Homework 5

Course: Algorithm Design and Analysis Semester: Spring 2025

Instructor: Shi Li Due Date: 2025/6/15

Student Name: _____ Student ID: _____

Problems	1	2	3	4	5	Total
Max. Score	20	20	20	20	20	100
Your Score						

• Remark: You can give the answers in either Chinese or English.

Problem 1. Consider the following linear program:

$$\min \quad 2x_2 - x_3$$

$$x_1 + x_2 - x_3 \ge 5$$

$$x_1 + 2x_3 = 6$$

$$x_1, x_2 \ge 0$$

- (1a) Give the optimum solution and value of the linear program.
- (1b) Write down the dual of the linear program.
- (1c) Give the optimum solution and value of the dual linear program.

Problem 2. Consider the following two lemmas.

- Separation Lemma: Let P be a closed polytope in \mathbb{R}^n , and $x \in \mathbb{R}^n \setminus P$. Then there exists a hyperplane separating P and x. Formally, there exists a vector $w \in \mathbb{R}^n$ and a real $g \in \mathbb{R}$ such that $w^T x' > g$ for every $x' \in P$, and $w^T x < g$.
- Farkas Lemma: Consider the linear system $Ax = b, x \geq 0$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are given, and $x \in \mathbb{R}^n$ is the vector of variables. Then the system is infeasible if and only if there exists a vector $y \in \mathbb{R}^n$ such that $A^T y \geq 0$ and $b^T y < 0$.

Your goal is to use the Separation Lemma to prove the Farkas Lemma.

Problem 3. In class, you learned that the number of global minimum cuts is at most $\binom{n}{2} \leq n^2$ in a connected graph G = (V, E). Let $\alpha \geq 1$ be an integer. We say a cut in G is an α -approximate cut, if its cut value is at most α times the value of the global minimum cut. Prove that the number of α -approximate minimum cuts in a connected graph G = (V, E) is at most $n^{2\alpha}$.

Problem 4. Recall that an independent set in a graph G = (V, E) is a set $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$. In the problem, we are given

an $n \times n$ grid graph G = (V, E). Namely, $V = [n] \times [n]$, and $((i, j), (i', j')) \in E$ if and only if |i - i'| + |j - j'| = 1. Moreover, we are given a non-negative weight $w_v \ge 0$ for every vertex $v \in V$. Our goal is to find an independent set S in G with the maximum total weight, i.e., $\sum_{v \in S} w_v$.

Design a polynomial time 4-approximation algorithm for the problem.

Problem 5. Recall that in the weighted vertex cover problem, we are given a ground set U of m elements and a collection $S = \{S_1, \ldots, S_n\}$ of subsets of U. Each set S_i has a non-negative weight $w_i \geq 0$. Our goal is to find a set $I \subseteq [n]$ satisfying $\bigcup_{i \in I} S_i = U$, so as to minimize $\sum_{i \in I} w_i$.

Now assume additionally we have that each element $e \in U$ appears in at most f sets in S, for some integer $f \geq 1$.

Design a polynomial time f-approximation for the problem, using either LP rounding or primal-dual.