FEEIT 597 (2025 FFZ2EH)
Divide-and-Conquer

ZIRZ - R
R R B AR

@ Divide-and-Conquer
© Counting Inversions
© Solving Recurrences

e Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

© Polynomial Multiplication

@ Strassen’s Algorithm for Matrix Multiplication

@ FFT(Fast Fourier Transform): Polynomial Multiplication in
O(nlogn) Time

© Finding Closest Pair of Points in 2D Euclidean Space

© Computing n-th Fibonacci Number
2/91

Greedy Algorithm

@ mainly for combinatorial optimization problems
@ trivial algorithm runs in exponential time

@ greedy algorithm gives an efficient algorithm

@ main focus of analysis: correctness of algorithm

Divide-and-Conquer

@ not necessarily for combinatorial optimization problems
@ trivial algorithm already runs in polynomial time

@ divide-and-conquer gives a more efficient algorithm

@ main focus of analysis: running time

Divide-and-Conquer

e Divide: Divide instance into many smaller instances

@ Conquer: Solve each of smaller instances recursively and
separately

@ Combine: Combine solutions to small instances to obtain a
solution for the original big instance

merge-sort(A, n)
1: if n =1 then
2: return A

3: else
4: B+ merge—sort(A[l..Ln/ZJ], Ln/2j>

5: C' < merge-sort (A[Ln/ZJ + 1.n], [n/ﬂ)
6: return merge(B, C, [n/2], [n/2])

@ Divide: trivial
e Conquer: 4,5
@ Combine: 6

Running Time for Merge-Sort

‘ AL ‘

‘A[l..Q]‘ ‘A[S.A]‘ ‘A[a..6]‘ %[7..8] \

Al A (4] (a] ap)| Al [Am)] Al

@ Each level takes running time O(n)
@ There are O(logn) levels
@ Running time = O(nlogn)

@ Better than insertion sort

Running Time for Merge-Sort Using Recurrence

@ T'(n) = running time for sorting n numbers,then

T(n) = O(1) ifn=1
TN T(n/2)) + T(n/2]) + On) ifn>2

o With some tolerance of informality:

T(n) = O(1) ifn=1
= o (n/2) + O(m) ifn>2

e Even simpler: T'(n) = 2T(n/2) + O(n). (Implicit assumption:
T(n) = O(1) if n is at most some constant.)

@ Solving this recurrence, we have T'(n) = O(nlogn) (we shall
show how later)

@ Divide-and-Conquer
© Counting Inversions

© Solving Recurrences

e Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

© Polynomial Multiplication

@ Strassen’s Algorithm for Matrix Multiplication

@ FFT(Fast Fourier Transform): Polynomial Multiplication in
O(nlogn) Time

© Finding Closest Pair of Points in 2D Euclidean Space

© Computing n-th Fibonacci Number
8/91

Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: an sequence A of n numbers

Output: number of inversions in A

Example:
1 1 12

10 12 15

@ 4 inversions (for convenience, using numbers, not indices):
(10,8),(10,9),(15,9), (15,12)

Naive Algorithm for Counting Inversions

count-inversions(A, n)

1. c+«0

2: for every i< 1ton—1do

3 for every j <— i+ 1 ton do

4: if Afi] > A[j] then c<+c+1
5

. return ¢

Divide-and-Conquer

A: B C

e p=(n/2],B=A[l..p],C = Alp+ 1..n]
° #invs(A) = #invs(B) + #invs()+m
= [{.4) : Bli] > Cljl}|

Q: How fast can we compute m, via trivial algorithm?

A: O(n?)

@ Can not improve the O(n?) time for counting inversions.

Divide-and-Conquer

A: B C

e p=(n/2],B=A[l..p],C = Alp+ 1..n]
° #invs(A) = #invs(B) + #invs()+m
= [{.4) : Bli] > Cljl}|

Lemma If both B and C' are sorted, then we can compute m in
O(n) time!

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:13]|8]|12/20]32|48 total= 18

C:15] 7192529

+0 +2 +3 43 +5 +5
315(7|8]9[12/20(25|29|32|48

Count Inversions between B and C

@ Procedure that merges B and C and counts inversions between B
and C at the same time

merge-and-count(B, C, ny,ns)
count + 0;
A<+ array of size ny +no; i+ 1; j+ 1
while : < n; or j <ny, do
if j > ny or (i <ny and Bi] < CJj]) then
Ali+j—1]« Bfil; i+ i+1
count < count + (j — 1)
else
Ali+j -1« Cljl;j«j+1
return (A, count)

© O XN TR Wb

Sort and Count Inversions in A

@ A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n) @ Divide: trivial
1: if n =1 then o Conquer: 4, 5
2: return (A,0) @ Combine: 6, 7
3: else

4 (B,ml)<—sort-and-count<A[1 [n/2]], n/2j>

5: (Cymg) sort—and—count(AHn /2] + 1.n], (n/21>
(A, m3) « merge-and-count(B, C, [n/2], [n/2])
7: return (A, m; + ma + ms3)

sort-and-count(A, n)

1: if n =1 then

2: return (A,0)

3: else

4: (B,my) <+ sort-and-count (A[l [n/2]], n/2J>
(Cymg) sort—and—count(AHn /2] + 1.n], [n/ﬂ)
6: (A, m3) < merge-and-count(B, C, [n/2], [n/2])
7: return (A, m; + mg + ms)

S

@ Recurrence for the running time: T'(n) = 27 (n/2) + O(n)
@ Running time = O(nlogn)

Example

(6,7,8,9,12,14, 18,20, 25,29, 30, 33,39, 41,42, 47)
16 + 17 + 33 = 66

sort-and-count (39, 8, 25,47, 12, 18, 41,7, 33,29, 14, 20, 6, 42, 30, 9)

(7,8,12,18, 25,39, 41, 47) (6,9,14,20,29,30,33,42)
24+3+11=16 17

sort-and-count (39, 8, 25,47, 12, 18, 41, §grt-and-count(33, 29, 14, 20, 6, 42, 30, 9)

(8,25,39,47) || (7,12,18,41)
1404+1=2 0+1+2=3

(39,8,25,47) (12,18,41,7)

N

(39,8) (25,47) (39,8) (41,7)

@ Divide-and-Conquer
© Counting Inversions
© Solving Recurrences

e Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

© Polynomial Multiplication

@ Strassen’s Algorithm for Matrix Multiplication

@ FFT(Fast Fourier Transform): Polynomial Multiplication in
O(nlogn) Time

© Finding Closest Pair of Points in 2D Euclidean Space

© Computing n-th Fibonacci Number
18/91

Methods for Solving Recurrences

@ The recursion-tree method

@ The master theorem

Recursion-Tree Method

e T'(n)=2T(n/2) + O(n)
| " |

/\

‘ n/2 ‘ ‘ n/2 ‘

n/4 ‘ ‘ n/4 ‘ ‘ n/4 ‘ ‘ n/4 ‘
7

@ Each level takes running time O(n)

@ There are O(logn) levels
@ Running time = O(nlogn)

Recursion-Tree Method

o Total running time at level i? 2 x 3" = (%)ln

X
@ Index of last level? log, n

e Total running time?

logy n 3 i 3 logy n
2 <§> "mv (n (5)) = 0(3"") = 0(n™7).

Recursion-Tree Method

L . 2 i rani .
o Total running time at level i? (£)" x 3' = (2)"n?
@ Index of last level? log, n

@ Total running time?

logy n i
ZO (2) n? = O(n?).

Master Theorem

Recurrences
T(n) =2T(n/2) + O(n)
T(n)=3T(n/2) + O(n)
T(n) =3T(n/2) + O(n?)

NN NS

N = =0
2
3.—-
o
o)
N
W
~—

Wl W N

Theorem 7'(n) = aTl'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

O(nlosv @) if ¢ <log,a
T(n) =< O(n‘logn) if c=log,a
O(n°) if ¢ > log, a

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

O(nl°er2) if ¢ <log,a
T'(n) =< O(n‘logn) if c=1log,a
O(n°) if ¢ > log, a
e Ex: T(n) =4T(n/2) + O(n?). Case 2. T(n) = O(n*logn)
e Ex: T(n) =3T(n/2) + O(n). Case 1. T'(n) = O(n'*#23)
@ Ex: T'(n) =T (n/2)+ O(1). Case 2. T'(n) = O(logn)
e Ex: T(n) =2T(n/2) + O(n?). Case 3. T(n) = O(n?)

Proof of Master Theorem Using Recursion Tree

1 node

a nodes

2

a“ nodes

a’ nodes

e c<logya:
e c=log,a:
@ c>logya:

T(n) =aT(n/b) + O(n°)

n

(n/b)° wnt

(n/b)*

. log, n
bottom-level dominates: (bl) 8o e — plogya

all levels have same time: n¢log,n = O(n‘logn)
top-level dominates: O(n°)

Outline

e Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Divide-and-Conquer
© Counting Inversions
© Solving Recurrences

@ Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

© Polynomial Multiplication

@ Strassen’s Algorithm for Matrix Multiplication

@ FFT(Fast Fourier Transform): Polynomial Multiplication in
O(nlogn) Time

© Finding Closest Pair of Points in 2D Euclidean Space

© Computing n-th Fibonacci Number
27/91

Quicksort vs Merge-Sort

Merge Sort Quicksort
Divide Trivial Separate small and big numbers
Conquer Recurse Recurse

Combine | Merge 2 sorted arrays Trivial

Quicksort Example

Assumption We can choose median of an array of size n in O(n) ‘
time.

A:

25

29‘37‘

quicksort(A, 1, 15)

quicksort(A, 1,7) quicksort(A, 9, 15)

/NN

quicksort(4,1,3) quicksort(4,5,7) quicksort(A4,9,11) quicksort(4, 13, 15)

Quicksort

quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of z, and Bp

2: x < lower median of A

3: AL < array of elements in A that are less than z \\ Divide
4: Ag < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ayg,length of Ap) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
T

8:

@ Recurrence T'(n) < 27'(n/2) + O(n)
@ Running time = O(nlogn)

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption? J

A:

@ There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

@ Choose a pivot randomly and pretend it is the median (it is
practical)

Quicksort Using A Random Pivot

quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of z, and Bp

2: z < a random element of A (z is called a pivot)

3: AL < array of elements in A that are less than z \\ Divide
4: Ag < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ayg,length of Ap) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
T

8:

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

@ In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

@ In theory: assume they can.

Quicksort Using A Random Pivot

quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of z, and Bp

2: z < a random element of A (z is called a pivot)

3: AL < array of elements in A that are less than z \\ Divide
4: Ag < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ayg,length of Ap) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
T

8:

Lemma The expected running time of the algorithm is O(nlogn). |

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small
extra space.

ij

17137115129 | 38|45 | 25|64 69|76 (9492|7582 |8

@ To partition the array into two parts, we only need O(1) extra
space.

partition(A, ¢,)
1. p < random integer between ¢ and r, swap A[p| and A[/(]
20U,
3: while true do

4:
5-
6:
7
8

9:

while i < j and Afi] < A[j] do j <+ j—1
if - = j then break

swap Afi] and A[j]; i + i+ 1

while i < j and Afi] < A[j]do i< i+1
if ¢ = j then break

swap Afi] and A[j]; j 75— 1

10: return 2

In-Place Implementation of Quick-Sort

quicksort(A, ¢, r)
1: if ¢ > r then return
2: m < patition(A, ¢, 1)
3: quicksort(A, ¢{,m — 1)
4: quicksort(A,m + 1,r)

@ To sort an array A of size n, call quicksort(A,1,n).

Note: We pass the array A by reference, instead of by copying. J

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

Outline

e Quicksort and Selection

@ Lower Bound for Comparison-Based Sorting Algorithms

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
@ To sort, we are only allowed to compare two elements

@ We can not use “internal structures’ of the elements

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlogn). ’

@ Bob has one number z in his hand, z € {1,2,3,--- | N}.

@ You can ask Bob “yes/no” questions about z.

Q: How many questions do you need to ask Bob in order to know x?J

A: [log, N]. |

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?

A: No, for comparison-based sorting algorithms.

@ Bob has a permutation m over {1,2,3,--- ,n} in his hand.

@ You can ask Bob “yes/no" questions about 7.

Q: How many questions do you need to ask in order to get the
permutation 77?7

A: log,n! = 0O(nlogn)

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?

A: No, for comparison-based sorting algorithms.

@ Bob has a permutation m over {1,2,3,--- ,n} in his hand.

@ You can ask Bob questions of the form “does i appear before j in
w?"

Q: How many questions do you need to ask in order to get the
permutation 77

A: At least log,n! = ©(nlogn)

Outline

e Quicksort and Selection

@ Selection Problem

Selection Problem
Input: a set A of n numbers, and 1 <i<n

Output: the i-th smallest number in A

@ Sorting solves the problem in time O(nlogn).

@ Our goal: O(n) running time

Recall: Quicksort with Median Finder

quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return the array obtained by concatenating By, the array
containing t copies of x, and Bg

2: x < lower median of A

3: Ar < elements in A that are less than z > Divide
4: Ag < elements in A that are greater than z > Divide
5. By, < quicksort(Ay, Ay .size) > Conquer
6: Br < quicksort(Ag, Ag.size) > Conquer
7

8:

Selection Algorithm with Median Finder

selection(A, n, 1)

[

=
=

0o RN

if n =1 then return A
x < lower median of A

A < elements in A that are less than x > Divide
AR < elements in A that are greater than x > Divide
if i < A; .size then

return selection(Ay, Ay .size, q) > Conquer

else if i > n — Apg.size then

return selection(Ag, Ag.size,i — (n — Ag.size)) > Conquer
else

return x

@ Recurrence for selection: T'(n) = T'(n/2) + O(n)

@ Solving recurrence: T'(n) = O(n)

Randomized Selection Algorithm

selection(A, n, 1)
if n =1 thenreturn A
x < random element of A (called pivot)
A < elements in A that are less than x
AR < elements in A that are greater than =
if i < A; .size then

return selection(Ay, Ay .size, q)
else if i > n — Apg.size then

return selection(Ag, Ag.size,i — (n — Ag.size))
else

return x

[

S R I

=
=

> Divide
> Divide

> Conquer

> Conquer

@ expected running time = O(n)

@ Divide-and-Conquer
© Counting Inversions
© Solving Recurrences

e Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

© Polynomial Multiplication

@ Strassen’s Algorithm for Matrix Multiplication

@ FFT(Fast Fourier Transform): Polynomial Multiplication in
O(nlogn) Time

© Finding Closest Pair of Points in 2D Euclidean Space

© Computing n-th Fibonacci Number
49/91

Polynomial Multiplication
Input: two polynomials of degree n — 1

Output: product of two polynomials

Example:

(323 + 22% — 5z +4) x (22° — 322 + 62 — 5)
= 62°% — 92° 4 182* — 1523

+ 425 — 62* + 1223 — 1022

— 10z* + 1523 — 3022 + 25z

+ 823 — 1222 + 242 — 20
= 62% — 525 + 22* + 2023 — 5222 + 492 — 20

o Input: (4,-5,2,3),(—5,6,—3,2)
o Output: (—20,49, —52,20,2, —5,6)

Discrete Convolution on Finite Domain
e f:{0,1,--- . n—1} >R g:{0,1,--- , m—1} > R
@ the convolution of f and g, denoted as h := f x g, is defined as

hk):== Y f)g(j) Vke{0,1,2,--- ,m+n—2}

i,jritj=k

0 1 2
f a5 2
g 516 |-3

fxg|-20149|-52|20(2|-5|6

N Wl W

Applications of Convolutions

@ Polynomial and integer multiplication

@ Signal and Image Processing

@ Probability theory: Sum of two distributions

@ Convolutional neural network

@ Polynomial multiplication < Convolution

@ We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169 x 424317167

(1623 4 10322 + 4162 + 169) x (42422 + 317z + 167)

678425 + 48744x* + 21170723 + 22072922 + 123045z + 28223

6784,48744,211707,220729, 123045, 282236784, 48744, 211707, 220
6832955927852073223

Naive Algorithm

polynomial-multiplication(A, B, n)

1: let C[k] < 0 for every k =0,1,2,--- ,2n — 2
2. fori<0ton—1do

3: for j < 0ton—1do

4 Cli+ j] < C[i + j] + Ali] x Blj]

5. return C'

Running time: O(n?)

Divide-and-Conquer for Polynomial Multiplication

p(z) = 32% + 222 — 5r +4 = (32 + 2)2® + (—5z + 4)
q(z) = 22° — 32% + 62 — 5 = (22 — 3)2% + (62 — 5)

(x): degree of n — 1 (assume n is even)
()

= pu(x)a"? + pr(@),
u(z), pr(x): polynomials of degree n/2 — 1.

e p
° p(x
ep

pq = (prz"? + pr) (quz™? + qr)
= puqur" + (pHCIL + pLQH)xn/2 +DPLqL

Divide-and-Conquer for Polynomial Multiplication

pq = (prz""? + pr) (quz™? + qr)
= puqur" + (pHC]L + quH)xn/2 + prLqL

multiply(p, ¢) = multiply(p#, gu) x ="
+ (multiply(pa, q.) + multiply(pr, gr)) x 2™
+ multiply(pr, qr.)

@ Recurrence: T'(n) = 4T(n/2) + O(n)
e T(n)=0(n?

Reduce Number from 4 to 3

pq = (pra™? + pr) (quz™? + qr)
= puqur” + (pH(]L + quH)ﬂfn/2 +PrqL

® puqr +prqu = (pu +pL)(qu + qr) — PHqE — PLAL

Divide-and-Conquer for Polynomial Multiplication

rg = multiply(py, qn)
r = multiply(pr, q1)
multiply(p, ¢) = rg x "

+ (multiply(pH +pr,qu +qr) — e — TL) x 2"
+ 7y

@ Solving Recurrence: T'(n) = 3T (n/2) + O(n)
° T(’I’L) — O(nlogz 3) — O(n1'585)

Assumption n is a power of 2. Arrays are (-indexed.

multiply(A, B, n)

oo Nk

— =
= O

—_
N

if n =1 then return (A[0]B[0])
Ap <+ A0 ..n/2 = 1], Ay < A[n/2 .. n—1]
Bp <+ B[0..n/2—1],By < B[n/2..n—1]
CL — muItipIy(AL,BL,n/Q)
Cy < multiply(Ay, Bp,n/2)
CM — multlply(AL + AH; B, + BH,TI,/2>
C <+ array of (2n —1) 0's
for i <~ 0ton—2do
Cli] «+ C[i] + Cypli]
Cli +n] < Cli +n] + Cyli]
Cli +n/2] < Cli +n/2] + Cypli] — CL[i] — Cxli]

- return C

Example

(34 22 + 227 + 42% + 2 + 22° + 2° + 5a")

2+x—1 +22% — 20* — 25 4+ 246 —23:

6+ Tz + 322 S+ 62 \

(3 + 2z + 2x% + 423) (14 2z + 2% + 52°) (44 4a + 32% + 92%)
X(24x — 2%+ 223) X(—2—x+ 2% —22%) || xa?

6+ 7x + 222 \\ =2 + 8z 5+ 21z + 1822

2 3 4 5
1T, 5 :
(3+ 2z) (2+ 4z) (5+ 6z) R e
11141 8
X(24 x) X (—1+2x) x(1+3z)
6 7 3 14 6 0

(5+ 21z +182%) — (6 + 7o + 222) — (=2 + 82%) = 1 + 14z + 822

(6 + 7z +22%) + (1 + 14x + 82?)2? + (=2 + 82%)z?
=6+ Tz + 32* + 142° + 62" + 820

@ Divide-and-Conquer
© Counting Inversions
© Solving Recurrences

e Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

© Polynomial Multiplication

@ Strassen’s Algorithm for Matrix Multiplication

@ FFT(Fast Fourier Transform): Polynomial Multiplication in
O(nlogn) Time

© Finding Closest Pair of Points in 2D Euclidean Space

© Computing n-th Fibonacci Number
60/91

Matrix Multiplication
Input: two n X n matrices A and B
Output: C = AB

Naive Algorithm: matrix-multiplication(A, B, n)
1. for i< 1tondo

2 for j + 1 ton do

3 Cli, j] 0

4: for k < 1 ton do

5 Cli,j] < CIi, j] + Ali, k] x Blk, j]

6:

@ running time = O(n?)

Try to Use Divide-and-Conquer

n/2 n/2

All A12 }>’TL/2 Bll Bl2 }>7L/2
B

A=

Agy | Aoy By | Ba
o (' — AnBi + A1aBar A By + A12By
Ao1 By + AgaBay Ao Bia + Aga By

e matrix_multiplication(A, B) recursively calls
matrix_multiplication(A1, By1), matrix_-multiplication(A12, Ba1),

@ Recurrence for running time: T'(n) = 8T (n/2) + O(n?)
e T(n) =0(n?)
@ Strassen's Algorithm: T'(n) = 7T(n/2) + O(n?)

@ Solving Recurrence T'(n) = O(n'*227) = O(n?8%%)

Strassen’s Algorithm

oo

My < (Aq1 + Ag) X (By1 + Bas)

o2

n/2 n/2
Ay | A }>n/2 B11| B

A= B=
Agy | Aoy By | Bas

An By + A1aBy
Ao1By1 + Aga By

My < (A1 + Ag) X By
Ms < Ay x (Bia — B)
My < Agy X (Bay — B11)
Ms < (A1 + A1z) X Boy
Mg < (A1 — A1) X (B + Bia)
M7 < (A1 — Ag) X (Ba1 + Bao)

A11Big + A12By
Ao Byo + Ao By

® 6 o6 o

)

Ci < My + My — Ms+ My
Cho < M3+ M;
Ca < My + M,
Coy <= My — My + M3+ Mg

Outline

@ FFT(Fast Fourier Transform): Polynomial Multiplication in
O(nlogn) Time

Interpolation of Polynomials

e p(z) =ayg+a1r+ar®+ -+ a, 12" "

@ Known: given the value of p(x) for n different values of z, p is
uniquely determined

o p(r)=1—x+22%: p(0)=1,p(1) =2,p(2) =T7.

100 1 1
1 11 1] =12
1 2 4 2 7

@ Given p(0) = 1,p(1) = 2,p(2) =7, to recover p:

100 1 1 0 0 1 1
111 2| =|-2 2 —1|[2]=|—1
12 4 7 : -1 3 7 2

Using Interpolation for Polynomial Multiplication

e p(z)=1—1x+ 227, q(x) =3 —x?
@ Interpolation on 5 points {0, 1,2, 3,4}:

10 0 0 O
11 1 1 1
interpolationforp: |1 2 4 &8 16
13 9 27 81
1 4 16 64 256
10 0 0 O
11 1 1 1
interpolationforg: |1 2 4 8 16
1 3 9 27 81
1 4 16 64 256

Interpolation of pg:

100 0 0 co 3
11 1 1 1 o 4

12 4 8 16|]|el=] -7

13 9 27 81| |es ~102
1 4 16 64 256/ \e, 377
co 100 0 o\ '/ 3
el 11 1 1 1 4
ol=112 4 8 16 7
cs 13 9 27 81 —96
cs 1 4 16 64 256 377

C
0 P
1 12
35
Cy = b
C _5
3 12
Cq 1

N w|5

| Wi O
wl~

(SN

=

|—=

=

)
=~

1

=

24

3
4
-7
—96
=377

-2

pqg = (1 —x+22%)(3 — 2?) =3 — 3z + 5z° + 2* — 22*

Multiplication of two polynomials of degree n — 1
@ Choose 2n — 1 distinct values xg, x1, x9, -+ , x,,_1 carefully,
m=2n—1

@ Compute the interpolation of p and g:

2 3 n—1
1 2 :178 ZL’g T, 1
—
1 =] oz i
M:=|1 =z 13 3 x5
2 3 n—1
L @ @ _q d T q
Qg Yo bo 20
ay n by 21
M = Y2 M : =)
Ap—1 bn—l

Multiplication of two polynomials of degree n — 1

020 020
Co Y Co Y
c Y121 c Y121
1 1 _
M| = Y222 _ =M1 Yo 22
Cm—1 Cm—1
Ym—1”7m—1 Ym—1”7m—1

(ap + a1z + agx® + -+ ap_12"Y)
X (bo + b1 + box® + -+ - 4 by_12")

= (co+ 17 + 2 + -+ - + Cop 02" ?)

Q: How should we set xg, z1, -+, x,_1 so that we can compute Ma
and M~y fast (for any a,y € Ri0:Ln=1h)? J

A: Use the n complex roots of the equation 2" =1 |

o ¢ = cos (2”]“) +i-sin <M>,k €

n

{0,1,---»,71—1} 1
P

2mi
@ w:= e n , n-th roots are

2 n—1 e
1,W,W y W

1 w w? Wl w1
Fn — 1 w? wh Wb w2(n—1)
1wt w2 w3 w—(n=1)

Yo Qo Qo Yo
U1 ay a1 U1
-1
Y2 | =F, | ® az | =F, Y2
Yn—1 Ap—1 Ap—1 Yn—1

@ Interpolation: Fast Fourier Transform (FFT)
@ Invert-Interpolation: Inverse Fast Fourier Transform (iFFT)

Fast Fourier Transform: Divide and Conquer

@ Assume n is even.

Breaking polynomial into even and odd parts
° peven(x) = Qg + A + a4{p2 dLoood an_zx”/%l
° pold(x) = a; +asr + a5x2 L ooodl Gn—1$n/2_l

o p(x) = Peven (372) + Podd (1'2) - T
n
p(wk) = peven(w2k> +podd<w2k) ' wka k - O, 1, trt

PW™F) = peven (@) — Poda (W) - W, k=01,

@ Assume n is an integer power of 2

FFT(”) ap, A1, " - - 7an71)
1. if n =1 then return (a)
2: (eo, €1, senjo—1) < FFT(n/2,a9,az,- -+ , an_2)
3: (00,01, ,0n/2-1) < FFT(n/2,a1,a3,- - ,an_1)
4: for k< 0,1,2,---n/2—1do
5 Y < €+ O - s
6 Yn/2+k < €k — O * W
7

. return (yo,yl, s 7yn—1)

k

@ Recurrence for running time: T'(n) = 27 (n/2) + O(n)
e T(n) =0(nlogn)

Example for one recursion of FFT

° <a07a17a27 CL3,G4,G5,CZ6,CL7) = (37 27 1727 5767 174)

€0 11 1 1Y\ /3 10
e | (1 i -1 =i |1] [-2
el 11 -1 1 —1f|5] |6
es 1 —i -1 i) \1 —2
00 11 1 1\ /2 14
o | (1 i -1 —i|f2]| [-4-2
o "1 -1 1 16|~ 2
03 1 —i -1 i) \4 —4+2i
o=+

® yp=¢co+o0y=10+ 14 =24
oy =61 +ow=—2+(—4—20) (L2 +YE) = 2 2v/2 32

@ Yg =€y — 0ow? =6 — 2i Y7 = €3 — 03w

p(z) = ag + a1x + agx® + -+ ap_12" !

q(z) = by + by + boa® 4+ - - + b2

multiplying p and ¢, > assuming n is a power of 2
1. y < FFT(2n,ap,a1, - ,a,-1,0,0,---,0)
2 Z 4 FFT(Q?”L, bo, bl, 000 ,bnfl, 0, O, s ,0)
3: ¢+ iFFT(2n, yozo, Y121, " * , Yon—122n-1)
4: return (007 C1,° " ,an_g)

e iFFT(n,yo,v1, - ,yn_1): inverse FFT procedure: multiplying
input vector y by the inverse of F},, which is

1 1 1 - 1
1 wil w72 oo wf(nfl)
1 w72 w74 . w72(n 1)

S|

@ Divide-and-Conquer
© Counting Inversions
© Solving Recurrences

e Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

© Polynomial Multiplication

@ Strassen’s Algorithm for Matrix Multiplication

@ FFT(Fast Fourier Transform): Polynomial Multiplication in
O(nlogn) Time

@ Finding Closest Pair of Points in 2D Euclidean Space

© Computing n-th Fibonacci Number
77/91

Closest Pair

Input: n points in plane: (z1,41), (¥2,92), "+ ; (Tn; Yn)
Output: the pair of points that are closest

@ Trivial algorithm: O(n?) running time

Divide-and-Conquer Algorithm for Closest Pair

@ Divide: Divide the points into two halves via a vertical line
@ Conquer: Solve two sub-instances recursively

@ Combine: Check if there is a closer pair between left-half and
right-half

Divide-and-Conquer Algorithm for Closest Pair

@ Each box contains at most one pair

@ For each point, only need to consider O(1) boxes nearby

@ Implementation: Sort points inside the stripe according to
y-coordinates

@ For every point, consider O(1) points around it in the order

@ time for combine step = O(nlogn)
e recurrence: T'(n) = 2T(n/2) + O(nlogn)
e solving recurrence: T'(n) = O(nlog”n)

Improve the running time of combine step to O(n)
@ also sort the points in ascending order of y values at the beginning
@ pass the sequence to the root recursion

@ constructing two sub-sequences from the sequence, and pass them
to the two sub-recursions respectively

e I'(n) =2T(n/2) + O(n) = T'(n) = O(nlogn)

Example for Closest Pair

e CP(1,16,(5,16,9,15,7,14,1,12,3,4,8,13,10,11,2,6))
o CP(1,8,(57,1,3,4,8,2,6))

° CP(1,4,(1,3,4,2))

° CP(5,8,(5,7,8,6))

o CP(9,16,(16,9,15,14,12,13,10,11))

@ Divide-and-Conquer
© Counting Inversions
© Solving Recurrences

e Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

© Polynomial Multiplication

@ Strassen’s Algorithm for Matrix Multiplication

@ FFT(Fast Fourier Transform): Polynomial Multiplication in
O(nlogn) Time

© Finding Closest Pair of Points in 2D Euclidean Space

© Computing n-th Fibonacci Number
83/91

Fibonacci Numbers

(*] FOZO,Fl =1
o Fn = Fn—l —|—Fn_2,Vn > 2

@ Fibonacci sequence: 0,1,1,2,3,5,8,13,21, 34, 55,89, - - -

n-th Fibonacci Number
Input: integer n > 0
Output: F,

Computing F}, : Stupid Divide-and-Conquer
Algorithm

Fib(n)
1: if n =0 return O

2. if n=1return 1
3: return Fib(n — 1) + Fib(n — 2)

Q: Is the running time of the algorithm polynomial or exponential in
n?

A: Exponential

@ Running time is at least Q(F},)

e [, is exponential in n

Computing F},: Reasonable Algorithm

1: F[0] <0

2: F[l] —1

3: for i < 2 ton do

4. F[i] + F[i— 1]+ F[i — 2]
5: return F'[n]

@ Dynamic Programming

@ Running time = O(n)

Computing F},: Even Better Algorithm

power(n)
) 10
1: if n = 0 then return 01
2: R < power(|n/2])
3: R« RxR

4 ifnisoddthenR(—Rx(i (1)>

5. return R)

Fib(n)
1. if n =0 then return 0
2: M < power(n — 1)
3: return M|[1][1]

@ Recurrence for running time? 7'(n) =T (n/2) + O(1)
e T'(n) =0O(logn)

Running time = O(logn): We Cheated!

Q: How many bits do we need to represent F'(n)?

A: O(n)

@ We can not add (or multiply) two integers of ©(n) bits in O(1)
time

@ Even printing F'(n) requires time much larger than O(logn)

Fixing the Problem

To compute F,,, we need O(logn) basic arithmetic operations on
integers

Summary: Divide-and-Conquer

@ Divide: Divide instance into many smaller instances

@ Conquer: Solve each of smaller instances recursively and
separately

@ Combine: Combine solutions to small instances to obtain a
solution for the original big instance

@ Write down recurrence for running time

@ Solve recurrence using master theorem

Summary: Divide-and-Conquer

@ Merge sort, quicksort, count-inversions, closest pair, FFT, ---:
T(n) =2T(n/2) + O(n) = T(n) = O(nlogn)

@ Polynomial Multiplication:
T(n) =3T(n/2) + O(n) = T(n) = O(n'°%23)

@ Matrix Multiplication:
T(n) =7T(n/2) + O(n?) = T(n) = O(n'&7)

@ To improve running time, design better algorithm for “combine”
step, or reduce number of recursions, ...

	Divide-and-Conquer
	Counting Inversions
	Solving Recurrences
	Quicksort and Selection
	Quicksort
	Lower Bound for Comparison-Based Sorting Algorithms
	Selection Problem

	Polynomial Multiplication
	Strassen's Algorithm for Matrix Multiplication
	FFT(Fast Fourier Transform): Polynomial Multiplication in O(nn) Time
	Finding Closest Pair of Points in 2D Euclidean Space
	Computing n-th Fibonacci Number

