of \boldsymbol{v}	O(n)	$O(d_v)$

Outline

- ② Graph Basics
 - Connectivity and Graph Traversal
 - Topological Ordering
 - Finding Bridges

Connectivity Problem

Input: graph G = (V, E), (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

Implementing BFS using a Queue

if u is "unvisited" then

mark u as "visited"

```
\begin{aligned} &\mathsf{BFS}(s) \\ &1: \ head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s \\ &2: \ \mathsf{mark} \ s \ \mathsf{as} \ \text{"visited" and all other vertices as "unvisited"} \\ &3: \ \mathbf{while} \ head \leq tail \ \mathbf{do} \\ &4: \qquad v \leftarrow queue[head], head \leftarrow head + 1 \\ &5: \qquad \mathbf{for} \ \mathsf{all} \ \mathsf{neighbours} \ u \ \mathsf{of} \ v \ \mathbf{do} \end{aligned}
```

 $tail \leftarrow tail + 1, queue[tail] = u$

• Running time: O(n+m).

6:

7:

8:

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Implementing DFS using Recurrsion

$\mathsf{DFS}(s)$

- 1: mark all vertices as "unvisited"
- 2: recursive-DFS(s)

recursive-DFS(v)

- 1: mark v as "visited"
- 2: **for** all neighbours u of v **do**
- 3: **if** u is unvisited **then** recursive-DFS(u)

Testing Bipartiteness: Applications of BFS

Def. A graph G=(V,E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u,v)\in E$, we have either $u\in L,v\in R$ or $v\in L,u\in R$.

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Testing Bipartiteness using BFS

$\mathsf{BFS}(s)$

```
1: head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s
 2: mark s as "visited" and all other vertices as "unvisited"
 3: color[s] \leftarrow 0
 4: while head < tail do
        v \leftarrow queue[head], head \leftarrow head + 1
 5:
        for all neighbours u of v do
 6:
             if u is "unvisited" then
 7:
                 tail \leftarrow tail + 1, queue[tail] = u
 8:
                 mark u as "visited"
 9:
                 color[u] \leftarrow 1 - color[v]
10:
             else if color[u] = color[v] then
11:
                 print("G is not bipartite") and exit
12:
```

Testing Bipartiteness using BFS

```
1: mark all vertices as "unvisited" 2: for each vertex v \in V do
```

3: **if** v is "unvisited" **then**

4: test-bipartiteness(v)

5: print("G is bipartite")

Obs. Running time of algorithm = O(n+m)

Outline

- ② Graph Basics
 - Connectivity and Graph Traversal
 - Topological Ordering
 - Finding Bridges

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function $\pi: V \to \{1, 2, 3 \cdots, n\}$, so that

• if $(u, v) \in E$ then $\pi(u) < \pi(v)$

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function $\pi:V \to \{1,2,3\cdots,n\}$, so that

• if $(u, v) \in E$ then $\pi(u) < \pi(v)$

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$

topological-sort(G)

- 1: let $d_v \leftarrow 0$ for every $v \in V$
- 2: for every $v \in V$ do
- 3: **for** every u such that $(v, u) \in E$ **do**
- 4: $d_u \leftarrow d_u + 1$
- 5: $S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$
- 6: while $S \neq \emptyset$ do
- 7: $v \leftarrow \text{arbitrary vertex in } S, S \leftarrow S \setminus \{v\}$
- 8: $i \leftarrow i + 1, \ \pi(v) \leftarrow i$
- 9: **for** every u such that $(v, u) \in E$ **do**
- 10: $d_u \leftarrow d_u 1$
- 11: **if** $d_u = 0$ **then** add u to S
- 12: if i < n then output "not a DAG"
- ullet S can be represented using a queue or a stack
- Running time = O(n+m)

Outline

- ② Graph Basics
 - Connectivity and Graph Traversal
 - Topological Ordering
 - Finding Bridges

Vertical and Horizontal Edges

- G = (V, E): connected graph
- $T = (V, E_T)$: rooted spanning tree of G
- $(u,v) \in E \setminus E_T$ is
 - \bullet vertical if one of u and v is an ancestor of the other in T,
 - horizontal otherwise.

• G = (V, E): connected graph

T: a DFS tree for G

Q: Can there be a horizontal edges (u, v) w.r.t T?

A: No!

- G = (V, E): connected graph
- \bullet T: a DFS tree for G
- G contains only tree and vertical edges

- G = (V, E): connected graph
- \bullet T: a DFS tree for G
- G contains only tree and vertical edges
- vertical edges: not bridges

- G = (V, E): connected graph
- \bullet T: a DFS tree for G
- G contains only tree and vertical edges
- vertical edges: not bridges

Lemma

- $(u,v) \in T$, u is parent
- (u, v) is not a bridge $\iff \exists$ vertical edge connecting an (inclusive) descendant of v and an (inclusive) ancestor of u

- G = (V, E): connected graph
- \bullet T: a DFS tree for G
- *G* contains only tree and vertical edges
- vertical edges: not bridges

Lemma

- $(u,v) \in T$, u is parent
- (u, v) is not a bridge $\iff \exists$ vertical edge connecting an (inclusive) descendant of v and an (inclusive) ancestor of u

Outline

- Greedy Algorithms
 - Interval Scheduling
 - Scheduling to Minimize Lateness
 - Weighted Completion Time Scheduling
 - Offline Caching
 - Data Compression and Huffman Code

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

A Common Way to Analyze Greedy Algorithms

- Prove that the reasonable strategy is "safe" (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Def. A strategy is safe: there is always an optimum solution that agrees with the decision made according to the strategy.

Generic Greedy Algorithm

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

Exchange argument: Proof of Safety of a Strategy

- ullet let S be an arbitrary optimum solution.
- if *S* is consistent with the greedy choice, done.
- otherwise, show that it can be modified to another optimum solution S' that is consistent with the choice.
- The procedure is not a part of the algorithm.

Outline

- Greedy Algorithms
 - Interval Scheduling
 - Scheduling to Minimize Lateness
 - Weighted Completion Time Scheduling
 - Offline Caching
 - Data Compression and Huffman Code

Interval Scheduling

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $\left[s_i,f_i\right)$ and $\left[s_j,f_j\right)$ are disjoint

Output: A maximum-size subset of mutually compatible jobs

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

- ullet Take an arbitrary optimum solution S
- If it contains j, done
- ullet Otherwise, replace the first job in S with j to obtain another optimum schedule S'.

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval scheduling problem? Yes!

Outline

- Greedy Algorithms
 - Interval Scheduling
 - Scheduling to Minimize Lateness
 - Weighted Completion Time Scheduling
 - Offline Caching
 - Data Compression and Huffman Code

Scheduling to minimize lateness

Input: n jobs, each job $j \in [n]$ with a processing time p_j and deadline d_i

Output: schedule jobs on 1 machine, to minimize the max. lateness C_i : completion time of j lateness $l_i := \max\{C_i - d_i, 0\}$

• Example input:

j	а	b	С	d
$\overline{p_j}$	3	3	2	1
d_j	5	7	4	8

	0	1	2	3	4	5	6	7	8	9	10	_
	- :	- 1	:		:	:	- :	•	:	- 1		
solution 1		ć	a		})		С	(oxed		
solution 2		С		í	ì.])		\Box		

- solution 1: max lateness = $\max\{0, 3-5, 6-7, 8-4, 9-8\} = 4$
- solution 2: max lateness = $\max\{0, 2-4, 5-5, 8-7, 9-8\} = 1$
- solution 2 is better

Lemma The ascending order of deadlines d_j (the Earliest Deadline First order or the EDF order) is the optimum schedule.

• maximum lateness = $\max \left\{ 0, \max_{j \in [n]} \{C_j - d_j\} \right\}$.

- before: $\max\{t + p_j d_j, t + p_j + p_{j'} d_{j'}\} = t + p_j + p_{j'} d_{j'}$
- after: $\max\{t + p_{j'} d_{j'}, t + p_j + p_{j'} d_j\}$
- $\bullet \ p_{j'} d_{j'} < p_j + p_{j'} d_{j'} \ \text{and} \ p_j + p_{j'} d_j < p_j + p_{j'} d_{j'}$
- $\max\{t + p_{j'} d_{j'}, t + p_j + p_{j'} d_j\} < t + p_j + p_{j'} d_{j'}$
- after swapping, the maximum of the two terms strictly decreases

Outline

- Greedy Algorithms
 - Interval Scheduling
 - Scheduling to Minimize Lateness
 - Weighted Completion Time Scheduling
 - Offline Caching
 - Data Compression and Huffman Code

Scheduling to Minimize Weighted Completion Time

Input: A set of *n* jobs $[n] := \{1, 2, 3, \dots, n\}$

each job j has a weight w_i and processing time p_i

Output: an ordering of jobs so as to minimize the total weighted

completion time of jobs

$$p_{\mathbf{a}} = 1$$

$$\mathbf{a}$$

$$w_1 = 2$$

$$p_{\mathbf{b}} = 2$$

$$\mathbf{b}$$

$$w_2 = 5$$

$$p_{C} = 3$$

$$c$$

$$w_{3} = 7$$

Def. The Smith ratio of a job is w_i/p_i .

Lemma The descending order of Smith ratios (the Smith rule) is optimum.

- Greedy Algorithms
 - Interval Scheduling
 - Scheduling to Minimize Lateness
 - Weighted Completion Time Scheduling
 - Offline Caching
 - Data Compression and Huffman Code

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.
- Goal: minimize the number of cache misses.

misses = 6

cache

Optimum Offline Caching

Furthest-in-Future (FF)

- Algorithm: every time, evict the page that is not requested until furthest in the future, if we need to evict one.
- The algorithm is **not** an online algorithm, since the decision at a step depends on the request sequence in the future.

Q: How can we make the algorithm as fast as possible?

A:

- The running time can be made to be $O(n + T \log k)$.
- For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested.
 - We can find the next time a page is requested easily.
- Use a priority queue data structure to hold all the pages in cache, so that we can easily find the page that is requested furthest in the future.

- Greedy Algorithms
 - Interval Scheduling
 - Scheduling to Minimize Lateness
 - Weighted Completion Time Scheduling
 - Offline Caching
 - Data Compression and Huffman Code

Encoding Letters Using Bits

- 8 letters a, b, c, d, e, f, g, h in a language
- need to encode a message using bits
- idea: use 3 bits per letter

$$deacfg \rightarrow 0111000000101011110$$

Q: Can we have a better encoding scheme?

Seems unlikely: must use 3 bits per letter

Q: What if some letters appear more frequently than the others?

Q: If some letters appear more frequently than the others, can we have a better encoding scheme?

A: Using variable-length encoding scheme might be more efficient.

Idea

• using fewer bits for letters that are more frequently used, and more bits for letters that are less frequently used.

Prefix Codes

Def. A prefix code for a set S of letters is a function $\gamma: S \to \{0,1\}^*$ such that for two distinct $x,y \in S$, $\gamma(x)$ is not a prefix of $\gamma(y)$.

a	b	c	$\mid d \mid$
001	0000	0001	100
\overline{e}	f	g	h
11	1010	1011	01

example

letters	$\mid a \mid$	b	c	d	$\mid e \mid$	
frequencies	18	3	4	6	10	
scheme 1 length	2	3	3	2	2	total = 89
scheme 2 length	1	3	3	3	3	total = 87
scheme 3 length	1	4	4	3	2	total = 84

 ${\it scheme} \ 1 \qquad \qquad {\it scheme} \ 2 \qquad \qquad {\it scheme} \ 3$

Which Two Letters Can Be Safely Put Together As Brothers?

- Focus on the "structure" of the optimum encoding tree
- There are two deepest leaves that are brothers

Lemma It is safe to make the two least frequent letters brothers.

- f_x : the frequency of the letter x in the support.
- x_1 and x_2 : the two letters we decided to put together.
- d_x the depth of letter x in our output encoding tree.

Def: $f_{x'} = f_{x_1} + f_{x_2}$

In order to minimize

$$\sum_{x \in S} f_x d_x,$$

we need to minimize

$$\sum_{x \in S \setminus \{x_1, x_2\} \cup \{x'\}} f_x d_x,$$

subject to that d is the depth function for an encoding tree of $S \setminus \{x_1, x_2\}$.

• This is exactly the best prefix codes problem, with letters $S \setminus \{x_1, x_2\} \cup \{x'\}$ and frequency vector f!

- Divide-and-Conquer
 - Counting Inversions
 - Solving Recurrences
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
 - Strassen's Algorithm for Matrix Multiplication
 - Finding Closest Pair of Points in 2D Euclidean Space
 - Computing n-th Fibonacci Number

Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- Conquer: Solve each of smaller instances recursively and separately
- Combine: Combine solutions to small instances to obtain a solution for the original big instance

- Divide-and-Conquer
 - Counting Inversions
 - Solving Recurrences
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
 - Strassen's Algorithm for Matrix Multiplication
 - Finding Closest Pair of Points in 2D Euclidean Space
 - Computing *n*-th Fibonacci Number

Def. Given an array A of n integers, an inversion in A is a pair (i,j) of indices such that i < j and A[i] > A[j].

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Count Inversions between B and C

ullet Procedure that merges B and C and counts inversions between B and C at the same time

```
merge-and-count(B, C, n_1, n_2)
 1: count \leftarrow 0:
 2: A \leftarrow \text{array of size } n_1 + n_2; i \leftarrow 1; j \leftarrow 1
 3: while i < n_1 or j < n_2 do
         if j > n_2 or (i < n_1 \text{ and } B[i] < C[j]) then
 4:
              A[i+j-1] \leftarrow B[i]: i \leftarrow i+1
 5:
              count \leftarrow count + (j-1)
 6:
         else
 7:
              A[i+j-1] \leftarrow C[j]; j \leftarrow j+1
 8:
 9: return (A, count)
```

Sort and Count Inversions in A

 A procedure that returns the sorted array of A and counts the number of inversions in A:

```
    Divide: trivial

sort-and-count(A, n)
                                                          Conquer: 4, 5
  1: if n = 1 then

    Combine: 6, 7

      return (A,0)
  3: else
            (B, m_1) \leftarrow \mathsf{sort}\text{-}\mathsf{and}\text{-}\mathsf{count}\Big(A\big[1..\lfloor n/2\rfloor\big], \lfloor n/2\rfloor\Big)
  4:
            (C, m_2) \leftarrow \mathsf{sort}\text{-and-count}\Big(A\big[\lfloor n/2 \rfloor + 1..n\big], \lceil n/2 \rceil\Big)
  5:
            (A, m_3) \leftarrow \mathsf{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)
  6:
            return (A, m_1 + m_2 + m_3)
  7:
```

sort-and-count(A, n)

```
1: if n=1 then
2: return (A,0)
3: else
4: (B,m_1) \leftarrow \text{sort-and-count} \left(A\big[1..\lfloor n/2 \rfloor\big], \lfloor n/2 \rfloor\right)
5: (C,m_2) \leftarrow \text{sort-and-count} \left(A\big[\lfloor n/2 \rfloor + 1..n \rfloor, \lceil n/2 \rceil\right)
6: (A,m_3) \leftarrow \text{merge-and-count} (B,C,\lfloor n/2 \rfloor, \lceil n/2 \rceil)
7: return (A,m_1+m_2+m_3)
```

- Recurrence for the running time: T(n) = 2T(n/2) + O(n)
- Running time = $O(n \log n)$

- Divide-and-Conquer
 - Counting Inversions
 - Solving Recurrences
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
 - Strassen's Algorithm for Matrix Multiplication
 - Finding Closest Pair of Points in 2D Euclidean Space
 - Computing *n*-th Fibonacci Number

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \ge 1, b > 1, c \ge 0$ are constants. Then,

$$T(n) = \begin{cases} O(n^{\log_b a}) & \text{if } c < \log_b a \\ O(n^c \log n) & \text{if } c = \log_b a \\ O(n^c) & \text{if } c > \log_b a \end{cases}$$

- Divide-and-Conquer
 - Counting Inversions
 - Solving Recurrences
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
 - Strassen's Algorithm for Matrix Multiplication
 - Finding Closest Pair of Points in 2D Euclidean Space
 - Computing *n*-th Fibonacci Number

Quicksort vs Merge-Sort

	Merge Sort	Quicksort
Divide	Trivial	Separate small and big numbers
Conquer	Recurse	Recurse
Combine	Merge 2 sorted arrays	Trivial

Quicksort

quicksort(A, n)

```
1: if n \leq 1 then return A
2: x \leftarrow lower median of A
3: A_L \leftarrow array of elements in A that are less than x \\ Divide
4: A_R \leftarrow array of elements in A that are greater than x \\ Divide
5: B_L \leftarrow quicksort(A_L, \text{length of } A_L) \\ Conquer
6: B_R \leftarrow quicksort(A_R, \text{length of } A_R) \\ Conquer
7: t \leftarrow number of times x appear A
8: return concatenation of B_L, t copies of x, and B_R
```

- Recurrence $T(n) \le 2T(n/2) + O(n)$
- Running time = $O(n \log n)$

Assumption We can choose median of an array of size n in O(n) time.

Q: How to remove this assumption?

A:

- ① There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
- Choose a pivot randomly and pretend it is the median (it is practical)

Quicksort Using A Random Pivot

```
quicksort(A, n)

1: if n \leq 1 then return A

2: x \leftarrow a random element of A (x is called a pivot)

3: A_L \leftarrow array of elements in A that are less than x \\ Divide

4: A_R \leftarrow array of elements in A that are greater than x \\ Divide

5: B_L \leftarrow quicksort(A_L, \text{length of } A_L) \\ Conquer

6: B_R \leftarrow quicksort(A_R, \text{length of } A_R) \\ Conquer

7: t \leftarrow number of times x appear A

8: return concatenation of B_L, t copies of x, and B_R
```

Lemma The expected running time of the algorithm is $O(n \log n)$.

- Divide-and-Conquer
 - Counting Inversions
 - Solving Recurrences
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
 - Strassen's Algorithm for Matrix Multiplication
 - Finding Closest Pair of Points in 2D Euclidean Space
 - Computing n-th Fibonacci Number

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use "internal structures" of the elements

Number of comparisons is at least $\log_2 n! = \Theta(n \log n)$

- Divide-and-Conquer
 - Counting Inversions
 - Solving Recurrences
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
 - Strassen's Algorithm for Matrix Multiplication
 - Finding Closest Pair of Points in 2D Euclidean Space
 - Computing *n*-th Fibonacci Number

Selection Problem

Input: a set A of n numbers, and $1 \le i \le n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \log n)$.
- Our goal: O(n) running time

Selection Algorithm with Median Finder

```
 \begin{array}{l} \textbf{selection}(A,n,i) \\ \textbf{1: if } n=1 \textbf{ then return } A \\ \textbf{2: } x \leftarrow \textbf{ lower median of } A \\ \textbf{3: } A_L \leftarrow \textbf{ elements in } A \textbf{ that are less than } x \\ \textbf{4: } A_R \leftarrow \textbf{ elements in } A \textbf{ that are greater than } x \\ \textbf{5: if } i \leq A_L.\textbf{size then} \\ \textbf{6: return selection}(A_L,A_L.\textbf{size},i) \\ \textbf{7: else if } i > n - A_R.\textbf{size then} \\ \end{array}
```

return selection(A_R , A_R .size, $i - (n - A_R$.size))

10: return x

9: else

- Recurrence for selection: T(n) = T(n/2) + O(n)
- Solving recurrence: T(n) = O(n)

Randomized Selection Algorithm

```
selection(A, n, i)
 1: if n=1 thenreturn A
 2: x \leftarrow \text{random element of } A \text{ (called pivot)}
                                                                Divide
 3: A_L \leftarrow elements in A that are less than x
 4: A_R \leftarrow elements in A that are greater than x
                                                                ▷ Divide
 5: if i < A_L.size then
    return selection(A_L, A_L. size, i)
                                                              7: else if i > n - A_R.size then
       return selection(A_R, A_R.size, i - (n - A_R.size))
                                                              9: else
```

• expected running time = O(n)

return x

10:

- Divide-and-Conquer
 - Counting Inversions
 - Solving Recurrences
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
 - Strassen's Algorithm for Matrix Multiplication
 - Finding Closest Pair of Points in 2D Euclidean Space
 - Computing *n*-th Fibonacci Number

Polynomial Multiplication

Input: two polynomials of degree n-1

Output: product of two polynomials

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

•
$$p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L$$

Divide-and-Conquer for Polynomial Multiplication

$$\begin{split} r_H &= \mathsf{multiply}(p_H, q_H) \\ r_L &= \mathsf{multiply}(p_L, q_L) \\ \mathsf{multiply}(p, q) &= r_H \times x^n \\ &+ \left(\mathsf{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \\ &+ r_L \end{split}$$

- Solving Recurrence: T(n) = 3T(n/2) + O(n)
- $T(n) = O(n^{\log_2 3}) = O(n^{1.585})$

- Divide-and-Conquer
 - Counting Inversions
 - Solving Recurrences
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
 - Strassen's Algorithm for Matrix Multiplication
 - Finding Closest Pair of Points in 2D Euclidean Space
 - Computing n-th Fibonacci Number

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: C = AB

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} n/2 \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} n/2$$

$$\bullet C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

•
$$M_1 \leftarrow (A_{11} + A_{22}) \times (B_{11} + B_{22})$$
 • $C_{11} \leftarrow M_1 + M_4 - M_5 + M_7$

•
$$M_2 \leftarrow (A_{21} + A_{22}) \times B_{11}$$
 • $C_{12} \leftarrow M_3 + M_5$

•
$$M_3 \leftarrow A_{11} \times (B_{12} - B_{22})$$
 • $C_{21} \leftarrow M_2 + M_4$

•
$$M_4 \leftarrow A_{22} \times (B_{21} - B_{11})$$
 • $C_{22} \leftarrow M_1 - M_2 + M_3 + M_6$

$$\bullet \ M_5 \leftarrow (A_{11} + A_{12}) \times B_{22}$$

•
$$M_6 \leftarrow (A_{21} - A_{11}) \times (B_{11} + B_{12})$$

• $M_7 \leftarrow (A_{12} - A_{22}) \times (B_{21} + B_{22})$
80/26

- Divide-and-Conquer
 - Counting Inversions
 - Solving Recurrences
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
 - Strassen's Algorithm for Matrix Multiplication
 - Finding Closest Pair of Points in 2D Euclidean Space
 - Computing *n*-th Fibonacci Number

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

• Trivial algorithm: $O(n^2)$ running time

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

• Trivial algorithm: $O(n^2)$ running time

- **Divide**: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half

- **Divide**: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half

- **Divide**: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half

- Each box contains at most one pair
- ullet For each point, only need to consider O(1) boxes nearby
- Implementation: Sort points inside the stripe according to *y*-coordinates
- ullet For every point, consider O(1) points around it in the order 84/26

- Divide-and-Conquer
 - Counting Inversions
 - Solving Recurrences
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
 - Strassen's Algorithm for Matrix Multiplication
 - Finding Closest Pair of Points in 2D Euclidean Space
 - Computing n-th Fibonacci Number

Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \ge 2$
- \bullet Fibonacci sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$

n-th Fibonacci Number

Input: integer n > 0

Output: F_n

Computing F_n : Even Better Algorithm

$$\begin{pmatrix} F_{n} \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$
$$\begin{pmatrix} F_{n} \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{2} \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix}$$
$$\cdots$$
$$\begin{pmatrix} F_{n} \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_{1} \\ F_{0} \end{pmatrix}$$

power(n)

- 1: if n = 0 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 2: $R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- 3: $R \leftarrow R \times R$
- 4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
- 5: return R

Fib(n)

- 1: if n = 0 then return 0
- 2: $M \leftarrow \mathsf{power}(n-1)$
- 3: return M[1][1]
- Recurrence for running time? T(n) = T(n/2) + O(1)
- $T(n) = O(\log n)$

- Dynamic Programming
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Subset Sum and Knapsack Problems
 - Longest Common Subsequence
 - Shortest Paths in Directed Acyclic Graphs
 - Matrix Chain Multiplication
 - Optimum Binary Search Tree

- Dynamic Programming
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Subset Sum and Knapsack Problems
 - Longest Common Subsequence
 - Shortest Paths in Directed Acyclic Graphs
 - Matrix Chain Multiplication
 - Optimum Binary Search Tree

Weighted Interval Scheduling

Input: n jobs, job i with start time s_i and finish time f_i each job has a weight (or value) $v_i > 0$

i and j are compatible if $\left[s_i,f_i\right)$ and $\left[s_j,f_j\right)$ are disjoint

Output: a maximum-weight subset of mutually compatible jobs

Optimum value = 220

Designing a Dynamic Programming Algorithm

- Sort jobs according to non-decreasing order of finish times
- ullet opt[i]: optimal value for instance only containing jobs $\{1,2,\cdots,i\}$

Recursion for opt[i]:

$$opt[i] = \max \{ opt[i-1], v_i + opt[p_i] \}$$

Dynamic Programming

- 1: sort jobs by non-decreasing order of finishing times
- 2: compute p_1, p_2, \cdots, p_n
- 3: $opt[0] \leftarrow 0$
- 4: for $i \leftarrow 1$ to n do
- 5: $opt[i] \leftarrow \max\{opt[i-1], v_i + opt[p_i]\}$
- Running time sorting: $O(n \lg n)$
- Running time for computing p: $O(n \lg n)$ via binary search
- Running time for computing opt[n]: O(n)

- Dynamic Programming
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Subset Sum and Knapsack Problems
 - Longest Common Subsequence
 - Shortest Paths in Directed Acyclic Graphs
 - Matrix Chain Multiplication
 - Optimum Binary Search Tree

Linear Regression

- $P = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}, x_1 < x_2 < \dots < x_n$
- L: y = ax + b

$$Error(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

Linear Regression

• find L, minimize Error(L, P)

$$a := \frac{n\sum_{i} x_i y_i - (\sum_{i} x_i)(\sum_{i} y_i)}{n\sum_{i} x_i^2 - (\sum_{i} x_i)^2}$$
$$\sum_{i} y_i - a\sum_{i} x_i$$

$$b := \frac{\sum_{i} y_i - a \sum_{i} x_i}{n}$$

Segmented Least Squares

Input: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n), x_1 < x_2 < \dots < x_n$ penalty parameter C > 0

Output: partition into $k \geq 1$ (k unknown) segments, minimize cost := error + penalty error: sum of squared error over all the k segments penalty: kC

Dynamic Programming

- $e_{ji}, 1 \leq j \leq i \leq n$: minimum error for $(x_j, y_j), \cdots, (x_i, y_i)$ using 1 line
- ullet opt[i]: minimum cost for the instance with first i points

$$opt[i] = \begin{cases} 0 & \text{if } i = 0\\ \min_{j:1 \le j \le i} (opt[j-1] + e_{ji}) + C & \text{if } i \ge 1 \end{cases}$$

• running time $= O(n^2)$.

- Dynamic Programming
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Subset Sum and Knapsack Problems
 - Longest Common Subsequence
 - Shortest Paths in Directed Acyclic Graphs
 - Matrix Chain Multiplication
 - Optimum Binary Search Tree

Subset Sum Problem

Input: an integer bound W>0

a set of n items, each with an integer weight $w_i > 0$

Output: a subset S of items that

$$\text{maximizes } \sum_{i \in S} w_i \qquad \text{s.t.} \sum_{i \in S} w_i \leq W.$$

- Consider the instance: $i, W', (w_1, w_2, \cdots, w_i)$;
- opt[i, W']: the optimum value of the instance

$$opt[i, W'] = \begin{cases} 0 & i = 0\\ opt[i-1, W'] & i > 0, w_i > W'\\ \max \left\{ \begin{array}{c} opt[i-1, W']\\ opt[i-1, W' - w_i] + w_i \end{array} \right\} & i > 0, w_i \le W' \end{cases}$$

Running Time of Algorithm

```
1: for W' \leftarrow 0 to W do
2: opt[0, W'] \leftarrow 0
3: for i \leftarrow 1 to n do
4: for W' \leftarrow 0 to W do
5: opt[i, W'] \leftarrow opt[i-1, W']
6: if w_i \leq W' and opt[i-1, W'-w_i] + w_i \geq opt[i, W'] then
7: opt[i, W'] \leftarrow opt[i-1, W'-w_i] + w_i
8: return opt[n, W]
```

- Running time is O(nW)
- Running time is pseudo-polynomial because it depends on value of the input integers.

Knapsack Problem

Input: an integer bound W>0

a set of n items, each with an integer weight $\ensuremath{w_i} > 0$

a value $v_i > 0$ for each item i

Output: a subset S of items that

$$\text{maximizes } \sum_{i \in S} \underline{v_i} \qquad \text{s.t.} \sum_{i \in S} w_i \leq W.$$

101/261

• opt[i, W']: the optimum value when budget is W' and items are $\{1, 2, 3, \cdots, i\}$.

$$opt[i, W'] = \begin{cases} 0 & i = 0 \\ opt[i-1, W'] & i > 0, w_i > W' \\ \max \left\{ \begin{array}{l} opt[i-1, W'] \\ opt[i-1, W' - w_i] + \mathbf{v_i} \end{array} \right\} & i > 0, w_i \leq W' \end{cases}$$

- Dynamic Programming
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Subset Sum and Knapsack Problems
 - Longest Common Subsequence
 - Shortest Paths in Directed Acyclic Graphs
 - Matrix Chain Multiplication
 - Optimum Binary Search Tree

- A = bacdca C = adca
- ullet C is a subsequence of A

Def. Given two sequences $A[1 \dots n]$ and $C[1 \dots t]$ of letters, C is called a subsequence of A if there exists integers

 $1 \leq i_1 < i_2 < i_3 < \ldots < i_t \leq n$ such that $A[i_j] = C[j]$ for every $j=1,2,3,\cdots,t.$

Longest Common Subsequence

Input: $A[1 \dots n]$ and $B[1 \dots m]$

Output: the longest common subsequence of A and B

Example:

- A = bacdca'
- B = `adbcda'
- LCS(A, B) = 'adca'

Dynamic Programming for LCS

- $opt[i, j], 0 \le i \le n, 0 \le j \le m$: length of longest common sub-sequence of A[1 ... i] and B[1 ... j].
- if i = 0 or j = 0, then opt[i, j] = 0.
- if i > 0, j > 0, then

$$opt[i,j] = \begin{cases} opt[i-1,j-1] + 1 & \text{if } A[i] = B[j] \\ \max \begin{cases} opt[i-1,j] & \text{if } A[i] \neq B[j] \end{cases} \end{cases}$$

- Dynamic Programming
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Subset Sum and Knapsack Problems
 - Longest Common Subsequence
 - Shortest Paths in Directed Acyclic Graphs
 - Matrix Chain Multiplication
 - Optimum Binary Search Tree

Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without (directed) cycles.

Lemma A directed graph is a DAG if and only its vertices can be topologically sorted.

Shortest Paths in DAG

Input: directed acyclic graph G = (V, E) and $w : E \to \mathbb{R}$.

Assume $V = \{1, 2, 3 \cdots, n\}$ is topologically sorted: if $(i, j) \in E$, then i < j

Output: the shortest path from 1 to i, for every $i \in V$

Shortest Paths in DAG

• f[i]: length of the shortest path from 1 to i

$$f[i] = \begin{cases} 0 & i = 1\\ \min_{j:(j,i) \in E} \{f(j) + w(j,i)\} & i = 2, 3, \dots, n \end{cases}$$

- Dynamic Programming
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Subset Sum and Knapsack Problems
 - Longest Common Subsequence
 - Shortest Paths in Directed Acyclic Graphs
 - Matrix Chain Multiplication
 - Optimum Binary Search Tree

Matrix Chain Multiplication

Matrix Chain Multiplication

Input: n matrices A_1, A_2, \cdots, A_n of sizes $r_1 \times c_1, r_2 \times c_2, \cdots, r_n \times c_n$, such that $c_i = r_{i+1}$ for every $i = 1, 2, \cdots, n-1$.

Output: the order of computing $A_1A_2\cdots A_n$ with the minimum number of multiplications

Fact Multiplying two matrices of size $r \times k$ and $k \times c$ takes $r \times k \times c$ multiplications.

• opt[i,j] : the minimum cost of computing $A_iA_{i+1}\cdots A_j$

$$opt[i,j] = \begin{cases} 0 & i = j \\ \min_{k:i \le k < j} (opt[i,k] + opt[k+1,j] + r_i c_k c_j) & i < j \\ & 110/261 \end{cases}$$

- Dynamic Programming
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Subset Sum and Knapsack Problems
 - Longest Common Subsequence
 - Shortest Paths in Directed Acyclic Graphs
 - Matrix Chain Multiplication
 - Optimum Binary Search Tree

Optimum Binary Search Tree

- n elements $e_1 < e_2 < e_3 < \cdots < e_n$
- ullet e_i has frequency f_i
- goal: build a binary search tree for $\{e_1, e_2, \cdots, e_n\}$ with the minimum accessing cost:

$$\sum_{i=1}^{n} f_i \times (\text{depth of } e_i \text{ in the tree})$$

- opt[i, j]: the optimum cost for the instance $(f_i, f_{i+1}, \cdots, f_j)$
- In general, opt[i, j] =

$$\begin{cases} 0 & \text{if } i = j+1 \\ \min_{k:i \le k \le j} \left(opt[i,k-1] + opt[k+1,j] \right) + \sum_{\ell=i}^{j} f_{\ell} & \text{if } i \le j \end{cases}$$

Outline

- 6 Graph Algorithms
 - Minimum Spanning Tree, Kruskal's Algorithm, Prim's Algorithm
 - Shortest Path Algorithms
 - Minimum Cost Arborescence

Outline

- 6 Graph Algorithms
 - Minimum Spanning Tree, Kruskal's Algorithm, Prim's Algorithm
 - Shortest Path Algorithms
 - Minimum Cost Arborescence

Minimum Spanning Tree (MST) Problem

Input: Graph G = (V, E) and edge weights $w : E \to \mathbb{R}$

Two Classic Greedy Algorithms for MST

- Kruskal's Algorithm
- Prim's Algorithm

Kruskal's Algorithm

Lemma It is safe to include the lightest edge in the MST.

Residual Problem by Contraction

Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}\}$

Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}\}$

Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}, \{i\}$

Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}, \{i\}$

Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}$

Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}$

Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f, g, h\}$

Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f, g, h\}$

Sets: $\{a\}, \{b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a\}, \{b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a,b\}, \{c,i,f,g,h\}, \{d\}, \{e\}$

Sets: $\{a,b\}, \{c,i,f,g,h\}, \{d\}, \{e\}$

Sets: $\{a, b, c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a, b, c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a, b, c, i, f, g, h\}, \{d, e\}$

Sets: $\{a, b, c, i, f, g, h\}, \{d, e\}$

Sets: $\{a, b, c, i, f, g, h, d, e\}$

Running Time of Kruskal's Algorithm

```
MST-Kruskal(G, w)
 1: F \leftarrow \emptyset
 2: S \leftarrow \{\{v\} : v \in V\}
 3: sort the edges of E in non-decreasing order of weights w
 4: for each edge (u, v) \in E in the order do
          S_u \leftarrow the set in S containing u
 5:
     S_v \leftarrow the set in S containing v
 6:
    if S_u \neq S_v then
 7:
              F \leftarrow F \cup \{(u,v)\}
 8:
              \mathcal{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}
 9:
10: return (V, F)
```

Use union-find data structure to support 2, 5, 6, 7, 9.

Prim's Algorithm

• Greedy strategy for Prim's algorithm: choose the lightest edge incident to *a*.

Prim's Algorithm

```
\mathsf{MST}\text{-}\mathsf{Prim}(G,w)
```

```
1: s \leftarrow arbitrary vertex in G
 2: S \leftarrow \emptyset, d(s) \leftarrow 0 and d[v] \leftarrow \infty for every v \in V \setminus \{s\}
 3: while S \neq V do
          u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d[u]
 4:
    S \leftarrow S \cup \{u\}
 5:
      for each v \in V \setminus S such that (u, v) \in E do
 6:
               if w(u,v) < d[v] then
 7:
                    d[v] \leftarrow w(u,v)
 8:
                    \pi[v] \leftarrow u
 9:
10: return \{(u, \pi[u])|u \in V \setminus \{s\}\}
```

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- ullet There is a cut in which e is the lightest edge
- ullet There is a cycle in which e is the heaviest edge

Outline

- 6 Graph Algorithms
 - Minimum Spanning Tree, Kruskal's Algorithm, Prim's Algorithm
 - Shortest Path Algorithms
 - Minimum Cost Arborescence

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- ullet DAG = directed acyclic graph U = undirected D = directed
- ullet SS = single source AP = all pairs

s-t Shortest Paths

Input: directed graph G = (V, E), $s, t \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t

Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: $\pi[v], v \in V \setminus s$: the parent of v in shortest path tree

 $d[v], v \in V \setminus s$: the length of shortest path from s to v

Improved Running Time using Priority Queue

```
Dijkstra(G, w, s)
 1:
 2: S \leftarrow \emptyset, d(s) \leftarrow 0 and d[v] \leftarrow \infty for every v \in V \setminus \{s\}
 3: Q \leftarrow \text{empty queue, for each } v \in V: Q.\text{insert}(v, d[v])
 4: while S \neq V do
        u \leftarrow Q.\mathsf{extract\_min}()
 5:
     S \leftarrow S \cup \{u\}
 6:
       for each v \in V \setminus S such that (u, v) \in E do
 7:
               if d[u] + w(u,v) < d[v] then
 8:
                    d[v] \leftarrow d[u] + w(u, v), Q.\mathsf{decrease\_key}(v, d[v])
 9:
                    \pi[v] \leftarrow u
10:
11: return (\pi, d)
```

Running time:

 $O(n) \times ({\sf time\ for\ extract_min}) + O(m) \times ({\sf time\ for\ decrease_key})$

Priority-Queue	extract_min	decrease_key	Time
Неар	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci Heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s

 $w:E\to\mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

- Unfortunately, computing the shortest simple path between two vertices is an NP-hard problem.
- Cases: no negative cycles, need to detect negative cycles

- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a] = 6$ $f^{3}[a] = 2$

$$f^{\ell}[v] = \begin{cases} 0 & \ell = 0, v = s \\ \infty & \ell = 0, v \neq s \end{cases}$$

$$\min \begin{cases} f^{\ell-1}[v] & \ell > 0 \end{cases}$$

$$\min_{u:(u,v)\in E} \left(f^{\ell-1}[u] + w(u,v)\right)$$

Bellman-Ford Algorithm

```
Bellman-Ford(G, w, s)
 1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}
 2: for \ell \leftarrow 1 to n-1 do
         updated \leftarrow false
 3:
         for each (u,v) \in E do
 4:
             if f[u] + w(u,v) < f[v] then
 5:
                  f[v] \leftarrow f[u] + w(u,v)
 6:
                  updated \leftarrow true
 7:
         if updated = false then break
 8:
 9: return f
```

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph G = (V, E),

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

- 1: for every starting point $s \in V$ do
- 2: run Bellman-Ford(G, w, s)
- Running time = $O(n^2m)$

Design a Dynamic Programming Algorithm

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$\mathsf{Floyd} ext{-}\mathsf{Warshall}(G,w)$

```
1: f \leftarrow w

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j]
```

Lemma Assume there are no negative cycles in G. After iteration k, for $i,j\in V$, f[i,j] is exactly the length of shortest path from i to j that only uses vertices in $\{1,2,3,\cdots,k\}$ as intermediate vertices.

• Running time = $O(n^3)$.

Outline

- 6 Graph Algorithms
 - Minimum Spanning Tree, Kruskal's Algorithm, Prim's Algorithm
 - Shortest Path Algorithms
 - Minimum Cost Arborescence

Def. An arborescence is directed rooted tree, where all edges are directed away from the root.

Minimum Cost Arborescence Problem

Input: a directed graph G = (V, E),

edge weights $w:\mathbb{E} \to \mathbb{R}_{\geq 0}$

 $\mathsf{root}\ r \in V$

Output: a minimum-cost sub-graph T = (V, E') of G that is an arborescence with root r

Outline

- Network Flow
 - Ford-Fulkerson Method
 - Running Time of Ford-Fulkerson-Type Algorithm
 - Bipartite Matching Problem
 - s-t Edge-Disjoint Paths Problem
 - More Applications

Flow Network

- Abstraction of fluid flowing through edges
- \bullet Digraph G=(V,E) with source $s\in V$ and sink $t\in V$
 - $\bullet \ \ \mathsf{No} \ \mathsf{edges} \ \mathsf{enter} \ s \\$
 - ullet No edges leave t
- Edge capacity $c_e \in \mathbb{R}_{>0}$ for every $e \in E$

Def. An s-t flow is a function $f: E \to \mathbb{R}$ such that

- for every $e \in E$: $0 \le f(e) \le c_e$ (capacity conditions)
- for every $v \in V \setminus \{s, t\}$:

$$\sum_{e \in \delta_{\mathrm{in}}(v)} f(e) = \sum_{e \in \delta_{\mathrm{out}}(v)} f(e). \qquad \text{ (conservation conditions)}$$

The value of a flow f is

$$\mathsf{val}(f) := \sum_{e \in \delta_{\mathsf{out}}(s)} f(e).$$

Maximum Flow Problem

Input: directed network G = (V, E), capacity function $c: E \to \mathbb{R}_{>0}$, source $s \in V$ and sink $t \in V$

Output: an s-t flow f in G with the maximum val(f)

- Network Flow
 - Ford-Fulkerson Method
 - Running Time of Ford-Fulkerson-Type Algorithm
 - Bipartite Matching Problem
 - s-t Edge-Disjoint Paths Problem
 - More Applications

Assumption (u, v) and (v, u) are not both in E

Def. For a s-t flow f, the residual graph G_f of G=(V,E) w.r.t f contains:

- \bullet the vertex set V.
- for every $e = (u, v) \in E$ with $f(e) < c_e$, a forward edge e = (u, v), with residual capacity $c_f(e) = c_e f(e)$,
- for every $e = (u, v) \in E$ with f(e) > 0, a backward edge e' = (v, u), with residual capacity $c_f(e') = f(e)$.

Original graph G and f

Residual Graph $G_{f\ 144/261}$

Agumenting Path

Augmenting the flow along a path P from s to t in G_f

```
\mathsf{Augment}(P)
```

```
1: b \leftarrow \min_{e \in P} c_f(e)
2: for every (u, v) \in P do
3: if (u, v) is a forward edge then
4: f(u, v) \leftarrow f(u, v) + b
5: else \triangleright (u, v) is a backward edge
6: f(v, u) \leftarrow f(v, u) - b
7: return f
```

Ford-Fulkerson's Method

Ford-Fulkerson(G, s, t, c)

```
1: let f(e) \leftarrow 0 for every e in G
```

2: **while** there is a path from s to t in G_f do

3: let P be any simple path from s to t in G_f

4: $f \leftarrow \operatorname{augment}(f, P)$

5: **return** f

Correctness of Ford-Fulkerson's Method

- **1** The procedure augment (f, P) maintains the two conditions:
 - for every $e \in E$: $0 \le f(e) \le c_e$ (capacity conditions)
 - for every $v \in V \setminus \{s, t\}$:

$$\sum_{e \in \delta_{\mathsf{in}}(v)} f(e) = \sum_{e \in \delta_{\mathsf{out}}(v)} f(e). \tag{conservation conditions}$$

- ② When Ford-Fulkerson's Method terminates, val(f) is maximized
- Ford-Fulkerson's Method will terminate

Coro.

$$\mathsf{val}(f) \leq \min_{s \text{-}t \text{ cut } (S,T)} c(S,T) \text{ for every } s \text{-}t \text{ flow} f.$$

Main Lemma The flow f found by the Ford-Fulkerson's Method satisfies

$$\operatorname{val}(f) = c(S, T)$$
 for some $s\text{-}t$ cut (S, T) .

Corollary and Main Lemma implies

Maximum Flow Minimum Cut Theorem

$$\sup_{s\text{-}t \text{ flow } f} \operatorname{val}(f) = \min_{s\text{-}t \text{ cut } (S,T)} c(S,T).$$

Maximum Flow Minimum Cut Theorem

$$\sup_{s\text{-}t \text{ flow } f} \operatorname{val}(f) = \min_{s\text{-}t \text{ cut } (S,T)} c(S,T).$$

- Network Flow
 - Ford-Fulkerson Method
 - Running Time of Ford-Fulkerson-Type Algorithm
 - Bipartite Matching Problem
 - s-t Edge-Disjoint Paths Problem
 - More Applications

Shortest Augmenting Path

```
shortest-augmenting-path (G, s, t, c)
```

```
1: let f(e) \leftarrow 0 for every e in G
```

2: **while** there is a path from s to t in G_f do

```
3: P \leftarrow \text{breadth-first-search}(G_f, s, t)
```

4: $f \leftarrow \mathsf{augment}(f, P)$

5: **return** f

Due to [Dinitz 1970] and [Edmonds-Karp, 1970]

Capacity-Scaling Algorithm

- ullet Idea: find the augment path from s to t with a sufficiently large bottleneck capacity
- ullet Assumption: Capacities are integers between 1 and C

capacity-scaling (G, s, t, c)

- 1: let $f(e) \leftarrow 0$ for every e in G
- 2: $\Delta \leftarrow$ largest power of 2 which is at most C
- 3: while $\Delta \geq 1$ do do
- 4: **while** there exists an augmenting path P with bottleneck capacity at least Δ **do**
- 5: $f \leftarrow \operatorname{augment}(f, P)$
- 6: $\Delta \leftarrow \Delta/2$
- 7: **return** f

- Network Flow
 - Ford-Fulkerson Method
 - Running Time of Ford-Fulkerson-Type Algorithm
 - Bipartite Matching Problem
 - s-t Edge-Disjoint Paths Problem
 - More Applications

Def. Given a bipartite graph $G=(L\cup R,E)$, a matching in G is a set $M\subseteq E$ of edges such that every vertex in V is an endpoint of at most one edge in M.

Maximum Bipartite Matching Problem

Input: bipartite graph $G = (L \cup R, E)$

Output: a matching M in G of the maximum size

Reduce Maximum Bipartite Matching to Maximum Flow Problem

Perfect Matching

Def. Given a bipartite graph $G=(L\cup R,E)$ with |L|=|R|, a perfect matching M of G is a matching such that every vertex $v\in L\cup R$ participates in exactly one edge in M.

Hall's Theorem Let $G=(L\cup R,E)$ be a bipartite graph with |L|=|R|. Then G has a perfect matching if and only if $|N(X)|\geq |X|$ for every $X\subseteq L.$

- Network Flow
 - Ford-Fulkerson Method
 - Running Time of Ford-Fulkerson-Type Algorithm
 - Bipartite Matching Problem
 - s-t Edge-Disjoint Paths Problem
 - More Applications

s-t Edge Disjoint Paths

Input: a directed (or undirected) graph G = (V, E) and $s, t \in V$

Output: the maximum number of edge-disjoint paths from s to t in

G

Menger's Theorem

Menger's Theorem In an undirected graph, the maximum number of edge-disjoint paths between s to t is equal to the minimum number of edges whose removal disconnects s and t.

s-t connectivity measures how well s and t are connected.

Global Min-Cut Problem

Input: a connected graph G = (V, E)

Output: the minimum number of edges whose removal will

disconnect G

- Network Flow
 - Ford-Fulkerson Method
 - Running Time of Ford-Fulkerson-Type Algorithm
 - Bipartite Matching Problem
 - s-t Edge-Disjoint Paths Problem
 - More Applications

Extension of Network Flow: Circulation Problem

Input: A digraph G=(V,E) capacities $c\in\mathbb{Z}_{\geq 0}^E$ supply vector $\mathbf{d}\in\mathbb{Z}^V$ with $\sum_{v\in V}d_v=0$

Output: whether there exists $f: E \to \mathbb{Z}_{>0}$ s.t.

$$\sum_{e \in \delta^{\text{out}}(v)} f(e) - \sum_{e \in \delta^{\text{in}}(v)} f(e) = d_v \qquad \forall v \in V$$
$$0 \le f(e) \le c_e \qquad \forall e \in E$$

- ullet d_v denotes the net supply of a good
- $d_v > 0$: there is a supply of d_v at v
- $d_v < 0$: there is a demand of $-d_v$ at v
- problem: whether we can match the supplies and demands without violating capacity constraints

Lemma The instance is feasible if and only if for every $S \subseteq V$, $d(S) \le c(S, V \setminus S)$.

Circulation Problem with Capacity Lower Bounds

Input: A digraph G = (V, E)

capacities $c \in \mathbb{Z}_{\geq 0}^E$

capacity lower bounds $l \in \mathbb{Z}_{\geq 0}^E$, $0 \leq l_e \leq c_e$

supply vector $d \in \mathbb{Z}^V$ with $\sum_{v \in V} d_v = 0$

Output: whether there exists $f: E \to \mathbb{Z}_{\geq 0}$ s.t.

$$\sum_{e \in \delta^{\text{out}}(v)} f(e) - \sum_{e \in \delta^{\text{in}}(v)} f(e) = d_v \qquad \forall v \in V$$

$$\underset{e}{\mathbf{l}_e} < f(e) < c_e \qquad \forall e \in E$$

Removing Capacity Lower Bounds

handling
$$e = (u, v)$$
 with $l_e > 0$

- $d'_u \leftarrow d_u l_e$
- $d'_v \leftarrow d_v + l_e$
- $c'_e \leftarrow c_e l_e$
- $l'_e \leftarrow 0$

- in old instance: flow is $f(e) \in [l_e, c_e] \implies f(e) l_e \in [0, c_e l_e]$
- in new instance: flow is $f(e) l_e \in [0, c'_e]$

Survey Design

Input: integers
$$n, k \ge 1$$
 and $E \subseteq [n] \times [k]$

integers $0 \le c_i \le c_i', \forall i \in [n]$

integers $0 \le p_j \le p_j', \forall j \in [k]$

Output: $E' \subseteq E$ s.t.

$$c_i \le |\{j \in [k] : (i,j) \in E'\}| \le c'_i,$$

$$p_j \le |\{i \in [m] : (i, j) \in E'\}| \le p'_j, \qquad \forall j \in [k]$$

 $\forall i \in [n]$

Reduction to Circulation

- vertices $\{s,t\} \uplus [n] \uplus [k]$,
- $(i,j) \in E$: (i,j) with bounds [0,1]
- $\forall i$: (s,i) with bounds $[c_i,c_i']$
- ullet $\forall j \colon (j,t)$ with bounds $[p_j,p_i']$
- $\bullet \ (t,s)$ with bounds $[0,\infty]$

Airline Scheduling

Input: a DAG G = (V, E)

Output: the minimum number of disjoint paths in G to cover all

vertices

Image Segmentation

Input: A graph G=(V,E), with edge costs $c\in\mathbb{Z}_{\geq 0}^E$

two reward vectors $a,b \in \mathbb{Z}_{\geq 0}^V$

Output: a cut (A,B) of G so as to maximize

$$\sum_{v \in A} a_v + \sum_{v \in B} b_v - \sum_{(u,v) \in E: |\{u,v\} \cap A| = 1} c_{(u,v)}$$

• The cut value of $(S = \{s\} \cup A, \{t\} \cup B)$ is

$$\begin{split} &\sum_{v \in V} (a_v + b_v) - \Big(\sum_{v \in A} a_v + \sum_{v \in B} b_v - \sum_{(u,v) \in E: |\{u,v\} \cap A| = 1} c_{(u,v)}\Big) \\ &= \sum_{v \in V} (a_v + b_v) - \Big(\text{objective of } (A,B)\Big) \end{split}$$

ullet So, maximizing the objective of (A,B) is equivalent to minimizing the cut value.

Project Selection

Input: A DAG G = (V, E)

revenue on vertices: $p \in \mathbb{Z}^V$; p_v 's could be negative.

Output: A set $B \subseteq V$ satisfying the precedence constraints:

$$v \in B \implies u \in B, \quad \forall (u, v) \in E$$

- min-cut $(S = \{s\} \cup A, T = \{t\} \cup B)$
- no ∞ -capacity edges from A to B
- cut value is

$$\sum_{v \in B \cap L} (-p_v) + \sum_{v \in A \cap R} p_v = -\sum_{v \in B \cap L} p_v - \sum_{v \in B \cap R} p_v + \sum_{v \in R} p_v$$
$$= \sum_{v \in R} p_v - \sum_{v \in B} p_v$$

More Applications

- Graph orientation
- maximum independent set (and minimum vertex cover) in a bipartite graph
- • •

- 8 Linear Programming
 - Linear Programming Duality
 - Integral Polytopes: Exact Algorithms Using LP

Standard Form of Linear Programming

$$\text{Let } x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \qquad c = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix},$$

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{pmatrix}, \qquad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$
 Then, LP becomes
$$\begin{array}{c} \min \\ c^T x \\ x \geq 0 \end{array}$$
 s.t.
$$Ax \geq b \\ x \geq 0$$

Standard Form of Linear Programming

$$\min \quad c^{T}x \quad \text{s.t.}$$

$$Ax \ge b$$

$$x \ge 0$$

• Linear programmings can be solved in polynomial time

Algorithm	Theory	Practice
Simplex Method	Exponential Time	Works Well
Ellipsoid Method	Polynomial Time	Slow
Internal Point Methods	Polynomial Time	Works Well

- 8 Linear Programming
 - Linear Programming Duality
 - Integral Polytopes: Exact Algorithms Using LP

Primal LP

Dual LP

$$\min \quad c^T x \qquad \text{s.t.}$$

$$\max b^T y$$
 s.t.

$$Ax \ge b$$
$$x \ge 0$$

$$A^T y \le c$$
$$y \ge 0$$

- P = value of primal LP
- D = value of dual LP

Theorem (weak duality theorem) $D \leq P$.

Theorem (strong duality theorem) D = P.

• Can always prove the optimality of the primal solution, by adding up primal constraints.

Outline

- 8 Linear Programming
 - Linear Programming Duality
 - Integral Polytopes: Exact Algorithms Using LP

Def. A polytope $P \subseteq \mathbb{R}^n$ is said to be integral, if all vertices of P are in \mathbb{Z}^n .

Maximum Weight Bipartite Matching

Input: bipartite graph $G = (L \uplus R, E)$ edge weights $w \in \mathbb{Z}_{\geq 0}^{\times}$

Output: a matching $M \subseteq E$ so as to maximize $\sum_{e \in M} w_e$

LP Relaxation

$$\max \sum_{e \in E} w_e x_e$$

$$\sum_{e \in \delta(v)} x_e \le 1 \quad \forall v \in L \cup R$$

$$x_e \ge 0 \quad \forall e \in E$$

Theorem The LP polytope is integral: It is the convex hull of $\{\chi^M: M \text{ is a matching}\}.$

LP for Maximum Flow

$$\label{eq:signal_equation} \max \sum_{e \in \delta_{\mathsf{in}}(t)} x_e$$

$$x_e \leq c_e \qquad \forall e \in E$$

$$\sum_{e \in \delta_{\mathsf{out}}(v)} x_e - \sum_{e \in \delta_{\mathsf{in}}(v)} x_e = 0 \qquad \forall v \in V \setminus \{s, t\}$$

$$x_e \geq 0 \qquad \forall e \in E$$

Theorem The LP polytope is integral.

Weighted Interval Scheduling Problem

are disjoint

Input: n activities, activity i starts at time s_i , finishes at time f_i , and has weight $w_i > 0$ i and j can be scheduled together iff $[s_i, f_i)$ and $[s_i, f_i)$

Output: maximum weight subset of jobs that can be scheduled

• optimum value= 220

Weighted Interval Scheduling Problem

Linear Program

$$\sum_{j \in [n]: t \in [s_j, f_j)} x_j \le 1 \qquad \forall t \in [T]$$
$$x_j \ge 0 \qquad \forall j \in [n]$$

 $\max \quad \sum x_j w_j$

Theorem The LP polytope is integral.

Def. A matrix $A \in \mathbb{R}^{m \times n}$ is said to be totally unimodular (TUM), if every sub-square of A has determinant in $\{-1,0,1\}$.

Theorem If a polytope P is defined by $Ax \geq b, x \geq 0$ with a totally unimodular matrix A and integral b, then P is integral.

Lemma A matrix $A \in \{0,1\}^{m \times n}$ where the 1's on every column form an interval is TUM.

Lemma Let $A' \in \{0, \pm 1\}^{n \times n}$ such that every row of A' contains at most one 1 and one -1. Then $\det(A') \in \{0, \pm 1\}$.

Lemma Let $A \in \{0, \pm 1\}^{m \times n}$ such that every row of A contains at most one 1 and one -1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the polytope is integral.

Lemma The edge-vertex incidence matrix A of a bipartite graph is totally-unimodular.

Outline

- NP-Completeness Theory
 - P, NP and Co-NP
 - Polynomial Time Reductions and NP-Completeness
 - NP-Complete Problems
 - Dealing with NP-Hard Problems

Outline

- NP-Completeness Theory
 - P. NP and Co-NP
 - Polynomial Time Reductions and NP-Completeness
 - NP-Complete Problems
 - Dealing with NP-Hard Problems

Complexity Class P

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

• The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

- ullet B is a polynomial-time algorithm that takes two input strings s and t, and outputs 0 or 1.
- there is a polynomial function p such that, X(s)=1 if and only if there is string t such that $|t| \leq p(|s|)$ and B(s,t)=1.

The string t such that B(s,t)=1 is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

The Complexity Class Co-NP

Def. For a problem X, the problem \overline{X} is the problem such that $\overline{X}(s)=1$ if and only if X(s)=0.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in NP$.

$P \subseteq NP$

- Let $X \in \mathsf{P}$ and X(s) = 1
- The certificate is an empty string
- Thus, $X \in \mathsf{NP}$ and $\mathsf{P} \subseteq \mathsf{NP}$
- Similarly, $P \subseteq Co-NP$, thus $P \subseteq NP \cap Co-NP$
- P = NP? A famous, big, and fundamental open problem in computer science

Outline

- NP-Completeness Theory
 - P. NP and Co-NP
 - Polynomial Time Reductions and NP-Completeness
 - NP-Complete Problems
 - Dealing with NP-Hard Problems

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. A problem X is called NP-complete if

- \bullet $X \in \mathsf{NP}$, and
- $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.

Theorem If X is NP-complete and $X \in P$, then P = NP.

Outline

- NP-Completeness Theory
 - P. NP and Co-NP
 - Polynomial Time Reductions and NP-Completeness
 - NP-Complete Problems
 - Dealing with NP-Hard Problems

The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit

Output: whether the circuit is satisfiable

Circuit-Sat is NP-Complete

 key fact: algorithms can be converted to circuits

• Any problem $Y \in \mathsf{NP}$ can be reduced to Circuit-Sat.

$Y \leq_P \mathsf{Circuit}\text{-}\mathsf{Sat}$, For Every $Y \in \mathsf{NP}$

- check-Y(s,t) returns 1 if t is a valid certificate for s.
- ullet s is a yes-instance if and only if there is a t such that check-Y(s,t) returns 1
- Construct a circuit C' for the algorithm check-Y
- ullet hard-wire the instance s to the circuit C' to obtain the circuit C
- $\bullet \ s$ is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$
- Clause: disjunction ("or") of at most 3 literals: $x_3 \vee \neg x_4$, $x_1 \vee x_8 \vee \neg x_9$, $\neg x_2 \vee \neg x_5 \vee x_7$
- 3-CNF formula: conjunction ("and") of clauses: $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4)$

3-Sat

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

Circuit-Sat \leq_P 3-Sat

- Associate every wire with a new variable
- The circuit is equivalent to the following formula:

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$

$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$

$$\land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$

$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$

$$\land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \lor x_2 \Leftrightarrow (x_1 \lor x_2 \lor \neg x_5) \land (x_1 \lor \neg x_2 \lor x_5) \land (\neg x_1 \lor x_2 \lor x_5) \land (\neg x_1 \lor \neg x_2 \lor x_5)$$

Circuit ←⇒ Formula ←⇒ 3-CNF

Reductions of NP-Complete Problems

Recall: Independent Set Problem

Def. An independent set of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem

Input: G = (V, E), k

Output: whether there is an independent set of size k in G

3-Sat \leq_P Ind-Set

- $\bullet \ (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size k = #clauses

- 3-Sat instance is yes-instance ⇔ Ind-Set instance is yes-instance:
- ullet satisfying assignment \Longleftrightarrow independent set of size k

Reductions of NP-Complete Problems

Clique $=_P$ Ind-Set

Def. A clique in an undirected graph G=(V,E) is a subset $S\subseteq V$ such that $\forall u,v\in S$ we have $(u,v)\in E$

Clique Problem

Input: G = (V, E) and integer k > 0,

Output: whether there exists a clique of size k in G

Obs. S is an independent set in G if and only if S is a clique in \overline{G} .

Reductions of NP-Complete Problems

Def. Given a graph G=(V,E), a vertex cover of G is a subset $S\subset V$ such that for every $(u,v)\in E$ then $u\in S$ or $v\in S$.

Vertex-Cover Problem

Input: G = (V, E) and integer k

Output: whether there is a vertex cover of G of size at most k

$Vertex-Cover =_P Ind-Set$

S is a vertex-cover of G=(V,E) if and only if $V\setminus S$ is an independent set of G.

Reductions of NP-Complete Problems

Set Cover

Input: $S_1, S_2, \dots, S_M \subseteq [N]$ with $\bigcup_{i \in [m]} S_i = [N]$

Output: The smallest set $I \subseteq [M]$ satisfying $\bigcup_{i \in I} S_i = [N]$

• decision version: given t, does there exist a solution I with $|I| \le t$?

Vertex Cover \leq_P Set Cover

- ullet m edges \Leftrightarrow N elements
- n vertices \Leftrightarrow M sets
- ullet vertex is incident to edge $e \quad \Leftrightarrow \quad$ set contains element
- Vertex cover is the special case of set cover where each element appears in exactly two sets.

Reductions of NP-Complete Problems

k-coloring problem

Def. A k-coloring of G=(V,E) is a function $f:V \to \{1,2,3,\cdots,k\}$ so that for every edge $(u,v) \in E$, we have $f(u) \neq f(v)$. G is k-colorable if there is a k-coloring of G.

k-coloring problem

Input: a graph G = (V, E)

Output: whether G is k-colorable or not

3-SAT $\leq_P 3$ -Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Reductions of NP-Complete Problems

Recall: Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

3-Sat \leq_P Directed-HC

- Vertices s, t
- A long enough double-path P_i for each variable x_i
- ullet Edges from s to P_1
- Edges from P_n to t
- Edges from P_i to P_{i+1}
- $x_i = 1 \iff \text{traverse } P_i$ from left to right
- $\begin{array}{l} \bullet \ \, \text{e.g,} \\ x_1=1, x_2=1, x_3=0, x_4=0 \end{array}$

3-Sat \leq_P Directed-HC

- There are exactly 2ⁿ different Hamiltonian cycles, each correspondent to one assignment of variables
- Add a vertex for each clause, so that the vertex can be visited only if one of the literals is satisfied.

3-Sat \leq_P Directed-HC

- There are exactly 2ⁿ different Hamiltonian cycles, each correspondent to one assignment of variables
- Add a vertex for each clause, so that the vertex can be visited only if one of the literals is satisfied.

A Path Should Be Long Enough

• k: number of clauses

Reductions of NP-Complete Problems

Traveling Salesman Problem

- A salesman needs to visit n cities $1, 2, 3, \dots, n$
- ullet He needs to start from and return to city 1
- Goal: find a tour with the minimum cost

Travelling Salesman Problem (TSP)

Input: a graph G=(V,E), weights $w:E\to\mathbb{R}_{\geq 0}$, and L>0

Output: whether there is a tour of length at most D

$HC \leq_P TSP$

Obs. There is a Hamilton cycle in G if and only if there is a tour for the salesman of length n=|V|.

A Strategy of Polynomial Reduction

- Given an instance s_Y of problem Y, show how to construct in polynomial time an instance s_X of problem such that:
 - s_Y is a yes-instance of $Y \Rightarrow s_X$ is a yes-instance of X
 - s_X is a yes-instance of $X \Rightarrow s_Y$ is a yes-instance of Y

Outline

- NP-Completeness Theory
 - P, NP and Co-NP
 - Polynomial Time Reductions and NP-Completeness
 - NP-Complete Problems
 - Dealing with NP-Hard Problems

Dealing with NP-Hard Problems

- Faster exponential time algorithms
- Solving the problem for special cases
- Fixed parameter tractability
- Approximation algorithms

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O(2^n \cdot poly(n))$
- $2^n \to 1.844^n \to 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n! \cdot poly(n))$
- Better algorithm: $O(2^n \cdot \mathsf{poly}(n))$
- In practice: TSP Solver can solve Euclidean TSP instances with more than 100,000 vertices

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs
- interval graphs
- • •

Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$
- $\bullet \ \, {\rm Running \ time \ is} \ f(k)n^c \ \, {\rm for \ some} \ \, c \\ {\rm independent \ of} \ \, k \\$
- Vertex-Cover is fixed-parameter tractable.

Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time
- There is an 2-approximation for the vertex cover problem: we can
 efficiently find a vertex cover whose size is at most 2 times that of
 the optimal vertex cover

Outline

- Advanced Topics
 - Randomized Algorithms
 - Extending the Limits of Tractability
 - Solving NP-Hard Problems on Bounded-Tree-Width Graphs
 - Approximation Algorithms using Greedy
 - Arbitrarily Good Approximation Using Rounding Data
 - Approximation Using LP Rounding and Primal Dual

Outline

- Advanced Topics
 - Randomized Algorithms
 - Extending the Limits of Tractability
 - Solving NP-Hard Problems on Bounded-Tree-Width Graphs
 - Approximation Algorithms using Greedy
 - Arbitrarily Good Approximation Using Rounding Data
 - Approximation Using LP Rounding and Primal Dual

Matrix Multiplication Verification

Input: 3 matrices $A, B, C \in \mathbb{Z}^{n \times n}$

Output: whether if C = AB

Freivald's Matrix Verification Algorithm: one experiment

1: randomly choose a vector $r \in \{0,1\}^n$

2: **return** ABr = Cr

• to compute A(Br), need $O(n^2)$ time

	true	false
AB = C	1	0
$AB \neq C$	$\leq 1/2$	$\geq 1/2$

• probabilities with k experiments:

	true	false
AB = C	1	0
$AB \neq C$	$\leq 1/2^k$	$\geq 1 - 1/2^k$

• Frievald's algorithm is a Monta Carlo algorithm.

Def. A Monta Carlo algorithm is a randomized algorithm whose output may be incorrect with some probability.

Analysis of Randomized Quicksort Algorithm

• T(n): an upper bound on the expected running time of the randomized quicksort algorithm on n elements

•

$$T(n) = \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i)) + O(n)$$
$$= \frac{2}{n} \sum_{i=0}^{n-1} T(i) + O(n)$$

• Can prove $T(n) \le c(n \log n)$ for some constant c by reduction

Indirect Analysis Using Number of Comparisons

- Running time = O(number of comparisons)
- $\forall 1 \leq i < j \leq n$, $D_{i,j}$ indicates if we compared the i-th smallest element with the j-th smallest element
- \bullet number of comparisons $= \sum_{1 \leq i < j \leq n} D_{i,j}$

Lemma

$$\mathbb{E}[D_{i,j}] = \frac{2}{j-i+1} \implies \mathbb{E}[\text{number of comparisons}] O(n \log n).$$

Def. A Las-Vegas algorithm is a randomized algorithm that always outputs a correct solution but has randomized running time.

Randomized Selection Algorithm

```
selection(A, n, i)
 1: if n=1 then return A
 2: x \leftarrow \text{random element of } A \text{ (called pivot)}
                                                                Divide
 3: A_L \leftarrow elements in A that are less than x
 4: A_R \leftarrow elements in A that are greater than x
                                                                ▷ Divide
 5: if i < A_L.size then
    return selection(A_L, A_L. size, i)
                                                              7: else if i > n - A_R.size then
       return selection(A_R, A_R.size, i - (n - A_R.size))
                                                              9: else
```

• expected running time = O(n)

return x

10:

Global Min-Cut Problem

Input: a connected graph G = (V, E)

Output: the minimum number of edges whose removal will

disconnect G

Karger's Randomized Algorithm for Min-Cut

- 1: $G' = (V', E') \leftarrow G$
- 2: while |V'| > 2 do
- 3: pick $uv \in E'$ uniformly at random
- 4: contract uv in G', keeping parallel edges, but not self-loops
- 5: **return** the cut in G correspondent to E'

• The probability that the algorithm succeeds is at least

$$\left(1 - \frac{2}{n}\right)\left(1 - \frac{2}{n-1}\right)\left(1 - \frac{2}{n-2}\right)\cdots\left(1 - \frac{2}{3}\right)$$
$$= \frac{n-2}{n} \times \frac{n-3}{n-1} \times \frac{n-4}{n-2} \times \cdots \times \frac{1}{3} = \frac{2}{n(n-1)}$$

Coro. Any graph G has at most $\frac{n(n-1)}{2}$ distinct minimum cuts.

- $A := \frac{n(n-1)}{2}$: algorithm succeeds with probability at least $\frac{1}{A}$
- \bullet Running the algorithm for Ak times will increase the probability to

$$1 - (1 - \frac{1}{4})^{Ak} \ge 1 - e^{-k}.$$

• To get a success probability of $1-\delta$, run the algorithm for $O(n^2\log\frac{1}{\delta})$ times.

Karger-Stein: A Faster Algorithm

$\mathsf{Karger}\text{-}\mathsf{Stein}(G=(V,E))$

- 1: **if** |V| < 6 **then return** min cut of G directly
- repeat twice and return the smaller cut:
- run Karger(G) down to $\lceil n/\sqrt{2} \rceil$ vertices, to obtain G'3:
- consider the candidate cut returned by Karger-Stein(G')4:

• Running time:

$$T(n) = 2T\left(\frac{n}{\sqrt{2}}\right) + O(n^2)$$
• $T(n) = O(n^2 \log n)$

•
$$T(n) = O(n^2 \log n)$$

Max 3-SAT

Input: n boolean variables x_1, x_2, \cdots, x_n m clauses, each clause is a disjunction of 3 literals from 3 distinct variables

Output: an assignment so as to satisfy as many clauses as possible

Example:

- clauses: $x_2 \vee \neg x_3 \vee \neg x_4$, $x_2 \vee x_3 \vee \neg x_4$, $\neg x_1 \vee x_2 \vee x_4$, $x_1 \vee \neg x_2 \vee x_3$, $\neg x_1 \vee \neg x_2 \vee \neg x_4$
- We can satisfy all the 5 clauses: x = (1, 1, 1, 0, 1)

Outline

- 10 Advanced Topics
 - Randomized Algorithms
 - Extending the Limits of Tractability
 - Solving NP-Hard Problems on Bounded-Tree-Width Graphs
 - Approximation Algorithms using Greedy
 - Arbitrarily Good Approximation Using Rounding Data
 - Approximation Using LP Rounding and Primal Dual

Finding Small Vertex Covers: Fixed Parameterized Tractability

Vertex-Cover Problem

Input: G = (V, E)

Output: a vertex cover C with minimum |C|

Lemma There is an algorithm with running time $O(2^k \cdot kn)$ to check if G contains a vertex cover of size at most k or not.

Vertex-Cover(G' = (V', E'), k)

- 1: if $|E'| = \emptyset$ then return true
- 2: if k = 0 then return false
- 3: pick any edge $(u, v) \in E'$
- 4: **return** Vertex-Cover $(G' \setminus u, k-1)$ or Vertex-Cover $(G' \setminus v, k-1)$

Outline

- Advanced Topics
 - Randomized Algorithms
 - Extending the Limits of Tractability
 - Solving NP-Hard Problems on Bounded-Tree-Width Graphs
 - Approximation Algorithms using Greedy
 - Arbitrarily Good Approximation Using Rounding Data
 - Approximation Using LP Rounding and Primal Dual

Bounded-Tree-Width Graphs

Def. A tree decomposition of a graph G=(V,E) consists of

- ullet a tree T with node set U, and
- a subset $V_t \subseteq V$ for every $t \in U$, which we call the bag for t,
- satisfying the following properties:
- (Vertex Coverage) Every $v \in V$ appears in at least one bag.
- (Edge Coverage) For every $(u,v) \in E$, some bag contains both u and v.
- (Coherence) For every $u \in V$, the nodes $t \in U : u \in V_t$ induce a connected sub-graph of T.

Bounded-Tree-Width Graphs

Def. The tree-width of the tree-decomposition $(T, (V_t)_{t \in U})$ is defined as $\max_{t \in U} |V_t| - 1$.

Def. The tree-width of a graph G=(V,E), denoted as $\mathrm{tw}(G)$, is the minimum tree-width of a tree decomposition $(T,(V_t)_{t\in U})$ of G.

• The graph on the top right has tree-width 2.

- Many problems on graphs with small tree-width can be solved using dynamic programming.
- Typically, the running time will be exponential in tw(G).

Example: Maximum Weight Independent Set

- given G = (V, E), a tree-decomposition $(T, (V_t)_{t \in U})$ of G with tree-width tw.
- vertex weights $w \in \mathbb{R}^{V}_{>0}$.
- ullet find an independent set S of G with the maximum total weight.
- The running time of the dynamic programming: $O(2^{\mathsf{tw}} \cdot \mathsf{tw} \cdot n)$.
- It is efficient when tw is $O(\log n)$.

Outline

- 10 Advanced Topics
 - Randomized Algorithms
 - Extending the Limits of Tractability
 - Solving NP-Hard Problems on Bounded-Tree-Width Graphs
 - Approximation Algorithms using Greedy
 - Arbitrarily Good Approximation Using Rounding Data
 - Approximation Using LP Rounding and Primal Dual

2-Approximation Algorithm for Vertex Cover

- 1: $E' \leftarrow E, C \leftarrow \emptyset$
- 2: while $E' \neq \emptyset$ do
- 3: let (u, v) be any edge in E'
- 4: $C \leftarrow C \cup \{u, v\}$
- 5: remove all edges incident to u and v from E'
- 6: return C
- ullet Can be extended to an f-approximation for set-cover problem with frequency f.

Set Cover

Input: U, |U| = n: ground set $S_1, S_2, \dots, S_m \subset U$

Output: minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$

Greedy Algorithm for Set Cover

- 1: $C \leftarrow \emptyset, U' \leftarrow U$
- 2: while $U' \neq \emptyset$ do
- 3: choose the i that maximizes $|U' \cap S_i|$
- 4: $C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i$
- 5: return C

• g: minimum number of sets needed to cover U

Lemma Let $u_t, t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$u_t \le \left(1 - \frac{1}{g}\right) \cdot u_{t-1}.$$

• In at most $\lceil g \ln(n+1) \rceil$ iterations, all elements will be covered.

Maximum Coverage

Input: U, |U| = n: ground set,

$$S_1, S_2, \cdots, S_m \subseteq U$$
, $k \in [m]$

Output: $C \subseteq [m], |C| = k$ with the maximum $\bigcup_{i \in C} S_i$

Greedy Algorithm for Maximum Coverage

- 1: $C \leftarrow \emptyset, U' \leftarrow U$
- 2: for $t \leftarrow 1$ to k do
- 3: choose the i that maximizes $|U' \cap S_i|$
- 4: $C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i$
- 5: **return** *C*

Theorem Greedy algorithm gives $(1 - \frac{1}{e})$ -approximation for maximum coverage.

Outline

- Advanced Topics
 - Randomized Algorithms
 - Extending the Limits of Tractability
 - Solving NP-Hard Problems on Bounded-Tree-Width Graphs
 - Approximation Algorithms using Greedy
 - Arbitrarily Good Approximation Using Rounding Data
 - Approximation Using LP Rounding and Primal Dual

Knapsack Problem

Input: an integer bound W > 0

a set of n items, each with an integer weight $w_i > 0$

a value $v_i > 0$ for each item i

Output: a subset S of items that

$$\text{maximizes } \sum \textcolor{red}{v_i} \qquad \text{s.t.} \sum w_i \leq W.$$

- Let A be some integer to be defined later
- $v_i' := \left| \frac{v_i}{A} \right|$ be the scaled value of item i
- Definition of DP cells: $f[i, V'] = \min_{S \subseteq [i]: v'(S) \ge V'} w(S)$

$$f[i, V'] = \begin{cases} 0 & V' \le 0 \\ \infty & i = 0, V' > 0 \\ \min \left\{ \begin{array}{l} f[i-1, V'] \\ f[i-1, V' - v'_i] + w_i \end{array} \right\} & i > 0, V' > 0 \end{cases}$$

• Output A times the largest V' such that $f[n, V'] \leq W$.

Makespan Minimization on Identical Machines

Input: n jobs index as [n]

each job $j \in [n]$ has a processing time $p_j \in \mathbb{Z}_{>0}$

m machines

Output: schedule of jobs on machines with minimum makespan

$$\sigma: [n] \to [m]$$
 with minimum $\max_{i \in [m]} \sum_{j \in \sigma^{-1}(i)} p_j$

$1 + \epsilon$ -Approximation

- Dynamic Programming for Big jobs:
 - Round job sizes so that there are only $k = O(\frac{1}{\epsilon} \log \frac{1}{\epsilon})$ distinct sizes
 - ullet Running time exponential in k
- Greedily add small jobs.

Outline

- Advanced Topics
 - Randomized Algorithms
 - Extending the Limits of Tractability
 - Solving NP-Hard Problems on Bounded-Tree-Width Graphs
 - Approximation Algorithms using Greedy
 - Arbitrarily Good Approximation Using Rounding Data
 - Approximation Using LP Rounding and Primal Dual

Weighted Vertex-Cover Problem

Input: G = (V, E) with vertex weights $\{w_v\}_{v \in V}$ **Output:** a vertex cover S with minimum $\sum_{v \in S} w_v$

Linear programming relaxation for WVC:

(LP_{WVC}) min
$$\sum_{v \in V} w_v x_v$$
 s.t.
$$x_u + x_v \ge 1 \qquad \forall (u, v) \in E$$

$$x_v \in [0, 1] \qquad \forall v \in V$$

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

- 1: Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$
- 2: Thus, LP $= \sum_{u \in V} w_u x_u^* \le \mathsf{IP}$
- 3: Let $S = \{u \in V : x_u \ge 1/2\}$ and output S

Lemma S is a vertex cover of G.

Lemma
$$cost(S) := \sum_{u \in S} w_u \le 2 \cdot LP.$$

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

- 1: Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$
- 2: Thus, $\mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$
- 3: Let $S = \{u \in V : x_u^* \ge 1/2\}$ and output S

Lemma S is a vertex cover of G.

Lemma
$$cost(S) := \sum_{u \in S} w_u \le 2 \cdot LP.$$

LP Relaxation

$$\min \sum_{v \in V} w_v x_v$$

$$x_u + x_v \ge 1 \qquad \forall (u, v) \in E$$

$$x_v \ge 0 \qquad \forall v \in V$$

Dual LP

$$\max \sum_{e \in E} y_e$$

$$\sum_{e \in \delta(v)} y_e \le w_v \quad \forall v \in V$$

$$y_e \ge 0 \quad \forall e \in E$$

• Algorithm constructs a maximal dual solution y, and returns the set of all vertices whose dual constraints are tight.