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@ Randomized Algorithms
@ Freivald's matrix multiplication verification algorithm
@ Randomized Select and Quicksort
@ Randomized Algorithm for Global Min-Cut
° %—Approximation Algorithm for Max 3-SAT



Why do we use randomized algorithms?

@ simpler algorithms: quick-sort, minimum-cut, and Max 3-SAT.

o faster algorithms: polynomial identity testing, Freivald's matrix
multiplication verification algorithm, sampling and fingerprinting.

@ mathematical beauty: Nash equilibrium for 0-sum game

@ proof of existence of objects: union bound, Lovasz local lemma.




Why do we use randomized algorithms?

@ simpler algorithms: quick-sort, minimum-cut, and Max 3-SAT.

o faster algorithms: polynomial identity testing, Freivald's matrix
multiplication verification algorithm, sampling and fingerprinting.

@ mathematical beauty: Nash equilibrium for 0-sum game

@ proof of existence of objects: union bound, Lovasz local lemma.

Price of using randomness

@ The algorithm may be incorrect with some probability (Monto
Carlo Algorithm)

@ The algorithm may take a long time to terminate (Las Vegas
Algorithm)
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@ Randomized Algorithms
@ Freivald's matrix multiplication verification algorithm



Input: 3 matrices A, B,C € Z™*"
Output: whether if C = AB
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Matrix Multiplication Verification
Input: 3 matrices A, B,C € Z™"
Output: whether if C = AB

@ trivial: compute C'" = AB and check if C' = C.
@ time = matrix multiplication time

e naive algorithm: O(n?)

o Strassen’s algorithm: O(n?81)

o Best known algorithm for matrix multiplication: O(n?3719).

@ Freivald’s algorithm: randomized algorithm with O(n?) time.
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Freivald's Algorithm: one experiment

1: randomly choose a vector r € {0,1}"
2: return ABr = Cr

Q: What is the running time of the algorithm?

e (AB)r: matrix-multiplication time
e A(Br): O(n?) time

Analysis of correctness
e AB = (" algorithm outputs true with probability 1.
e AB # (' algorithm may incorrectly output true.

Lemma If AB # C, then the algorithm outputs false with
probability at least 1/2.
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Lemma If AB # C, then the algorithm outputs false with
probability at least 1/2.

Proof.
e D:=C—-AB#0 Cr=ABr <= Dr=0
° Ji,j € n],Dij#0
D,ﬂ” = Z Di,j’rj’ =X + K X = Z Di,j’,rj'u Y = D,L,JTJ
Jj'=1 J'€ln].j'#j
Pr[D;r # 0] = Pr[Y # —X]
= Pr[X =a] Pr[Y # —z|X =]

TEL
= ZPr[X = x| - Pr[D; jr; # —z|X = z]
TEZL
1 1
>ZPI[X:at] 5= O
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@ probabilities:
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Freivald's Algorithm: k experiments

1. fort < 1to k do

2 randomly choose a vector r € {0,1}"
3: if ABr # C'r then return false
4

: return true
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Freivald’s Algorithm: £ experiments

1: fort <+ 1to k do

2 randomly choose a vector r € {0,1}"
3: if ABr # Cr then return false
4

: return true

@ probabilities with k experiments:

true false
AB=C 1 0
AB#C | <1/2% | >1—1/2F




@ probabilities:

true false
AB=C 1 0
AB#C | <1/2|>1)2

Freivald’s Algorithm: £ experiments

1. fort < 1to k do

2 randomly choose a vector r € {0,1}"
3: if ABr # Cr then return false
4

: return true

@ probabilities with k& experiments:
true false
AB=C 1 0
AB#C | <1/2% | >1—1/2F
@ to achieve  probability of mistake, need log, 3 = O(log 3)
experiments.




@ Frievald's algorithm is a Monta Carlo algorithm.

Def. A Monta Carlo algorithm is a randomized algorithm whose
output may be incorrect with some probability.

J




@ Frievald's algorithm is a Monta Carlo algorithm.

Def. A Monta Carlo algorithm is a randomized algorithm whose
output may be incorrect with some probability.

@ For a Monta Carlo algorithm that outputs true/false, we say the
algorithm has one-sided error if it makes error only if the correct
output is true (or false).
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@ Randomized Algorithms

@ Randomized Select and Quicksort
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Quicksort Example

Assumption We can choose median of an array of size n in O(n) ‘
time.

20182756438 45194 |69 25|76 |15|92|37|17|8>

2913814512515 |37 17|64 |82 |75194]92|69 |76 |8

25115117129 138 45|37 |64 827519492 |69| 76|85




Quicksort

quicksort(A, n)

1:

O N RN

if n <1 then return A

x < lower median of A

A < elements in A that are less than x
AR < elements in A that are greater than =
By, < quicksort(Ay, Ay .size)

Bpg < quicksort(Ag, Ag.size)

t < number of times = appear A

\\ Divide
\\ Divide
\\ Conquer
\\ Conquer

return the array obtained by concatenating By, the array

containing t copies of x, and Bg
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Quicksort

quicksort(A, n)

1:

O N RN

if n <1 then return A

x < lower median of A

A < elements in A that are less than x
AR < elements in A that are greater than =
By, < quicksort(Ay, Ay .size)

Bpg < quicksort(Ag, Ag.size)

t < number of times = appear A

\\ Divide
\\ Divide
\\ Conquer
\\ Conquer

return the array obtained by concatenating By, the array

containing t copies of x, and Bg

@ Recurrence T'(n) < 2T (n/2) + O(n)
@ Running time = O(nlogn)




n

/\

n/2 n/2
n/4 n/4 n/4 n/4
ANVANVANIIVAN
n/8 |n/8| |n/8 |n/8 n/8| |n/8| n/8 |n/8

@ Each level has total running time O(n)

@ Number of levels = O(logn)

@ Total running time = O(nlogn)




Randomized Quicksort Algorithm

quicksort(A, n)

1:

O N RN

if n <1 then return A
x < a random element of A (z is called a pivot)

Ap < elements in A that are less than x \\ Divide
Ap < elements in A that are greater than z \\ Divide
By, < quicksort(Ay, Ay .size) \\ Conquer
Bpr <+ quicksort(Ag, Ag.size) \\ Conquer

t < number of times = appear A
return the array obtained by concatenating By, the array
containing t copies of x, and Bg




Variant of Randomized Quicksort Algorithm

quicksort(A, n)

1: if n <1 then return A

2: repeat

3: x < a random element of A (z is called a pivot)

4: Ap < elements in A that are less than z \\ Divide
5: AR < elements in A that are greater than x \\ Divide
6: until Ay .size < 3n/4 and Ag.size < 3n/4

7: B < quicksort(Ay, Ay .size) \\ Conquer
8: Bpr < quicksort(Ag, Ag.size) \\ Conquer
9: t <— number of times x appear A

10: return the array obtained by concatenating Bj, the array

containing t copies of x, and By




Analysis of Variant

1: x < a random element of A
2: A; < elements in A that are less than x
3: Ag < elements in A that are greater than x

Q: What is the probability that A .size < 3n/4 and
Apg.size < 3n/4?




Analysis of Variant

1: x < a random element of A
2: A; < elements in A that are less than x
3: Ag < elements in A that are greater than x

Q: What is the probability that A .size < 3n/4 and
Apg.size < 3n/4?

A: At least 1/2




Analysis of Variant

1: repeat

2: 2 < a random element of A

& Aj <+ elements in A that are less than z

4: ApR < elements in A that are greater than z

5. until Ay .size < 3n/4 and Ag.size < 3n/4

Q: What is the expected number of iterations the above procedure
takes?




Analysis of Variant

1: repeat

2: 2 < a random element of A

& Aj <+ elements in A that are less than z

4: ApR < elements in A that are greater than z

5. until Ay .size < 3n/4 and Ag.size < 3n/4

Q: What is the expected number of iterations the above procedure
takes?

A: At most 2




@ Suppose an experiment succeeds with probability p € (0, 1],
independent of all previous experiments.

1: repeat
2: run an experiment
3: until the experiment succeeds

Lemma The expected number of experiments we run in the above
procedure is 1/p.




Lemma The expected number of experiments we run in the above
procedure is 1/p.

Proof
Expectation =p + (1 —p)p x 2+ (1 —p)’p x 3+ (1 —p)°p x 4
=py (1—-p) % = p) Y (1—-p)"
=1 Jj=1 i=3
=p) 1-pleer—— = 1—py™
S0Py - X0
1
=(1-p)°’—=—==1/p

1—(1-p)




Variant Randomized Quicksort Algorithm

quicksort(A, n)

1: if n <1 then return A

2: repeat

3: x < a random element of A (z is called a pivot)

4: Ap < elements in A that are less than z \\ Divide
5: AR < elements in A that are greater than x \\ Divide
6: until Ay .size < 3n/4 and Ag.size < 3n/4

7: B < quicksort(Ay, Ay .size) \\ Conquer
8: Bpr < quicksort(Ag, Ag.size) \\ Conquer
9: t <— number of times x appear A

10: return the array obtained by concatenating Bj, the array

containing t copies of x, and By




Analysis of Variant

@ Divide and Combine: takes O(n) time

@ Conquer: break an array of size n into two arrays, each has size at
most 3n/4. Recursively sort the 2 sub-arrays.

<3n/4 ‘ n ‘ Ot

. /\

| ] | om

< 9n/16 ~_ T
A0 L0
< «'{1/\()\4

@ Number of levels < log,,;n = O(logn)




Randomized Quicksort Algorithm

quicksort(A, n)
1: if n <1 then return A

t < number of times = appear A
return the array obtained by concatenating By, the array
containing t copies of x, and Bg

2: x < a random element of A (x is called a pivot)

3: Ap < elements in A that are less than z \\ Divide
4: AR < elements in A that are greater than x \\ Divide
5. By, < quicksort(Ay, Ay .size) \\ Conquer
6: Br < quicksort(Ag, Ag.size) \\ Conquer
T:

8:

@ Intuition: the quicksort algorithm should be better than the
variant.
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@ 7'(n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements
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@ 7'(n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

Assuming we choose the element of rank 7 as the pivot.
The left sub-instance has size at most ¢ — 1

The right sub-instance has size at most n — ¢

Thus, the expected running time in this case is
(T(i—1)+T(n—1)) +O0(n)

@ Overall, we have
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Analysis of Randomized Quicksort Algorithm

@ 7'(n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

Assuming we choose the element of rank 7 as the pivot.
The left sub-instance has size at most ¢ — 1
The right sub-instance has size at most n — ¢

Thus, the expected running time in this case is
(T(i—1)+T(n—1)) +O0(n)
@ Overall, we have

T(n) =~ Z (T(i — 1) + T(n —1)) + O(n)

_ % im) +0(n)

@ Can prove T'(n) < c¢(nlogn) for some constant ¢ by reduction



Analysis of Randomized Quicksort Algorithm

The induction step of the proof:

T(n)

9 n—1 - / 9 n—1 . ' /

< E;T(z) +cdn < ﬁ;czlogz—kcn
2¢ (2L n =

< — Z ilog — + Z ilogn | +cn
n =0 2 i=|n/2)

< 2 (n—Qlogﬁ—l— 3—nzlogn) +dn

“n \ 8 2 8

" n+3n1 L
=Cc| —1logn — — — 102N cn
g OB Ty T8

:cnlogn—%+c’n§cnlogn if ¢ > 4c



Indirect Analysis Using Number of Comparisons

@ Running time = O(number of comparisons)

o V1 <i< j<mn,D,; indicates if we compared the i-th smallest
element with the j-th smallest element

@ number of comparisons = Zl§i<j§n D; ;
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Indirect Analysis Using Number of Comparisons

@ Running time = O(number of comparisons)

o V1 <i< j<mn,D,; indicates if we compared the i-th smallest
element with the j-th smallest element

® number of comparisons = 3, .., Di;

Lemma E[D;;] = %

Proof.

e A’: sorted array for A. Focus on A'[i..j].

@ pivot outside A’ [i]: A’[i--- j] will be passed to left or right
recursion; go to that recursion

@ pivot inside A’ [i]: A’[i] and A’ [j] will be separated; call this
critical recursion

e Ali] and A[j] are compared in the critical recursion with

probability j—22'+1' 0)




E [number of comparisons| = E

1<i<j<n
1
= > EDyl=2 ) ——
1<i<j<n 1<i<j<n’ —it1
<o+t iyl
n —_— —_— e —
- 2 3 n
=0 (nlogn).

@ The algorithm is a Las-Vegas algorithm:

Def. A Las-Vegas algorithm is a randomized algorithm that always
outputs a correct solution but has randomized running time.




Table: Comparisons between Monta Carlo and Las Vegas Algorithms.

correctness running time
Monta Carlo | may be wrong | usually has good worst-case
running time
Las Vegas | always correct | may take a long time and

usually only has good “ex-
pected running time”



Lemma Given a Las Vegas algorithm A with expected running time
at most 7'(n), we can design a Monta Carlo algorithm A’ with
worst-case running time O(7’(n)) and error at most 0.99.

@ 0.99 can be changed to any ¢ < 1



Lemma Given a Las Vegas algorithm A with expected running time
at most 7'(n), we can design a Monta Carlo algorithm A’ with
worst-case running time O(7'(n)) and error at most 0.99.

@ 0.99 can be changed to any ¢ < 1

Proof.

e run A for 1007°(n) time

o if A terminated, output what A outputs
@ otherwise, declare failure

@ Markov Inequality:
Pr[A runs for more than 1007'(n) time] < 1/100 O




Randomized Selection Algorithm

selection(A, n, 1)
if n =1 then return A
x < random element of A (called pivot)
A < elements in A that are less than x
AR < elements in A that are greater than =
if i < A; .size then

return selection(Ay, Ay .size, q)
else if i > n — Apg.size then

return selection(Ag, Ag.size,i — (n — Ag.size))
else

return x

[

S R I

=
=

> Divide
> Divide

> Conquer

> Conquer

@ expected running time = O(n)




Randomized Selection

@ X,,7=0,1,2,---: the size of A in the j-th recursion

1 &
EX;n|X; =n] < " Zmax{k —1,n" —k}

1 n'/2 n’

- / (n’—k:)dk:+/ kdk

n k—n’/2

,/2)
_aw

VAN

Y
| %
|
oo|3
m|3

[N}
|
|3



E[running time of randomized selection]

ZX <01 ZE
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@ Randomized Algorithms

@ Randomized Algorithm for Global Min-Cut



Global Min-Cut Problem
Input: a connected graph G = (V, E)
Output: the minimum number of edges whose removal will
disconnect GG
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Global Min-Cut Problem
Input: a connected graph G = (V, E)
Output: the minimum number of edges whose removal will
disconnect GG




Solving Global Min-Cut Using s-t Min-Cut

1. let G’ be the directed graph obtained from G by replacing every
edge with two anti-parallel edges

2: for a fixed s € V and every pairt € V' \ {s} do

3: obtain the minimum cut separating s and ¢ in GG, by solving
the maximum flow instance with graph G’,source s and sink ¢

4: output the smallest minimum cut we found

@ Time = O(n) x (Time for Maximum Flow)



Karger's Randomized Algorithm for Min-Cut

.G =(V,E)+G

2: while |[V'| > 2 do

3: pick uv € E’ uniformly at random

4: contract uv in G', keeping parallel edges, but not self-loops

5: return the cut in G correspondent to £’
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Obs. Contraction does not decrease size of min-cut.
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@ let C' C FE be a fixed min-cut of G

@ an iteration fails if we chose some edge e € C' to contract.



Obs. Contraction does not decrease size of min-cut.

Lemma If G’ = (V', E’) has size of min-cut being ¢, then
|E'| > [V']e/2

Proof.
Every vertex will have degree at least ¢, and thus 2|E’| > [V'|ec. [

@ let C' C FE be a fixed min-cut of G

@ an iteration fails if we chose some edge e € C' to contract.

Coro. Focus on some iteration where we have the graph
G’ = (V', E') with n’ = |V’| at the beginning. Suppose all previous

iterations succeed. Then the probability this iteration fails is at most
G 2

nc/2 — nl"
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@ The probability that the algorithm succeeds is at least
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Coro. Any graph G has at most

X
n n—1 n-—2

n(n—1)

2

L2
3 n(n—1)

distinct minimum cuts.

)
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@ The probability that the algorithm succeeds is at least

12 (12 -2 V... (1.2

n n—1 n—2 3
n—2 n—3 n-—4 1 2

>< >< X...X—:—

n n—1 n-—2 3 n(n-—1)

(

Coro. Any graph G has at most = ) distinct minimum cuts.

)

0 A= Ll). algorithm succeeds with probability at least &
@ Running the algorithm for Ak times will increase the probability to

1
1— (1= )4 >1_¢Fk
(1= M =1—c

@ To get a success probability of 1 — 4, run the algorithm for
O(n?log §) times.



Equivalent Algorithm

1: give every edge a weight in [0, 1] uniformly at random.

2: solve the MST on the graph G with the weights, using either
Kruskal or Prim’s algorithm

3: remove the heaviest edge in the MST,

4: let U and V' \ U be the vertex sets of two components

5. return the cut in G between U and V' \ U




Equivalent Algorithm

1:
2:

give every edge a weight in [0, 1] uniformly at random.

solve the MST on the graph G with the weights, using either
Kruskal or Prim’s algorithm

remove the heaviest edge in the MST,

4: let U and V' \ U be the vertex sets of two components

5:

return the cut in G between U and V' \ U

@ run it once: time = O(m + nlogn)

@ to get success probability 1 — d: time = O(n?*(m + nlogn)log %)




Karger-Stein: A Faster Algorithm

Karger-Stein(G = (V, E))
if |V'| < 6 then return min cut of G directly

repeat twice and return the smaller cut:
run Karger(G) down to [n/v/2] vertices, to obtain G’
consider the candidate cut returned by Karger-Stein(G")
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Karger-Stein: A Faster Algorithm

Karger-Stein(G = (V, E))
if |V'| < 6 then return min cut of G directly

repeat twice and return the smaller cut:
run Karger(G) down to [n/v/2] vertices, to obtain G’
consider the candidate cut returned by Karger-Stein(G")

2N 2

n

@ Running time:
T(n) = QT(%) +0n?)
5 e T(n)=0(n%logn)

%
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if |V'| < 6 then return min cut of G directly

repeat twice and return the smaller cut:
run Karger(G) down to [n/v/2] + 1 vertices, to obtain G’
consider the candidate cut returned by Karger-Stein(G")

Bl o

Analysis of Probability of Success

e running Karger(G) down to [n/v/2] + 1 vertices, success
probability is at least
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probability is at least
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@ every edge is chosen w.p 1/2

@ success if we choose some

L levels root-to-leaf path

@ what is the success probability
in terms of L?

1

Lemma FP; > I+ J
Proof.
@ L = 0: a singleton, holds trivially.
@ induction:
1 2 1\2 1 1
Po=1-(1-5Ps) 21-(1-=) =7 -
g 2" ) = 2L L 4L?
4L — 1 1
— > L]
412 — L+1




Karger-Stein(G = (V, E))
1: if |V| < 6 then return min cut of G directly

2: repeat twice and return the smaller cut:
3: run Karger(G) down to [n/v/2] + 1 vertices, to obtain G’
4: consider the candidate cut returned by Karger-Stein(G")

@ Running time: O(n%logn)

@ Success probability: Q( 1 )

logn




Karger-Stein(G = (V, E))
if |V/| <6 then return min cut of G directly

repeat twice and return the smaller cut:
run Karger(G) down to [n/v/2] + 1 vertices, to obtain G’
consider the candidate cut returned by Karger-Stein(G")

PN B

@ Running time: O(n%logn)
@ Success probability: Q( 1 )

logn

@ Repeat O(logn) times can increase the probability to a constant
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Approximation Algorithms

An algorithm for an optimization problem is an a-approximation
algorithm, if it runs in polynomial time, and for any instance to the
problem, it outputs a solution whose cost (or value) is within an
a-factor of the cost (or value) of the optimum solution.
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Approximation Algorithms

An algorithm for an optimization problem is an a-approximation
algorithm, if it runs in polynomial time, and for any instance to the
problem, it outputs a solution whose cost (or value) is within an
a-factor of the cost (or value) of the optimum solution.

@ opt: cost (or value) of the optimum solution
@ sol: cost (or value) of the solution produced by the algorithm
@ «: approximation ratio
@ For minimization problems:
e « > 1 and we require sol < « - opt
@ For maximization problems, there are two conventions:

e a <1 and we require sol > « - opt
e « > 1 and we require sol > opt/«a



Max 3-SAT
Input: n boolean variables z1, x5, -+ , 2,

m clauses, each clause is a disjunction of 3 literals from 3
distinct variables

Output: an assignment so as to satisfy as many clauses as possible

Example:

o clauses: x5V —x3V iy, a9V 3V Xy,
T \/I’Q\/ZE4, I \/_h’L'Q\/.Ig, -1 \/_|ZE2\/_|ZE4

@ We can satisfy all the 5 clauses: = = (1,1,1,0,1)
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1/2, independent of other variables
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8
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Proof.
e for each clause C}, let Z; = 1 if C; is satisfied and 0 otherwise
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e E[Z;] = 7/8: out of 8 possible assignments to the 3 variables in
C;, 7 of them will make C; satisfied



Randomized Algorithm for Max 3-SAT

@ Simple idea: randomly set each variable x, = 1 with probability
1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, %m

number of clauses will be satisfied.

Proof.

e for each clause C}, let Z; = 1 if C; is satisfied and 0 otherwise
© Z =731, Z;is the total number of satisfied clauses

e E[Z;] = 7/8: out of 8 possible assignments to the 3 variables in
C;, 7 of them will make C; satisfied

o E[Z] = [Z] 1 Z} => " E[Z;] =Y § = Im, by linearity
of expectation. O
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Lemma Let m be the number of clauses. Then, in expectation, Lm

8
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Randomized Algorithm for Max 3-SAT

Lemma Let m be the number of clauses. Then, in expectation, Lm

8
number of clauses will be satisfied.

@ Since the optimum solution can satisfy at most m clauses, lemma
gives a randomized 7/8-approximation for Max-3-SAT.



Randomized Algorithm for Max 3-SAT

Lemma Let m be the number of clauses. Then, in expectation, gm

number of clauses will be satisfied.

@ Since the optimum solution can satisfy at most m clauses, lemma
gives a randomized 7/8-approximation for Max-3-SAT.

Theorem ([Hastad 97]) Unless P = NP, there is no p-approximation
algorithm for MAX-3-SAT for any p > 7/8.
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Output: a vertex cover C' with minimum |C|
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Vertex-Cover Problem
Input: G = (V, E)
Output: a vertex cover C' with minimum |C|

@ (The decision version of) vertex-cover is NP-complete.

Q: What if we are only interested in a vertex cover of size at most
k, for some small number k7? J

LS e e
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Q: What if we are only interested in a vertex cover of size at most
k, for some constant k?

@ Motivation: if the minimum vertex cover is too big, then the
solution becomes meaningless.

@ Enumeration gives a O(kn®*1)-time algorithm.

@ For moderately large k (e.g., n = 1000, k = 10), algorithm is
impractical.

Lemma There is an algorithm with running time O(2* - kn) to
check if G contains a vertex cover of size at most k£ or not.

@ Remark: m does not appear in the running time. Indeed, if
m > kn, then there is no vertex cover of size k.



Vertex-Cover(G' = (V' E'), k)
1. if |E’| = () then return true
2: if £ = 0 then return false
3: pick any edge (u,v) € E
4: return Vertex-Cover(G' \ u, k — 1) or Vertex-Cover(G' \ v,k — 1)

v
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edges



Vertex-Cover(G' = (V' E'), k)
if |E’| = () then return true

if £ =0 then return false
pick any edge (u,v) € E’
return Vertex-Cover(G’ \ u, k — 1) or Vertex-Cover(G' \ v,k — 1)

Sl S

e G’ \ u: the graph obtained from G’ by removing u and its incident
edges

e Correctness: if (u,v) € E’, we must choose u or choose v to
cover (u,v).




Vertex-Cover(G' = (V' E'), k)
if |E’| = () then return true

if £ =0 then return false
pick any edge (u,v) € E’
return Vertex-Cover(G’ \ u, k — 1) or Vertex-Cover(G' \ v,k — 1)

Sl S

e G’ \ u: the graph obtained from G’ by removing u and its incident
edges

e Correctness: if (u,v) € E’, we must choose u or choose v to
cover (u,v).

@ Running time: 2* recursions and each recursion has running time

O(kn).




Def. An problem is fixed parameterized tractable (FPT) with
respect to a parameter k, if it can be solved in f(k) - poly(n) time,
where n is the size of its input and poly(n) = |J,2, O(n").




Def. An problem is fixed parameterized tractable (FPT) with
respect to a parameter k, if it can be solved in f(k) - poly(n) time,
where n is the size of its input and poly(n) = |J,2, O(n").

@ Vertex cover is fixed parameterized tractable with respect to the
size k of the optimum solution.



Outline

© Extending the Limits of Tractability

@ Solving NP-Hard Problems on Bounded-Tree-Width Graphs



@ Many NP-hard problems on general graphs are easy on trees.

@ Greedy algorithms: independent set, vertex cover, dominating set,



@ Many NP-hard problems on general graphs are easy on trees.
@ Greedy algorithms: independent set, vertex cover, dominating set,

@ Dynamic programming: weighted versions of above problems



@ Many NP-hard problems on general graphs are easy on trees.
@ Greedy algorithms: independent set, vertex cover, dominating set,

@ Dynamic programming: weighted versions of above problems

Example: Maximum-Weight Independent Set

@ dynamic programming:
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- 1 é when 7 is not chosen
(3) (5 ) i
— g e f[i,1]: optimum value in tree i




@ Many NP-hard problems on general graphs are easy on trees.
@ Greedy algorithms: independent set, vertex cover, dominating set,

@ Dynamic programming: weighted versions of above problems

Example: Maximum-Weight Independent Set

@ dynamic programming:
( 16 ) ( 18 )

e f[i,0]: optimum value in tree i
7 AN é f when 7 is not chosen
&) 8 . . .

Cg o f[i,1]: optimum value in tree i

@ Reason why many problems can be solved using DP on trees: the
child-trees of a vertex ¢ are only connected through .




Bounded-Tree-Width Graphs

Def. A tree decomposition of a
graph G = (V| E) consists of

@ a tree T" with node set U, and

@ asubset V; CV for everyt € U,

which we call the bag for ¢, abe
satisfying the following properties: bod
o (Vertex Coverage) Every v € V ledg] (deh] e77]
appears in at least one bag. [dgh] ehi]
o (Edge Coverage) For every
(u,v) € E, some bag contains Jh:
both u and v. ok
o (Coherence) For every u € V, the
nodest € U : u € V, induce a [jkl]

connected sub-graph of 7.
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Def. A tree decomposition of a
graph G = (V| E) consists of

@ a tree T" with node set U, and

@ asubset V; CV for everyt € U,

which we call the bag for ¢, abe
satisfying the following properties: bod
o (Vertex Coverage) Every v € V edg] [deh] refi]
appears in at least one bag. [dgh] i
o (Edge Coverage) For every
(u,v) € E, some bag contains Jh:
both u and v. ok
o (Coherence) For every u € V, the
nodest € U : u € V, induce a [jkl]

connected sub-graph of 7.
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Bounded-Tree-Width Graphs

Def. The tree-width of the
tree-decomposition (7', (V;)icr) is
defined as max;cy |V;| — 1.

bed

Def. The tree-width of a graph

G = (V, E), denoted as tw(G), is the
minimum tree-width of a tree [dgh]
decomposition (7', (V;)er) of G.

|cdg | |deh] |efi]
ehi

ghk

@ The graph on the top right has gk
tree-width 2.




Obs. A (non-empty) tree has tree-width 1.

a



Obs.

A (non-empty) tree has tree-width 1.

a

be

ab



Obs. A (non-empty) tree has tree-width 1. |

a a

Lemma A graph has tree-width 1 if and only if it is a (non-empty)
forest. J




@ Many problems on graphs with small tree-width can be solved
using dynamic programming.
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@ Many problems on graphs with small tree-width can be solved
using dynamic programming.

@ Typically, the running time will be exponential in tw(G).

Example: Maximum Weight Independent Set

e given G = (V, E), a tree-decomposition (7', (V;)icr) of G with
tree-width tw.

e vertex weights w € RY.

e find an independent set S of G with the maximum total weight.




Assumption: every node in T" has at most 2 children. Moreover,
every internal nodes in T is one of the following types:

@ Splitter: a node ¢ with two children " and t”, V;, =V, = Vi
@ Insertion node: a node t with one child ¢/, Ju ¢ V;, Vi =V, U {u}
@ Deletion node: a node t with one child ¢/, Ju € V;, Vi = V; \ {u}

a abc




Assumption: every node in T" has at most 2 children. Moreover,
every internal nodes in T is one of the following types:

@ Splitter: a node ¢ with two children " and t”, V;, =V, = Vi
@ Insertion node: a node t with one child ¢/, Ju ¢ V;, Vi =V, U {u}
@ Deletion node: a node t with one child ¢/, Ju € V;, Vi = V; \ {u}

splitt\er\ N

-~ _gbe deletion

/




Def. Given a graph G = (V, E), and a tree decomposition
(T, (Vi)tev), a valid labeling of T is a vector (R;);cyy of sets, one for
every node t, such that the following conditions hold.

e R, CV,,Vt €U, and R; is an independent set in G

@ R, = Ry = Ry for a S-node ¢, and its two children ¢', ¢".

@ Ry \ {u} = R, for an |-node ¢ and its child ¢’ with V; = V; U {u}.
@ Ry = Ry \ {u} for a D-node t and its child ¢ with V;y =V} \ {u}.

a abc




Lemma If S isan IS of G, then (R, := S NV,)ev is a valid
labeling.

Lemma If (R;)cy is a valid labeling, then [ J, R, is an IS.

abc




Lemma If S isan IS of G, then (R, := S NV,)ev is a valid
labeling.

Lemma If (R;)cy is a valid labeling, then [ J, R, is an IS.

abc

@ Therefore, there is an one-to-one mapping between independent
sets and valid labelings.



@ Foreveryt € U, every R C V, thatisan ISin G (we call R a
label for t), we define a weight w,(R).
o for the root ¢ and a label R for ¢, wy(R) = >, pw;.

e for an insertion node ¢ with the child ¢’ such that Vi, =V, U {u},
a label R for t', we define wy(R) = w, if u € R and 0 otherwise.

@ For all other cases, the weights are defined as 0




@ Foreveryt € U, every R C V, thatisan ISin G (we call R a
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o for the root ¢ and a label R for ¢, wy(R) = >, pw;.

e for an insertion node ¢ with the child ¢’ such that Vi, =V, U {u},
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@ For all other cases, the weights are defined as 0




@ Problem: find a valid labeling for T" with maximum weight



@ Problem: find a valid labeling for T" with maximum weight

Dynamic Programming
e YVt € U, a label R for t: let f(¢, R) be the maximum weight of a
valid (partial) labeling for the sub-tree of T" rooted at t.

f(t,R):

([ w(R) tis a leaf
wy(R)+ f(t',R)+ f(t", R)

t is an S-node with children ¢’ and t”
wi(R) +max{ f(#, R), £(¢', RU {u})}

t is I-node w. child ¢/, V, = V, U {u}

wi(R) + f(t', R\ {u})

t is D-node w. child ¢/, Vi = V; \ {u}

\

@ In I-node case, if RU {u} is an invalid label, then
f(t> RU {u}) = —00.
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@ The running time of the dynamic programming: O(2tw - tw - n)

e It is efficient when tw is O(logn).

Q: Suppose we are only given G with tree-width tw, how can we
find a tree-decomposition of width tw?

@ This is an NP-hard problem.

@ We can achieve a weaker goal: find a tree-decomposition of with
at most 4tw in time f(tw) - poly(n), where f(tw) is a function of
tw.

e If tw = O(1), the algorithm runs in polynomial time.

@ The constant 4 is acceptable.
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@ 2-Approximation Algorithm for Vertex Cover



Vertex Cover Problem

Def. Given a graph G = (V| E), a vertex cover of GG is a subset
C' C V such that for every (u,v) € E'thenu e C orv e C .
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Vertex Cover Problem

Def. Given a graph G = (V| E), a vertex cover of GG is a subset
C' C V such that for every (u,v) € E'thenu e C orv e C . J

Vertex-Cover Problem
Input: G = (V,E)

Output: a vertex cover C' with minimum |C/|




First Try: A “Natural” Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover
1. B+ E,C «+ 0
2: while £ # () do

3 let v be the vertex of the maximum degree in (V, E’)

4: C + CU{v},

5 remove all edges incident to v from E’

6: return C
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Theorem Greedy algorithm is an (Inn + 1)-approximation for
vertex-cover.
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First Try: A “Natural” Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover
1. B+ E,C «+ 0
2: while £ # () do

3 let v be the vertex of the maximum degree in (V, E’)

4: C + CU{v},

5 remove all edges incident to v from E’

6: return C

Theorem Greedy algorithm is an (Inn + 1)-approximation for
vertex-cover.

@ We prove it for the more general set cover problem

@ The logarithmic factor is tight for this algorithm



2-Approximation Algorithm for Vertex Cover

1: B/« E,C «+ 0

2: while £’ # () do

3 let (u,v) be any edge in E’

4: C + CU{u,v}

5 remove all edges incident to u and v from £’
6: return C
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6: return C

@ counter-intuitive: adding both u and v to C' seems wasteful
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2-Approximation Algorithm for Vertex Cover

1. B/« E,C + 0

2: while £ # () do

3: let (u,v) be any edge in E’

4: C + CU{u,v}

5: remove all edges incident to u and v from £’

6: return C

@ counter-intuitive: adding both u and v to C' seems wasteful
@ intuition for the 2-approximation ratio:

e optimum solution C* must cover edge (u,v), using either u or v
e we select both, so we are always ahead of the optimum solution
e we use at most 2 times more vertices than C* does



2-Approximation Algorithm for Vertex Cover
1: B/ + E,C «+ 0
2: while E' # () do
3 let (u,v) be any edge in F’
4: C + CU{u,v}
5 remove all edges incident to v and v from E’
6: return C
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1. B+ E,C<+ 0
2: while E' # () do
3 let (u,v) be any edge in E’
4: C + CU{u,v}
5 remove all edges incident to v and v from E’
6: return C

Theorem The algorithm is a 2-approximation algorithm for
vertex-cover.
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2-Approximation Algorithm for Vertex Cover
1. B+ E,C<+ 0
2: while E' # () do
3 let (u,v) be any edge in E’
4: C + CU{u,v}
5 remove all edges incident to v and v from E’
6: return C

Theorem The algorithm is a 2-approximation algorithm for
vertex-cover.

Proof.
@ Let E' be the set of edges (u,v) considered in Step 3
@ Observation: £’ is a matching and |C| = 2| £/

@ To cover E’, the optimum solution needs |E’| vertices
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@ f-Approximation for Set-Cover with Frequency f



Input: U, |U| = n: ground set
51752,"' 7Sm cU

Output: minimum size set C' C [m] such that | J,. S;i = U

73/119



Set Cover with Bounded Frequency f
Input: U, |U| = n: ground set
S1,59,-+ ,Sm CU
every j € U appears in at most f subsets in
180, Sy oo o G
Output: minimum size set C' C [m] such that | J,. S;i = U




Set Cover with Bounded Frequency f
Input: U, |U| = n: ground set
S1,89,-++ , S CU

every j € U appears in at most f subsets in
{S]a527'“ 7Sm}
Output: minimum size set C' C [m] such that | J,. S;i = U

Vertex Cover = Set Cover with Frequency 2
o edges < elements
@ vertices < sets

@ every edge (element) can be covered by 2 vertices (sets)




f-Approximation Algorithm for Set Cover with Frequency

1. C <—®

2: while | J,. S; # U do

3: let e be any element in U \ [, Si
4 C+—Cu{ie[m]:ec S}

5: return C




f-Approximation Algorithm for Set Cover with Frequency

f

1. C <—@

2: while | J,. S; # U do

3: let e be any element in U \ [, Si
4 C+—Cu{ie[m]:ec S}

5: return C

Theorem The algorithm is a f-approximation algorithm.




f-Approximation Algorithm for Set Cover with Frequency

f

1. C+ 0

2: while | J,. S; # U do

3: let e be any element in U \ [, Si
4 C+—Cu{ie[m]:ec S}

5. return C

Theorem The algorithm is a f-approximation algorithm.

Proof.

@ Let U’ be the set of all elements e considered in Step 3

@ Observation: no set S; contains two elements in U’

@ To cover U’, the optimum solution needs |U’| sets

o C L f-|U| ]
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@ (Inn + 1)-Approximation for Set-Cover



Input: U, |U| = n: ground set
513527"' 7Sm - U
Output: minimum size set C' C [m] such that | J,. Si = U

76/119



Set Cover
Input: U, |U| = n: ground set
S1,52,++ ,Sm CU
Output: minimum size set C' C [m] such that (J,.S; = U

Greedy Algorithm for Set Cover
1. C« QU «U
2. while U # () do
3: choose the i that maximizes |U’' N S|
4 C+—CU{i},U «U\S;
5: return C




@ ¢: minimum number of sets needed to cover U

Lemma Let u;,t € Z>( be the number of uncovered elements after
t steps. Then for every t > 1, we have

1
Ut S <]_ — —> s Up—1-
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Proof.

o Consider the g sets 57,53, , Sy in optimum solution
e STUS U---US; =U




@ ¢: minimum number of sets needed to cover U

Lemma Let u;,t € Z>( be the number of uncovered elements after
t steps. Then for every t > 1, we have

1
Ut S (]. — —) s Up—1-
9

Proof.

o Consider the g sets 57,53, , Sy in optimum solution

e STUS U---US; =U

@ at beginning of step ¢, some set in ST, 55, -+ ,.5; must contain

> % uncovered elements

o u < uUpq — ut; = (1 — é) Up_q. O




o Lett=[g-Inn]. ug =n. Then

up < (1—1)g'lnn-n<e_1“”-n=n-l=1.
g n

@ So u; = 0, approximation ratio < [9'15%”] <Inn+ 1. O

78/119



Proof of (Inn + 1)-approximation.
o Lett=[g-Inn]|. ug =n. Then

utﬁ(l—l)gilnn-n<eln"-n:n-%zl.

@ So u; = 0, approximation ratio < WL%M <Inn-+1.

@ A more careful analysis gives a H,,-approximation, where
H, =1+ % + % 4+ -4+ % is the n-th harmonic number.
e In(n+1)<H,<Ilnn+1.



Proof of (Inn + 1)-approximation.
o Lett=[g-Inn]|. ug =n. Then

utﬁ(l—l)gilnn-n<e1“”-n:n-%:1.

@ So u; = 0, approximation ratio < (9%"1 <Inn-+1.

@ A more careful analysis gives a H,,-approximation, where
H,=1+ % + % 4+t % is the n-th harmonic number.

e In(n+1)<H,<Ilnn+1.

(1 — ¢) Inn-hardness for any ¢ = Q(1)

Let ¢ > 0 be any constant. There is no polynomial-time

(1 — ¢) In n-approximation algorithm for set-cover, unless

e NP C quasi-poly-time, [Lund, Yannakakis 1994; Feige 1998|
e P = NP. [Dinur, Steuer 2014]
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° (1 — %)—Approximation for Maximum Coverage



@ set cover: use smallest number of sets to cover all elements.

@ maximum coverage: use k sets to cover maximum number of
elements



@ set cover: use smallest number of sets to cover all elements.

@ maximum coverage: use k sets to cover maximum number of
elements

Maximum Coverage
Input: U, |U| = n: ground set,
S1,8,-++, S, CU, k € [m]
Output: C C [m],|C| = k with the maximum | J,. S;




@ set cover: use smallest number of sets to cover all elements.

@ maximum coverage: use k sets to cover maximum number of
elements

Maximum Coverage
Input: U, |U| = n: ground set,
S1,89,+++,8, CU, k € [m]
Output: C C [m],|C| = k with the maximum | J,. S;

Greedy Algorithm for Maximum Coverage

1. C«— 00U «U

2: for t < 1 to k do

3: choose the i that maximizes |U’' N S|
4 C+— CU{i},U < U\S;

5. return C




Theorem Greedy algorithm gives (1 — 1)-approximation for
maximum coverage.
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maximum coverage.

Proof.
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@ p;: #(covered elements) by greedy algorithm after step ¢
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Theorem Greedy algorithm gives (1 — %)-approximation for
maximum coverage.

Proof.
@ 0: max. number of elements that can be covered by k sets.
@ p;: #(covered elements) by greedy algorithm after step ¢
0— Pt—1

k
@ 0—pt<0—pp1— O_th_l = (1 - %)(0—1%—1)

@ P> P+




Theorem Greedy algorithm gives (1 — %)-approximation for
maximum coverage.

Proof.
@ 0: max. number of elements that can be covered by k sets.
@ p;: #(covered elements) by greedy algorithm after step ¢

0 — P
® Pt Zpt—l‘f—Ttl
@ 0—Dt SO—pt—l—o_th_l: 1—%)(0—1%—1)

[N

A\

0—pr < (1—%)k(0—p0) <

+ 0




Theorem Greedy algorithm gives (1 — %)-approximation for
maximum coverage.

Proof.
@ 0: max. number of elements that can be covered by k sets.
@ p;: #(covered elements) by greedy algorithm after step ¢

0— P
® Pt Zpt—l‘f’%

@ 0—p < 0— P 1—0_th_1:(1—%)(0—1%—1)
@ 0—pp < (1——) (0—po) <10

D > (1——) 0
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@ Arbitrarily Good Approximation Using Rounding Data
@ Knapsack Problem
@ Makespan Minimization on ldentical Machines
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@ Knapsack Problem



Knapsack Problem
Input: an integer bound W > 0
a set of n items, each with an integer weight w; > 0
a value v; > 0 for each item 7
Output: a subset S of items that

maximizes Zvi s.t. Zw,; <W.

i€S €S




Knapsack Problem
Input: an integer bound W > 0
a set of n items, each with an integer weight w; > 0
a value v; > 0 for each item 7
Output: a subset S of items that

maximizes Zvi s.t. Zwi <W.

i€S €S

@ Motivation: you have budget W, and want to buy a subset of
items of maximum total value



Greedy Algorithm

1: sort items according to non-increasing order of v; /w;
2: for each item in the ordering do
3: take the item if we have enough budget




Greedy Algorithm

1: sort items according to non-increasing order of v; /w;
2: for each item in the ordering do
3: take the item if we have enough budget

e Bad example: W =100,n = 2,w = (1,100),v = (1.1, 100).



Greedy Algorithm
1: sort items according to non-increasing order of v; /w;

2: for each item in the ordering do
3: take the item if we have enough budget

e Bad example: W =100,n = 2,w = (1,100),v = (1.1, 100).

@ Optimum takes item 2 and greedy takes item 1.



DP for Knapsack Problem

@ optli, W']: the optimum value when budget is W’ and items are
{1,2,3, -+ ,i}.
0 1=20
optli — 1, W] i>0,w; > W
optli — 1, W]

opt[i, W'] =
max ‘
{ opt[i — 1, W' — w;] + v

} Z‘>0,U}Z‘§W/



DP for Knapsack Problem

optli, W']: the optimum value when budget is W’ and items are
(1,2,3,-- ,i}.
0 1=20
tle — 1, W’ > 0,w; > W/
opt[i, W'] = opili | : Z ‘
optli — 1, W]
max
opt|

. Z‘>0,U}Z‘§W/
i— LW —w] +v;

Running time of the algorithm is O(nWV).
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DP for Knapsack Problem

@ optli, W']: the optimum value when budget is W’ and items are
{1,2,3,--- ,i}.

0 1=20
, optli — 1, W] i>0,w; > W
optli, W) = opti — 1,
max P ’ 1> 0,w; < W'
optli — L, W' —w;] +v;

@ Running time of the algorithm is O(nI1).

Q: Is this a polynomial time? |

A: No.

@ The input size is polynomial in n and log IV; running time is
polynomial in n and V.

@ The running time is pseudo-polynomial.




@ n: number of integers W: maximum value of all integers

@ pseudo-polynomial time: poly(n, W) (e.g., DP for Knapsack)

e weakly polynomial time: poly(n,log W) (e.g., Euclidean
Algorithm for Greatest Common Divisor)

@ strongly polynomial time: poly(n) time, assuming basic

operations on integers taking O(1) time (e.g., Kruskal's)
@ weakly NP-hard: NP-hard to solve in time poly(n,log W)
@ strongly NP-hard: NP-hard even if W = poly(n)

weakly NP-hard

O polynomial
O NP-hard

pseudo-polynomial

weakly strongly
polynomial \ polynomial

strongly NP-hard




Idea for improving the running time to polynomial

o If we make weights upper bounded by poly(n), then
pseudo-polynomial time becomes polynomial time

o Coarsening the weights: w; = | %| for some appropriately defined
integer A.
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weight budget constraint : hard
maximum value requirement : soft




Idea for improving the running time to polynomial

o If we make weights upper bounded by poly(n), then
pseudo-polynomial time becomes polynomial time

Coarsening the weights: w} = | %! | for some appropriately defined
integer A.

@ However, coarsening weights will change the problem.

weight budget constraint : hard
maximum value requirement : soft

We coarsen the values instead

In the DP, we use values as parameters




@ Let A be some integer to be defined later
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@ Let A be some integer to be defined later
o v} := |4 | be the scaled value of item i

o Definition of DP cells: f[i, V'] = mingcp.v(s)>v: w(S)

0 V<o
R 00 1=0,V' >0
min ’ i>0,V' >0
fli—1, V' =]+ w;



@ Let A be some integer to be defined later
o v} := |4 | be the scaled value of item i

o Definition of DP cells: f[i, V'] = mingcp.v(s)>v: w(S)

0 V' <0
=0,V >0
v =4 . Z
min . i1,V i>0,V' >0
fli—1, V' =]+ w;

@ Output A times the largest V’ such that fn, V'] < W.
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v — A< Av, < v, Vi € [n]
= opt —nA < opt’ < opt

® Opt > Upax 1= MaX,c[y) v; (assuming w; < W, Vi)
@ setting A := L“’MJ (1 — €)opt < opt’ < opt
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Instance Z: (vy,va, -+ ,v,) opt: optimum value of Z
Instance Z': (Avy,---, AV)) opt’: optimum value of 7'
v — A< Av, < v, Vi € [n]

= opt —nA < opt’ < opt

OPt > Umax = MaX;e[n v; (assuming w; < W, Vi)
setting A := L“’MJ (1 — €)opt < opt’ < opt

n

3

Vi, vj = O(2) = running time = O(™)

€



@ Instance Z: (vy,vq,- -+ ,Uy) opt: optimum value of Z

@ Instance Z': (Avl,--- , AV)) opt’: optimum value of 7'

v — A< Av, < v, Vi € [n]
= opt —nA < opt’ < opt

® Opt > Upax 1= MaX,c[y) v; (assuming w; < W, Vi)
@ setting A := L“’MJ (1 — €)opt < opt’ < opt

n

e Vi, v, =0O(2) — running time = O(”;)

€

Theorem There is a (1 + €)-approximation for the knapsack
problem in time O("?B)




Def. A polynomial-time approximation scheme (PTAS) is a family
of algorithms A., where A, for every € > 0 is a (polynomial-time)
(1 & €)-approximation algorithm.

@ Remark: the approximation ratio is 1 4+ ¢ or 1 — ¢, depending on
whether the problem is a minimization/maximization problem
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approximation scheme A, such that the running time of A, is
poly(n, %) for input instances of n.
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problem to admit an FPTAS?



Def. A polynomial-time approximation scheme (PTAS) is a family
of algorithms A., where A, for every € > 0 is a (polynomial-time)
(1 & €)-approximation algorithm.

@ Remark: the approximation ratio is 1 4+ ¢ or 1 — ¢, depending on
whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is an
approximation scheme A, such that the running time of A, is
poly(n, %) for input instances of n.

@ So, Knapsack admits an FPTAS.

Q: Assume P # NP. What is a neccesary condition for a NP-hard
problem to admit an FPTAS?

@ Vertex cover? Maximum independent set?



Outline

@ Arbitrarily Good Approximation Using Rounding Data

@ Makespan Minimization on ldentical Machines



Makespan Minimization on ldentical Machines
Input: n jobs index as [n]
each job j € [n] has a processing time p; € Z-

m machines
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Output: schedule of jobs on machines with minimum makespan
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Makespan Minimization on ldentical Machines
Input: n jobs index as [n]
each job j € [n] has a processing time p; € Z-
m machines
Output: schedule of jobs on machines with minimum makespan

o : [n] = [m] with minimum max;epm) 3,13 Pj

L1 1 [2]
(5] [6]1 [7]1 [8 ][9]
(10 ] [11] [ 12 1] [13]
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Greedy Algorithm

1: start from an empty schedule
2: for j =1tondo
3: put job j on the machine with the smallest load

Analysis of (2 — %)—Approximation for Greedy Algorithm

max ‘= Max
Pma e[}pj

1
< — . L —
alg < Prax + — (D P = Prax) = (1 — pmax +— Z p;
Jj€n]
opt Z max 1
P pl — alg < (2 — —)opt
opt > oD i P m
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alg < % Zje[n] Dj + Pmax < opt +€-opt = (1 + 6)Opt-

Q:

What can we do if all items have size at least € - opt?

A:

We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

1: declare j small if p; < € - pmax and big otherwise
2: use trunction + DP to solve the instance defined by big jobs
3: use DP for instance (p]); big to schedule big jobs




: What happens if all items have size at most € - opt?

alg < o> 37 P+ Pmax < opt + € - opt = (1 + €)opt.

Q:

What can we do if all items have size at least € - opt?

A:

We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

e n =

declare j small if p; < € - pmax and big otherwise

use trunction + DP to solve the instance defined by big jobs
use DP for instance (p/); big to schedule big jobs

add small jobs to schedule greedily
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Dynamic Programming for Big Jobs

 B:={j € [n]:p; > epmax}: set of big jobs
o pi:=max{epmax(l +€)' <p;:t€Z},VjeB

p; is the rounded size of j

o k:=|[{p}:j € B}|: #(distinct rounded sizes)
kE<1+log, == = O(% -log %)

€Pmax

® {q1,q2, " ,qr} = {p; : j € B}: the k distinct rounded sizes

@ ny,---,ny: #(big jobs) with rounded sizes being q1,- - , g
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Constructing a Directed Acyclic Graph G = (V. E)

@ a vertex (ay, - ,ax), a; € [0,n,],Vi € [K]
e denotes the instance with a; jobs of size q1, as jobs of size ¢o, - - -,
ay, jobs of size qp

e anarc (ay, - ,a,) — (by,- - - by) of weight S5 (b — a;)q;,
if a; <b;,Vi € [k], and a; < b; for some i € [k]
e reducing instance (b1, ---by) to (a1, -- ,ax) requires 1 machine of

load Zle (bz — ai)qi

@ Goal: find a path from (0,---,0) to (ny,--- ,ng) of at most m
edges, so as to minimize the maximum weight on the path.

@ problem can be solved in O(m - |E|) time using DP

o O(m-|E|) = O(m - n2t) = n0(t0s?)
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Analysis of Algorithm for Big Jobs

@ Zp: instance (p;)jep  optp: its optimum makespan
@ T} instance (p})jeB opt’z: its optimum makespan
e optlz; < optg

@ schedule for Z}; = schedule for Zg:

(1 4 €)-blowup in makespan

Theorem The dynamic programming algorithm gives a schedule of

makespan at most (1 + €)opty in time 0 (L1ogt)

Adding small jobs to schedule
1: starting from the schedule for big jobs
2: for every small job j do
3: add j to the machine with the smallest load
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Analysis of the Final Algorithm

case 1 case 2
@ Case 1: makespan is not increased by small jobs
alg < (1 + ¢)opty < (1 + ¢)opt.

@ Case 2: makespan is increased by small jobs
o loads between any two machines differ by at most size of a small job,
which is at most € -pmaX

alg < € Ppmax + — ij<e opt 4+ opt = (1 + €) - opt.
JG[n]
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Def. Given a graph G = (V, E), a vertex cover of G is a subset
S C V such that for every (u,v) € E thenu € Sorv e S . J

Weighted Vertex-Cover Problem
Input: G = (V, E) with vertex weights {w, },cv

Output: a vertex cover S with minimum ) . w,




Integer Programming for Weighted Vertex Cover

@ For every v € V, let x, € {0,1} indicate whether we select v in
the vertex cover §

@ The integer programming for weighted vertex cover:
(IPwvc) min Z Wy Ty s.t.

veV
Ty + 2y > 1 V(U,’U)EE

z, € {0,1} YoeV
e (IPwvc) < weighted vertex cover

@ Thus it is NP-hard to solve integer programmings in general
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o Integer programming for WVC:

(IPwvc) min Z Wy Ly s.t.

veV
Ty + 2y 21 V(U,U)GE
z, € {0,1} YoeV

@ Linear programming relaxation for WVC:

(LPwvc) min Z Wy Ly s.t.

veV
fu‘l'%Zl V(U,U)GE
z, € [0, 1] YoeV

o let IP = value of (IPwyc), LP = value of (LPwyc)
@ Then, LP < IP
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Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover
1: Solving (LPwyc) to obtain a solution {z }.cv
2: Thus, LP =% ., w,; < IP
3: Let S={ueV:x,>1/2} and output S

Lemma S is a vertex cover of (.

Lemma cost(S) := > cqw, < 2-LP.

Proof.

cost(S) = Zwu < Zwu-%;i = QZwu-a:Z

u€esS ueS u€eS

SQZwu'xZ:Q-LP.

ueVv
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Algorithm for Weighted Vertex Cover
1: Solving (LPwyc) to obtain a solution {z }.cv
2: Thus, LP =% ., w,o; < IP
3: Let S ={ueV:a>1/2} and output S

Lemma S is a vertex cover of (.

Lemma cost(S) := > cqw, < 2-LP.

Theorem Algorithm is a 2-approximation algorithm for WVC.




Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover
1: Solving (LPwyc) to obtain a solution {z }.cv
2: Thus, LP =% ., w,o; < IP
3: Let S ={ueV:a>1/2} and output S

Lemma S is a vertex cover of (.

Lemma cost(S) := > cqw, < 2-LP.

Theorem Algorithm is a 2-approximation algorithm for WVC.

Proof.
cost(S) <2-LP <2-IP =2 cost(best vertex cover).




Outline

e Approximation Using LP Rounding and Primal Dual

@ 2-Approximation Algorithm for Weighted Vertex Cover Using
Primal-Dual



Ty + Ty > 1

max Z Ye

ecE

Zyeng YveV

e€d(v)
Ye >0 Vee B
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LP Relaxation

E Wy Ty

veV
Ty+xy,>1  V(u,v)€eE
Ty >0 YveV

@ Algorithm constructs integral primal solution z and dual solution y

simultaneously.

Dual LP

> e

eckE

Zyeng YoeV

e€d(v

yezO Vee E

v




Primal-Dual Algorithm for Weighted Vertex Cover

Problem
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e becomes tight
Z, < 1, claim all edges incident to v are covered

e n =

X
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Primal-Dual Algorithm for Weighted Vertex Cover

Problem
x < 0,y < 0, all edges said to be uncovered
while there exists at least one uncovered edge do
take such an edge e arbitrarily
increasing vy, until the dual constraint for one end-vertex v of
e becomes tight
Z, < 1, claim all edges incident to v are covered

e n =

X

6: return x

Lemma
Q = satisfies all primal constraints
2 @ y satisfies all dual constraints
1 @ ©Q P<2D<2D*<2-opt
P =3 cy Ty value of z

@ %) @ D =73 Ve value of y

D . Jd..1 1D .. 1..




P = Zwvxv < ZCI)‘U Z Ye = Z y(u,v)(xu -l-fL‘v)

veEV veV e€d(v) (uv)EE
<2) y.=2D. O
ecl
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Proof of P < 2D.

P Zwvwv<zxv Z ye_ Z yuv $u+l’v)

veV veV e€d(v) (u,v)EE
<2 y.=2D.
ecl

@ a more general framework: construct an arbitrary maximal dual
solution y; choose the vertices whose dual constraints are tight

@ y is maximal: increasing any coordinate y. makes y infeasible



Proof of P < 2D.

P Zwvwv<zxv Z ye_ Z yuv $u+$y)

veV veV e€d(v) (u,v)EE
<2 y.=2D.
ecl

@ a more general framework: construct an arbitrary maximal dual
solution y; choose the vertices whose dual constraints are tight

@ y is maximal: increasing any coordinate y. makes y infeasible

@ primal-dual algorithms do not need to solve LPs
@ LPs are used in analysis only

o faster than LP-rounding algorithm in general




Outline

e Approximation Using LP Rounding and Primal Dual

@ 2-Approximation Algorithm for Unrelated Machine Scheduling
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Unrelated Machine Scheduling
Input: J,|J| = n: jobs
M, |M| = m: machines
pi;i processing time of job
J on machine ¢

Output: assignment o : J — M:, so
as to minimize makespan:

=
o

k)
&

=
o

=
=

o

[

load=14

load=8

load=13

maximum load=14
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@ assume job k; is assigned to sub-machine i;.
a a
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o fix 7, use p; for p;;

@ P >pr = 2Py
@ worst case:
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m<T

p2 < 0.7p1 + 0.3p,

ps < 0.3p2 + 0.5p3 + 0.2py

pr < 0.1pg + 0.5p5 + 0.2pg + 0.2p7
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