算法设计与分析(2025年春季学期) Divide-and-Conquer

授课老师: 栗师南京大学计算机学院

Outline

- Divide-and-Conquer
- Counting Inversions
- Solving Recurrences
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- Finding Closest Pair of Points in 2D Euclidean Space
- $m{m{@}}$ Computing n-th Fibonacci Number

Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer

- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time

Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- Conquer: Solve each of smaller instances recursively and separately
- Combine: Combine solutions to small instances to obtain a solution for the original big instance

```
 \begin{array}{l} \operatorname{merge-sort}(A,n) \\ \text{1: if } n=1 \text{ then} \\ \text{2: } \operatorname{return } A \\ \text{3: else} \\ \text{4: } B \leftarrow \operatorname{merge-sort}\left(A\big[1..\lfloor n/2\rfloor\big],\lfloor n/2\rfloor\right) \\ \text{5: } C \leftarrow \operatorname{merge-sort}\left(A\big[\lfloor n/2\rfloor+1..n\big],\lceil n/2\rceil\right) \\ \text{6: } \operatorname{return } \operatorname{merge}(B,C,\lfloor n/2\rfloor,\lceil n/2\rceil) \\ \end{array}
```

Divide: trivialConquer: 4, 5Combine: 6

Running Time for Merge-Sort

- ullet Each level takes running time O(n)
- There are $O(\log n)$ levels
- Running time = $O(n \log n)$
- Better than insertion sort

Running Time for Merge-Sort Using Recurrence

• T(n) = running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2) + O(n)}{2T(n/2) + O(n)} & \text{if } n \ge 2 \end{cases}$$

- Even simpler: T(n) = 2T(n/2) + O(n). (Implicit assumption: T(n) = O(1) if n is at most some constant.)
- Solving this recurrence, we have $T(n) = O(n \log n)$ (we shall show how later)

Outline

- Divide-and-Conquer
- Counting Inversions
- Solving Recurrences
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- 🔞 Finding Closest Pair of Points in 2D Euclidean Space
- $m{m{@}}$ Computing n-th Fibonacci Number

Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that i < j and A[i] > A[j].

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

• 4 inversions (for convenience, using numbers, not indices): (10,8),(10,9),(15,9),(15,12)

Naive Algorithm for Counting Inversions

count-inversions(A, n)

```
1: c \leftarrow 0
```

2: **for** every $i \leftarrow 1$ to n-1 **do**

3: **for** every $j \leftarrow i + 1$ to n **do**

4: if A[i] > A[j] then $c \leftarrow c + 1$

5: return c

Divide-and-Conquer

$$A:$$
 B C

- $p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$
- $\# \mathsf{invs}(A) = \# \mathsf{invs}(B) + \# \mathsf{invs}(C) + m$ $m = \left| \left\{ (i,j) : B[i] > C[j] \right\} \right|$

Q: How fast can we compute m, via trivial algorithm?

A: $O(n^2)$

ullet Can not improve the $O(n^2)$ time for counting inversions.

Divide-and-Conquer

$$\bullet \ p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$$

$$\#\mathsf{invs}(A) = \#\mathsf{invs}(B) + \#\mathsf{invs}(C) + m$$

$$m = \left| \left\{ (i,j) : B[i] > C[j] \right\} \right|$$

Lemma If both B and C are sorted, then we can compute m in O(n) time!

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

Count Inversions between B and C

ullet Procedure that merges B and C and counts inversions between B and C at the same time

```
merge-and-count(B, C, n_1, n_2)
 1: count \leftarrow 0:
 2: A \leftarrow \text{array of size } n_1 + n_2; i \leftarrow 1; j \leftarrow 1
 3: while i < n_1 or j < n_2 do
         if j > n_2 or (i < n_1 \text{ and } B[i] < C[j]) then
 4:
              A[i+j-1] \leftarrow B[i]: i \leftarrow i+1
 5:
              count \leftarrow count + (j-1)
 6:
         else
 7:
              A[i+j-1] \leftarrow C[j]; j \leftarrow j+1
 8:
 9: return (A, count)
```

Sort and Count Inversions in A

• A procedure that returns the sorted array of A and counts the number of inversions in A:

```
    Divide: trivial

sort-and-count(A, n)
                                                          Conquer: 4, 5
  1: if n = 1 then

    Combine: 6, 7

      return (A,0)
  3: else
            (B, m_1) \leftarrow \mathsf{sort}\text{-}\mathsf{and}\text{-}\mathsf{count}\Big(A\big[1..\lfloor n/2\rfloor\big], \lfloor n/2\rfloor\Big)
  4:
            (C, m_2) \leftarrow \mathsf{sort}\text{-and-count}\Big(A\big[\lfloor n/2 \rfloor + 1..n\big], \lceil n/2 \rceil\Big)
  5:
            (A, m_3) \leftarrow \mathsf{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)
  6:
            return (A, m_1 + m_2 + m_3)
  7:
```

sort-and-count(A, n)

```
1: if n=1 then
2: return (A,0)
3: else
4: (B,m_1) \leftarrow \text{sort-and-count}\left(A\big[1..\lfloor n/2\rfloor\big],\lfloor n/2\rfloor\right)
5: (C,m_2) \leftarrow \text{sort-and-count}\left(A\big[\lfloor n/2\rfloor+1..n\big],\lceil n/2\rceil\right)
6: (A,m_3) \leftarrow \text{merge-and-count}(B,C,\lfloor n/2\rfloor,\lceil n/2\rceil)
7: return (A,m_1+m_2+m_3)
```

- Recurrence for the running time: T(n) = 2T(n/2) + O(n)
- Running time = $O(n \log n)$

Example

Outline

- Divide-and-Conquer
- Counting Inversions
- Solving Recurrences
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n\log n)$ Time
- Finding Closest Pair of Points in 2D Euclidean Space
- $m{m{@}}$ Computing n-th Fibonacci Number

Methods for Solving Recurrences

- The recursion-tree method
- The master theorem

Recursion-Tree Method

• T(n) = 2T(n/2) + O(n)

- Each level takes running time O(n)
- There are $O(\log n)$ levels
- Running time = $O(n \log n)$

Recursion-Tree Method

• T(n) = 3T(n/2) + O(n)

- Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level? $\log_2 n$
- Total running time?

$$\sum_{i=0}^{\log_2 n} \left(\frac{3}{2}\right)^i n = O\left(n\left(\frac{3}{2}\right)^{\log_2 n}\right) = O(3^{\log_2 n}) = O(n^{\log_2 3}).$$

Recursion-Tree Method

• $T(n) = 3T(n/2) + O(n^2)$

- Total running time at level i? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $\log_2 n$
- Total running time?

$$\sum_{i=0}^{\log_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2).$$

Master Theorem

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \log n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\log_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \ge 1, b > 1, c \ge 0$ are constants. Then,

$$T(n) = \begin{cases} O(n^{\log_b a}) & \text{if } c < \log_b a \\ O(n^c \log n) & \text{if } c = \log_b a \\ O(n^c) & \text{if } c > \log_b a \end{cases}$$

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \ge 1, b > 1, c \ge 0$ are constants. Then,

$$T(n) = \begin{cases} O(n^{\log_b a}) & \text{if } c < \log_b a \\ O(n^c \log n) & \text{if } c = \log_b a \\ O(n^c) & \text{if } c > \log_b a \end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \log n)$
- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\log_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2. $T(n) = O(\log n)$
- Ex: $T(n) = 2T(n/2) + O(n^2)$. Case 3. $T(n) = O(n^2)$

Proof of Master Theorem Using Recursion Tree

- $c < \log_b a$: bottom-level dominates: $\left(\frac{a}{b^c}\right)^{\log_b n} n^c = n^{\log_b a}$
- $c = \log_b a$: all levels have same time: $n^c \log_b n = O(n^c \log n)$
- $c > \log_b a$: top-level dominates: $O(n^c)$

Outline

- Divide-and-Conquer
- Counting Inversions
- Solving Recurrences
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- **7** FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- Finding Closest Pair of Points in 2D Euclidean Space

Outline

- Divide-and-Conquer
- Counting Inversions
- Solving Recurrences
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n\log n)$ Time
- Finding Closest Pair of Points in 2D Euclidean Space
- ullet Computing n-th Fibonacci Number

Quicksort vs Merge-Sort

	Merge Sort	Quicksort
Divide	Trivial	Separate small and big numbers
Conquer	Recurse	Recurse
Combine	Merge 2 sorted arrays	Trivial

Quicksort Example

Assumption We can choose median of an array of size n in O(n) time.

Quicksort

quicksort(A, n)

```
1: if n \leq 1 then return A
2: x \leftarrow lower median of A
3: A_L \leftarrow array of elements in A that are less than x \\ Divide
4: A_R \leftarrow array of elements in A that are greater than x \\ Divide
5: B_L \leftarrow quicksort(A_L, \text{length of } A_L) \\ Conquer
6: B_R \leftarrow quicksort(A_R, \text{length of } A_R) \\ Conquer
7: t \leftarrow number of times x appear A
8: return concatenation of B_L, t copies of x, and B_R
```

- Recurrence $T(n) \le 2T(n/2) + O(n)$
- Running time = $O(n \log n)$

Assumption We can choose median of an array of size n in O(n) time.

Q: How to remove this assumption?

A:

- ① There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
- Choose a pivot randomly and pretend it is the median (it is practical)

Quicksort Using A Random Pivot

```
\begin{array}{lll} \operatorname{quicksort}(A,n) \\ \text{1: if } n \leq 1 \text{ then return } A \\ \text{2: } x \leftarrow \text{a random element of } A \text{ } (x \text{ is called a pivot}) \\ \text{3: } A_L \leftarrow \text{array of elements in } A \text{ that are less than } x & & \\ \text{4: } A_R \leftarrow \text{array of elements in } A \text{ that are greater than } x & \\ \text{5: } B_L \leftarrow \text{quicksort}(A_L, \text{length of } A_L) & \\ \text{6: } B_R \leftarrow \text{quicksort}(A_R, \text{length of } A_R) & \\ \text{7: } t \leftarrow \text{number of times } x \text{ appear } A \\ \text{8: } \mathbf{return concatenation of } B_L, t \text{ copies of } x, \text{ and } B_R \\ \end{array}
```

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in [0,1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random
- In theory: assume they can.

Quicksort Using A Random Pivot

```
quicksort(A, n)

1: if n \le 1 then return A

2: x \leftarrow a random element of A (x is called a pivot)

3: A_L \leftarrow array of elements in A that are less than x \\ Divide

4: A_R \leftarrow array of elements in A that are greater than x \\ Divide

5: B_L \leftarrow quicksort(A_L, length of A_L) \\ Conquer

6: B_R \leftarrow quicksort(A_R, length of A_R) \\ Conquer

7: t \leftarrow number of times x appear A

8: return concatenation of B_L, t copies of x, and B_R
```

Lemma The expected running time of the algorithm is $O(n \log n)$.

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

 In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

ullet To partition the array into two parts, we only need O(1) extra space.

$\mathsf{partition}(A,\ell,r)$

- 1: $p \leftarrow \text{random integer between } \ell \text{ and } r$, swap A[p] and $A[\ell]$
- 2: $i \leftarrow \ell, j \leftarrow r$
- 3: while true do
- 4: while i < j and A[i] < A[j] do $j \leftarrow j 1$
- 5: **if** i = j **then** break
- 6: swap A[i] and A[j]; $i \leftarrow i+1$
- 7: while i < j and A[i] < A[j] do $i \leftarrow i + 1$
- 8: **if** i = j **then** break
- 9: swap A[i] and A[j]; $j \leftarrow j-1$
- 10: return i

In-Place Implementation of Quick-Sort

$\mathsf{quicksort}(A,\ell,r)$

- 1: if $\ell > r$ then return
- 2: $m \leftarrow \mathsf{patition}(A, \ell, r)$
- 3: quicksort $(A, \ell, m-1)$
- 4: quicksort(A, m + 1, r)
- To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.

Merge-Sort is Not In-Place

 To merge two arrays, we need a third array with size equaling the total size of two arrays

Outline

- Divide-and-Conquer
- Counting Inversions
- Solving Recurrences
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n\log n)$ Time
- Finding Closest Pair of Points in 2D Euclidean Space

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use "internal structures" of the elements

Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \log n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \dots, N\}$.
- You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \dots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π .

Q: How many questions do you need to ask in order to get the permutation π ?

A:
$$\log_2 n! = \Theta(n \log n)$$

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \dots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: How many questions do you need to ask in order to get the permutation π ?

A: At least $\log_2 n! = \Theta(n \log n)$

Outline

- Divide-and-Conquer
- Counting Inversions
- Solving Recurrences
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n\log n)$ Time
- Finding Closest Pair of Points in 2D Euclidean Space
- ullet Computing n-th Fibonacci Number

Selection Problem

Input: a set A of n numbers, and $1 \le i \le n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \log n)$.
- Our goal: O(n) running time

Recall: Quicksort with Median Finder

quicksort(A, n)

- 1: if n < 1 then return A
- 2: $x \leftarrow \text{lower median of } A$
- 3: $A_L \leftarrow$ elements in A that are less than x▷ Divide
- 4: $A_R \leftarrow$ elements in A that are greater than x Divide
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- 7: $t \leftarrow$ number of times x appear A
- 8: **return** the array obtained by concatenating B_L , the array containing t copies of x, and B_R

Selection Algorithm with Median Finder

```
 \begin{array}{lll} \textbf{selection}(A,n,i) \\ 1: & \textbf{if} \ n=1 \ \textbf{then return} \ A \\ 2: & x \leftarrow \text{lower median of} \ A \\ 3: & A_L \leftarrow \text{elements in} \ A \ \text{that are less than} \ x \\ 4: & A_R \leftarrow \text{elements in} \ A \ \text{that are greater than} \ x \\ 5: & \textbf{if} \ i \leq A_L. \\ \text{size then} \\ 6: & \textbf{return selection}(A_L,A_L. \\ \text{size},i) \\ 7: & \textbf{else if} \ i > n - A_R. \\ \text{size then} \\ 8: & \textbf{return selection}(A_R,A_R. \\ \text{size},i - (n - A_R. \\ \text{size})) \\ & \triangleright \text{Conquer} \\ & \triangleright \text{Conquer} \\ \end{array}
```

- Recurrence for selection: T(n) = T(n/2) + O(n)
- Solving recurrence: T(n) = O(n)

return x

9: else

10:

Randomized Selection Algorithm

```
selection(A, n, i)
 1: if n=1 thenreturn A
 2: x \leftarrow \text{random element of } A \text{ (called pivot)}
                                                                Divide
 3: A_L \leftarrow elements in A that are less than x
 4: A_R \leftarrow elements in A that are greater than x
                                                                ▷ Divide
 5: if i < A_L.size then
    return selection(A_L, A_L. size, i)
                                                              7: else if i > n - A_R.size then
       return selection(A_R, A_R.size, i - (n - A_R.size))
                                                              9: else
10:
        return x
```

• expected running time = O(n)

Outline

- Divide-and-Conquer
- Counting Inversions
- Solving Recurrences
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- Finding Closest Pair of Points in 2D Euclidean Space
- ullet Computing n-th Fibonacci Number

Polynomial Multiplication

Input: two polynomials of degree n-1

Output: product of two polynomials

Example:

$$(3x^{3} + 2x^{2} - 5x + 4) \times (2x^{3} - 3x^{2} + 6x - 5)$$

$$= 6x^{6} - 9x^{5} + 18x^{4} - 15x^{3}$$

$$+ 4x^{5} - 6x^{4} + 12x^{3} - 10x^{2}$$

$$- 10x^{4} + 15x^{3} - 30x^{2} + 25x$$

$$+ 8x^{3} - 12x^{2} + 24x - 20$$

$$= 6x^{6} - 5x^{5} + 2x^{4} + 20x^{3} - 52x^{2} + 49x - 20$$

- Input: (4, -5, 2, 3), (-5, 6, -3, 2)
- Output: (-20, 49, -52, 20, 2, -5, 6)

Discrete Convolution on Finite Domain • $f: \{0, 1, \dots, n-1\} \to \mathbb{R}, g: \{0, 1, \dots, m-1\} \to \mathbb{R}$

i, j:i+j=k

• the convolution of f and g, denoted as $h := f \times g$, is defined as

 $h(k) := \sum f(i)g(j) \qquad \forall k \in \{0, 1, 2, \cdots, m+n-2\}$

Applications of Convolutions

- Polynomial and integer multiplication
- Signal and Image Processing
- Probability theory: Sum of two distributions
- Convolutional neural network

- Polynomial multiplication ⇔ Convolution
- We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication

- \bullet 16103416169 \times 424317167
- $(16x^3 + 103x^2 + 416x + 169) \times (424x^2 + 317x + 167)$
- $6784x^5 + 48744x^4 + 211707x^3 + 220729x^2 + 123045x + 28223$
- 6784, 48744, 211707, 220729, 123045, 282236784, 48744, 211707, 220729, 282236784, 48744, 282236784, 48744, 48744, 28220729, 482206
- 6832955927852073223

Naïve Algorithm

polynomial-multiplication (A, B, n)

```
1: let C[k] \leftarrow 0 for every k=0,1,2,\cdots,2n-2 2: for i \leftarrow 0 to n-1 do
```

3: **for** $j \leftarrow 0$ to n-1 **do**

$$C[i+j] \leftarrow C[i+j] + A[i] \times B[j]$$

5: **return** C

4:

Running time: $O(n^2)$

Divide-and-Conquer for Polynomial Multiplication

$$p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4)$$

$$q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5)$$

- p(x): degree of n-1 (assume n is even)
- $p(x) = p_H(x)x^{n/2} + p_L(x)$,
- $p_H(x), p_L(x)$: polynomials of degree n/2-1.

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

Divide-and-Conquer for Polynomial Multiplication

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$\begin{split} \mathsf{multiply}(p,q) &= \mathsf{multiply}(p_H,q_H) \times x^n \\ &+ \left(\mathsf{multiply}(p_H,q_L) + \mathsf{multiply}(p_L,q_H) \right) \times x^{n/2} \\ &+ \mathsf{multiply}(p_L,q_L) \end{split}$$

- Recurrence: T(n) = 4T(n/2) + O(n)
- $T(n) = O(n^2)$

Reduce Number from 4 to 3

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

•
$$p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L$$

Divide-and-Conquer for Polynomial Multiplication

$$\begin{split} r_H &= \mathsf{multiply}(p_H, q_H) \\ r_L &= \mathsf{multiply}(p_L, q_L) \\ \mathsf{multiply}(p, q) &= r_H \times x^n \\ &\quad + \left(\mathsf{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \\ &\quad + r_L \end{split}$$

- Solving Recurrence: T(n) = 3T(n/2) + O(n)
- $T(n) = O(n^{\log_2 3}) = O(n^{1.585})$

Assumption n is a power of 2. Arrays are 0-indexed.

$\mathsf{multiply}(A,B,n)$

- 1: if n = 1 then return (A[0]B[0])
- 2: $A_L \leftarrow A[0 ... n/2 1], A_H \leftarrow A[n/2 ... n 1]$
- 3: $B_L \leftarrow B[0 ... n/2 1], B_H \leftarrow B[n/2 ... n 1]$
- 4: $C_L \leftarrow \mathsf{multiply}(A_L, B_L, n/2)$
- 5: $C_H \leftarrow \mathsf{multiply}(A_H, B_H, n/2)$
- 6: $C_M \leftarrow \mathsf{multiply}(A_L + A_H, B_L + B_H, n/2)$
- 7: $C \leftarrow \text{array of } (2n-1) \text{ 0's}$
- 8: for $i \leftarrow 0$ to n-2 do
- 9: $C[i] \leftarrow C[i] + C_L[i]$
- 10: $C[i+n] \leftarrow C[i+n] + C_H[i]$
- 11: $C[i+n/2] \leftarrow C[i+n/2] + C_M[i] C_L[i] C_H[i]$
- 12: $\mathbf{return}\ C$

Example

$$(3 + 2x + 2x^{2} + 4x^{3} + x^{4} + 2x^{5} + x^{6} + 5x^{7})$$

$$\times (2 + x - x^{2} + 2x^{3} - 2x^{4} - x^{5} + 2x^{6} - 2x^{7})$$

$$6 + 7x + 3x^{2} + 4x^{3} + 6x^{4} + 8x^{6}$$

$$(3 + 2x + 2x^{2} + 4x^{3})$$

$$\times (2 + x - x^{2} + 2x^{3})$$

$$\times (2 + x - x^{2} + 2x^{3})$$

$$\times (-2 - x + 2x^{2} - 2x^{3})$$

$$\times (x^{2} + x^{2} + 2x^{2} + 2x^{2} + 2x^{3})$$

$$\times (x^{2} + x^{2} + 2x^{2} + 2x^{2} + 2x^{2})$$

$$\times (x^{2} + x^{2} + 2x^{2} + 2x^{2} + 2x^{2})$$

$$\times (x^{2} + x^{2} + 2x^{2} + 2x^{2} + 2x^{2} + 2x^{2})$$

$$\times (x^{2} + x^{2} + 2x^{2} + 2x^{2}$$

$$(5+21x+18x^2) - (6+7x+2x^2) - (-2+8x^2) = 1+14x+8x^2$$
$$(6+7x+2x^2) + (1+14x+8x^2)x^2 + (-2+8x^2)x^4$$
$$= 6+7x+3x^2+14x^3+6x^4+8x^6$$

59/91

Outline

- Divide-and-Conquer
- Counting Inversions
- Solving Recurrences
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
 - FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n\log n)$ Time
- Finding Closest Pair of Points in 2D Euclidean Space
- ullet Computing n-th Fibonacci Number

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication (A, B, n)

```
1: for i \leftarrow 1 to n do
```

2: **for**
$$j \leftarrow 1$$
 to n **do**

3:
$$C[i,j] \leftarrow 0$$

4: **for**
$$k \leftarrow 1$$
 to n **do**

5:
$$C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$$

• running time = $O(n^3)$

Try to Use Divide-and-Conquer

$$A = \begin{bmatrix} n/2 \\ A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} n/2 \qquad B = \begin{bmatrix} n/2 \\ B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} n/2$$

- $C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$
- matrix_multiplication(A,B) recursively calls matrix_multiplication (A_{11},B_{11}) , matrix_multiplication (A_{12},B_{21}) , . . .
- Recurrence for running time: $T(n) = 8T(n/2) + O(n^2)$
- $T(n) = O(n^3)$
- Strassen's Algorithm: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^{\log_2 7}) = O(n^{2.808})$

Strassen's Algorithm

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} n/2 \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} n/2$$

•
$$C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

•
$$M_1 \leftarrow (A_{11} + A_{22}) \times (B_{11} + B_{22})$$
 • $C_{11} \leftarrow M_1 + M_4 - M_5 + M_7$

•
$$M_2 \leftarrow (A_{21} + A_{22}) \times B_{11}$$
 • $C_{12} \leftarrow M_3 + M_5$

•
$$M_3 \leftarrow A_{11} \times (B_{12} - B_{22})$$
 • $C_{21} \leftarrow M_2 + M_4$

•
$$M_4 \leftarrow A_{22} \times (B_{21} - B_{11})$$

• $C_{22} \leftarrow M_1 - M_2 + M_3 + M_6$
• $M_5 \leftarrow (A_{11} + A_{12}) \times B_{22}$

•
$$M_6 \leftarrow (A_{21} - A_{11}) \times (B_{11} + B_{12})$$

•
$$M_7 \leftarrow (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

Outline

- Divide-and-Conquer
- Counting Inversions
- Solving Recurrences
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- **7** FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- Finding Closest Pair of Points in 2D Euclidean Space
- ullet Computing n-th Fibonacci Number

Interpolation of Polynomials

- $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1}$
- ullet Known: given the value of p(x) for n different values of x, p is uniquely determined
- $p(x) = 1 x + 2x^2$: p(0) = 1, p(1) = 2, p(2) = 7.

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}$$

• Given p(0) = 1, p(1) = 2, p(2) = 7, to recover p:

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 2 & -\frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

$$p(x) = 1 - x + 2x^2$$

Using Interpolation for Polynomial Multiplication

- $p(x) = 1 x + 2x^2$, $q(x) = 3 x^2$
- Interpolation on 5 points $\{0, 1, 2, 3, 4\}$:

interpolation for
$$p: \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 & 256 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 7 \\ 16 \\ 29 \end{pmatrix}$$
 interpolation for $q: \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 & 256 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ -1 \\ -6 \\ -13 \end{pmatrix}$

Interpolation of pq:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 & 256 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ -7 \\ -102 \\ -377 \end{pmatrix}$$

$$\begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 & 256 \end{pmatrix}^{-1} \begin{pmatrix} 3 \\ 4 \\ -7 \\ -96 \\ -377 \end{pmatrix}$$

$$\begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -\frac{25}{12} & 4 & -3 & \frac{4}{3} & -\frac{1}{4} \\ \frac{35}{24} & -\frac{13}{3} & \frac{19}{4} & -\frac{7}{3} & \frac{11}{24} \\ -\frac{5}{12} & \frac{3}{2} & -2 & \frac{7}{6} & -\frac{1}{4} \\ \frac{1}{24} & -\frac{1}{6} & \frac{1}{4} & -\frac{1}{6} & \frac{1}{24} \end{pmatrix} \begin{pmatrix} 3 \\ 4 \\ -7 \\ -96 \\ -377 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ 5 \\ 1 \\ -2 \end{pmatrix}$$

$$pq = (1 - x + 2x^{2})(3 - x^{2}) = 3 - 3x + 5x^{2} + x^{3} - 2x^{4}$$

Multiplication of two polynomials of degree n-1

- \bullet Choose 2n-1 distinct values $x_0,x_1,x_2,\cdots,x_{m-1}$ carefully, m=2n-1
- Compute the interpolation of p and q:

$$M := \begin{pmatrix} 1 & x_0 & x_0^2 & x_0^3 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & x_1^3 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & x_2^3 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{m-1} & x_{m-1}^2 & x_m^3 & \cdots & x_{m-1}^{n-1} \end{pmatrix}$$

$$M \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{m-1} \end{pmatrix} \qquad M \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} z_0 \\ z_1 \\ z_2 \\ \vdots \\ z_{m-1} \end{pmatrix}$$

Multiplication of two polynomials of degree n-1

$$M \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{m-1} \end{pmatrix} = \begin{pmatrix} y_0 z_0 \\ y_1 z_1 \\ y_2 z_2 \\ \vdots \\ y_{m-1} z_{m-1} \end{pmatrix} \qquad \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{m-1} \end{pmatrix} = M^{-1} \begin{pmatrix} y_0 z_0 \\ y_1 z_1 \\ y_2 z_2 \\ \vdots \\ y_{m-1} z_{m-1} \end{pmatrix}$$

$$(a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1})$$

$$\times (b_0 + b_1x + b_2x^2 + \dots + b_{n-1}x^{n-1})$$

$$= (c_0 + c_1x + c_2x^2 + \dots + c_{2n-2}x^{2n-2})$$

Q: How should we set $x_0, x_1, \cdots, x_{n-1}$ so that we can compute Ma and $M^{-1}y$ fast (for any $a, y \in \mathbb{R}^{\{0,1,\cdots,n-1\}}$)?

A: Use the n complex roots of the equation $x^n = 1$

- $e^{\frac{2\pi i \cdot k}{n}} = \cos\left(\frac{2\pi \cdot k}{n}\right) + i \cdot \sin\left(\frac{2\pi \cdot k}{n}\right), k \in \{0, 1, \dots, n-1\}$
- $\omega := e^{\frac{2\pi i}{n}}$, n-th roots are $1, \omega, \omega^2, \cdots, \omega^{n-1}$

$$F_n := \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \cdots & \omega^{-(n-1)} \end{pmatrix}$$

Interpolation and Inverse-Interpolation:

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{pmatrix} = F_n \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{pmatrix} \qquad \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{pmatrix} = F_n^{-1} \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{pmatrix}$$

- Interpolation: Fast Fourier Transform (FFT)
- Invert-Interpolation: Inverse Fast Fourier Transform (iFFT)

Fast Fourier Transform: Divide and Conquer

Assume n is even.

Breaking polynomial into even and odd parts

- $p_{\text{even}}(x) := a_0 + a_2 x + a_4 x^2 + \dots + a_{n-2} x^{n/2-1}$
- $p_{\text{old}}(x) := a_1 + a_3x + a_5x^2 + \dots + a_{n-1}x^{n/2-1}$
- $\quad \bullet \ p(x) = p_{\rm even}(x^2) + p_{\rm odd}(x^2) \cdot x$

$$\begin{split} p(\omega^k) &= p_{\text{even}}(\omega^{2k}) + p_{\text{odd}}(\omega^{2k}) \cdot \omega^k, \qquad k = 0, 1, \cdots, \frac{n}{2} - 1 \\ p(\omega^{n/2+k}) &= p_{\text{even}}(\omega^{2k}) - p_{\text{odd}}(\omega^{2k}) \cdot \omega^k, \qquad k = 0, 1, \cdots, \frac{n}{2} - 1 \end{split}$$

ullet Assume n is an integer power of 2

$\mathsf{FFT}(n, a_0, a_1, \cdots, a_{n-1})$

- 1: if n=1 then return (a_0)
- 2: $(e_0, e_1, \dots, e_{n/2-1}) \leftarrow \text{FFT}(n/2, a_0, a_2, \dots, a_{n-2})$
- 3: $(o_0, o_1, \dots, o_{n/2-1}) \leftarrow \text{FFT}(n/2, a_1, a_3, \dots, a_{n-1})$
- 4: **for** $k \leftarrow 0, 1, 2, \cdots n/2 1$ **do**
- 5: $y_k \leftarrow e_k + o_k \cdot \omega^k$
- 6: $y_{n/2+k} \leftarrow e_k o_k \cdot \omega^k$
- 7: **return** $(y_0, y_1, \cdots, y_{n-1})$
- Recurrence for running time: T(n) = 2T(n/2) + O(n)
- $T(n) = O(n \log n)$

Example for one recursion of FFT

 $\bullet (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (3, 2, 1, 2, 5, 6, 1, 4)$

$$\begin{pmatrix} e_0 \\ e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 5 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ -2 \\ 6 \\ -2 \end{pmatrix}$$
$$\begin{pmatrix} o_0 \\ o_1 \\ o_2 \\ o_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 6 \\ 4 \end{pmatrix} = \begin{pmatrix} 14 \\ -4 - 2i \\ 2 \\ -4 + 2i \end{pmatrix}$$

$$\bullet \ \omega = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}i}{2}$$

•
$$y_0 = e_0 + o_0 = 10 + 14 = 24$$

•
$$y_1 = e_1 + o_1 \omega = -2 + (-4 - 2i)(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}i}{2}) = -2 - 2\sqrt{2} - 3\sqrt{2}i$$

•
$$y_6 = e_2 - o_2\omega^2 = 6 - 2i$$
 $y_7 = e_3 - o_3\omega^3$ 75/91

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$q(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$$

multiplying p and q, \triangleright assuming n is a power of 2

- 1: $y \leftarrow \text{FFT}(2n, a_0, a_1, \dots, a_{n-1}, 0, 0, \dots, 0)$
- 2: $z \leftarrow \text{FFT}(2n, b_0, b_1, \dots, b_{n-1}, 0, 0, \dots, 0)$
- 3: $c \leftarrow iFFT(2n, y_0z_0, y_1z_1, \cdots, y_{2n-1}z_{2n-1})$
- 4: **return** $(c_0, c_1, \cdots, c_{2n-2})$
- iFFT $(n, y_0, y_1, \dots, y_{n-1})$: inverse FFT procedure: multiplying input vector y by the inverse of F_n , which is

$$\frac{1}{n} \begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\
1 & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-2(n-1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1}
\end{pmatrix}$$

Outline

- Divide-and-Conquer
- Counting Inversions
- Solving Recurrences
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
 - 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
 - FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n\log n)$ Time
- Finding Closest Pair of Points in 2D Euclidean Space
- 9 Computing n-th Fibonacci Number

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

• Trivial algorithm: $O(n^2)$ running time

Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half

Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- ullet For each point, only need to consider O(1) boxes nearby
- Implementation: Sort points inside the stripe according to y-coordinates
- For every point, consider O(1) points around it in the order

- time for combine step = $O(n \log n)$
- recurrence: $T(n) = 2T(n/2) + O(n \log n)$
- solving recurrence: $T(n) = O(n \log^2 n)$

Improve the running time of combine step to O(n)

- \bullet also sort the points in ascending order of y values at the beginning
- pass the sequence to the root recursion
- constructing two sub-sequences from the sequence, and pass them to the two sub-recursions respectively

•
$$T(n) = 2T(n/2) + O(n) \Longrightarrow T(n) = O(n \log n)$$

Example for Closest Pair

 $\begin{array}{lll} \bullet & \mathsf{CP}(1,16,(5,16,9,15,7,14,1,12,3,4,8,13,10,11,2,6)) \\ \bullet & & \mathsf{CP}(1,8,(5,7,1,3,4,8,2,6)) \\ \bullet & & \mathsf{CP}(1,4,(1,3,4,2)) \\ \bullet & & \mathsf{CP}(5,8,(5,7,8,6)) \\ \bullet & & \mathsf{CP}(9,16,(16,9,15,14,12,13,10,11)) \end{array}$

Outline

- Divide-and-Conquer
- Counting Inversions
- Solving Recurrences
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- **7** FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- Finding Closest Pair of Points in 2D Euclidean Space
- $oldsymbol{9}$ Computing n-th Fibonacci Number

Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \ge 2$
- \bullet Fibonacci sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$

n-th Fibonacci Number

Input: integer n > 0

Output: F_n

Computing F_n : Stupid Divide-and-Conquer Algorithm

$\mathsf{Fib}(n)$

- 1: if n = 0 return 0
- 2: if n = 1 return 1
- 3: return Fib(n-1) + Fib(n-2)

 ${f Q}:$ Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n

Computing F_n : Reasonable Algorithm

Fib(n)

- 1: $F[0] \leftarrow 0$
- 2: $F[1] \leftarrow 1$
- 3: **for** $i \leftarrow 2$ to n **do**
- 4: $F[i] \leftarrow F[i-1] + F[i-2]$
- 5: return F[n]
- Dynamic Programming
- Running time = O(n)

Computing F_n : Even Better Algorithm

$$\begin{pmatrix} F_{n} \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$
$$\begin{pmatrix} F_{n} \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{2} \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix}$$
$$\cdots$$
$$\begin{pmatrix} F_{n} \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_{1} \\ F_{0} \end{pmatrix}$$

power(n)

- 1: if n = 0 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 2: $R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- 3: $R \leftarrow R \times R$
- 4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
- 5: return R

Fib(n)

- 1: if n = 0 then return 0
- 2: $M \leftarrow \mathsf{power}(n-1)$
- 3: **return** M[1][1]
- Recurrence for running time? T(n) = T(n/2) + O(1)
- $T(n) = O(\log n)$

Running time = $O(\log n)$: We Cheated!

Q: How many bits do we need to represent F(n)?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in ${\cal O}(1)$ time
- ullet Even printing F(n) requires time much larger than $O(\log n)$

Fixing the Problem

To compute F_n , we need $O(\log n)$ basic arithmetic operations on integers

Summary: Divide-and-Conquer

- Divide: Divide instance into many smaller instances
- Conquer: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem

Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, FFT, \cdots : $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$
- Polynomial Multiplication: $T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3})$
- Matrix Multiplication: $T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7})$
- To improve running time, design better algorithm for "combine" step, or reduce number of recursions, ...