BRSO 5 21T (2025 HF 24 4)
Graph Algorithms

ZIRZ - R
R R B AR

Outline

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

Spanning Tree

Def. Given a connected graph G = (V, E), a spanning tree
T = (V,F) of G is a sub-graph of G that is a tree including all
vertices V.

Lemma Let 7'= (V, F) be a subgraph of G = (V, E). The
following statements are equivalent:

@ T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n — 1 edges;

T is acyclic and has n — 1 edges;

T is minimally connected: removal of any edge disconnects it;
T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V| E) and edge weights w : E — R
Output: the spanning tree T" of GG with the minimum total weight

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V| E) and edge weights w : E — R
Output: the spanning tree T" of GG with the minimum total weight

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V| E) and edge weights w : E — R
Output: the spanning tree T" of GG with the minimum total weight

12

Recall: Steps of Designing A Greedy Algorithm

@ Design a “reasonable” strategy

@ Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Recall: Steps of Designing A Greedy Algorithm

@ Design a “reasonable” strategy

@ Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
o Kruskal's Algorithm
@ Prim’s Algorithm

Outline

@ Minimum Spanning Tree
@ Kruskal's Algorithm

Q: Which edge can be safely included in the MST?

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge. J

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’
@ Assume the lightest edge e* is not in T’

lightest edge e* ~ _

~

~

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’
@ Assume the lightest edge e* is not in T’

@ There is a unique path in T" connecting v and v

lightest edge e*~

~

~

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’

@ Assume the lightest edge e* is not in T’

@ There is a unique path in T" connecting v and v

@ Remove any edge e in the path to obtain tree 7’

lightest edge e*~

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’

Assume the lightest edge e* is not in T’

There is a unique path in T" connecting u and v
Remove any edge e in the path to obtain tree 7’
w(e*) <w(e) = w(T") <w(T): T"is also a MST

lightest edge e*~

Is the Residual Problem Still a MST Problem?

Is the Residual Problem Still a MST Problem?

@ Residual problem: find the minimum spanning tree that contains
edge (g,h)

Is the Residual Problem Still a MST Problem?

@ Residual problem: find the minimum spanning tree that contains
edge (g,h)
e Contract the edge (g, h)

Is the Residual Problem Still a MST Problem?

@ Residual problem: find the minimum spanning tree that contains
edge (g,h)
e Contract the edge (g, h)

@ Residual problem: find the minimum spanning tree in the
contracted graph

Contraction of an Edge (u,v)

Contraction of an Edge (u,v)

@ Remove u and v from the graph, and add a new vertex u*

Contraction of an Edge (u,v)

@ Remove u and v from the graph, and add a new vertex u*

@ Remove all edges (u,v) from E

Contraction of an Edge (u,v)

@ Remove u and v from the graph, and add a new vertex u*
@ Remove all edges (u,v) from E
@ For every edge (u,w) € E,w # v, change it to (u*,w)

Contraction of an Edge (u,v)

Remove u and v from the graph, and add a new vertex u*
Remove all edges (u,v) from E
For every edge (u,w) € E,w # v, change it to (u*,w)

For every edge (v,w) € E,w # u, change it to (u*, w)

Contraction of an Edge (u,v)

Remove u and v from the graph, and add a new vertex u*

Remove all edges (u,v) from E

°
°

@ For every edge (u,w) € E,w # v, change it to (u*,w)
o For every edge (v,w) € E,w # u, change it to (u*, w)
°

May create parallel edges! E.g. : two edges (7, g%)

Greedy Algorithm

Repeat the following step until G' contains only one vertex:
@ Choose the lightest edge ¢*, add e¢* to the spanning tree
@ Contract e* and update G be the contracted graph

Greedy Algorithm

Repeat the following step until G' contains only one vertex:
@ Choose the lightest edge ¢*, add e¢* to the spanning tree
@ Contract e* and update G be the contracted graph

Q: What edges are removed due to contractions?

Greedy Algorithm

Repeat the following step until G' contains only one vertex:
@ Choose the lightest edge ¢*, add e¢* to the spanning tree
@ Contract e* and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u,v) is removed if and only if there is a path connecting u
and v formed by edges we selected

Greedy Algorithm

MST-Greedy(G, w)

1. F+0

2: sort edges in E in non-decreasing order of weights w

3: for each edge (u,v) in the order do

4: if u and v are not connected by a path of edges in F' then
5 F«+ FU{(u,v)}

6

. return (V, F)

Kruskal's Algorithm: Example

Sets: {a}, {0}, {c}, {d}, {e}, {f} {9}, {h}, {i}

Kruskal's Algorithm: Example

Sets: {a}, {0}, {c}, {d}, {e}, {f} {9}, {h}, {i}

Kruskal's Algorithm: Example

Sets: {a}, {0}, {c}, {d}, {e}, {f}, {9, h}, {i}

Kruskal's Algorithm: Example

Sets: {a}, {0}, {c}, {d}, {e}, {f}, {9, h}, {i}

Kruskal's Algorithm: Example

Sets: {a}, {b}, {c,i}, {d}, {e}, {/}, {9, n}

Kruskal's Algorithm: Example

Sets: {a}, {b}, {c,i}, {d}, {e}, {/}, {9, n}

Kruskal's Algorithm: Example

Sets: {a}, {0}, {c,i},{d},{e}, {f g, h}

Kruskal's Algorithm: Example

Sets: {a}, {0}, {c,i},{d},{e}, {f g, h}

Kruskal's Algorithm: Example

Sets: {a},{b},{c,i, f,q,h},{d}, {e}

Kruskal's Algorithm: Example

Sets: {a},{b},{c,i, f,q,h},{d}, {e}

Kruskal's Algorithm: Example

Sets: {a,b},{c,i, f,g,h},{d},{e}

Kruskal's Algorithm: Example

Sets: {a,b},{c,i, f,g,h},{d},{e}

Kruskal's Algorithm: Example

Sets: {a,b,c,1, f,g,h},{d},{e}

Kruskal's Algorithm: Example

Sets: {a,b,c,1, f,g,h},{d},{e}

Kruskal's Algorithm: Example

Sets: {a,b,c,i, f,g,h},{d, e}

Kruskal's Algorithm: Example

Sets: {a,b,c,i, f,g,h},{d, e}

Kruskal's Algorithm: Example

Sets: {a,b,c,i, f,g,h,d, e}

Kruskal's Algorithm: Efficient Implementation of
Greedy Algorithm

MST-Kruskal(G, w)

F+ 0
S+ {{v}:veV}
sort the edges of E' in non-decreasing order of weights w
for each edge (u,v) € E in the order do
S, < the set in S containing u
S, < the set in S containing v
if S, # 95, then
F «+ FU{(u,v)}
S S\{SH\ S} U {5, U S}

return (V, F)

o N R

—
=

Running Time of Kruskal's Algorithm

MST-Kruskal(G, w)

F <«
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in S containing u
S, < the set in § containing v
if S, # S, then
F+— FU{(u,v)}
S S\{S P\ {Su} U{S. U S}

return (V, F)

e B O o

—
IS

Use union-find data structure to support @, @, @, @, O.

Union-Find Data Structure

o V: ground set
@ We need to maintain a partition of V' and support following
operations:

o Check if u and v are in the same set of the partition
o Merge two sets in partition

o V={1,23,--,16}
e Partition: {2,3,5,9,10,12,15},{1,7,13,16}, {4,8,11}, {6, 14}

@ parli]: parent of i, (par[i] = L if i is a root).

Union-Find Data Structure

Union-Find Data Structure

@ Q: how can we check if © and v are in the same set?

Union-Find Data Structure

@ Q: how can we check if © and v are in the same set?
@ A: Check if root(u) = root(v).

Union-Find Data Structure

@ Q: how can we check if © and v are in the same set?
@ A: Check if root(u) = root(v).

@ root(u): the root of the tree containing u

Union-Find Data Structure

@ Q: how can we check if © and v are in the same set?
@ A: Check if root(u) = root(v).
@ root(u): the root of the tree containing u

@ Merge the trees with root r and r’": par|r] < r'.

Union-Find Data Structure

SN

@ Q: how can we check if © and v are in the same set?
@ A: Check if root(u) = root(v).
@ root(u): the root of the tree containing u

@ Merge the trees with root r and r’": par|r] < r'.

Union-Find Data Structure

root(v)

1 if parjv] = L then
2 return v

3: else

4 return root(par|v])

Union-Find Data Structure

root(v)

. if par[v] = L then
return v

else
return root(par|v])

[y

N

Problem: the tree might too deep; running time might be large

Union-Find Data Structure

root(v)

1 if parjv] = L then
2 return v

3: else

4 return root(par|v])

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.

Union-Find Data Structure

root(v
root(v) ()
- 1. if par[v] = L then
1: lf pCLT[U] = J_ then 2 return v
2 return v 3: else
3: else 4. parfv] < root(par[v)])
4 return root(par|v])
5. return par|v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.

Union-Find Data Structure

root(v)
1. if par[v] = L then
2: return v
3: else
4: par[v] < root(par|v])
5: return par|v

5,

Union-Find Data Structure

root(v)
1. if par[v] = L then
2: return v
3: else
4: par[v] < root(par|v])
5: return par|v]

® ® o ©

MST-Kruskal(G, w)

—
=

oo N R

F«0
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in § containing u
S, < the set in S containing v
if S, # S, then
F+ FU{(u,v)}
S S\{Sup \ {Su} U{SuUS,}

return (V, F)

MST-Kruskal(G, w)

_
=

o NT AL HMH

F<«0
for every v € V do: parfv] < L

sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
u’ < root(u)
v' < root(v)
if «' v then
F+ FU{(u,v)}
parfu'] < v
return (V, F)

MST-Kruskal(G, w)

- F <0
. for every v € V do: par[v] + L
sort the edges of E in non-decreasing order of weights w
. for each edge (u,v) € E in the order do
u' < root(u)
v' < root(v)
if «' v then
F+ FU{(u,v)}
parfu'] < v
return (V, F)

o NT AL HMH

_
IS4

° 0.0.0.0.0 takes time O(ma(n))

e a(n) is very slow-growing: a(n) < 4 for n < 103,

MST-Kruskal(G, w)

1. F 10

2: for every v € V do: parfv] < L

3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u,v) € E in the order do

bs u' < root(u)

6: v" < root(v)

7: if «' v then

8: F+ FU{(u,v)}

9: parfu'] < v

10: return (V) F)

0.0.0.0.0 takes time O(ma(n))
e a(n) is very slow-growing: a(n) < 4 for n < 103,
@ Running time = time for @ = O(mlgn).

Assumption Assume all edge weights are different. J

Lemma An edge ¢ € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge. J

Assumption Assume all edge weights are different.

Lemma An edge ¢ € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge.

@ (i,g) is not in the MST because of cycle (i,c¢, f, g)

Assumption Assume all edge weights are different.

Lemma An edge ¢ € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge.

@ (i,g) is not in the MST because of cycle (i,c¢, f, g)
°

(e, f) is in the MST because no such cycle exists

Outline

@ Minimum Spanning Tree

@ Reverse-Kruskal's Algorithm

Two Methods to Build a MST

@ Start from F' < (), and add edges to F' one by one until we obtain
a spanning tree

Two Methods to Build a MST

@ Start from F <+ (), and add edges to F one by one until we obtain
a spanning tree

@ Start from F < FE, and remove edges from F' one by one until we
obtain a spanning tree

Two Methods to Build a MST
@ Start from F' < (), and add edges to F' one by one until we obtain

a spanning tree
@ Start from F < FE, and remove edges from F' one by one until we

obtain a spanning tree

Q: Which edge can be safely excluded from the MST? |

Two Methods to Build a MST

@ Start from F' < (), and add edges to F' one by one until we obtain
a spanning tree

@ Start from F < FE, and remove edges from F' one by one until we
obtain a spanning tree

.

Q: Which edge can be safely excluded from the MST? |

A: The heaviest non-bridge edge. |

Two Methods to Build a MST

@ Start from F' < (), and add edges to F' one by one until we obtain
a spanning tree

@ Start from F < FE, and remove edges from F' one by one until we
obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.

Lemma It is safe to exclude the heaviest non-bridge edge: there is a
MST that does not contain the heaviest non-bridge edge.

Reverse Kruskal's Algorithm

MST-Greedy(G, w)
1. F+ F
2: sort E in non-increasing order of weights
3: for every e in this order do
4: if (V,F \ {e}) is connected then
5: F <« F\{e}
6: return (V, F)

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Reverse Kruskal's Algorithm: Example

Outline

@ Minimum Spanning Tree

@ Prim’s Algorithm

Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallest weight.

Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallest weight.

@ Greedy strategy for Prim's algorithm: choose the lightest edge
incident to a.

Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallest weight.

@ Greedy strategy for Prim's algorithm: choose the lightest edge
incident to a.

Lemma It is safe to include the lightest edge incident to a.

Lemma It is safe to include the lightest edge incident to a.

Proof.
@ Let T be a MST

@ Consider all components obtained by removing a from T’

Lemma It is safe to include the lightest edge incident to a.

lightest edge e* incident to a
/

Proof.
o Let T be a MST
@ Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component C'

Lemma It is safe to include the lightest edge incident to a.

lightest edge e* incident to a
/

Proof.
o Let T be a MST
@ Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component C'

@ Let e be the edge in T" connecting a to C'

Lemma It is safe to include the lightest edge incident to a. |

lightest edge e* incident to a
/

Proof.
@ Let T be a MST

Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component C'

Let e be the edge in T' connecting a to C'
T' =T\ {e} U{e*} is a spanning tree with w(7") < w(T) O

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Greedy Algorithm

MST-Greedyl(G, w)

1: S < {s}, where s is arbitrary vertex in V

2: <«

3: while S #V do

4: (u,v) < lightest edge between S and V' \ S,
where u € Sandv e V'\ S

5: S+ Su{v}

6: F+ FU{(u,v)}

7: return (V, F)

Greedy Algorithm

MST-Greedyl(G, w)

1: S < {s}, where s is arbitrary vertex in V

2: <«

3: while S #V do

4: (u,v) < lightest edge between S and V' \ S,
where u € Sandv e V'\ S

5: S+ Su{v}

6: F+ FU{(u,v)}

7: return (V, F)

@ Running time of naive implementation: O(nm)

Prim's Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V' \ .S maintain
o dv] = minyeg.(upv)er w(u, v):
the weight of the lightest edge between v and S
o m[v] = arg minyes:(uvecr w(u, v):
(m[v],v) is the lightest edge between v and S

(13,¢)

Prim's Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V' \ .S maintain
o djv] = minueS:(u,u)eEw(uv v):

the weight of the lightest edge between v and S
o m[v] = arg minyecg:(uv)cr w(U, v):

(m[v],v) is the lightest edge between v and S

In every iteration
@ Pick u € V'\ S with the smallest d[u] value
e Add (m[u],u) to F
@ Add u to S, update d and 7 values.

Prim’'s Algorithm

MST-Prim(G, w)
s <— arbitrary vertex in G
S+ 0,d(s) «+ 0 and d[v] « oo for every v € V' \ {s}
while S # V do
u < vertex in V'\ .S with the minimum d[u]
S« SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v)
m[v] « u
return {(u, 7[u])|lu € V' \ {s}}

N a R LN

1

=

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

(11,0)

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Prim’'s Algorithm

For every v € V' \ .S maintain
o dv] = minyeg.(uv)er w(u, v):

the weight of the lightest edge between v and S
o 7[v] = arg minyeg:(uv)cr WU, v):

(m[v],v) is the lightest edge between v and S

In every iteration
@ Pick uw € V'\ S with the smallest d[u] value
e Add (m[u],u) to F
@ Add u to S, update d and 7 values.

Prim’'s Algorithm

For every v € V' \ .S maintain
o dv] = minyeg.(uv)er w(u, v):
the weight of the lightest edge between v and S
o 7[v] = arg minyeg:(uv)cr WU, v):
(m[v],v) is the lightest edge between v and S

In every iteration

@ Pick uw € V'\ S with the smallest d[u] value extract_min
e Add (m[u],u) to F
@ Add u to S, update d and 7 values. decrease_key

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that maintains a

set U of elements, each with an associated key value, and supports

the following operations:

@ insert(v, key_value): insert an element v, whose associated key
value is key_value.

o decrease key(v, new_key value): decrease the key value of an
element v in queue to new_key_value

@ extract_min(): return and remove the element in queue with the
smallest key value

Prim’'s Algorithm

MST-Prim(G, w)

1: s < arbitrary vertex in G
2: S+ 0,d(s) < 0 and d[v] + oo for every v € V' \ {s}
3:

»

while S # V do
u <— vertex in V' \ S with the minimum dJu]
S« SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v)
10: m[v] + u
11: return {(u, w[u))|u € V'\ {s}}

e 0N a

Prim's Algorithm Using Priority Queue

MST-Prim(G, w)
s <— arbitrary vertex in G
S+ 0,d(s) «+ 0 and d[v] « oo for every v € V' \ {s}
. () + empty queue, for each v € V: Q.insert(v, d[v])
while S # V do
u < @.extract_min()
S+ Su{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v), Q.decrease key(v, d[v])
m[v] + u
return {(u, 7[u])|lu € V' \ {s}}

A I T o

=
=

1

—

Running Time of Prim’s Algorithm Using Priority
Queue

O(n)x (time for extract_min) + O(m)x (time for decrease_key)

Running Time of Prim’s Algorithm Using Priority
Queue

O(n)x (time for extract_min) + O(m)x (time for decrease_key)

concrete DS | extract_min | decrease_key overall time
heap O(logn) O(logn) O(mlogn)
Fibonacci heap | O(logn) o(1) O(nlogn +m)

Running Time of Prim’s Algorithm Using Priority
Queue

O(n)x (time for extract_min) + O(m)x (time for decrease_key)

concrete DS | extract_min | decrease_key overall time
heap O(logn) O(logn) O(mlogn)
Fibonacci heap | O(logn) o(1) O(nlogn +m)

Assumption Assume all edge weights are different. J

Lemma (u,v) is in MST, if and only if there exists a cut (U, V' \ U),
such that (u,v) is the lightest edge between U and V' \ U.

Assumption Assume all edge weights are different. J

Lemma (u,v) is in MST, if and only if there exists a cut (U, V' \ U),
such that (u,v) is the lightest edge between U and V' \ U. ’

o (c, f) is in MST because of cut ({a,b,c,i},V \ {a,b,c,i})

Assumption Assume all edge weights are different. J

Lemma (u,v) is in MST, if and only if there exists a cut (U, V' \ U),
such that (u,v) is the lightest edge between U and V' \ U. ’

(¢, f) is in MST because of cut ({a, b,c,i},V\{a,b,c, @})

(]
@ (i,g) is not in MST because no such cut exists

“Evidence” for e € MST or e ¢ MST

Assumption Assume all edge weights are different.

@ ¢ € MST < there is a cut in which ¢ is the lightest edge
@ ¢ ¢ MST < there is a cycle in which e is the heaviest edge

“Evidence” for e € MST or e ¢ MST

Assumption Assume all edge weights are different.

@ ¢ € MST < there is a cut in which ¢ is the lightest edge
@ ¢ ¢ MST < there is a cycle in which e is the heaviest edge

Exactly one of the following is true:
@ There is a cut in which ¢ is the lightest edge

@ There is a cycle in which e is the heaviest edge

“Evidence” for e € MST or e ¢ MST

Assumption Assume all edge weights are different.

@ ¢ € MST < there is a cut in which ¢ is the lightest edge
@ ¢ ¢ MST < there is a cycle in which e is the heaviest edge

Exactly one of the following is true:
@ There is a cut in which ¢ is the lightest edge

@ There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

© Single Source Shortest Paths
@ Dijkstra's Algorithm

algorithm

| graph | weights | SS? | running time

Simple DP | DAG | R | SS | O(ntm)
Dijkstra U/D | R SS | O(nlogn + m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph

@ SS = single source

AP = all pairs

= undirected D = directed

Input: (directed or undirected) graph G = (V, E), s,t € V
w:FE— Rzo
Output: shortest path from s to ¢

48/94

Input: (directed or undirected) graph G = (V, E), s,t € V
w:FE— RZO
Output: shortest path from s to ¢

16 1

48/94

Input: (directed or undirected) graph G = (V, E), s,t € V
w:FE— RZO
Output: shortest path from s to ¢

48/94

Single Source Shortest Paths
Input: (directed or undirected) graph G = (V, E), s€V
w:E — R
Output: shortest paths from s to all other vertices v € V

Single Source Shortest Paths
Input: (directed or undirected) graph G = (V, E), s €V
w:E — R
Output: shortest paths from s to all other vertices v € V

Reason for Considering Single Source Shortest Paths

Problem

@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

Single Source Shortest Paths
Input: (directed or undirected) graph G = (V, E), s€V
w:E — R
Output: shortest paths from s to all other vertices v € V

Reason for Considering Single Source Shortest Paths

Problem

@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

@ Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with two
anti-parallel edges of the same weight

Single Source Shortest Paths
Input: (directed or undirected) graph G = (V, E), s€V
w:E — R
Output: shortest paths from s to all other vertices v € V

Reason for Considering Single Source Shortest Paths

Problem

@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

@ Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with two
anti-parallel edges of the same weight

Single Source Shortest Paths
Input: directed graph G = (V. E), s€V
w:E = R
Output: shortest paths from s to all other vertices v € V/

Reason for Considering Single Source Shortest Paths

Problem

@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

@ Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with two
anti-parallel edges of the same weight

Input: directed graph G = (V, E), s € V
w: B — Ry
Output: 7[v],v € V'\ s: the parent of v in shortest path tree
d[v],v € V'\ s: the length of shortest path from s to v

50,94

Q: How to compute shortest paths from s when all edges have
weight 17

J

Q: How to compute shortest paths from s when all edges have
weight 17

J

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have
weight 17

J

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have
weight 17

J

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have
weight 17

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have
weight 17

J

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have
weight 17

J

A: Breadth first search (BFS) from source s

Assumption Weights w(u,v) are integers (w.l.0.g).

Assumption Weights w(u,v) are integers (w.l.0.g).

@ An edge of weight w(u,v) is equivalent to a pah of w(u,v)
unit-weight edges

; | ; b ohohohe

Assumption Weights w(u,v) are integers (w.l.0.g).

@ An edge of weight w(u,v) is equivalent to a pah of w(u,v)
unit-weight edges

; | ; b ohohohe

Shortest Path Algorithm by Running BFS

1: replace (u,v) of length w(u,v) with a path of w(u,v)
unit-weight edges, for every (u,v) € E

2: run BFS

3: m[v] < vertex from which v is visited

4: d[v] < index of the level containing v

Assumption Weights w(u,v) are integers (w.l.0.g).

@ An edge of weight w(u,v) is equivalent to a pah of w(u,v)
unit-weight edges

; | ; b ohohohe

Shortest Path Algorithm by Running BFS

1: replace (u,v) of length w(u,v) with a path of w(u,v)
unit-weight edges, for every (u,v) € E

2: run BFS

3: m[v] < vertex from which v is visited

4: d[v] < index of the level containing v

@ Problem: w(u,v) may be too large!

Assumption Weights w(u,v) are integers (w.l.0.g).

@ An edge of weight w(u,v) is equivalent to a pah of w(u,v)
unit-weight edges

; | ; b ohohohe

Shortest Path Algorithm by Running BFS

1: replace (u,v) of length w(u,v) with a path of w(u,v)
unit-weight edges, for every (u,v) € E

2: run BFS virtually

3: m[v] < vertex from which v is visited

4: d[v] < index of the level containing v

@ Problem: w(u,v) may be too large!

Shortest Path Algorithm by Running BFS Virtually
1: S < {s},d(s) <0
2: while |S| < n do
3: find a v ¢ S that minimizes min {d[u] + w(u,v)}
u€S:(u,v)eEE
S+ Su{v}
dlv] ¢ minyes.(uver{du] + w(u,v)}

OIS

Virtual BFS: Example

Virtual BFS: Example

Virtual BFS: Example

Virtual BFS: Example

Virtual BFS: Example

Virtual BFS: Example

Virtual BFS: Example

Outline

© Single Source Shortest Paths
@ Dijkstra's Algorithm

Dijkstra’s Algorithm

Dijkstra(G, w, s)

1. S« 0,d(s) < 0 and d[v] < oo for every v € V' \ {s}
2. while S+ V do

3: u <— vertex in V'\ .S with the minimum d[u]
4 add u to S

5 for each v € V'\ S such that (u,v) € E do
6: if d[u] + w(u,v) < d[v] then

7: d[v] + d[u] + w(u,v)

8 m[v] « u

9: return (d,)

Dijkstra’s Algorithm

Dijkstra(G, w, s)

1. S« 0,d(s) < 0 and d[v] < oo for every v € V' \ {s}
2. while S+ V do

3: u <— vertex in V'\ .S with the minimum d[u]
4 add u to S

5 for each v € V'\ S such that (u,v) € E do
6 if d[u] + w(u,v) < d[v] then

7: d[v] + d[u] + w(u,v)

8: m[v] « u

9: return (d,)

@ Running time = O(n?)

12

12

Improved Running Time using Priority Queue

Dijkstra(G, w, s)

1:

2: S+ 0,d(s) < 0 and d[v] + oo for every v € V' \ {s}
3: () + empty queue, for each v € V: Q.insert(v, d[v])
4: while S #V do

5: u < @.extract_min()

6: S« Su{u}

i for each v € V'\ S such that (u,v) € E do

8: if dju] +w(u,v) < d[v] then

9: d[v] « d[u] + w(u,v), Q.decrease key(v, d[v])
10: m[v] + u

11: return (7, d)

Recall: Prim’s Algorithm for MST

MST-Prim(G, w)
s <— arbitrary vertex in G
S+ 0,d(s) «+ 0 and d[v] « oo for every v € V' \ {s}
. () + empty queue, for each v € V: Q.insert(v, d[v])
while S # V do
u < @.extract_min()
S+ Su{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v), Q.decrease key(v, d[v])
m[v] + u
return {(u, 7[u])|lu € V' \ {s}}

A I T o

=
e

1

—

Improved Running Time

Running time:
O(n) x (time for extract_min) + O(m) X (time for decrease_key)

Priority-Queue | extract_min | decrease_key Time
Heap O(logn) O(logn) O(mlogn)
Fibonacci Heap | O(logn) O(1) O(nlogn +m)

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra's Algorithm

© Shortest Paths in Graphs with Negative Weights
@ All-Pair Shortest Paths and Floyd-Warshall

© Minimum Cost Arborescence

61/94

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s€ V
assume all vertices are reachable from s
w:FEF—R
Output: shortest paths from s to all other vertices v € V'

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s€ V
assume all vertices are reachable from s
w:FE—>R
Output: shortest paths from s to all other vertices v € V'

@ In transition graphs, negative weights make sense

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s€ V
assume all vertices are reachable from s
w:FE—>R
Output: shortest paths from s to all other vertices v € V'

@ In transition graphs, negative weights make sense

o If we sell a item: ‘having the item’ — ‘not having the item’,
weight is negative (we gain money)

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s€ V
assume all vertices are reachable from s
w:FE—>R
Output: shortest paths from s to all other vertices v € V'

@ In transition graphs, negative weights make sense

o If we sell a item: ‘having the item’ — ‘not having the item’,
weight is negative (we gain money)

@ Dijkstra's algorithm does not work any more!

Dijkstra’'s Algorithm Fails if We Have Negative
Weights

Dijkstra’s Algorithm Fails if We Have Negative
Weights

Dijkstra’s Algorithm Fails if We Have Negative
Weights

Dijkstra’s Algorithm Fails if We Have Negative
Weights

Q: What is the length of the shortest path from s to d?

Q: What is the length of the shortest path from s to d?

A: —©

Q: What is the length of the shortest path from s to d?

A: —©

Q: What is the length of the shortest path from s to d?

A: —©

Q: What is the length of the shortest path from s to d?

A: —©

Q: What is the length of the shortest path from s to d?

A: —©

Q: What is the length of the shortest path from s to d?)

A: — J

Def. A negative cycle is a cycle in which the total weight of edges is
negative. J

Q: What is the length of the shortest path from s to d? J

A: — J

Def. A negative cycle is a cycle in which the total weight of edges is
negative. J

Q: What is the length of the shortest simple path from s to d? J

Q: What is the length of the shortest path from s to d?)

A: — J

Def. A negative cycle is a cycle in which the total weight of edges is
negative. J

Q: What is the length of the shortest simple path from s to d? J

A: 1 }

T

@ Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.

@ Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.

Dealing with Negative Cycles

@ Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.
Dealing with Negative Cycles

@ We need to compute the shortest paths, among both simple and
complex paths.

@ Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.

Dealing with Negative Cycles

@ We need to compute the shortest paths, among both simple and
complex paths.

@ Hardest: output —oo as a distance

@ Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.

Dealing with Negative Cycles

@ We need to compute the shortest paths, among both simple and
complex paths.

@ Hardest: output —oo as a distance

o Easier: if negative cycle exists, allow algorithm to report “negative
cycle exists” without computing distances

@ Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.
Dealing with Negative Cycles

@ We need to compute the shortest paths, among both simple and
complex paths.

@ Hardest: output —oo as a distance

o Easier: if negative cycle exists, allow algorithm to report “negative
cycle exists” without computing distances

@ Easiest: assume negative cycles do not exist; all shortest paths are
automatically simple paths

algorithm

| graph | weights | SS? | running time

Simple DP | DAG | R | SS | O(ntm)
Dijkstra U/D | Rsg SS | O(nlogn + m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph

@ SS = single source

AP = all pairs

= undirected D = directed

Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s e V
assume all vertices are reachable from s
w:FEF—R
Output: shortest paths from s to all other vertices v € V'

Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s e V
assume all vertices are reachable from s
w:FEF—R
Output: shortest paths from s to all other vertices v € V'

o first try: f[v]: length of shortest path from s to v

Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s e V
assume all vertices are reachable from s
w:FEF—R
Output: shortest paths from s to all other vertices v € V

o first try: f[v]: length of shortest path from s to v

@ issue: do not know in which order we compute f[v]'s

Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s e V
assume all vertices are reachable from s
w:FEF—R
Output: shortest paths from s to all other vertices v € V

o first try: f[v]: length of shortest path from s to v

@ issue: do not know in which order we compute f[v]'s

o f‘[v], £€{0,1,2,3--- ,n—1}, v € V : length of shortest path
from s to v that uses at most ¢ edges

o v, £€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

o v, £€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

o f2la] =

o v, £€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6

o v, £€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f*la] =

o v, £€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3a] =2

o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3a] =2

(=0,v=s
(=0,v#s

{>0

o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3a] =2

(=0,v=s
(=0,v#s

{>0

o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3a] =2

(=0,v=s
(=0,v#s

{>0

o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3a] =2

(=0,v=s
(=0,v#s
>0

o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3la] =2
(=0,v=s
(=0,v#s
F) />0

o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3a] =2

0 (=0,v=s
00 (=0,v+#s
F)

flvl =

i { Mty er (F1u] + wu, v))

{>0

Dynamic Programming: Example
c d

s a b
A O R CO B CO RN ORI C

l length-0 edge

Dynamic Programming: Example

l length-0 edge

Dynamic Programming: Example

l length-0 edge

Dynamic Programming: Example

l length-0 edge

Dynamic Programming: Example

l length-0 edge

Dynamic Programming: Example

l length-0 edge

Dynamic Programming: Example

l length-0 edge

Dynamic Programming: Example

l length-0 edge

Dynamic Programming: Example

l length-0 edge

Dynamic Programming: Example

l length-0 edge

Dynamic Programming: Example

l length-0 edge

Dynamic Programming: Example

l length-0 edge

Dynamic Programming: Example

ength-0 edge

1

Dynamic Programming: Example

ength-0 edge

1

Dynamic Programming: Example

ength-0 edge

1

Dynamic Programming: Example

ength-0 edge

1

Dynamic Programming: Example

ength-0 edge

1

Dynamic Programming: Example

ength-0 edge

1

Dynamic Programming: Example

ength-0 edge

1

Dynamic Programming: Example

ength-0 edge

1

dynamic-programming(G, w, s)

1: fOs] - 0 and fO[v] - oo for any v € V'\ {s}
2: for { <~ 1ton—1do

3 copy f&«l = ff

4 for each (u,v) € E do

5: if £ u] + w(u,v) < fv] then

6 fio] <] + w(u,v)

7

return (f"~'[v])vey

dynamic-programming(G, w, s)
1: fOs] - 0 and fO[v] - oo for any v € V'\ {s}
2: for { <~ 1ton—1do
3. copy f&:t— f*
4 for each (u,v) € E do
5: if £ u] + w(u,v) < fv] then
6 Fl = 7 ul + w(u, v)
7

- return ("7 Hv])yer

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n — 1 edges

dynamic-programming (G, w, s)
1: fOs] - 0 and fO[v] - oo for any v € V'\ {s}
2: for { <~ 1ton—1do
3. copy f&:t— f*
4 for each (u,v) € E do
5: if £ u] + w(u,v) < fv] then
6 Fi) = £ u] + wlu, v)
7

- return (f"7Hv])yey

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n — 1 edges

Proof.

If there is a path containing at least n edges, then it contains a cycle.
Removing the cycle gives a path with the same or smaller length. [

Dynamic Programming with Better Space Usage

dynamic-programming(G, w, s)

1. fos] <= 0 and f°[v] < oo for any v € V' \ {s}
2: for (< 1ton—1do

3 copy fold N fnew

4 for each (u,v) € E do

5 if fou] + w(u,v) < f"[v] then

6: o] < o] + w(u,v)
7

8

copy fnew — fold
. return f°¢

e f* only depends on f*~!: only need 2 vectors

Dynamic Programming with Better Space Usage

dynamic-programming(G, w, s)

1: f[s] <= 0and f""[v] < oo for any v € V' \ {s}
2. for{ < 1ton—1do

3: copy f'— f

4 for each (u,v) € E do

5 if 7 [u] +w(u,v) < f"[v] then
6: f ol = 0 fu] 4+ w(u, v)

7 copy f'' = f

8: return f

e f* only depends on f*~!: only need 2 vectors

@ only need 1 vector!

Dynamic Programming with Better Space Usage

dynamic-programming(G, w, s)

1: f[s] <= 0 and f[v] <= oo for any v € V' \ {s}
2: for { <~ 1ton—1do

3: copy f — f

4: for each (u,v) € E do

5 if flu] +w(u,v) < flv] then
6: fv] < flu] + w(u,v)

7 copy f — f

8: return f

o f* only depends on f*~!: only need 2 vectors

@ only need 1 vector!

Dynamic Programming with Better Space Usage

dynamic-programming(G, w, s)

. f[s] <=0 and f[v] <= oo for any v € V'\ {s}
2: for { <~ 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < f[v] then

5

6

[y

flv] « flu] + w(u,v)
. return f

e f’ only depends on f~!: only need 2 vectors

@ only need 1 vector!

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1. f[s] + 0 and f[v] < oo for any v € V' \ {s}
2: for{ <+ 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < f[v] then

5 flv] = flu] + w(u,v)

6: return f

e f’ only depends on f~!: only need 2 vectors

@ only need 1 vector!

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for (< 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < flv] then

bs flv] < flu] + w(u,v)

6: return f

@ Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for (< 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < flv] then

5: flv] = flul + w(u,v)

6: return f

@ Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration

@ This is OK: it can only “accelerate” the process!

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for (< 1ton—1do

3: for each (u,v) € E do

4: if flu] +w(u,v) < flv] then
5: flv] < flu] + w(u,v)

6: return f

@ Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration
@ This is OK: it can only “accelerate” the process!

@ After iteration ¢, f[v] is at most the length of the shortest path
from s to v that uses at most ¢ edges

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for { <~ 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < flv] then

5: flv] < flu] + w(u,v)

6: return f

@ Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration

@ This is OK: it can only “accelerate” the process!

@ After iteration ¢, f[v] is at most the length of the shortest path
from s to v that uses at most ¢ edges
e f[v] is always the length of some path from s to v

Bellman-Ford Algorithm

@ After iteration /¢:

length of shortest s-v path

< flv]

< length of shortest s-v path using at most ¢ edges

Bellman-Ford Algorithm

@ After iteration /¢:

length of shortest s-v path

< flv]

< length of shortest s-v path using at most ¢ edges

@ Assuming there are no negative cycles:

length of shortest s-v path

= length of shortest s-v path using at most n — 1 edges

Bellman-Ford Algorithm

@ After iteration /¢:

length of shortest s-v path

< flv]

< length of shortest s-v path using at most ¢ edges

@ Assuming there are no negative cycles:

length of shortest s-v path

= length of shortest s-v path using at most n — 1 edges

@ So, assuming there are no negative cycles, after iteration n — 1:

f[v] = length of shortest s-v path

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b c d
fol0foo]oofoo] oo

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b c d
fol0foo]oofoo] oo

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b c d
f o 10[6 |oofoo]oo

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b c d
fol0of[6 |oofoo]oo

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b | ¢ | d
folof6] 7 [oo]oo

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b | ¢ | d
folof6] 7 [oo]oo

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b | ¢ | d
folof6] 7 [oo]oo

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

s | al| b ¢ | d
folofe] 7]2]o0

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

s | al| b ¢ | d
folofe6]7]2]o

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folofe 7 [2]4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c.d), (d,a)

vertices‘s‘a‘b‘c‘d
folofe 7274

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folofe 7274

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ end of iteration 1: 0,2, 7, 2, 4

@ order in which we consider edges:

(s.a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ end of iteration 1: 0, 2,7, 2, 4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ end of iteration 1: 0, 2,7, 2, 4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ end of iteration 1: 0, 2,7, 2, 4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ end of iteration 1: 0, 2,7, 2, 4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27214

@ end of iteration 1: 0, 2,7, 2, 4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27]-2]4

@ end of iteration 1: 0, 2,7, 2, 4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c.d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27]-2]4

@ end of iteration 1: 0, 2,7, 2, 4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27]-2]4

@ end of iteration 1: 0, 2,7, 2, 4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27]-2]4

@ end of iteration 1: 0, 2,7, 2, 4
@ end of iteration 2: 0, 2, 7, -2, 4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),

(c;d), (d,a)
vertices ‘ S a b c d
f 0 2 7 -2 4

@ end of iteration 1: 0, 2,7, 2, 4
@ end of iteration 2: 0, 2, 7, -2, 4
@ end of iteration 3: 0, 2, 7, -2, 4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27]-2]4

@ end of iteration 1: 0, 2,7, 2, 4

@ end of iteration 2: 0, 2, 7, -2, 4

@ end of iteration 3: 0, 2, 7, -2, 4

@ Algorithm terminates in 3 iterations,
instead of 4.

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for / <+ 1 ton do
updated < false
for each (u,v) € E do
if flu] +w(u,v) < flv] then

flv] = flul + w(u, v)

updated < true
if not updated, then return f

© o N s w

output “negative cycle exists”

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for / <+ 1 ton do
updated < false
for each (u,v) € E do
if flu] +w(u,v) < flv] then
flv] < flu] + w(u,v), 7[v] < u
updated < true
if not updated, then return f

© ©° N s w

output “negative cycle exists”

@ m[v]: the parent of v in the shortest path tree

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for / <+ 1 ton do
updated < false
for each (u,v) € E do
if flu] +w(u,v) < flv] then
flv] < flu] + w(u,v), 7[v] < u
updated < true
if not updated, then return f

© ©° N s w

output “negative cycle exists”

@ m[v]: the parent of v in the shortest path tree

@ Running time = O(nm)

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra's Algorithm

© Shortest Paths in Graphs with Negative Weights
@ All-Pair Shortest Paths and Floyd-Warshall

© Minimum Cost Arborescence

76/94

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V, E),
w : E — R (can be negative)
Output: shortest path from v to v for every u,v € V

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V, E),
w : E — R (can be negative)
Output: shortest path from v to v for every u,v € V

1: for every starting point s € V do
% run Bellman-Ford(G, w, s)

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V, E),
w : E — R (can be negative)
Output: shortest path from v to v for every u,v € V

1: for every starting point s € V do
% run Bellman-Ford(G, w, s)

@ Running time = O(n%m)

Summary of Shortest Path Algorithms we learned

algorithm

| graph | weights | SS? | running time

SimpleDP | DAG| R | SS | O(n+m)
Dijkstra U/D | Rsg SS | O(nlogn + m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)
= undirected D = directed

@ DAG = directed acyclic graph
AP = all pairs

@ SS = single source

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' = {1,2,3,--- ,n}

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 i=j
w(i, j) = { weight of edge (i,j) i#j,(i,j) € E
o0 i#34,G,j) ¢ E

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 i=j
w(i, j) = { weight of edge (i,j) i#j,(i,j) € E
o0 i#34,G,j) ¢ E

@ For now assume there are no negative cycles

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 i=j
w(i, j) = { weight of edge (i,j) i#j,(i,j) € E
o0 i#5.(i,5) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 i=j
w(i, j) = { weight of edge (i,j) i#j,(i,j) € E
o0 i#34,G,j) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
o First try: f[i,] is length of shortest path from i to j

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 i=j
w(i, j) = { weight of edge (i,j) i#j,(i,j) € E
o0 i#34,G,j) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
o First try: f[i,] is length of shortest path from i to j

@ Issue: do not know in which order we compute f[i, j]'s

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 i=j
w(i, j) = { weight of edge (i,j) i#j,(i,j) € E
o0 i#34,G,j) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
o First try: f[i,] is length of shortest path from i to j

@ Issue: do not know in which order we compute f[i, j]'s

e f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--- ,k} as intermediate vertices

o

r~rr—~r?

Example for Definition of f*[i, j]'s

1 4] =00

FH1,4] = o0

fP1,4] =140 (1 —2—4)
1,4 =90 (1—=3—=2—=4)
1,4 =90 (1 —=3—=2-—=4)
1,4 =60 (1 —=3—=5—4)

0 1=
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices

0 1=
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices

Mgl =

0 1=
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices

w(i,) k=0
fFlis gl =

0 i=j
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices

kr: 1 _
Fial = min{ k=1,2,---,n

0 i=j
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices

fMidl=4 { 470 d)

0 i=j
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices
w(i,) k=0

Plial=1 #4104 L
m{ Pk g TR

Floyd-Warshall(G, w)

1: fo —w

2: for k< 1tondo
3 copy fFt = fF

4 for i < 1 ton do

5: for j < 1 ton do

6 if fR7Li k] + Rk, 4] < f*i, 4] then
7 FF, 3] = 7, k] 4 fR R, 4]

Floyd-Warshall(G, w)

1: f°|d — w

2: for k< 1tondo
3 copy fold N fnew

4 for i< 1tondo

5: for j < 1ton do

6 if ol k] + ok, 5] < fV[i, j] then
7 £ i, 5] = £, k] 4 f R, 5]

Floyd-Warshall(G, w)

L f7—w

2: for k< 1tondo

3 copy 1 = f

4 for i< 1tondo

5: for j < 1ton do

6 if foOl, k] + f [k,] < f i, 7] then
7 S] < Fo0le k) + R g

Floyd-Warshall(G, w)

I f+w
2: for k< 1tondo
3: copy f — f
for i < 1 ton do
for j < 1 ton do
if fli,k]+ flk,j] < fli, 7] then
Fli,g] < Fli k] + fk, J]

No a9 s

Floyd-Warshall(G, w)

I f+w
2: for k< 1tondo
&k for i < 1 ton do
for j < 1 ton do
if fli, k] + f[k, j] < f[i,] then
flis 31« fli, k] + [k, 5]

2 & 52

Floyd-Warshall(G, w)

I f+w
2: for k< 1ton do
3: for i < 1 ton do
for j < 1ton do
if fli,k]+ flk,j] < fli,j] then
Fli, gl < Fli k] + flk, J]

2 & 52

Lemma Assume there are no negative cycles in GG. After iteration k,
fori,j € V, fli,j] is exactly the length of shortest path from i to j
that only uses vertices in {1,2,3,--- ,k} as intermediate vertices.

Floyd-Warshall(G, w)

I f+w
2: for k< 1ton do
3: for i < 1 ton do
for j < 1ton do
if fli,k]+ flk,j] < fli,j] then
Fli, gl < Fli k] + flk, J]

2 & 52

Lemma Assume there are no negative cycles in GG. After iteration k,
fori,j € V, fli,j] is exactly the length of shortest path from i to j
that only uses vertices in {1,2,3,--- ,k} as intermediate vertices.

@ Running time = O(n?).

20
20

oo | 00
50
70

10

30

90

10

10
60

20

20
20

oo | 00
50
70

10

30

90

10

10
60

0i=2Fk=1j=3

20
20

oo | 00
50
70

10

30

40

90

10

10
60

0i=2Fk=1j=3

20
20

oo | 00
50
70

10

30
40

90

10

10
60

0oi=1k=2j=4

20
20

140

50
70

10

30
40

90

10

10
60

0oi=1k=2j=4

20
20

140 | ©

50
70

10

30
40

90

10

10
60

0i=3k=2j=1,

WIBI8IRI]|e
o
TITSIBRIeS
DR IR |38] 8
NRlo|=8|3
o2 &38| 8
— AN M < |LO
o
A

0i=3k=2j=1,

20
20

140 | ©

50
70

10

30
40

90

10

10
20

0i=3k=2j=4

20
20

140 | ©

50
60

10

30
40

90

10

10
20

0i=3k=2j=4

20
20

140 | ©

50
60

10

30
40

90

10

10
20

0oi=1k=3j=2

20
20

140 | ©

50
60

10

30
40

40

10

10
20

0oi=1k=3j=2

Recovering Shortest Paths

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j €V
2: for k<1 ton do
3: for i <+ 1 ton do
for j < 1ton do
if fli, k] + flk,j] < f[i, j] then
Flis g1 < £li, K] + Lk, 31, i, 3]

& & 55

Recovering Shortest Paths

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j €V
2: for k<1 ton do
3: for i <+ 1 ton do
for j < 1ton do
if fli, k] + flk,j] < f[i, j] then
Flis g1 < £li, K] + Lk, 31, i, 3]

& & 55

print-path(z, 7)
if 7[i, j] = L then then
if i # j then print(s,")")
else
print-path(i, 7[i, j]), print-path(=[i, j], 7)

Rl A

Detecting Negative Cycles

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j €V
2: for k< 1tondo
3 for i< 1tondo
for j < 1ton do
if fli, k] + f[k,j] < f[i, j] then
fli, 5] < fli, k] + flk, 5, wli, 5] <k

2 & g2

Detecting Negative Cycles

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j €V
2: for k< 1tondo
for i < 1 ton do
for j < 1ton do
if fli, k| + flk,j] < f[i,] then
fli) < fli, k] + flk, g], 7wli gl < &
: for k < 1 ton do
for i < 1 ton do
for j < 1ton do
10: if fli, k] + f[k,j] < f[i, j] then
11: report “negative cycle exists” and exit

© N o0 s w

Summary of Shortest Path Algorithms

algorithm

| graph | weights | SS? | running time

SimpleDP | DAG| R | SS | O(n+m)
Dijkstra U/D | Rsg SS | O(nlogn + m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)
= undirected D = directed

@ DAG = directed acyclic graph
AP = all pairs

@ SS = single source

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra's Algorithm

© Shortest Paths in Graphs with Negative Weights
@ All-Pair Shortest Paths and Floyd-Warshall

© Minimum Cost Arborescence

88,94

Def. An arborescence is directed rooted tree, where all edges are
directed away from the root. J

Def. An arborescence is directed rooted tree, where all edges are
directed away from the root.

Minimum Cost Arborescence
Problem
Input: a directed graph G = (V, E),
edge weights w : E — R
root r € V

Output: a minimum-cost sub-graph
T = (V,E') of G that is an
arborescence with root r

Def. An arborescence is directed rooted tree, where all edges are
directed away from the root.

Minimum Cost Arborescence
Problem
Input: a directed graph G = (V, E),
edge weights w : E — R
root r € V

Output: a minimum-cost sub-graph
T = (V,E') of G that is an
arborescence with root r

Def. An arborescence is directed rooted tree, where all edges are
directed away from the root. ’

Minimum Cost Arborescence
Problem
Input: a directed graph G = (V, E),
edge weights w : E — R
root r € V

Output: a minimum-cost sub-graph
T = (V,E') of G that is an
arborescence with root r

@ the root r does not have incoming edges.

@ every vertex is reachable from the root r.

90,/94

Assumptions
@ the root r does not have incoming edges.

@ every vertex is reachable from the root 7.

o For every v € V'\ {r}, define [, = min csm w(e).
@ Forevery v € V\ {r} and e € &, define w'(e) = w(e) — I,.

Assumptions
@ the root r does not have incoming edges.

@ every vertex is reachable from the root 7.

o For every v € V'\ {r}, define [, = min csm w(e).
@ Forevery v € V\ {r} and e € &, define w'(e) = w(e) — I,.

Assumptions
@ the root r does not have incoming edges.

@ every vertex is reachable from the root 7.

o For every v € V'\ {r}, define [, = min csm w(e).
@ Forevery v € V\ {r} and e € &, define w'(e) = w(e) — I,.

lo =10
p =1
d=3

Assumptions
@ the root r does not have incoming edges.

@ every vertex is reachable from the root 7.

o For every v € V'\ {r}, define [, = min csm w(e).
@ Forevery v € V\ {r} and e € &, define w'(e) = w(e) — I,.

lo = 10
p=1
i=3
c=6

Assumptions
@ the root r does not have incoming edges.

@ every vertex is reachable from the root 7.

o For every v € V'\ {r}, define [, = min csm w(e).
@ Forevery v € V\ {r} and e € &, define w'(e) = w(e) — I,.

lo = 10
p=1
i=3
c=6

Lemma The instances (G,w,r) and (G,w’,r) have the same
optimum solution.

Lemma The instances (G,w,r) and (G,w’,r) have the same
optimum solution.

Lemma The instances (G,w,r) and (G,w’,r) have the same
optimum solution.

Proof.
Given any tree solution T', w(T) — w'(T) is always }_ ci\(y b [

v

Lemma The instances (G, w,r) and (G,w’,r) have the same
optimum solution.

Proof.
Given any tree solution T', w(T) — w'(T) is always }_ ci\(y b [

Lemma Let (vg,v1,v9, -+ ,v, = vg) be a cycle C of O-cost edges in
G. Then there is an optimum solution 7', that contains all but one
edges in C.

MCA(G, T, w)
1. F* <«
2: for every v € V' \ {r} do
3: ly < min,cgim w(e)
for every edge e entering v do: w'(e) < w(e) — 1,
choose a 0-cost edge entering v, add it to (V, F™*)

. else
for every cycle C' in F* do: contract C' into a single node
: let G’ = (V', E’) be the obtained graph.
10: T" + MCA(G',r,uw')
11: extend 7" to an aborescence T in GG, by keeping all but one
edges in every cycle C' in F*, and return T

4
5
6: if F™* form an arborescence then return F™*
7
8
9

@ The running time of the algorithm is O(mn)

@ The running time of the algorithm is O(mn)

e [Tarjan (1971)]: O(min(m logn,n?))

@ [Gabow, Galil, Spencer, Tarjan (1986)]: O(nlogn + m)

@ [Mendelson, Tarjan, Thorup, Zwick (2006)]: O(m loglogn)

	Minimum Spanning Tree
	Kruskal's Algorithm
	Reverse-Kruskal's Algorithm
	Prim's Algorithm

	Single Source Shortest Paths
	Dijkstra's Algorithm

	Shortest Paths in Graphs with Negative Weights
	All-Pair Shortest Paths and Floyd-Warshall
	Minimum Cost Arborescence

