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Outline

1 Randomized Algorithms
Freivald’s matrix multiplication verification algorithm
Randomized Select and Quicksort
Randomized Algorithm for Global Min-Cut
7
8
-Approximation Algorithm for Max 3-SAT

2 Extending the Limits of Tractability

3 Approximation Algorithms using Greedy

4 Arbitrarily Good Approximation Using Rounding Data

5 Approximation Using LP Rounding and Primal Dual
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Why do we use randomized algorithms?
simpler algorithms: quick-sort, minimum-cut, and Max 3-SAT.

faster algorithms: polynomial identity testing, Freivald’s matrix
multiplication verification algorithm, sampling and fingerprinting.

mathematical beauty: Nash equilibrium for 0-sum game

proof of existence of objects: union bound, Lovasz local lemma.

Price of using randomness

The algorithm may be incorrect with some probability (Monto
Carlo Algorithm)

The algorithm may take a long time to terminate (Las Vegas
Algorithm)
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Matrix Multiplication Verification

Input: 3 matrices A,B,C ∈ Zn×n

Output: whether if C = AB

trivial: compute C ′ = AB and check if C ′ = C.

time = matrix multiplication time

naive algorithm: O(n3)
Strassen’s algorithm: O(n2.81)
Best known algorithm for matrix multiplication: O(n2.3719).

Freivald’s algorithm: randomized algorithm with O(n2) time.
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Freivald’s Algorithm: one experiment

1: randomly choose a vector r ∈ {0, 1}n
2: return ABr = Cr

Q: What is the running time of the algorithm?

(AB)r: matrix-multiplication time

A(Br): O(n2) time

Analysis of correctness
AB = C: algorithm outputs true with probability 1.

AB ̸= C: algorithm may incorrectly output true.

Lemma If AB ̸= C, then the algorithm outputs false with
probability at least 1/2.



6/119

Freivald’s Algorithm: one experiment

1: randomly choose a vector r ∈ {0, 1}n
2: return ABr = Cr

Q: What is the running time of the algorithm?

(AB)r: matrix-multiplication time

A(Br): O(n2) time

Analysis of correctness
AB = C: algorithm outputs true with probability 1.

AB ̸= C: algorithm may incorrectly output true.

Lemma If AB ̸= C, then the algorithm outputs false with
probability at least 1/2.



6/119

Freivald’s Algorithm: one experiment

1: randomly choose a vector r ∈ {0, 1}n
2: return ABr = Cr

Q: What is the running time of the algorithm?

(AB)r: matrix-multiplication time

A(Br): O(n2) time

Analysis of correctness
AB = C: algorithm outputs true with probability 1.

AB ̸= C: algorithm may incorrectly output true.

Lemma If AB ̸= C, then the algorithm outputs false with
probability at least 1/2.



6/119

Freivald’s Algorithm: one experiment

1: randomly choose a vector r ∈ {0, 1}n
2: return ABr = Cr

Q: What is the running time of the algorithm?

(AB)r: matrix-multiplication time

A(Br): O(n2) time

Analysis of correctness
AB = C: algorithm outputs true with probability 1.

AB ̸= C: algorithm may incorrectly output true.

Lemma If AB ̸= C, then the algorithm outputs false with
probability at least 1/2.



6/119

Freivald’s Algorithm: one experiment

1: randomly choose a vector r ∈ {0, 1}n
2: return ABr = Cr

Q: What is the running time of the algorithm?

(AB)r: matrix-multiplication time

A(Br): O(n2) time

Analysis of correctness
AB = C: algorithm outputs true with probability 1.

AB ̸= C: algorithm may incorrectly output true.

Lemma If AB ̸= C, then the algorithm outputs false with
probability at least 1/2.



7/119

Lemma If AB ̸= C, then the algorithm outputs false with
probability at least 1/2.

Proof.
D := C − AB ̸= 0 Cr = ABr ⇐⇒ Dr = 0

∃i, j ∈ [n], Di,j ̸= 0

Dir =
n∑

j′=1

Di,j′rj′ = X + Y, X =
∑

j′∈[n],j′ ̸=j

Di,j′rj′ , Y = Di,jrj

Pr[Dir ̸= 0] = Pr[Y ̸= −X]

=
∑
x∈Z

Pr[X = x] · Pr[Y ̸= −x|X = x]

=
∑
x∈Z

Pr[X = x] · Pr[Di,jrj ̸= −x|X = x]

≥
∑
x∈Z

Pr[X = x] · 1
2
=

1

2
.
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probabilities:

true false
AB = C 1 0
AB ̸= C ≤ 1/2 ≥ 1/2

Freivald’s Algorithm: k experiments
1: for t← 1 to k do
2: randomly choose a vector r ∈ {0, 1}n
3: if ABr ̸= Cr then return false

4: return true

probabilities with k experiments:

true false
AB = C 1 0
AB ̸= C ≤ 1/2k ≥ 1− 1/2k

to achieve δ probability of mistake, need log2
1
δ
= O(log 1

δ
)

experiments.



8/119

probabilities:

true false
AB = C 1 0
AB ̸= C ≤ 1/2 ≥ 1/2

Freivald’s Algorithm: k experiments
1: for t← 1 to k do
2: randomly choose a vector r ∈ {0, 1}n
3: if ABr ̸= Cr then return false

4: return true

probabilities with k experiments:

true false
AB = C 1 0
AB ̸= C ≤ 1/2k ≥ 1− 1/2k

to achieve δ probability of mistake, need log2
1
δ
= O(log 1

δ
)

experiments.



8/119

probabilities:

true false
AB = C 1 0
AB ̸= C ≤ 1/2 ≥ 1/2

Freivald’s Algorithm: k experiments
1: for t← 1 to k do
2: randomly choose a vector r ∈ {0, 1}n
3: if ABr ̸= Cr then return false

4: return true

probabilities with k experiments:

true false
AB = C 1 0
AB ̸= C ≤ 1/2k ≥ 1− 1/2k

to achieve δ probability of mistake, need log2
1
δ
= O(log 1

δ
)

experiments.



8/119

probabilities:

true false
AB = C 1 0
AB ̸= C ≤ 1/2 ≥ 1/2

Freivald’s Algorithm: k experiments
1: for t← 1 to k do
2: randomly choose a vector r ∈ {0, 1}n
3: if ABr ̸= Cr then return false

4: return true

probabilities with k experiments:

true false
AB = C 1 0
AB ̸= C ≤ 1/2k ≥ 1− 1/2k

to achieve δ probability of mistake, need log2
1
δ
= O(log 1

δ
)

experiments.



9/119

Frievald’s algorithm is a Monta Carlo algorithm.

Def. A Monta Carlo algorithm is a randomized algorithm whose
output may be incorrect with some probability.

For a Monta Carlo algorithm that outputs true/false, we say the
algorithm has one-sided error if it makes error only if the correct
output is true (or false).
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Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 85
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Quicksort

quicksort(A, n)

1: if n ≤ 1 then return A
2: x← lower median of A
3: AL ← elements in A that are less than x \\ Divide
4: AR ← elements in A that are greater than x \\ Divide
5: BL ← quicksort(AL, AL.size) \\ Conquer
6: BR ← quicksort(AR, AR.size) \\ Conquer
7: t← number of times x appear A
8: return the array obtained by concatenating BL, the array

containing t copies of x, and BR

Recurrence T (n) ≤ 2T (n/2) +O(n)

Running time = O(n log n)
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n
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Each level has total running time O(n)

Number of levels = O(log n)

Total running time = O(n log n)



14/119

Randomized Quicksort Algorithm

quicksort(A, n)

1: if n ≤ 1 then return A
2: x← a random element of A (x is called a pivot)
3: AL ← elements in A that are less than x \\ Divide
4: AR ← elements in A that are greater than x \\ Divide
5: BL ← quicksort(AL, AL.size) \\ Conquer
6: BR ← quicksort(AR, AR.size) \\ Conquer
7: t← number of times x appear A
8: return the array obtained by concatenating BL, the array

containing t copies of x, and BR
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Variant of Randomized Quicksort Algorithm

quicksort(A, n)

1: if n ≤ 1 then return A
2: repeat
3: x← a random element of A (x is called a pivot)
4: AL ← elements in A that are less than x \\ Divide
5: AR ← elements in A that are greater than x \\ Divide
6: until AL.size ≤ 3n/4 and AR.size ≤ 3n/4
7: BL ← quicksort(AL, AL.size) \\ Conquer
8: BR ← quicksort(AR, AR.size) \\ Conquer
9: t← number of times x appear A

10: return the array obtained by concatenating BL, the array
containing t copies of x, and BR
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Analysis of Variant

1: x← a random element of A
2: AL ← elements in A that are less than x
3: AR ← elements in A that are greater than x

Q: What is the probability that AL.size ≤ 3n/4 and
AR.size ≤ 3n/4?

A: At least 1/2
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Analysis of Variant

1: repeat
2: x← a random element of A
3: AL ← elements in A that are less than x
4: AR ← elements in A that are greater than x
5: until AL.size ≤ 3n/4 and AR.size ≤ 3n/4

Q: What is the expected number of iterations the above procedure
takes?

A: At most 2
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Suppose an experiment succeeds with probability p ∈ (0, 1],
independent of all previous experiments.

1: repeat
2: run an experiment
3: until the experiment succeeds

Lemma The expected number of experiments we run in the above
procedure is 1/p.
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Lemma The expected number of experiments we run in the above
procedure is 1/p.

Proof

Expectation = p+ (1− p)p× 2 + (1− p)2p× 3 + (1− p)3p× 4

+ · · ·

= p
∞∑
i=1

(1− p)i−1i = p
∞∑
j=1

∞∑
i=j

(1− p)i−1

= p
∞∑
j=1

(1− p)j−1 1

1− (1− p)
=

∞∑
j=1

(1− p)j−1

= (1− p)0
1

1− (1− p)
= 1/p
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Variant Randomized Quicksort Algorithm

quicksort(A, n)

1: if n ≤ 1 then return A
2: repeat
3: x← a random element of A (x is called a pivot)
4: AL ← elements in A that are less than x \\ Divide
5: AR ← elements in A that are greater than x \\ Divide
6: until AL.size ≤ 3n/4 and AR.size ≤ 3n/4
7: BL ← quicksort(AL, AL.size) \\ Conquer
8: BR ← quicksort(AR, AR.size) \\ Conquer
9: t← number of times x appear A

10: return the array obtained by concatenating BL, the array
containing t copies of x, and BR
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Analysis of Variant

Divide and Combine: takes O(n) time

Conquer: break an array of size n into two arrays, each has size at
most 3n/4. Recursively sort the 2 sub-arrays.

n
≤ 3n/4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

O(n)

O(n)

O(n)

O(n)

≤ 9n/16

≤ 27n/64

Number of levels ≤ log4/3 n = O(log n)
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Randomized Quicksort Algorithm

quicksort(A, n)

1: if n ≤ 1 then return A
2: x← a random element of A (x is called a pivot)
3: AL ← elements in A that are less than x \\ Divide
4: AR ← elements in A that are greater than x \\ Divide
5: BL ← quicksort(AL, AL.size) \\ Conquer
6: BR ← quicksort(AR, AR.size) \\ Conquer
7: t← number of times x appear A
8: return the array obtained by concatenating BL, the array

containing t copies of x, and BR

Intuition: the quicksort algorithm should be better than the
variant.
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Analysis of Randomized Quicksort Algorithm

T (n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

Assuming we choose the element of rank i as the pivot.

The left sub-instance has size at most i− 1

The right sub-instance has size at most n− i

Thus, the expected running time in this case is(
T (i− 1) + T (n− i)

)
+O(n)

Overall, we have

T (n) =
1

n

n∑
i=1

(
T (i− 1) + T (n− i)

)
+O(n)

=
2

n

n−1∑
i=0

T (i) +O(n)

Can prove T (n) ≤ c(n log n) for some constant c by reduction
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Analysis of Randomized Quicksort Algorithm

The induction step of the proof:

T (n) ≤ 2

n

n−1∑
i=0

T (i) + c′n ≤ 2

n

n−1∑
i=0

ci log i+ c′n

≤ 2c

n

⌊n/2⌋−1∑
i=0

i log
n

2
+

n−1∑
i=⌊n/2⌋

i log n

+ c′n

≤ 2c

n

(
n2

8
log

n

2
+

3n2

8
log n

)
+ c′n

= c

(
n

4
log n− n

4
+

3n

4
log n

)
+ c′n

= cn log n− cn

4
+ c′n ≤ cn log n if c ≥ 4c′
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Indirect Analysis Using Number of Comparisons

Running time = O(number of comparisons)
∀1 ≤ i < j ≤ n, Di,j indicates if we compared the i-th smallest
element with the j-th smallest element
number of comparisons =

∑
1≤i<j≤n Di,j

Lemma E[Di,j] =
2

j−i+1
.

Proof.
A′: sorted array for A. Focus on A′[i..j].

pivot outside A′ [i]: A′ [i · · · j] will be passed to left or right
recursion; go to that recursion

pivot inside A′ [i]: A′ [i] and A′ [j] will be separated; call this
critical recursion

A[i] and A[j] are compared in the critical recursion with
probability 2

j−i+1
.
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probability 2

j−i+1
.
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E [number of comparisons] = E

[ ∑
1≤i<j≤n

Di,j

]

=
∑

1≤i<j≤n

E [Di,j] = 2
∑

1≤i<j≤n

1

j − i+ 1

≤ 2n

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
= Θ(n log n) .

The algorithm is a Las-Vegas algorithm:

Def. A Las-Vegas algorithm is a randomized algorithm that always
outputs a correct solution but has randomized running time.
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Table: Comparisons between Monta Carlo and Las Vegas Algorithms.

correctness running time
Monta Carlo may be wrong usually has good worst-case

running time
Las Vegas always correct may take a long time and

usually only has good “ex-
pected running time”
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Lemma Given a Las Vegas algorithm A with expected running time
at most T (n), we can design a Monta Carlo algorithm A′ with
worst-case running time O(T (n)) and error at most 0.99.

0.99 can be changed to any c < 1

Proof.
run A for 100T (n) time

if A terminated, output what A outputs

otherwise, declare failure

Markov Inequality:
Pr[A runs for more than 100T (n) time] ≤ 1/100
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Randomized Selection Algorithm

selection(A, n, i)

1: if n = 1 then return A
2: x← random element of A (called pivot)
3: AL ← elements in A that are less than x ▷ Divide
4: AR ← elements in A that are greater than x ▷ Divide
5: if i ≤ AL.size then
6: return selection(AL, AL.size, i) ▷ Conquer
7: else if i > n− AR.size then
8: return selection(AR, AR.size, i− (n− AR.size)) ▷ Conquer
9: else

10: return x

expected running time = O(n)
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Randomized Selection

Xj, j = 0, 1, 2, · · · : the size of A in the j-th recursion

E[Xj+1|Xj = n′] ≤ 1

n′

n′∑
k=1

max{k − 1, n′ − k}

≤ 1

n′

(∫ n′/2

k=0

(n′ − k)dk +

∫ n′

k=n′/2

kdk

)

=
1

n′

((
n′k − k2

2

) ∣∣n′/2

0
+

k2

2

∣∣n′

n′/2

)
=

1

n′

(
n′2

2
− n′2

8
+

n′2

2
− n′2

8

)
=

3n′

4
.

E[Xj+1] ≤ 3
4
E[Xj]

X0 = n =⇒ E[Xj] ≤
(
3
4

)j
n
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E[running time of randomized selection]

≤ E

[
O(1)

∞∑
j=0

Xj

]
≤ O(1)

∞∑
j=0

E[Xj]

≤ O(1)
∞∑
j=0

(
3

4

)j

n = O(1) · 4n = O(n).
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Outline

1 Randomized Algorithms
Freivald’s matrix multiplication verification algorithm
Randomized Select and Quicksort
Randomized Algorithm for Global Min-Cut
7
8
-Approximation Algorithm for Max 3-SAT

2 Extending the Limits of Tractability

3 Approximation Algorithms using Greedy

4 Arbitrarily Good Approximation Using Rounding Data

5 Approximation Using LP Rounding and Primal Dual
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Global Min-Cut Problem
Input: a connected graph G = (V,E)

Output: the minimum number of edges whose removal will
disconnect G
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Solving Global Min-Cut Using s-t Min-Cut
1: let G′ be the directed graph obtained from G by replacing every

edge with two anti-parallel edges
2: for a fixed s ∈ V and every pair t ∈ V \ {s} do
3: obtain the minimum cut separating s and t in G, by solving

the maximum flow instance with graph G′,source s and sink t

4: output the smallest minimum cut we found

Time = O(n)× (Time for Maximum Flow)
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Karger’s Randomized Algorithm for Min-Cut

1: G′ = (V ′, E ′)← G
2: while |V ′| > 2 do
3: pick uv ∈ E ′ uniformly at random
4: contract uv in G′, keeping parallel edges, but not self-loops

5: return the cut in G correspondent to E ′

a

b c

d fe

g
h

i

j

a

b c

d fe

g
h

i

j
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Obs. Contraction does not decrease size of min-cut.

Lemma If G′ = (V ′, E ′) has size of min-cut being c, then
|E ′| ≥ |V ′|c/2

Proof.
Every vertex will have degree at least c, and thus 2|E ′| ≥ |V ′|c.

let C ⊆ E be a fixed min-cut of G

an iteration fails if we chose some edge e ∈ C to contract.

Coro. Focus on some iteration where we have the graph
G′ = (V ′, E ′) with n′ = |V ′| at the beginning. Suppose all previous
iterations succeed. Then the probability this iteration fails is at most

c
n′c/2

= 2
n′ .
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The probability that the algorithm succeeds is at least(
1− 2

n

)(
1− 2

n− 1

)(
1− 2

n− 2

)
· · ·
(
1− 2

3

)
=

n− 2

n
× n− 3

n− 1
× n− 4

n− 2
× · · · × 1

3
=

2

n(n− 1)

Coro. Any graph G has at most n(n−1)
2

distinct minimum cuts.

A := n(n−1)
2

: algorithm succeeds with probability at least 1
A

Running the algorithm for Ak times will increase the probability to

1− (1− 1

A
)Ak ≥ 1− e−k.

To get a success probability of 1− δ, run the algorithm for
O(n2 log 1

δ
) times.
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Equivalent Algorithm

1: give every edge a weight in [0, 1] uniformly at random.
2: solve the MST on the graph G with the weights, using either

Kruskal or Prim’s algorithm
3: remove the heaviest edge in the MST,
4: let U and V \ U be the vertex sets of two components
5: return the cut in G between U and V \ U

run it once: time = O(m+ n log n)

to get success probability 1− δ: time = O(n2(m+ n log n) log 1
δ
)
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Karger-Stein: A Faster Algorithm

Karger-Stein(G = (V,E))

1: if |V | ≤ 6 then return min cut of G directly

2: repeat twice and return the smaller cut:
3: run Karger(G) down to

⌈
n/
√
2
⌉
vertices, to obtain G′

4: consider the candidate cut returned by Karger-Stein(G′)

n

n√
2

n√
2

n
2

n
2

n
2

n
2

Running time:

T (n) = 2T
(

n√
2

)
+O(n2)

T (n) = O(n2 log n)
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Karger-Stein(G = (V,E))

1: if |V | ≤ 6 then return min cut of G directly

2: repeat twice and return the smaller cut:
3: run Karger(G) down to

⌈
n/
√
2
⌉
+ 1 vertices, to obtain G′

4: consider the candidate cut returned by Karger-Stein(G′)

Analysis of Probability of Success

running Karger(G) down to
⌈
n/
√
2
⌉
+ 1 vertices, success

probability is at least

n− 2

n
× n− 3

n− 1
× · · · ×

⌈
n/
√
2
⌉⌈

n/
√
2
⌉
+ 2

=
(
⌈
n/
√
2
⌉
+ 1)

⌈
n/
√
2
⌉

n(n− 1)

≥ n2/2 + n/
√
2

n2 − n
≥ 1

2

recursion for Probability: P (n) ≥ 1−
(
1− 1

2
P ( n√

2
)
)2
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n

n√
2

n√
2

n
2

n
2

n
2

n
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

L levels

every edge is chosen w.p 1/2

success if we choose some
root-to-leaf path

what is the success probability
in terms of L?

Lemma PL ≥ 1
L+1

.

Proof.
L = 0: a singleton, holds trivially.

induction:

PL = 1−
(
1− 1

2
PL−1

)2
≥ 1−

(
1− 1

2L

)2
=

1

L
− 1

4L2

=
4L− 1

4L2
≥ 1

L+ 1
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Karger-Stein(G = (V,E))

1: if |V | ≤ 6 then return min cut of G directly

2: repeat twice and return the smaller cut:
3: run Karger(G) down to

⌈
n/
√
2
⌉
+ 1 vertices, to obtain G′

4: consider the candidate cut returned by Karger-Stein(G′)

Running time: O(n2 log n)

Success probability: Ω
(

1
logn

)

Repeat O(log n) times can increase the probability to a constant



42/119

Karger-Stein(G = (V,E))

1: if |V | ≤ 6 then return min cut of G directly

2: repeat twice and return the smaller cut:
3: run Karger(G) down to

⌈
n/
√
2
⌉
+ 1 vertices, to obtain G′

4: consider the candidate cut returned by Karger-Stein(G′)

Running time: O(n2 log n)

Success probability: Ω
(

1
logn

)
Repeat O(log n) times can increase the probability to a constant



43/119

Outline

1 Randomized Algorithms
Freivald’s matrix multiplication verification algorithm
Randomized Select and Quicksort
Randomized Algorithm for Global Min-Cut
7
8
-Approximation Algorithm for Max 3-SAT

2 Extending the Limits of Tractability

3 Approximation Algorithms using Greedy

4 Arbitrarily Good Approximation Using Rounding Data

5 Approximation Using LP Rounding and Primal Dual



44/119

Approximation Algorithms

An algorithm for an optimization problem is an α-approximation
algorithm, if it runs in polynomial time, and for any instance to the
problem, it outputs a solution whose cost (or value) is within an
α-factor of the cost (or value) of the optimum solution.

opt: cost (or value) of the optimum solution

sol: cost (or value) of the solution produced by the algorithm

α: approximation ratio

For minimization problems:

α ≥ 1 and we require sol ≤ α · opt
For maximization problems, there are two conventions:

α ≤ 1 and we require sol ≥ α · opt
α ≥ 1 and we require sol ≥ opt/α
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Max 3-SAT
Input: n boolean variables x1, x2, · · · , xn

m clauses, each clause is a disjunction of 3 literals from 3
distinct variables

Output: an assignment so as to satisfy as many clauses as possible

Example:
clauses: x2 ∨ ¬x3 ∨ ¬x4, x2 ∨ x3 ∨ ¬x4,
¬x1 ∨ x2 ∨ x4, x1 ∨ ¬x2 ∨ x3, ¬x1 ∨ ¬x2 ∨ ¬x4

We can satisfy all the 5 clauses: x = (1, 1, 1, 0, 1)
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Randomized Algorithm for Max 3-SAT

Simple idea: randomly set each variable xu = 1 with probability
1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, 7
8
m

number of clauses will be satisfied.

Proof.

for each clause Cj, let Zj = 1 if Cj is satisfied and 0 otherwise

Z =
∑m

j=1 Zj is the total number of satisfied clauses

E[Zj] = 7/8: out of 8 possible assignments to the 3 variables in
Cj, 7 of them will make Cj satisfied

E[Z] = E
[∑m

j=1 Zj

]
=
∑m

j=1 E[Zj] =
∑m

j=1
7
8
= 7

8
m, by linearity

of expectation.
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Randomized Algorithm for Max 3-SAT

Lemma Let m be the number of clauses. Then, in expectation, 7
8
m

number of clauses will be satisfied.

Since the optimum solution can satisfy at most m clauses, lemma
gives a randomized 7/8-approximation for Max-3-SAT.

Theorem ([Hastad 97]) Unless P = NP, there is no ρ-approximation
algorithm for MAX-3-SAT for any ρ > 7/8.
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1 Randomized Algorithms

2 Extending the Limits of Tractability
Finding Small Vertex Covers: Fixed Parameterized Tractability
Solving NP-Hard Problems on Bounded-Tree-Width Graphs
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5 Approximation Using LP Rounding and Primal Dual
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Vertex-Cover Problem
Input: G = (V,E)

Output: a vertex cover C with minimum |C|

(The decision version of) vertex-cover is NP-complete.

Q: What if we are only interested in a vertex cover of size at most
k, for some small number k?
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Q: What if we are only interested in a vertex cover of size at most
k, for some constant k?

Motivation: if the minimum vertex cover is too big, then the
solution becomes meaningless.

Enumeration gives a O(knk+1)-time algorithm.

For moderately large k (e.g., n = 1000, k = 10), algorithm is
impractical.

Lemma There is an algorithm with running time O(2k · kn) to
check if G contains a vertex cover of size at most k or not.

Remark: m does not appear in the running time. Indeed, if
m > kn, then there is no vertex cover of size k.
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Vertex-Cover(G′ = (V ′, E ′), k)
1: if |E ′| = ∅ then return true

2: if k = 0 then return false
3: pick any edge (u, v) ∈ E ′

4: return Vertex-Cover(G′ \ u, k− 1) or Vertex-Cover(G′ \ v, k− 1)

G′ \ u: the graph obtained from G′ by removing u and its incident
edges

Correctness: if (u, v) ∈ E ′, we must choose u or choose v to
cover (u, v).

Running time: 2k recursions and each recursion has running time
O(kn).
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Def. An problem is fixed parameterized tractable (FPT) with
respect to a parameter k, if it can be solved in f(k) · poly(n) time,
where n is the size of its input and poly(n) =

⋃∞
t=0O(nt).

Vertex cover is fixed parameterized tractable with respect to the
size k of the optimum solution.
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Many NP-hard problems on general graphs are easy on trees.

Greedy algorithms: independent set, vertex cover, dominating set,

Dynamic programming: weighted versions of above problems

Example: Maximum-Weight Independent Set

15

8 16 18

3 5

4

5 7 2 9

dynamic programming:

f [i, 0]: optimum value in tree i
when i is not chosen

f [i, 1]: optimum value in tree i

Reason why many problems can be solved using DP on trees: the
child-trees of a vertex i are only connected through i.
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Bounded-Tree-Width Graphs

Def. A tree decomposition of a
graph G = (V,E) consists of

a tree T with node set U , and

a subset Vt ⊆ V for every t ∈ U ,
which we call the bag for t,

satisfying the following properties:

(Vertex Coverage) Every v ∈ V
appears in at least one bag.

(Edge Coverage) For every
(u, v) ∈ E, some bag contains
both u and v.

(Coherence) For every u ∈ V , the
nodes t ∈ U : u ∈ Vt induce a
connected sub-graph of T .

a b

c d e f

g
h i

j k

l

abc

bcd

cdg

dgh

deh

ehi

ghk

gjk

jkl

efi
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Bounded-Tree-Width Graphs

Def. The tree-width of the
tree-decomposition (T, (Vt)t∈U) is
defined as maxt∈U |Vt| − 1.

Def. The tree-width of a graph
G = (V,E), denoted as tw(G), is the
minimum tree-width of a tree
decomposition (T, (Vt)t∈U) of G.

The graph on the top right has
tree-width 2.
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decomposition (T, (Vt)t∈U) of G.

The graph on the top right has
tree-width 2.

a b

c d e f

g
h i

j k

l

abc

bcd

cdg

dgh

deh

ehi

ghk

gjk

jkl

efi



57/119

Bounded-Tree-Width Graphs

Def. The tree-width of the
tree-decomposition (T, (Vt)t∈U) is
defined as maxt∈U |Vt| − 1.

Def. The tree-width of a graph
G = (V,E), denoted as tw(G), is the
minimum tree-width of a tree
decomposition (T, (Vt)t∈U) of G.

The graph on the top right has
tree-width 2.

a b

c d e f

g
h i

j k

l

abc

bcd

cdg

dgh

deh

ehi

ghk

gjk

jkl

efi



58/119

Obs. A (non-empty) tree has tree-width 1.

a

b c d

e f g h i

Lemma A graph has tree-width 1 if and only if it is a (non-empty)
forest.
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Many problems on graphs with small tree-width can be solved
using dynamic programming.

Typically, the running time will be exponential in tw(G).

Example: Maximum Weight Independent Set

given G = (V,E), a tree-decomposition (T, (Vt)t∈U) of G with
tree-width tw.

vertex weights w ∈ RV
>0.

find an independent set S of G with the maximum total weight.
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Assumption: every node in T has at most 2 children. Moreover,
every internal nodes in T is one of the following types:

Splitter: a node t with two children t′ and t′′, Vt = Vt′ = Vt′′

Insertion node: a node t with one child t′, ∃u /∈ Vt, Vt′ = Vt ∪ {u}
Deletion node: a node t with one child t′, ∃u ∈ Vt, Vt′ = Vt \ {u}
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Def. Given a graph G = (V,E), and a tree decomposition
(T, (Vt)t∈U), a valid labeling of T is a vector (Rt)t∈U of sets, one for
every node t, such that the following conditions hold.

Rt ⊆ Vt,∀t ∈ U , and Rt is an independent set in G

Rt = Rt′ = Rt′′ for a S-node t, and its two children t′, t′′.

Rt′ \ {u} = Rt for an I-node t and its child t′ with Vt′ = Vt ∪ {u}.
Rt′ = Rt \ {u} for a D-node t and its child t′ with Vt′ = Vt \ {u}.
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Lemma If S is an IS of G, then (Rt := S ∩ Vt)t∈U is a valid
labeling.

Lemma If (Rt)t∈U is a valid labeling, then
⋃

tRt is an IS.
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Therefore, there is an one-to-one mapping between independent
sets and valid labelings.
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For every t ∈ U , every R ⊆ Vt that is an IS in G (we call R a
label for t), we define a weight wt(R).

for the root t and a label R for t, wt(R) =
∑

v∈R wr.

for an insertion node t with the child t′ such that Vt′ = Vt ∪ {u},
a label R for t′, we define wt′(R) = wu if u ∈ R and 0 otherwise.

For all other cases, the weights are defined as 0
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Problem: find a valid labeling for T with maximum weight

Dynamic Programming

∀t ∈ U , a label R for t: let f(t, R) be the maximum weight of a
valid (partial) labeling for the sub-tree of T rooted at t.

f(t, R) :=



wt(R) t is a leaf
wt(R) + f(t′, R) + f(t′′, R)

t is an S-node with children t′ and t′′

wt(R) + max{f(t′, R), f(t′, R ∪ {u})}
t is I-node w. child t′, Vt′ = Vt ∪ {u}

wt(R) + f(t′, R \ {u})
t is D-node w. child t′, Vt′ = Vt \ {u}

In I-node case, if R ∪ {u} is an invalid label, then
f(t, R ∪ {u}) = −∞.
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The running time of the dynamic programming: O
(
2tw · tw · n

)
.

It is efficient when tw is O(log n).

Q: Suppose we are only given G with tree-width tw, how can we
find a tree-decomposition of width tw?

This is an NP-hard problem.

We can achieve a weaker goal: find a tree-decomposition of with
at most 4tw in time f(tw) · poly(n), where f(tw) is a function of
tw.

If tw = O(1), the algorithm runs in polynomial time.

The constant 4 is acceptable.
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Outline

1 Randomized Algorithms

2 Extending the Limits of Tractability

3 Approximation Algorithms using Greedy
2-Approximation Algorithm for Vertex Cover
f -Approximation for Set-Cover with Frequency f
(lnn+ 1)-Approximation for Set-Cover(
1− 1

e

)
-Approximation for Maximum Coverage

4 Arbitrarily Good Approximation Using Rounding Data

5 Approximation Using LP Rounding and Primal Dual
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Vertex Cover Problem

Def. Given a graph G = (V,E), a vertex cover of G is a subset
C ⊆ V such that for every (u, v) ∈ E then u ∈ C or v ∈ C .

Vertex-Cover Problem
Input: G = (V,E)

Output: a vertex cover C with minimum |C|
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First Try: A “Natural” Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover

1: E ′ ← E,C ← ∅
2: while E ′ ̸= ∅ do
3: let v be the vertex of the maximum degree in (V,E ′)
4: C ← C ∪ {v},
5: remove all edges incident to v from E ′

6: return C

Theorem Greedy algorithm is an (lnn+ 1)-approximation for
vertex-cover.

We prove it for the more general set cover problem

The logarithmic factor is tight for this algorithm
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2-Approximation Algorithm for Vertex Cover

1: E ′ ← E,C ← ∅
2: while E ′ ̸= ∅ do
3: let (u, v) be any edge in E ′

4: C ← C ∪ {u, v}
5: remove all edges incident to u and v from E ′

6: return C

counter-intuitive: adding both u and v to C seems wasteful

intuition for the 2-approximation ratio:

optimum solution C∗ must cover edge (u, v), using either u or v
we select both, so we are always ahead of the optimum solution
we use at most 2 times more vertices than C∗ does



70/119

2-Approximation Algorithm for Vertex Cover

1: E ′ ← E,C ← ∅
2: while E ′ ̸= ∅ do
3: let (u, v) be any edge in E ′

4: C ← C ∪ {u, v}
5: remove all edges incident to u and v from E ′

6: return C

counter-intuitive: adding both u and v to C seems wasteful

intuition for the 2-approximation ratio:

optimum solution C∗ must cover edge (u, v), using either u or v
we select both, so we are always ahead of the optimum solution
we use at most 2 times more vertices than C∗ does



70/119

2-Approximation Algorithm for Vertex Cover

1: E ′ ← E,C ← ∅
2: while E ′ ̸= ∅ do
3: let (u, v) be any edge in E ′

4: C ← C ∪ {u, v}
5: remove all edges incident to u and v from E ′

6: return C

counter-intuitive: adding both u and v to C seems wasteful

intuition for the 2-approximation ratio:

optimum solution C∗ must cover edge (u, v), using either u or v
we select both, so we are always ahead of the optimum solution
we use at most 2 times more vertices than C∗ does



70/119

2-Approximation Algorithm for Vertex Cover

1: E ′ ← E,C ← ∅
2: while E ′ ̸= ∅ do
3: let (u, v) be any edge in E ′

4: C ← C ∪ {u, v}
5: remove all edges incident to u and v from E ′

6: return C

counter-intuitive: adding both u and v to C seems wasteful

intuition for the 2-approximation ratio:

optimum solution C∗ must cover edge (u, v), using either u or v

we select both, so we are always ahead of the optimum solution
we use at most 2 times more vertices than C∗ does



70/119

2-Approximation Algorithm for Vertex Cover

1: E ′ ← E,C ← ∅
2: while E ′ ̸= ∅ do
3: let (u, v) be any edge in E ′

4: C ← C ∪ {u, v}
5: remove all edges incident to u and v from E ′

6: return C

counter-intuitive: adding both u and v to C seems wasteful

intuition for the 2-approximation ratio:

optimum solution C∗ must cover edge (u, v), using either u or v
we select both, so we are always ahead of the optimum solution

we use at most 2 times more vertices than C∗ does



70/119

2-Approximation Algorithm for Vertex Cover

1: E ′ ← E,C ← ∅
2: while E ′ ̸= ∅ do
3: let (u, v) be any edge in E ′

4: C ← C ∪ {u, v}
5: remove all edges incident to u and v from E ′

6: return C

counter-intuitive: adding both u and v to C seems wasteful

intuition for the 2-approximation ratio:

optimum solution C∗ must cover edge (u, v), using either u or v
we select both, so we are always ahead of the optimum solution
we use at most 2 times more vertices than C∗ does



71/119

2-Approximation Algorithm for Vertex Cover

1: E ′ ← E,C ← ∅
2: while E ′ ̸= ∅ do
3: let (u, v) be any edge in E ′

4: C ← C ∪ {u, v}
5: remove all edges incident to u and v from E ′

6: return C

Theorem The algorithm is a 2-approximation algorithm for
vertex-cover.

Proof.

Let E ′ be the set of edges (u, v) considered in Step 3

Observation: E ′ is a matching and |C| = 2|E ′|
To cover E ′, the optimum solution needs |E ′| vertices
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Set Cover

with Bounded Frequency f

Input: U, |U | = n: ground set

S1, S2, · · · , Sm ⊆ U

every j ∈ U appears in at most f subsets in
{S1, S2, · · · , Sm}

Output: minimum size set C ⊆ [m] such that
⋃

i∈C Si = U

Vertex Cover = Set Cover with Frequency 2
edges ⇔ elements

vertices ⇔ sets

every edge (element) can be covered by 2 vertices (sets)
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f -Approximation Algorithm for Set Cover with Frequency
f

1: C ← ∅
2: while

⋃
i∈C Si ̸= U do

3: let e be any element in U \⋃i∈C Si

4: C ← C ∪ {i ∈ [m] : e ∈ Si}
5: return C

Theorem The algorithm is a f -approximation algorithm.

Proof.

Let U ′ be the set of all elements e considered in Step 3

Observation: no set Si contains two elements in U ′

To cover U ′, the optimum solution needs |U ′| sets
C ≤ f · |U ′|
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Set Cover
Input: U, |U | = n: ground set

S1, S2, · · · , Sm ⊆ U

Output: minimum size set C ⊆ [m] such that
⋃

i∈C Si = U

Greedy Algorithm for Set Cover

1: C ← ∅, U ′ ← U
2: while U ′ ̸= ∅ do
3: choose the i that maximizes |U ′ ∩ Si|
4: C ← C ∪ {i}, U ′ ← U ′ \ Si

5: return C
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g: minimum number of sets needed to cover U

Lemma Let ut, t ∈ Z≥0 be the number of uncovered elements after
t steps. Then for every t ≥ 1, we have

ut ≤
(
1− 1

g

)
· ut−1.

Proof.
Consider the g sets S∗

1 , S
∗
2 , · · · , S∗

g in optimum solution

S∗
1 ∪ S∗

2 ∪ · · · ∪ S∗
g = U

at beginning of step t, some set in S∗
1 , S

∗
2 , · · · , S∗

g must contain
≥ ut−1

g
uncovered elements

ut ≤ ut−1 − ut−1

g
=
(
1− 1

g

)
ut−1.
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Proof of (lnn+ 1)-approximation.

Let t = ⌈g · lnn⌉. u0 = n. Then

ut ≤
(
1− 1

g

)g·lnn · n < e− lnn · n = n · 1
n
= 1.

So ut = 0, approximation ratio ≤ ⌈g·lnn⌉
g
≤ lnn+ 1.

A more careful analysis gives a Hn-approximation, where
Hn = 1 + 1

2
+ 1

3
+ · · ·+ 1

n
is the n-th harmonic number.

ln(n+ 1) < Hn < lnn+ 1.

(1− c) lnn-hardness for any c = Ω(1)

Let c > 0 be any constant. There is no polynomial-time
(1− c) lnn-approximation algorithm for set-cover, unless

NP ⊆ quasi-poly-time, [Lund, Yannakakis 1994; Feige 1998]

P = NP. [Dinur, Steuer 2014]
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set cover: use smallest number of sets to cover all elements.

maximum coverage: use k sets to cover maximum number of
elements

Maximum Coverage

Input: U, |U | = n: ground set,

S1, S2, · · · , Sm ⊆ U , k ∈ [m]

Output: C ⊆ [m], |C| = k with the maximum
⋃

i∈C Si

Greedy Algorithm for Maximum Coverage

1: C ← ∅, U ′ ← U
2: for t← 1 to k do
3: choose the i that maximizes |U ′ ∩ Si|
4: C ← C ∪ {i}, U ′ ← U ′ \ Si

5: return C
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Theorem Greedy algorithm gives (1− 1
e
)-approximation for

maximum coverage.

Proof.
o: max. number of elements that can be covered by k sets.

pt: #(covered elements) by greedy algorithm after step t

pt ≥ pt−1 +
o− pt−1

k
o− pt ≤ o− pt−1 − o−pt−1

k
=
(
1− 1

k

)
(o− pt−1)

o− pk ≤
(
1− 1

k

)k
(o− p0) ≤ 1

e
· o

pk ≥
(
1− 1

e

)
· o
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Knapsack Problem
Makespan Minimization on Identical Machines

5 Approximation Using LP Rounding and Primal Dual
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Knapsack Problem
Input: an integer bound W > 0

a set of n items, each with an integer weight wi > 0

a value vi > 0 for each item i

Output: a subset S of items that

maximizes
∑
i∈S

vi s.t.
∑
i∈S

wi ≤ W.

Motivation: you have budget W , and want to buy a subset of
items of maximum total value
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Greedy Algorithm

1: sort items according to non-increasing order of vi/wi

2: for each item in the ordering do
3: take the item if we have enough budget

Bad example: W = 100, n = 2, w = (1, 100), v = (1.1, 100).

Optimum takes item 2 and greedy takes item 1.
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DP for Knapsack Problem

opt[i,W ′]: the optimum value when budget is W ′ and items are
{1, 2, 3, · · · , i}.

opt[i,W ′] =


0 i = 0

opt[i− 1,W ′] i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + vi

}
i > 0, wi ≤ W ′

Running time of the algorithm is O(nW ).

Q: Is this a polynomial time?

A: No.

The input size is polynomial in n and logW ; running time is
polynomial in n and W .

The running time is pseudo-polynomial.
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n: number of integers W : maximum value of all integers

pseudo-polynomial time: poly(n,W ) (e.g., DP for Knapsack)

weakly polynomial time: poly(n, logW ) (e.g., Euclidean
Algorithm for Greatest Common Divisor)

strongly polynomial time: poly(n) time, assuming basic
operations on integers taking O(1) time (e.g., Kruskal’s)

weakly NP-hard: NP-hard to solve in time poly(n, logW )

strongly NP-hard: NP-hard even if W = poly(n)

strongly NP-hardstrongly

polynomial

weakly

polynomial

pseudo-polynomial

weakly NP-hard

polynomial

NP-hard
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Idea for improving the running time to polynomial

If we make weights upper bounded by poly(n), then
pseudo-polynomial time becomes polynomial time

Coarsening the weights: w′
i =

⌊
wi

A

⌋
for some appropriately defined

integer A.

However, coarsening weights will change the problem.

weight budget constraint : hard
maximum value requirement : soft

We coarsen the values instead

In the DP, we use values as parameters
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Let A be some integer to be defined later

v′i :=
⌊
vi
A

⌋
be the scaled value of item i

Definition of DP cells: f [i, V ′] = minS⊆[i]:v′(S)≥V ′ w(S)

f [i, V ′] =


0 V ′ ≤ 0

∞ i = 0, V ′ > 0

min

{
f [i− 1, V ′]

f [i− 1, V ′ − v′i] + wi

}
i > 0, V ′ > 0

Output A times the largest V ′ such that f [n, V ′] ≤ W .
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Instance I: (v1, v2, · · · , vn) opt: optimum value of I
Instance I ′: (Av′1, · · · , AV ′

n) opt′: optimum value of I ′

vi − A < Av′i ≤ vi, ∀i ∈ [n]

=⇒ opt− nA < opt′ ≤ opt

opt ≥ vmax := maxi∈[n] vi (assuming wi ≤ W,∀i)
setting A :=

⌊
ϵ·vmax

n

⌋
: (1− ϵ)opt ≤ opt′ ≤ opt

∀i, v′i = O(n
ϵ
) =⇒ running time = O(n

3

ϵ
)

Theorem There is a (1 + ϵ)-approximation for the knapsack
problem in time O(n

3

ϵ
).
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n) opt′: optimum value of I ′

vi − A < Av′i ≤ vi, ∀i ∈ [n]

=⇒ opt− nA < opt′ ≤ opt

opt ≥ vmax := maxi∈[n] vi (assuming wi ≤ W,∀i)
setting A :=

⌊
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n

⌋
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Def. A polynomial-time approximation scheme (PTAS) is a family
of algorithms Aϵ, where Aϵ for every ϵ > 0 is a (polynomial-time)
(1± ϵ)-approximation algorithm.

Remark: the approximation ratio is 1 + ϵ or 1− ϵ, depending on
whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is an
approximation scheme Aϵ such that the running time of Aϵ is
poly(n, 1

ϵ
) for input instances of n.

So, Knapsack admits an FPTAS.

Q: Assume P ̸= NP. What is a neccesary condition for a NP-hard
problem to admit an FPTAS?

Vertex cover? Maximum independent set?
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Outline

1 Randomized Algorithms

2 Extending the Limits of Tractability

3 Approximation Algorithms using Greedy
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5 Approximation Using LP Rounding and Primal Dual



93/119

Makespan Minimization on Identical Machines

Input: n jobs index as [n]

each job j ∈ [n] has a processing time pj ∈ Z>0

m machines

Output: schedule of jobs on machines with minimum makespan

σ : [n]→ [m] with minimum maxi∈[m]

∑
j∈σ−1(i) pj

1 2 4

5 6

10 11

7

12

9

13

8

3

4 machines
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Greedy Algorithm
1: start from an empty schedule
2: for j = 1 to n do
3: put job j on the machine with the smallest load

Analysis of
(
2− 1

m

)
-Approximation for Greedy Algorithm

pmax := max
j∈[n]

pj

alg ≤ pmax +
1

m
· (
∑
j∈[n]

pj − pmax) =
(
1− 1

m

)
pmax +

1

m

∑
j∈[n]

pj

opt ≥ pmax

opt ≥ 1
m

∑
j∈[n] pj

}
=⇒ alg ≤

(
2− 1

m

)
opt
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Q: What happens if all items have size at most ϵ · opt?

A: alg ≤ 1
m

∑
j∈[n] pj + pmax ≤ opt + ϵ · opt = (1 + ϵ)opt.

Q: What can we do if all items have size at least ϵ · opt?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm
1: declare j small if pj < ϵ · pmax and big otherwise
2: use trunction + DP to solve the instance defined by big jobs
3: use DP for instance (p′j)j big to schedule big jobs
4: add small jobs to schedule greedily
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Dynamic Programming for Big Jobs

B := {j ∈ [n] : pj ≥ ϵpmax}: set of big jobs

p′j := max{ϵpmax(1 + ϵ)t ≤ pj : t ∈ Z},∀j ∈ B

p′j is the rounded size of j

k := |{p′j : j ∈ B}|: #(distinct rounded sizes)

k ≤ 1 + log1+ϵ
pmax

ϵpmax
= O

(
1
ϵ
· log 1

ϵ

)
{q1, q2, · · · , qk} := {p′j : j ∈ B}: the k distinct rounded sizes

n1, · · · , nk: #(big jobs) with rounded sizes being q1, · · · , qk
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Constructing a Directed Acyclic Graph G = (V,E)

a vertex (a1, · · · , ak), ai ∈ [0, ni],∀i ∈ [k]

denotes the instance with a1 jobs of size q1, a2 jobs of size q2, · · · ,
ak jobs of size qk

an arc (a1, · · · , ak)→ (b1, · · · bk) of weight
∑k

i=1(bi − ai)qi,
if ai ≤ bi,∀i ∈ [k], and ai < bi for some i ∈ [k]

reducing instance (b1, · · · bk) to (a1, · · · , ak) requires 1 machine of
load

∑k
i=1(bi − ai)qi

Goal: find a path from (0, · · · , 0) to (n1, · · · , nk) of at most m
edges, so as to minimize the maximum weight on the path.

problem can be solved in O(m · |E|) time using DP

O(m · |E|) = O(m · n2k) = nO
(

1
ϵ
·log 1

ϵ

)
.
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0, 0, 0, 0

0, 1, 0, 0 1, 0, 0, 0

0, 1, 1, 0

2, 0, 1, 0 3, 0, 0, 0

q2q2 + q3

q1 + q3

q1

2, 2, 3, 1

2q3

1, 1, 2, 1

2q1 0, 0, 2, 0

q1 + q2 + q4

2, 4, 3, 1

q1 + q2 + q3

2q2cost = max{2q3, q1 + q2 + q4, q1 + q2 + q3, 2q2}
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Analysis of Algorithm for Big Jobs

IB: instance (pj)j∈B optB: its optimum makespan

I ′B: instance (p′j)j∈B opt′B: its optimum makespan

opt′B ≤ optB
schedule for I ′B ⇒ schedule for IB:

(1 + ϵ)-blowup in makespan

Theorem The dynamic programming algorithm gives a schedule of

makespan at most (1 + ϵ)optB in time nO
(

1
ϵ
log 1

ϵ

)
.

Adding small jobs to schedule
1: starting from the schedule for big jobs
2: for every small job j do
3: add j to the machine with the smallest load
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Analysis of the Final Algorithm

big jobs

small jobs

case 1

Case 1: makespan is not increased by small jobs

alg ≤ (1 + ϵ)optB ≤ (1 + ϵ)opt.

Case 2: makespan is increased by small jobs

loads between any two machines differ by at most size of a small job,
which is at most ϵ · pmax

alg ≤ ϵ · pmax +
1

m

∑
j∈[n]

pj ≤ ϵ · opt + opt = (1 + ϵ) · opt.
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1 Randomized Algorithms

2 Extending the Limits of Tractability

3 Approximation Algorithms using Greedy

4 Arbitrarily Good Approximation Using Rounding Data

5 Approximation Using LP Rounding and Primal Dual
2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming
2-Approximation Algorithm for Weighted Vertex Cover Using
Primal-Dual
2-Approximation Algorithm for Unrelated Machine Scheduling
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Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ⊆ V such that for every (u, v) ∈ E then u ∈ S or v ∈ S .

Weighted Vertex-Cover Problem

Input: G = (V,E) with vertex weights {wv}v∈V
Output: a vertex cover S with minimum

∑
v∈S wv
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Integer Programming for Weighted Vertex Cover

For every v ∈ V , let xv ∈ {0, 1} indicate whether we select v in
the vertex cover S

The integer programming for weighted vertex cover:

(IPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ∈ {0, 1} ∀v ∈ V

(IPWVC) ⇔ weighted vertex cover

Thus it is NP-hard to solve integer programmings in general
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Integer programming for WVC:

(IPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ∈ {0, 1} ∀v ∈ V

Linear programming relaxation for WVC:

(LPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ∈ [0, 1] ∀v ∈ V

let IP = value of (IPWVC), LP = value of (LPWVC)

Then, LP ≤ IP
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Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1: Solving (LPWVC) to obtain a solution {x∗
u}u∈V

2:

Thus, LP =
∑

u∈V wux
∗
u ≤ IP

3:

Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Proof.

Consider any edge (u, v) ∈ E: we have x∗
u + x∗

v ≥ 1

Thus, either x∗
u ≥ 1/2 or x∗

v ≥ 1/2

Thus, either u ∈ S or v ∈ S.
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LP Relaxation

min
∑
v∈V

wvxv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ≥ 0 ∀v ∈ V

Dual LP

max
∑
e∈E

ye∑
e∈δ(v)

ye ≤ wv ∀v ∈ V

ye ≥ 0 ∀e ∈ E

Algorithm constructs integral primal solution x and dual solution y
simultaneously.
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Primal-Dual Algorithm for Weighted Vertex Cover
Problem
1: x← 0, y ← 0, all edges said to be uncovered
2: while there exists at least one uncovered edge do
3: take such an edge e arbitrarily
4: increasing ye until the dual constraint for one end-vertex v of

e becomes tight
5: xv ← 1, claim all edges incident to v are covered

6: return x

1

3

3

2

2 4

Lemma

1 x satisfies all primal constraints

2 y satisfies all dual constraints

3 P ≤ 2D ≤ 2D∗ ≤ 2 · opt
P :=

∑
v∈V xv: value of x

D :=
∑

e∈E ye: value of y

D∗ : dual LP value
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Proof of P ≤ 2D.

P =
∑
v∈V

wvxv ≤
∑
v∈V

xv

∑
e∈δ(v)

ye =
∑

(u,v)∈E

y(u,v)(xu + xv)

≤ 2
∑
e∈E

ye = 2D.

a more general framework: construct an arbitrary maximal dual
solution y; choose the vertices whose dual constraints are tight

y is maximal: increasing any coordinate ye makes y infeasible

primal-dual algorithms do not need to solve LPs

LPs are used in analysis only

faster than LP-rounding algorithm in general
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Outline

1 Randomized Algorithms

2 Extending the Limits of Tractability

3 Approximation Algorithms using Greedy

4 Arbitrarily Good Approximation Using Rounding Data

5 Approximation Using LP Rounding and Primal Dual
2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming
2-Approximation Algorithm for Weighted Vertex Cover Using
Primal-Dual
2-Approximation Algorithm for Unrelated Machine Scheduling
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Unrelated Machine Scheduling

Input: J, |J | = n: jobs

M, |M | = m: machines

pij: processing time of job
j on machine i

Output: assignment σ : J 7→M :, so
as to minimize makespan:

max
i∈M

∑
j∈σ−1(i)

pij
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Assumption: we are given a target makespan T , and
pij ∈ [0, T ] ∪ {∞}

xij: fraction of j assigned to i

∑
i

xij = 1 ∀j ∈ J∑
j

pijxij ≤ T ∀i ∈M

xij ≥ 0 ∀ij
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2-Approximate Rounding Algorithm of

Shmoys-Tardos

xij

J M

Obs. x between J and sub-machines is a point in the
bipartite-matching polytope, where all jobs in J are matched.
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Recall bipartite matching polytope is integral.

x is a convex combination of matchings.

Any matching in the combination covers all jobs J .

Lemma Any matching in the combination gives an schedule of
makespan ≤ 2T .
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Lemma Any matching in the combination gives an schedule of
makespan ≤ 2T .

xij1

xij2

xij3

xij5

xij4

j1

j2

j3

j5

j4

pij1 ≥ pij2 ≥ · · · ≥ pij5

xij1
xij2

xij3

xij4

xij5

i1

i2

i3

i4

j1

j2

j3

j4

j5

i1

i2

i3

i4

sub-machines for i

i

Proof.

focus on machine i, let i1, i2, · · · , ia be the sub-machines for i

assume job kt is assigned to sub-machine it.

(load on i) =
a∑

t=1

pikt ≤ pik1 +
a∑

t=2

∑
j

xit−1j · pij

≤ pik1 +
∑
j

xijpij ≤ T + T = 2T.
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fix i, use pj for pij

p1 ≥ p2 ≥ · · · ≥ p7
worst case:

1→ i1, 2→ i2
4→ i3, 7→ i4

p1 ≤ T

p2 ≤ 0.7p1 + 0.3p2

p4 ≤ 0.3p2 + 0.5p3 + 0.2p4

p7 ≤ 0.1p4 + 0.5p5 + 0.2p6 + 0.2p7
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