
算法设计与分析(2025年春季学期)

Graph Algorithms

授课老师: 栗师

南京大学计算机学院



2/93

Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

5 Minimum Cost Arborescence



3/93

Spanning Tree

Def. Given a connected graph G = (V,E), a spanning tree
T = (V, F ) of G is a sub-graph of G that is a tree including all
vertices V .
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Lemma Let T = (V, F ) be a subgraph of G = (V,E). The
following statements are equivalent:

T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n− 1 edges;

T is acyclic and has n− 1 edges;

T is minimally connected: removal of any edge disconnects it;

T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.
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Minimum Spanning Tree (MST) Problem

Input: Graph G = (V,E) and edge weights w : E → R
Output: the spanning tree T of G with the minimum total weight
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Recall: Steps of Designing A Greedy Algorithm
Design a “reasonable” strategy

Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
Kruskal’s Algorithm

Prim’s Algorithm
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Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).
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Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.
Take a minimum spanning tree T

Assume the lightest edge e∗ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T ′

w(e∗) ≤ w(e) =⇒ w(T ′) ≤ w(T ): T ′ is also a MST

lightest edge e∗

u

v
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Is the Residual Problem Still a MST Problem?
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Residual problem: find the minimum spanning tree that contains
edge (g, h)

Contract the edge (g, h)

Residual problem: find the minimum spanning tree in the
contracted graph
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Contraction of an Edge (u, v)
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Remove u and v from the graph, and add a new vertex u∗

Remove all edges (u, v) from E

For every edge (u,w) ∈ E,w ̸= v, change it to (u∗, w)

For every edge (v, w) ∈ E,w ̸= u, change it to (u∗, w)

May create parallel edges! E.g. : two edges (i, g∗)
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Greedy Algorithm

Repeat the following step until G contains only one vertex:

1 Choose the lightest edge e∗, add e∗ to the spanning tree

2 Contract e∗ and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u
and v formed by edges we selected



13/93

Greedy Algorithm

MST-Greedy(G,w)

1: F ← ∅
2: sort edges in E in non-decreasing order of weights w
3: for each edge (u, v) in the order do
4: if u and v are not connected by a path of edges in F then
5: F ← F ∪ {(u, v)}
6: return (V, F )
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Kruskal’s Algorithm: Example
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Sets: {a, b, c, i, f, g, h, d, e}
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Kruskal’s Algorithm: Efficient Implementation of

Greedy Algorithm

MST-Kruskal(G, w)

1: F ← ∅
2: S ← {{v} : v ∈ V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) ∈ E in the order do
5: Su ← the set in S containing u
6: Sv ← the set in S containing v
7: if Su ̸= Sv then
8: F ← F ∪ {(u, v)}
9: S ← S \ {Su} \ {Sv} ∪ {Su ∪ Sv}

10: return (V, F )
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Running Time of Kruskal’s Algorithm

MST-Kruskal(G, w)

1: F ← ∅
2: S ← {{v} : v ∈ V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) ∈ E in the order do
5: Su ← the set in S containing u
6: Sv ← the set in S containing v
7: if Su ̸= Sv then
8: F ← F ∪ {(u, v)}
9: S ← S \ {Su} \ {Sv} ∪ {Su ∪ Sv}

10: return (V, F )

Use union-find data structure to support 2 , 5 , 6 , 7 , 9 .
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Union-Find Data Structure

V : ground set

We need to maintain a partition of V and support following
operations:

Check if u and v are in the same set of the partition
Merge two sets in partition
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V = {1, 2, 3, · · · , 16}
Partition: {2, 3, 5, 9, 10, 12, 15}, {1, 7, 13, 16}, {4, 8, 11}, {6, 14}
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par[i]: parent of i, (par[i] = ⊥ if i is a root).
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Union-Find Data Structure
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Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r′: par[r]← r′.
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Union-Find Data Structure

root(v)

1: if par[v] = ⊥ then
2: return v
3: else
4: return root(par[v])

root(v)

1: if par[v] = ⊥ then
2: return v
3: else
4: par[v] ← root(par[v])

5: return par[v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.
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Union-Find Data Structure

root(v)

1: if par[v] = ⊥ then
2: return v
3: else
4: par[v]← root(par[v])
5: return par[v]
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MST-Kruskal(G, w)

1: F ← ∅
2: S ← {{v} : v ∈ V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) ∈ E in the order do
5: Su ← the set in S containing u
6: Sv ← the set in S containing v
7: if Su ̸= Sv then
8: F ← F ∪ {(u, v)}
9: S ← S \ {Su} \ {Sv} ∪ {Su ∪ Sv}

10: return (V, F )
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MST-Kruskal(G, w)

1: F ← ∅
2: for every v ∈ V do: par[v]← ⊥
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) ∈ E in the order do
5: u′ ← root(u)
6: v′ ← root(v)
7: if u′ ̸= v′ then
8: F ← F ∪ {(u, v)}
9: par[u′]← v′

10: return (V, F )

2 , 5 , 6 , 7 , 9 takes time O(mα(n))

α(n) is very slow-growing: α(n) ≤ 4 for n ≤ 1080.

Running time = time for 3 = O(m lg n).
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Assumption Assume all edge weights are different.

Lemma An edge e ∈ E is not in the MST, if and only if there is
cycle C in G in which e is the heaviest edge.
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(i, g) is not in the MST because of cycle (i, c, f, g)

(e, f) is in the MST because no such cycle exists
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Two Methods to Build a MST
1 Start from F ← ∅, and add edges to F one by one until we obtain

a spanning tree

2 Start from F ← E, and remove edges from F one by one until we
obtain a spanning tree
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Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.
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Lemma It is safe to exclude the heaviest non-bridge edge: there is a
MST that does not contain the heaviest non-bridge edge.
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Reverse Kruskal’s Algorithm

MST-Greedy(G,w)

1: F ← E
2: sort E in non-increasing order of weights
3: for every e in this order do
4: if (V, F \ {e}) is connected then
5: F ← F \ {e}
6: return (V, F )



29/93

Reverse Kruskal’s Algorithm: Example
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Design Greedy Strategy for MST

Recall the greedy strategy for Kruskal’s algorithm: choose the
edge with the smallest weight.
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Greedy strategy for Prim’s algorithm: choose the lightest edge
incident to a.
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Lemma It is safe to include the lightest edge incident to a.

a

lightest edge e∗ incident to a

C

Proof.
Let T be a MST

Consider all components obtained by removing a from T

Let e∗ be the lightest edge incident to a and e∗ connects a to
component C

Let e be the edge in T connecting a to C

T ′ = T \ {e} ∪ {e∗} is a spanning tree with w(T ′) ≤ w(T )
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Prim’s Algorithm: Example
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Greedy Algorithm

MST-Greedy1(G,w)

1: S ← {s}, where s is arbitrary vertex in V
2: F ← ∅
3: while S ̸= V do
4: (u, v)← lightest edge between S and V \ S,

where u ∈ S and v ∈ V \ S
5: S ← S ∪ {v}
6: F ← F ∪ {(u, v)}
7: return (V, F )

Running time of naive implementation: O(nm)
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Prim’s Algorithm: Efficient Implementation of

Greedy Algorithm

For every v ∈ V \ S maintain
d[v] = minu∈S:(u,v)∈E w(u, v):

the weight of the lightest edge between v and S
π[v] = argminu∈S:(u,v)∈E w(u, v):

(π[v], v) is the lightest edge between v and S
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Prim’s Algorithm: Efficient Implementation of

Greedy Algorithm

For every v ∈ V \ S maintain

d[v] = minu∈S:(u,v)∈E w(u, v):
the weight of the lightest edge between v and S

π[v] = argminu∈S:(u,v)∈E w(u, v):
(π[v], v) is the lightest edge between v and S

In every iteration

Pick u ∈ V \ S with the smallest d[u] value

Add (π[u], u) to F

Add u to S, update d and π values.
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Prim’s Algorithm

MST-Prim(G,w)

1: s← arbitrary vertex in G
2: S ← ∅, d(s)← 0 and d[v]←∞ for every v ∈ V \ {s}
3: while S ̸= V do
4: u← vertex in V \ S with the minimum d[u]
5: S ← S ∪ {u}
6: for each v ∈ V \ S such that (u, v) ∈ E do
7: if w(u, v) < d[v] then
8: d[v]← w(u, v)
9: π[v]← u

10: return
{
(u, π[u])|u ∈ V \ {s}

}
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Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12



39/93

Prim’s Algorithm

For every v ∈ V \ S maintain

d[v] = minu∈S:(u,v)∈E w(u, v):
the weight of the lightest edge between v and S

π[v] = argminu∈S:(u,v)∈E w(u, v):
(π[v], v) is the lightest edge between v and S

In every iteration

Pick u ∈ V \ S with the smallest d[u] value extract min

Add (π[u], u) to F

Add u to S, update d and π values. decrease key

Use a priority queue to support the operations
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Def. A priority queue is an abstract data structure that maintains a
set U of elements, each with an associated key value, and supports
the following operations:

insert(v, key value): insert an element v, whose associated key
value is key value.

decrease key(v, new key value): decrease the key value of an
element v in queue to new key value

extract min(): return and remove the element in queue with the
smallest key value

· · ·
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Prim’s Algorithm

MST-Prim(G,w)

1: s← arbitrary vertex in G
2: S ← ∅, d(s)← 0 and d[v]←∞ for every v ∈ V \ {s}
3:

4: while S ̸= V do
5: u← vertex in V \ S with the minimum d[u]
6: S ← S ∪ {u}
7: for each v ∈ V \ S such that (u, v) ∈ E do
8: if w(u, v) < d[v] then
9: d[v]← w(u, v)
10: π[v]← u

11: return
{
(u, π[u])|u ∈ V \ {s}

}
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Prim’s Algorithm Using Priority Queue

MST-Prim(G,w)

1: s← arbitrary vertex in G
2: S ← ∅, d(s)← 0 and d[v]←∞ for every v ∈ V \ {s}
3: Q← empty queue, for each v ∈ V : Q.insert(v, d[v])
4: while S ̸= V do
5: u← Q.extract min()
6: S ← S ∪ {u}
7: for each v ∈ V \ S such that (u, v) ∈ E do
8: if w(u, v) < d[v] then
9: d[v]← w(u, v), Q.decrease key(v, d[v])

10: π[v]← u

11: return
{
(u, π[u])|u ∈ V \ {s}

}
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Running Time of Prim’s Algorithm Using Priority

Queue

O(n)× (time for extract min) + O(m)× (time for decrease key)

concrete DS extract min decrease key overall time
heap O(log n) O(log n) O(m log n)

Fibonacci heap O(log n) O(1) O(n log n+m)
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Assumption Assume all edge weights are different.

Lemma (u, v) is in MST, if and only if there exists a cut (U, V \U),
such that (u, v) is the lightest edge between U and V \ U .
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(c, f) is in MST because of cut
(
{a, b, c, i}, V \ {a, b, c, i}

)
(i, g) is not in MST because no such cut exists
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“Evidence” for e ∈ MST or e /∈ MST

Assumption Assume all edge weights are different.

e ∈ MST ↔ there is a cut in which e is the lightest edge

e /∈ MST ↔ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

There is a cut in which e is the lightest edge

There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.
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algorithm graph weights SS? running time

Simple DP DAG R SS O(n+m)
Dijkstra U/D R≥0 SS O(n log n+m)

Bellman-Ford U/D R SS O(nm)
Floyd-Warshall U/D R AP O(n3)

DAG = directed acyclic graph U = undirected D = directed

SS = single source AP = all pairs
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s-t Shortest Paths
Input: (directed or undirected) graph G = (V,E), s, t ∈ V

w : E → R≥0

Output: shortest path from s to t
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Single Source Shortest Paths

Input: directed graph G = (V,E), s ∈ V

w : E → R≥0

Output: shortest paths from s to all other vertices v ∈ V

Reason for Considering Single Source Shortest Paths
Problem

We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with two
anti-parallel edges of the same weight
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Single Source Shortest Paths

Input: directed graph G = (V,E), s ∈ V

w : E → R≥0

Output: π[v], v ∈ V \ s: the parent of v in shortest path tree

d[v], v ∈ V \ s: the length of shortest path from s to v
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Q: How to compute shortest paths from s when all edges have
weight 1?

A: Breadth first search (BFS) from source s
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Assumption Weights w(u, v) are integers (w.l.o.g).

An edge of weight w(u, v) is equivalent to a pah of w(u, v)
unit-weight edges

4 1 1 1 1u v u v

Shortest Path Algorithm by Running BFS

1: replace (u, v) of length w(u, v) with a path of w(u, v)
unit-weight edges, for every (u, v) ∈ E

2: run BFS virtually
3: π[v]← vertex from which v is visited
4: d[v]← index of the level containing v

Problem: w(u, v) may be too large!
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Shortest Path Algorithm by Running BFS Virtually

1: S ← {s}, d(s)← 0
2: while |S| ≤ n do
3: find a v /∈ S that minimizes min

u∈S:(u,v)∈E
{d[u] + w(u, v)}

4: S ← S ∪ {v}
5: d[v]← minu∈S:(u,v)∈E{d[u] + w(u, v)}
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Virtual BFS: Example
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Dijkstra’s Algorithm

Dijkstra(G,w, s)

1: S ← ∅, d(s)← 0 and d[v]←∞ for every v ∈ V \ {s}
2: while S ̸= V do
3: u← vertex in V \ S with the minimum d[u]
4: add u to S
5: for each v ∈ V \ S such that (u, v) ∈ E do
6: if d[u] + w(u, v) < d[v] then
7: d[v]← d[u] + w(u, v)
8: π[v]← u

9: return (d, π)

Running time = O(n2)
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Improved Running Time using Priority Queue

Dijkstra(G,w, s)

1: s← arbitrary vertex in G
2: S ← ∅, d(s)← 0 and d[v]←∞ for every v ∈ V \ {s}
3: Q← empty queue, for each v ∈ V : Q.insert(v, d[v])
4: while S ̸= V do
5: u← Q.extract min()
6: S ← S ∪ {u}
7: for each v ∈ V \ S such that (u, v) ∈ E do
8: if d[u] + w(u, v) < d[v] then
9: d[v]← d[u] + w(u, v), Q.decrease key(v, d[v])
10: π[v]← u

11: return (π, d)
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Recall: Prim’s Algorithm for MST

MST-Prim(G,w)

1: s← arbitrary vertex in G
2: S ← ∅, d(s)← 0 and d[v]←∞ for every v ∈ V \ {s}
3: Q← empty queue, for each v ∈ V : Q.insert(v, d[v])
4: while S ̸= V do
5: u← Q.extract min()
6: S ← S ∪ {u}
7: for each v ∈ V \ S such that (u, v) ∈ E do
8: if w(u, v) < d[v] then
9: d[v]← w(u, v), Q.decrease key(v, d[v])

10: π[v]← u

11: return
{
(u, π[u])|u ∈ V \ {s}

}
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Improved Running Time

Running time:
O(n)× (time for extract min) +O(m)× (time for decrease key)

Priority-Queue extract min decrease key Time
Heap O(log n) O(log n) O(m log n)

Fibonacci Heap O(log n) O(1) O(n log n+m)
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Single Source Shortest Paths, Weights May be Negative

Input: directed graph G = (V,E), s ∈ V

assume all vertices are reachable from s

w : E → R
Output: shortest paths from s to all other vertices v ∈ V

In transition graphs, negative weights make sense

If we sell a item: ‘having the item’ → ‘not having the item’,
weight is negative (we gain money)

Dijkstra’s algorithm does not work any more!
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Dijkstra’s Algorithm Fails if We Have Negative

Weights
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Q: What is the length of the shortest path from s to d?

A: −∞

Def. A negative cycle is a cycle in which the total weight of edges is
negative.

Q: What is the length of the shortest simple path from s to d?

A: 1
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Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.

Dealing with Negative Cycles
We need to compute the shortest paths, among both simple and
complex paths.

Hardest: output −∞ as a distance

Easier: if negative cycle exists, allow algorithm to report “negative
cycle exists” without computing distances

Easiest: assume negative cycles do not exist; all shortest paths are
automatically simple paths
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algorithm graph weights SS? running time

Simple DP DAG R SS O(n+m)
Dijkstra U/D R≥0 SS O(n log n+m)

Bellman-Ford U/D R SS O(nm)
Floyd-Warshall U/D R AP O(n3)

DAG = directed acyclic graph U = undirected D = directed

SS = single source AP = all pairs
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Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G = (V,E), s ∈ V

assume all vertices are reachable from s

w : E → R
Output: shortest paths from s to all other vertices v ∈ V

first try: f [v]: length of shortest path from s to v

issue: do not know in which order we compute f [v]’s

f ℓ[v], ℓ ∈ {0, 1, 2, 3 · · · , n− 1}, v ∈ V : length of shortest path
from s to v that uses at most ℓ edges
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f ℓ[v], ℓ ∈ {0, 1, 2, 3 · · · , n− 1}, v ∈ V :
length of shortest path from s to v that uses
at most ℓ edges

f 2[a] = 6

f 3[a] = 2

f ℓ[v] =


0 ℓ = 0, v = s

∞ ℓ = 0, v ̸= s

min

{
f ℓ−1[v]

minu:(u,v)∈E
(
f ℓ−1[u] + w(u, v)

) ℓ > 0
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Dynamic Programming: Example

67
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length-0 edge

s a db c
0 ∞ ∞ ∞ ∞

0 2 7 -2 4

0

0

0

6 7 8
-3

7
-2

-4

6 7 8
-3

7
-2-4

6 7 8
-3

7
-2-4

6 7 8
-3

7
-2

-4

f 0

f 4

f 3

f 2

f 1 6 7 ∞ ∞

6 7 2 4

2 7 2 4



70/93

dynamic-programming(G,w, s)

1: f 0[s]← 0 and f 0[v]←∞ for any v ∈ V \ {s}
2: for ℓ← 1 to n− 1 do
3: copy f ℓ−1 → f ℓ

4: for each (u, v) ∈ E do
5: if f ℓ−1[u] + w(u, v) < f ℓ[v] then
6: f ℓ[v]← f ℓ−1[u] + w(u, v)

7: return (fn−1[v])v∈V

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n− 1 edges

Proof.
If there is a path containing at least n edges, then it contains a cycle.
Removing the cycle gives a path with the same or smaller length.
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Bellman-Ford Algorithm

Bellman-Ford(G,w, s)

1: f [s]← 0 and f [v]←∞ for any v ∈ V \ {s}
2: for ℓ← 1 to n− 1 do
3: for each (u, v) ∈ E do
4: if f [u] + w(u, v) < f [v] then
5: f [v]← f [u] + w(u, v)

6: return f

Issue: when we compute f [u] + w(u, v), f [u] may be changed
since the end of last iteration

This is OK: it can only “accelerate” the process!

After iteration ℓ, f [v] is at most the length of the shortest path
from s to v that uses at most ℓ edges

f [v] is always the length of some path from s to v
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Bellman-Ford Algorithm

After iteration ℓ:

length of shortest s-v path

≤ f [v]

≤ length of shortest s-v path using at most ℓ edges

Assuming there are no negative cycles:

length of shortest s-v path

= length of shortest s-v path using at most n− 1 edges

So, assuming there are no negative cycles, after iteration n− 1:

f [v] = length of shortest s-v path
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order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d
f 0 ∞62 ∞7 ∞2-2 ∞4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.
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Bellman-Ford Algorithm

Bellman-Ford(G,w, s)

1: f [s]← 0 and f [v]←∞ for any v ∈ V \ {s}
2: for ℓ← 1 to n do
3: updated← false
4: for each (u, v) ∈ E do
5: if f [u] + w(u, v) < f [v] then
6: f [v]← f [u] + w(u, v), π[v]← u
7: updated← true

8: if not updated, then return f

9: output “negative cycle exists”

π[v]: the parent of v in the shortest path tree

Running time = O(nm)
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Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

5 Minimum Cost Arborescence
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All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V,E),

w : E → R (can be negative)

Output: shortest path from u to v for every u, v ∈ V

1: for every starting point s ∈ V do
2: run Bellman-Ford(G,w, s)

Running time = O(n2m)



77/93

Summary of Shortest Path Algorithms we learned

algorithm graph weights SS? running time

Simple DP DAG R SS O(n+m)
Dijkstra U/D R≥0 SS O(n log n+m)

Bellman-Ford U/D R SS O(nm)
Floyd-Warshall U/D R AP O(n3)

DAG = directed acyclic graph U = undirected D = directed

SS = single source AP = all pairs
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Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =


0 i = j

weight of edge (i, j) i ̸= j, (i, j) ∈ E

∞ i ̸= j, (i, j) /∈ E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

fk[i, j]: length of shortest path from i to j that only uses vertices
{1, 2, 3, · · · , k} as intermediate vertices
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Example for Definition of f k[i, j]’s

1

2 3

4 5

10
90

60

30

50 70
20

10

10

20

f 0[1, 4] =∞
f 1[1, 4] =∞
f 2[1, 4] = 140 (1→ 2→ 4)

f 3[1, 4] = 90 (1→ 3→ 2→ 4)

f 4[1, 4] = 90 (1→ 3→ 2→ 4)

f 5[1, 4] = 60 (1→ 3→ 5→ 4)
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w(i, j) =


0 i = j

weight of edge (i, j) i ̸= j, (i, j) ∈ E

∞ i ̸= j, (i, j) /∈ E

fk[i, j]: length of shortest path from i to j that only uses vertices
{1, 2, 3, · · · , k} as intermediate vertices

fk[i, j] =


w(i, j) k = 0

min

{
fk−1[i, j]

fk−1[i, k] + fk−1[k, j]
k = 1, 2, · · · , n
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Floyd-Warshall(G,w)

1: f 0 ← w
2: for k ← 1 to n do
3: copy fk−1 → fk

4: for i← 1 to n do
5: for j ← 1 to n do
6: if fk−1[i, k] + fk−1[k, j] < fk[i, j] then
7: fk[i, j]← fk−1[i, k] + fk−1[k, j]
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Floyd-Warshall(G,w)

1: f old ← w
2: for k ← 1 to n do
3: copy f old → fnew

4: for i← 1 to n do
5: for j ← 1 to n do
6: if f old[i, k] + f old[k, j] < fnew[i, j] then
7: fnew[i, j]← f old[i, k] + f old[k, j]

Lemma Assume there are no negative cycles in G. After iteration k,
for i, j ∈ V , f [i, j] is exactly the length of shortest path from i to j
that only uses vertices in {1, 2, 3, · · · , k} as intermediate vertices.

Running time = O(n3).
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1

2 3
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1 2 3 4 5
1 0 9040 30 ∞140 ∞
2 10 0 ∞40 50 ∞
3 6020 10 0 7060 20
4 ∞ ∞ ∞ 0 20
5 ∞ ∞ ∞ 10 0

i = 1, i = 2, i = 3, k = 1, k = 2,
k = 3, j = 1, j = 2j = 3j = 4



84/93

Recovering Shortest Paths

Floyd-Warshall(G,w)

1: f ← w, π[i, j]← ⊥ for every i, j ∈ V
2: for k ← 1 to n do
3: for i← 1 to n do
4: for j ← 1 to n do
5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j]← f [i, k] + f [k, j], π[i, j]← k

print-path(i, j)

1: if π[i, j] = ⊥ then then
2: if i ̸= j then print(i,“,”)

3: else
4: print-path(i, π[i, j]), print-path(π[i, j], j)
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Detecting Negative Cycles

Floyd-Warshall(G,w)

1: f ← w, π[i, j]← ⊥ for every i, j ∈ V
2: for k ← 1 to n do
3: for i← 1 to n do
4: for j ← 1 to n do
5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j]← f [i, k] + f [k, j], π[i, j]← k

7: for k ← 1 to n do
8: for i← 1 to n do
9: for j ← 1 to n do

10: if f [i, k] + f [k, j] < f [i, j] then
11: report “negative cycle exists” and exit



86/93

Summary of Shortest Path Algorithms

algorithm graph weights SS? running time

Simple DP DAG R SS O(n+m)
Dijkstra U/D R≥0 SS O(n log n+m)

Bellman-Ford U/D R SS O(nm)
Floyd-Warshall U/D R AP O(n3)

DAG = directed acyclic graph U = undirected D = directed

SS = single source AP = all pairs
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Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

5 Minimum Cost Arborescence
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Def. An arborescence is directed rooted tree, where all edges are
directed away from the root.

Minimum Cost Arborescence
Problem

Input: a directed graph G = (V,E),

edge weights w : E→ R≥0

root r ∈ V

Output: a minimum-cost sub-graph
T = (V,E ′) of G that is an
arborescence with root r

r
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Assumptions
the root r does not have incoming edges.

every vertex is reachable from the root r.

For every v ∈ V \ {r}, define lv = mine∈δinv w(e).

For every v ∈ V \ {r} and e ∈ δinv , define w′(e) = w(e)− lv.

a

r

b

c d e

10 8

2

5 7
3

1 6

5

la = 10
lb = 1
lc = 5
ld = 3
le = 6

a

r

b

c d e

0 7

1

0 4
0

0 0

2

Lemma The instances (G,w, r) and (G,w′, r) have the same
optimum solution.
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Lemma The instances (G,w, r) and (G,w′, r) have the same
optimum solution.

Proof.
Given any tree solution T , w(T )− w′(T ) is always

∑
v∈V \{r} lv.

Lemma Let (v0, v1, v2, · · · , vp = v0) be a cycle C of 0-cost edges in
G. Then there is an optimum solution T , that contains all but one
edges in C.
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MCA(G, r, w)

1: F ∗ ← ∅
2: for every v ∈ V \ {r} do
3: lv ← mine∈δinv w(e)
4: for every edge e entering v do: w′(e)← w(e)− lv

5: choose a 0-cost edge entering v, add it to (V, F ∗)

6: if F ∗ form an arborescence then return F ∗

7: else
8: for every cycle C in F ∗ do: contract C into a single node

9: let G′ = (V ′, E ′) be the obtained graph.
10: T ′ ← MCA(G′, r, w′)
11: extend T ′ to an aborescence T in G, by keeping all but one

edges in every cycle C in F ∗, and return T
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The running time of the algorithm is O(mn)

[Tarjan (1971)]: O(min(m log n, n2))

[Gabow, Galil, Spencer, Tarjan (1986)]: O(n log n+m)

[Mendelson, Tarjan, Thorup, Zwick (2006)]: O(m log log n)
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