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Spanning Tree

Def. Given a connected graph G = (V, E), a spanning tree
T = (V,F) of G is a sub-graph of G that is a tree including all
vertices V.




Lemma Let 7'= (V, F) be a subgraph of G = (V, E). The
following statements are equivalent:

@ T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n — 1 edges;

T is acyclic and has n — 1 edges;

T is minimally connected: removal of any edge disconnects it;
T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.



Minimum Spanning Tree (MST) Problem
Input: Graph G = (V| E) and edge weights w : E — R
Output: the spanning tree T" of GG with the minimum total weight
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Recall: Steps of Designing A Greedy Algorithm

@ Design a “reasonable” strategy

@ Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice




Recall: Steps of Designing A Greedy Algorithm

@ Design a “reasonable” strategy

@ Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
o Kruskal's Algorithm
@ Prim’s Algorithm
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Q: Which edge can be safely included in the MST?




Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).




Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge. J
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Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’

@ Assume the lightest edge e* is not in T’

@ There is a unique path in T" connecting v and v

@ Remove any edge e in the path to obtain tree 7’
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Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’

Assume the lightest edge e* is not in T’

There is a unique path in T" connecting u and v
Remove any edge e in the path to obtain tree 7’
w(e*) <w(e) = w(T") <w(T): T"is also a MST

lightest edge e*~
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Is the Residual Problem Still a MST Problem?

@ Residual problem: find the minimum spanning tree that contains
edge (g,h)
e Contract the edge (g, h)

@ Residual problem: find the minimum spanning tree in the
contracted graph



Contraction of an Edge (u,v)




Contraction of an Edge (u,v)

@ Remove u and v from the graph, and add a new vertex u*
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Contraction of an Edge (u,v)

Remove u and v from the graph, and add a new vertex u*

Remove all edges (u,v) from E

°
°

@ For every edge (u,w) € E,w # v, change it to (u*,w)
o For every edge (v,w) € E,w # u, change it to (u*, w)
°

May create parallel edges! E.g. : two edges (7, g%)



Greedy Algorithm

Repeat the following step until G' contains only one vertex:
@ Choose the lightest edge ¢*, add e¢* to the spanning tree
@ Contract e* and update G be the contracted graph
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Greedy Algorithm

Repeat the following step until G' contains only one vertex:
@ Choose the lightest edge ¢*, add e¢* to the spanning tree
@ Contract e* and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u,v) is removed if and only if there is a path connecting u
and v formed by edges we selected




Greedy Algorithm

MST-Greedy(G, w)

1. F+0

2: sort edges in E in non-decreasing order of weights w

3: for each edge (u,v) in the order do

4: if u and v are not connected by a path of edges in F' then
5 F«+ FU{(u,v)}

6

. return (V, F)




Kruskal's Algorithm: Example

Sets: {a}, {0}, {c}, {d}, {e}, {f} {9}, {h}, {i}
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Kruskal's Algorithm: Example

Sets: {a,b,c,i, f,g,h},{d, e}



Kruskal's Algorithm: Example

Sets: {a,b,c,i, f,g,h,d, e}



Kruskal's Algorithm: Efficient Implementation of
Greedy Algorithm

MST-Kruskal(G, w)

F+ 0
S+ {{v}:veV}
sort the edges of E' in non-decreasing order of weights w
for each edge (u,v) € E in the order do
S, < the set in S containing u
S, < the set in S containing v
if S, # 95, then
F «+ FU{(u,v)}
S S\{SH\ S} U {5, U S}

return (V, F)

o N R

—
=




Running Time of Kruskal's Algorithm

MST-Kruskal(G, w)

F <«
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in S containing u
S, < the set in § containing v
if S, # S, then
F+— FU{(u,v)}
S S\{S P\ {Su} U{S. U S}

return (V, F)

e B O o

—
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Use union-find data structure to support @, @, @, @, O.



Union-Find Data Structure

o V: ground set
@ We need to maintain a partition of V' and support following
operations:

o Check if u and v are in the same set of the partition
o Merge two sets in partition



o V={1,23,--,16}
e Partition: {2,3,5,9,10,12,15},{1,7,13,16}, {4,8,11}, {6, 14}

@ parli]: parent of i, (par[i] = L if i is a root).



Union-Find Data Structure
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@ Q: how can we check if © and v are in the same set?
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Union-Find Data Structure

SN

@ Q: how can we check if © and v are in the same set?
@ A: Check if root(u) = root(v).
@ root(u): the root of the tree containing u

@ Merge the trees with root r and r’": par|r] < r'.



Union-Find Data Structure

root(v)

1 if parjv] = L then
2 return v

3: else

4 return root(par|v])




Union-Find Data Structure

root(v)

. if par[v] = L then
return v

else
return root(par|v])

[y

N

Problem: the tree might too deep; running time might be large



Union-Find Data Structure

root(v)

1 if parjv] = L then
2 return v

3: else

4 return root(par|v])

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.



Union-Find Data Structure

root(v
root(v) ( )
- 1. if par[v] = L then
1: lf pCLT[U] = J_ then 2 return v
2 return v 3: else
3: else 4. parfv] < root(par[v)])
4 return root(par|v])
5. return par|v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.



Union-Find Data Structure

root(v)
1. if par[v] = L then
2: return v
3: else
4: par[v] < root(par|v])
5: return par|v

5,



Union-Find Data Structure

root(v)
1. if par[v] = L then
2: return v
3: else
4: par[v] < root(par|v])
5: return par|v]

® ® o ©



MST-Kruskal(G, w)

—
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F«0
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in § containing u
S, < the set in S containing v
if S, # S, then
F+ FU{(u,v)}
S S\{Sup \ {Su} U{SuUS,}

return (V, F)




MST-Kruskal(G, w)

_
=

o NT AL HMH

F<«0
for every v € V do: parfv] < L

sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
u’ < root(u)
v' < root(v)
if «' v then
F+ FU{(u,v)}
parfu'] < v
return (V, F)




MST-Kruskal(G, w)

- F <0
. for every v € V do: par[v] + L
sort the edges of E in non-decreasing order of weights w
. for each edge (u,v) € E in the order do
u' < root(u)
v' < root(v)
if «' v then
F+ FU{(u,v)}
parfu'] < v
return (V, F)

o NT AL HMH

_
IS4

° 0.0.0.0.0 takes time O(ma(n))

e a(n) is very slow-growing: a(n) < 4 for n < 103,



MST-Kruskal(G, w)

1. F 10

2: for every v € V do: parfv] < L

3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u,v) € E in the order do

bs u' < root(u)

6: v" < root(v)

7: if «' v then

8: F+ FU{(u,v)}

9: parfu'] < v

10: return (V) F)

0.0.0.0.0 takes time O(ma(n))
e a(n) is very slow-growing: a(n) < 4 for n < 103,
@ Running time = time for @ = O(mlgn).



Assumption Assume all edge weights are different. J

Lemma An edge ¢ € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge. J




Assumption Assume all edge weights are different.

Lemma An edge ¢ € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge.

@ (i,g) is not in the MST because of cycle (i,c¢, f, g)



Assumption Assume all edge weights are different.

Lemma An edge ¢ € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge.

@ (i,g) is not in the MST because of cycle (i,c¢, f, g)
°

(e, f) is in the MST because no such cycle exists



Outline

@ Minimum Spanning Tree

@ Reverse-Kruskal's Algorithm



Two Methods to Build a MST

@ Start from F' < (), and add edges to F' one by one until we obtain
a spanning tree
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@ Start from F' < (), and add edges to F' one by one until we obtain
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Two Methods to Build a MST

@ Start from F' < (), and add edges to F' one by one until we obtain
a spanning tree

@ Start from F < FE, and remove edges from F' one by one until we
obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.




Lemma It is safe to exclude the heaviest non-bridge edge: there is a
MST that does not contain the heaviest non-bridge edge.




Reverse Kruskal's Algorithm

MST-Greedy(G, w)
1. F+ F
2: sort E in non-increasing order of weights
3: for every e in this order do
4: if (V,F \ {e}) is connected then
5: F <« F\{e}
6: return (V, F)
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Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallest weight.
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Lemma It is safe to include the lightest edge incident to a.

lightest edge e* incident to a
/

Proof.
o Let T be a MST
@ Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component C'

@ Let e be the edge in T" connecting a to C'




Lemma It is safe to include the lightest edge incident to a. |

lightest edge e* incident to a
/

Proof.
@ Let T be a MST

Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component C'

Let e be the edge in T' connecting a to C'
T' =T\ {e} U{e*} is a spanning tree with w(7") < w(T) O




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Prim’s Algorithm: Example




Greedy Algorithm

MST-Greedyl(G, w)

1: S < {s}, where s is arbitrary vertex in V

2: <«

3: while S #V do

4: (u,v) < lightest edge between S and V' \ S,
where u € Sandv e V'\ S

5: S+ Su{v}

6: F+ FU{(u,v)}

7: return (V, F)




Greedy Algorithm

MST-Greedyl(G, w)

1: S < {s}, where s is arbitrary vertex in V

2: <«

3: while S #V do

4: (u,v) < lightest edge between S and V' \ S,
where u € Sandv e V'\ S

5: S+ Su{v}

6: F+ FU{(u,v)}

7: return (V, F)

@ Running time of naive implementation: O(nm)



Prim's Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V' \ .S maintain
o dv] = minyeg.(upv)er w(u, v):
the weight of the lightest edge between v and S
o m[v] = arg minyes:(uvecr w(u, v):
(m[v],v) is the lightest edge between v and S

(13,¢)




Prim's Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V' \ .S maintain
o djv] = minueS:(u,u)eEw(uv v):

the weight of the lightest edge between v and S
o m[v] = arg minyecg:(uv)cr w(U, v):

(m[v],v) is the lightest edge between v and S

In every iteration
@ Pick u € V'\ S with the smallest d[u] value
e Add (m[u],u) to F
@ Add u to S, update d and 7 values.



Prim’'s Algorithm

MST-Prim(G, w)
s <— arbitrary vertex in G
S+ 0,d(s) «+ 0 and d[v] « oo for every v € V' \ {s}
while S # V do
u < vertex in V'\ .S with the minimum d[u]
S« SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v)
m[v] « u
return {(u, 7[u])|lu € V' \ {s}}

N a R LN
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Prim’'s Algorithm

For every v € V' \ .S maintain
o dv] = minyeg.(uv)er w(u, v):

the weight of the lightest edge between v and S
o 7[v] = arg minyeg:(uv)cr WU, v):

(m[v],v) is the lightest edge between v and S

In every iteration
@ Pick uw € V'\ S with the smallest d[u] value
e Add (m[u],u) to F
@ Add u to S, update d and 7 values.



Prim’'s Algorithm

For every v € V' \ .S maintain
o dv] = minyeg.(uv)er w(u, v):
the weight of the lightest edge between v and S
o 7[v] = arg minyeg:(uv)cr WU, v):
(m[v],v) is the lightest edge between v and S

In every iteration

@ Pick uw € V'\ S with the smallest d[u] value extract_min
e Add (m[u],u) to F
@ Add u to S, update d and 7 values. decrease_key

Use a priority queue to support the operations



Def. A priority queue is an abstract data structure that maintains a

set U of elements, each with an associated key value, and supports

the following operations:

@ insert(v, key_value): insert an element v, whose associated key
value is key_value.

o decrease key(v, new_key value): decrease the key value of an
element v in queue to new_key_value

@ extract_min(): return and remove the element in queue with the
smallest key value




Prim’'s Algorithm

MST-Prim(G, w)

1: s < arbitrary vertex in G
2: S+ 0,d(s) < 0 and d[v] + oo for every v € V' \ {s}
3:

»

while S # V do
u <— vertex in V' \ S with the minimum dJu]
S« SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v)
10: m[v] + u
11: return {(u, w[u))|u € V'\ {s}}

e 0N a




Prim's Algorithm Using Priority Queue

MST-Prim(G, w)
s <— arbitrary vertex in G
S+ 0,d(s) «+ 0 and d[v] « oo for every v € V' \ {s}
. () + empty queue, for each v € V: Q.insert(v, d[v])
while S # V do
u < @.extract_min()
S+ Su{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v), Q.decrease key(v, d[v])
m[v] + u
return {(u, 7[u])|lu € V' \ {s}}

A I T o

=
=
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Running Time of Prim’s Algorithm Using Priority
Queue

O(n)x (time for extract_min) + O(m)x (time for decrease_key)
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Assumption Assume all edge weights are different. J

Lemma (u,v) is in MST, if and only if there exists a cut (U, V' \ U),
such that (u,v) is the lightest edge between U and V' \ U.
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Assumption Assume all edge weights are different. J

Lemma (u,v) is in MST, if and only if there exists a cut (U, V' \ U),
such that (u,v) is the lightest edge between U and V' \ U. ’

(¢, f) is in MST because of cut ({a, b,c,i},V\{a,b,c, @})

(]
@ (i,g) is not in MST because no such cut exists



“Evidence” for e € MST or e ¢ MST

Assumption Assume all edge weights are different.

@ ¢ € MST < there is a cut in which ¢ is the lightest edge
@ ¢ ¢ MST < there is a cycle in which e is the heaviest edge
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“Evidence” for e € MST or e ¢ MST

Assumption Assume all edge weights are different.

@ ¢ € MST < there is a cut in which ¢ is the lightest edge
@ ¢ ¢ MST < there is a cycle in which e is the heaviest edge

Exactly one of the following is true:
@ There is a cut in which ¢ is the lightest edge

@ There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.
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© Single Source Shortest Paths
@ Dijkstra's Algorithm



algorithm

| graph | weights | SS? | running time

Simple DP | DAG | R | SS | O(ntm)
Dijkstra U/D | R SS | O(nlogn + m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph

@ SS = single source

AP = all pairs

= undirected D = directed
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@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem




Single Source Shortest Paths
Input: (directed or undirected) graph G = (V, E), s€V
w:E — R
Output: shortest paths from s to all other vertices v € V

Reason for Considering Single Source Shortest Paths

Problem

@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

@ Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with two
anti-parallel edges of the same weight



Single Source Shortest Paths
Input: (directed or undirected) graph G = (V, E), s€V
w:E — R
Output: shortest paths from s to all other vertices v € V

Reason for Considering Single Source Shortest Paths

Problem

@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

@ Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with two
anti-parallel edges of the same weight



Single Source Shortest Paths
Input: directed graph G = (V. E), s€V
w:E = R
Output: shortest paths from s to all other vertices v € V/

Reason for Considering Single Source Shortest Paths

Problem

@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

@ Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with two
anti-parallel edges of the same weight



Input: directed graph G = (V, E), s € V
w: B — Ry
Output: 7[v],v € V'\ s: the parent of v in shortest path tree
d[v],v € V'\ s: the length of shortest path from s to v

50,94
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weight 17

J

A: Breadth first search (BFS) from source s
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Assumption Weights w(u,v) are integers (w.l.0.g).

@ An edge of weight w(u,v) is equivalent to a pah of w(u,v)
unit-weight edges

; | ; b ohohohe

Shortest Path Algorithm by Running BFS

1: replace (u,v) of length w(u,v) with a path of w(u,v)
unit-weight edges, for every (u,v) € E

2: run BFS virtually

3: m[v] < vertex from which v is visited

4: d[v] < index of the level containing v

@ Problem: w(u,v) may be too large!



Shortest Path Algorithm by Running BFS Virtually
1: S < {s},d(s) <0
2: while |S| < n do
3: find a v ¢ S that minimizes  min  {d[u] + w(u,v)}
u€S:(u,v)eEE
S+ Su{v}
dlv] ¢ minyes.(uver{du] + w(u,v)}

OIS
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@ Dijkstra's Algorithm



Dijkstra’s Algorithm

Dijkstra(G, w, s)

1. S« 0,d(s) < 0 and d[v] < oo for every v € V' \ {s}
2. while S+ V do

3: u <— vertex in V'\ .S with the minimum d[u]
4 add u to S

5 for each v € V'\ S such that (u,v) € E do
6: if d[u] + w(u,v) < d[v] then

7: d[v] + d[u] + w(u,v)

8 m[v] « u

9: return (d, )




Dijkstra’s Algorithm

Dijkstra(G, w, s)

1. S« 0,d(s) < 0 and d[v] < oo for every v € V' \ {s}
2. while S+ V do

3: u <— vertex in V'\ .S with the minimum d[u]
4 add u to S

5 for each v € V'\ S such that (u,v) € E do
6 if d[u] + w(u,v) < d[v] then

7: d[v] + d[u] + w(u,v)

8: m[v] « u

9: return (d, )

@ Running time = O(n?)
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Improved Running Time using Priority Queue

Dijkstra(G, w, s)

1:

2: S+ 0,d(s) < 0 and d[v] + oo for every v € V' \ {s}
3: () + empty queue, for each v € V: Q.insert(v, d[v])
4: while S #V do

5: u < @.extract_min()

6: S« Su{u}

i for each v € V'\ S such that (u,v) € E do

8: if dju] +w(u,v) < d[v] then

9: d[v] « d[u] + w(u,v), Q.decrease key(v, d[v])
10: m[v] + u

11: return (7, d)




Recall: Prim’s Algorithm for MST

MST-Prim(G, w)
s <— arbitrary vertex in G
S+ 0,d(s) «+ 0 and d[v] « oo for every v € V' \ {s}
. () + empty queue, for each v € V: Q.insert(v, d[v])
while S # V do
u < @.extract_min()
S+ Su{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v), Q.decrease key(v, d[v])
m[v] + u
return {(u, 7[u])|lu € V' \ {s}}

A I T o

=
e

1

—




Improved Running Time

Running time:
O(n) x (time for extract_min) + O(m) X (time for decrease_key)

Priority-Queue | extract_min | decrease_key Time
Heap O(logn) O(logn) O(mlogn)
Fibonacci Heap | O(logn) O(1) O(nlogn +m)




@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra's Algorithm

© Shortest Paths in Graphs with Negative Weights
@ All-Pair Shortest Paths and Floyd-Warshall

© Minimum Cost Arborescence

61/94
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Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s€ V
assume all vertices are reachable from s
w:FE—>R
Output: shortest paths from s to all other vertices v € V'

@ In transition graphs, negative weights make sense

o If we sell a item: ‘having the item’ — ‘not having the item’,
weight is negative (we gain money)

@ Dijkstra's algorithm does not work any more!
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Q: What is the length of the shortest path from s to d? )

A: — J

Def. A negative cycle is a cycle in which the total weight of edges is
negative. J

Q: What is the length of the shortest simple path from s to d? J

A: 1 }

T







@ Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.
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@ Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.
Dealing with Negative Cycles

@ We need to compute the shortest paths, among both simple and
complex paths.

@ Hardest: output —oo as a distance

o Easier: if negative cycle exists, allow algorithm to report “negative
cycle exists” without computing distances

@ Easiest: assume negative cycles do not exist; all shortest paths are
automatically simple paths




algorithm

| graph | weights | SS? | running time

Simple DP | DAG | R | SS | O(ntm)
Dijkstra U/D | Rsg SS | O(nlogn + m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph

@ SS = single source

AP = all pairs

= undirected D = directed
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Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s e V
assume all vertices are reachable from s
w:FEF—R
Output: shortest paths from s to all other vertices v € V

o first try: f[v]: length of shortest path from s to v

@ issue: do not know in which order we compute f[v]'s

o f‘[v], £€{0,1,2,3--- ,n—1}, v € V : length of shortest path
from s to v that uses at most ¢ edges



o v, £€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges




o v, £€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

o f2la] =




o v, £€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6




o v, £€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f*la] =




o v, £€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3a] =2




o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3a] =2

(=0,v=s
(=0,v#s

{>0



o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3a] =2

(=0,v=s
(=0,v#s

{>0



o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3a] =2

(=0,v=s
(=0,v#s

{>0



o ffv], 0€{0,1,2,3--- ,n—1},veV:
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o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3la] =2
(=0,v=s
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o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3a] =2

0 (=0,v=s
00 (=0,v+#s
F )

flvl =

i { Mty er (F1u] + wu, v))

{>0
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dynamic-programming(G, w, s)

1: fOs] - 0 and fO[v] - oo for any v € V'\ {s}
2: for { <~ 1ton—1do

3 copy f&«l = ff

4 for each (u,v) € E do

5: if £ u] + w(u,v) < fv] then

6 fio] < ] + w(u,v)

7

return (f"~'[v])vey
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Obs. Assuming there are no negative cycles, then a shortest path
contains at most n — 1 edges




dynamic-programming (G, w, s)
1: fOs] - 0 and fO[v] - oo for any v € V'\ {s}
2: for { <~ 1ton—1do
3. copy f&:t— f*
4 for each (u,v) € E do
5: if £ u] + w(u,v) < fv] then
6 Fi) = £ u] + wlu, v)
7

- return (f"7Hv])yey

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n — 1 edges

Proof.

If there is a path containing at least n edges, then it contains a cycle.
Removing the cycle gives a path with the same or smaller length. [




Dynamic Programming with Better Space Usage

dynamic-programming(G, w, s)

1. fos] <= 0 and f°[v] < oo for any v € V' \ {s}
2: for (< 1ton—1do

3 copy fold N fnew

4 for each (u,v) € E do

5 if fou] + w(u,v) < f"[v] then

6: o] < o] + w(u,v)
7

8

copy fnew — fold
. return f°¢

e f* only depends on f*~!: only need 2 vectors
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dynamic-programming(G, w, s)

1: f[s] <= 0and f""[v] < oo for any v € V' \ {s}
2. for{ < 1ton—1do

3: copy f'— f

4 for each (u,v) € E do

5 if 7 [u] +w(u,v) < f"[v] then
6: f ol = 0 fu] 4+ w(u, v)

7 copy f'' = f

8: return f

e f* only depends on f*~!: only need 2 vectors

@ only need 1 vector!
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dynamic-programming(G, w, s)

1: f[s] <= 0 and f[v] <= oo for any v € V' \ {s}
2: for { <~ 1ton—1do

3: copy f — f

4: for each (u,v) € E do

5 if flu] +w(u,v) < flv] then
6: fv] < flu] + w(u,v)

7 copy f — f

8: return f

o f* only depends on f*~!: only need 2 vectors

@ only need 1 vector!



Dynamic Programming with Better Space Usage

dynamic-programming(G, w, s)

. f[s] <=0 and f[v] <= oo for any v € V'\ {s}
2: for { <~ 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < f[v] then

5

6

[y

flv] « flu] + w(u,v)
. return f

e f’ only depends on f~!: only need 2 vectors

@ only need 1 vector!



Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1. f[s] + 0 and f[v] < oo for any v € V' \ {s}
2: for{ <+ 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < f[v] then

5 flv] = flu] + w(u,v)

6: return f

e f’ only depends on f~!: only need 2 vectors

@ only need 1 vector!
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since the end of last iteration



Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for (< 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < flv] then

5: flv] = flul + w(u,v)

6: return f

@ Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration

@ This is OK: it can only “accelerate” the process!



Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
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6: return f
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Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for { <~ 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < flv] then

5: flv] < flu] + w(u,v)

6: return f

@ Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration

@ This is OK: it can only “accelerate” the process!

@ After iteration ¢, f[v] is at most the length of the shortest path
from s to v that uses at most ¢ edges
e f[v] is always the length of some path from s to v
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Bellman-Ford Algorithm

@ After iteration /¢:

length of shortest s-v path

< flv]

< length of shortest s-v path using at most ¢ edges

@ Assuming there are no negative cycles:

length of shortest s-v path

= length of shortest s-v path using at most n — 1 edges

@ So, assuming there are no negative cycles, after iteration n — 1:

f[v] = length of shortest s-v path
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@ order in which we consider edges:
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@ order in which we consider edges:
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vertices‘s‘a‘b‘c‘d
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@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c.d), (d,a)

vertices‘s‘a‘b‘c‘d
folofe 7274




@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folofe 7274




@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
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@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ end of iteration 1: 0,2, 7, 2, 4
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@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ end of iteration 1: 0, 2,7, 2, 4




@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27214

@ end of iteration 1: 0, 2,7, 2, 4




@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27 ]-2]4

@ end of iteration 1: 0, 2,7, 2, 4




@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c.d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27 ]-2]4

@ end of iteration 1: 0, 2,7, 2, 4




@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27 ]-2]4

@ end of iteration 1: 0, 2,7, 2, 4




@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27 ]-2]4

@ end of iteration 1: 0, 2,7, 2, 4
@ end of iteration 2: 0, 2, 7, -2, 4




@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),

(c;d), (d,a)
vertices ‘ S a b c d
f 0 2 7 -2 4

@ end of iteration 1: 0, 2,7, 2, 4
@ end of iteration 2: 0, 2, 7, -2, 4
@ end of iteration 3: 0, 2, 7, -2, 4




@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27 ]-2]4

@ end of iteration 1: 0, 2,7, 2, 4

@ end of iteration 2: 0, 2, 7, -2, 4

@ end of iteration 3: 0, 2, 7, -2, 4

@ Algorithm terminates in 3 iterations,
instead of 4.



Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for / <+ 1 ton do
updated < false
for each (u,v) € E do
if flu] +w(u,v) < flv] then

flv] = flul + w(u, v)

updated < true
if not updated, then return f

© o N s w

output “negative cycle exists”




Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for / <+ 1 ton do
updated < false
for each (u,v) € E do
if flu] +w(u,v) < flv] then
flv] < flu] + w(u,v), 7[v] < u
updated < true
if not updated, then return f

© ©° N s w

output “negative cycle exists”

@ m[v]: the parent of v in the shortest path tree



Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for / <+ 1 ton do
updated < false
for each (u,v) € E do
if flu] +w(u,v) < flv] then
flv] < flu] + w(u,v), 7[v] < u
updated < true
if not updated, then return f

© ©° N s w

output “negative cycle exists”

@ m[v]: the parent of v in the shortest path tree

@ Running time = O(nm)



@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra's Algorithm

© Shortest Paths in Graphs with Negative Weights
@ All-Pair Shortest Paths and Floyd-Warshall

© Minimum Cost Arborescence
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All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V, E),
w : E — R (can be negative)
Output: shortest path from v to v for every u,v € V
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All Pair Shortest Paths
Input: directed graph G = (V, E),
w : E — R (can be negative)
Output: shortest path from v to v for every u,v € V

1: for every starting point s € V do
% run Bellman-Ford(G, w, s)




All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V, E),
w : E — R (can be negative)
Output: shortest path from v to v for every u,v € V

1: for every starting point s € V do
% run Bellman-Ford(G, w, s)

@ Running time = O(n%m)



Summary of Shortest Path Algorithms we learned

algorithm

| graph | weights | SS? | running time

SimpleDP | DAG| R | SS | O(n+m)
Dijkstra U/D | Rsg SS | O(nlogn + m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)
= undirected D = directed

@ DAG = directed acyclic graph
AP = all pairs

@ SS = single source



Design a Dynamic Programming Algorithm

@ It is convenient to assume V' = {1,2,3,--- ,n}
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o0 i#34,G,j) ¢ E
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@ For simplicity, extend the w values to non-edges:

0 i=j
w(i, j) = { weight of edge (i,j) i#j,(i,j) € E
o0 i#5.(i,5) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
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Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 i=j
w(i, j) = { weight of edge (i,j) i#j,(i,j) € E
o0 i#34,G,j) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
o First try: f[i, ] is length of shortest path from i to j

@ Issue: do not know in which order we compute f[i, j]'s

e f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--- ,k} as intermediate vertices

o

r~rr—~r?




Example for Definition of f*[i, j]'s

1 4] =00

FH1,4] = o0

fP1,4] =140 (1 —2—4)
1,4 =90 (1—=3—=2—=4)
1,4 =90 (1 —=3—=2-—=4)
1,4 =60 (1 —=3—=5—4)




0 1=
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices



0 1=
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices
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0 1=
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices

w(i, ) k=0
fFlis gl =



0 i=j
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices

kr: 1 _
Fial = min{ k=1,2,---,n



0 i=j
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices

fMidl=4 { 470 d)



0 i=j
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices
w(i, ) k=0

Plial=1 #4104 L
m{ Pk g TR



Floyd-Warshall(G, w)

1: fo —w

2: for k< 1tondo
3 copy fFt = fF

4 for i < 1 ton do

5: for j < 1 ton do

6 if fR7Li k] + Rk, 4] < f*i, 4] then
7 FF, 3] = 7, k] 4 fR R, 4]




Floyd-Warshall(G, w)

1: f°|d — w

2: for k< 1tondo
3 copy fold N fnew

4 for i< 1tondo

5: for j < 1ton do

6 if ol k] + ok, 5] < fV[i, j] then
7 £ i, 5] = £, k] 4 f R, 5]




Floyd-Warshall(G, w)

L f7—w

2: for k< 1tondo

3 copy 1 = f

4 for i< 1tondo

5: for j < 1ton do

6 if foOl, k] + f [k, ] < f i, 7] then
7 S ] < Fo0le k) + R g




Floyd-Warshall(G, w)

I f+w
2: for k< 1tondo
3: copy f — f
for i < 1 ton do
for j < 1 ton do
if fli,k]+ flk,j] < fli, 7] then
Fli,g] < Fli k] + fk, J]

No a9 s




Floyd-Warshall(G, w)

I f+w
2: for k< 1tondo
&k for i < 1 ton do
for j < 1 ton do
if fli, k] + f[k, j] < f[i, ] then
flis 31« fli, k] + [k, 5]

2 & 52




Floyd-Warshall(G, w)

I f+w
2: for k< 1ton do
3: for i < 1 ton do
for j < 1ton do
if fli,k]+ flk,j] < fli,j] then
Fli, gl < Fli k] + flk, J]

2 & 52

Lemma Assume there are no negative cycles in GG. After iteration k,
fori,j € V, fli,j] is exactly the length of shortest path from i to j
that only uses vertices in {1,2,3,--- ,k} as intermediate vertices.




Floyd-Warshall(G, w)

I f+w
2: for k< 1ton do
3: for i < 1 ton do
for j < 1ton do
if fli,k]+ flk,j] < fli,j] then
Fli, gl < Fli k] + flk, J]

2 & 52

Lemma Assume there are no negative cycles in GG. After iteration k,
fori,j € V, fli,j] is exactly the length of shortest path from i to j
that only uses vertices in {1,2,3,--- ,k} as intermediate vertices.

@ Running time = O(n?).
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Recovering Shortest Paths

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j €V
2: for k<1 ton do
3: for i <+ 1 ton do
for j < 1ton do
if fli, k] + flk,j] < f[i, j] then
Flis g1 < £li, K] + Lk, 31, i, 3]

& & 55




Recovering Shortest Paths

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j €V
2: for k<1 ton do
3: for i <+ 1 ton do
for j < 1ton do
if fli, k] + flk,j] < f[i, j] then
Flis g1 < £li, K] + Lk, 31, i, 3]

& & 55

print-path(z, 7)
if 7[i, j] = L then then
if i # j then print(s,")")
else
print-path(i, 7[i, j]), print-path(=[i, j], 7)

Rl A




Detecting Negative Cycles

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j €V
2: for k< 1tondo
3 for i< 1tondo
for j < 1ton do
if fli, k] + f[k,j] < f[i, j] then
fli, 5] < fli, k] + flk, 5, wli, 5] <k

2 & g2




Detecting Negative Cycles

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j €V
2: for k< 1tondo
for i < 1 ton do
for j < 1ton do
if fli, k| + flk,j] < f[i, ] then
fli ) < fli, k] + flk, g], 7wli gl < &
: for k < 1 ton do
for i < 1 ton do
for j < 1ton do
10: if fli, k] + f[k,j] < f[i, j] then
11: report “negative cycle exists” and exit

© N o0 s w




Summary of Shortest Path Algorithms

algorithm

| graph | weights | SS? | running time

SimpleDP | DAG| R | SS | O(n+m)
Dijkstra U/D | Rsg SS | O(nlogn + m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)
= undirected D = directed

@ DAG = directed acyclic graph
AP = all pairs

@ SS = single source



@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra's Algorithm

© Shortest Paths in Graphs with Negative Weights
@ All-Pair Shortest Paths and Floyd-Warshall

© Minimum Cost Arborescence

88,94



Def. An arborescence is directed rooted tree, where all edges are
directed away from the root. J




Def. An arborescence is directed rooted tree, where all edges are
directed away from the root.

Minimum Cost Arborescence
Problem
Input: a directed graph G = (V, E),
edge weights w : E — R
root r € V

Output: a minimum-cost sub-graph
T = (V,E') of G that is an
arborescence with root r




Def. An arborescence is directed rooted tree, where all edges are
directed away from the root.

Minimum Cost Arborescence
Problem
Input: a directed graph G = (V, E),
edge weights w : E — R
root r € V

Output: a minimum-cost sub-graph
T = (V,E') of G that is an
arborescence with root r




Def. An arborescence is directed rooted tree, where all edges are
directed away from the root. ’

Minimum Cost Arborescence
Problem
Input: a directed graph G = (V, E),
edge weights w : E — R
root r € V

Output: a minimum-cost sub-graph
T = (V,E') of G that is an
arborescence with root r




@ the root r does not have incoming edges.

@ every vertex is reachable from the root r.
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Assumptions
@ the root r does not have incoming edges.

@ every vertex is reachable from the root 7.

o For every v € V'\ {r}, define [, = min csm w(e).
@ Forevery v € V\ {r} and e € &, define w'(e) = w(e) — I,.
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o For every v € V'\ {r}, define [, = min csm w(e).
@ Forevery v € V\ {r} and e € &, define w'(e) = w(e) — I,.




Assumptions
@ the root r does not have incoming edges.

@ every vertex is reachable from the root 7.

o For every v € V'\ {r}, define [, = min csm w(e).
@ Forevery v € V\ {r} and e € &, define w'(e) = w(e) — I,.

lo =10
p =1
d=3




Assumptions
@ the root r does not have incoming edges.

@ every vertex is reachable from the root 7.

o For every v € V'\ {r}, define [, = min csm w(e).
@ Forevery v € V\ {r} and e € &, define w'(e) = w(e) — I,.

lo = 10
p=1
i=3
c=6




Assumptions
@ the root r does not have incoming edges.

@ every vertex is reachable from the root 7.

o For every v € V'\ {r}, define [, = min csm w(e).
@ Forevery v € V\ {r} and e € &, define w'(e) = w(e) — I,.

lo = 10
p=1
i=3
c=6

Lemma The instances (G,w,r) and (G,w’,r) have the same
optimum solution.
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Lemma The instances (G,w,r) and (G,w’,r) have the same
optimum solution.

Proof.
Given any tree solution T', w(T) — w'(T) is always }_ ci\(y b [
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Lemma The instances (G, w,r) and (G,w’,r) have the same
optimum solution.

Proof.
Given any tree solution T', w(T) — w'(T) is always }_ ci\(y b [

Lemma Let (vg,v1,v9, -+ ,v, = vg) be a cycle C of O-cost edges in
G. Then there is an optimum solution 7', that contains all but one
edges in C.































MCA(G, T, w)
1. F* <«
2: for every v € V' \ {r} do
3: ly < min,cgim w(e)
for every edge e entering v do: w'(e) < w(e) — 1,
choose a 0-cost edge entering v, add it to (V, F™*)

. else
for every cycle C' in F* do: contract C' into a single node
: let G’ = (V', E’) be the obtained graph.
10: T" + MCA(G',r,uw')
11: extend 7" to an aborescence T in GG, by keeping all but one
edges in every cycle C' in F*, and return T

4
5
6: if F™* form an arborescence then return F™*
7
8
9




@ The running time of the algorithm is O(mn)



@ The running time of the algorithm is O(mn)

e [Tarjan (1971)]: O(min(m logn,n?))

@ [Gabow, Galil, Spencer, Tarjan (1986)]: O(nlogn + m)

@ [Mendelson, Tarjan, Thorup, Zwick (2006)]: O(m loglogn)
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