算法设计与分析(2025年春季学期) Graph Basics

授课老师: 栗师南京大学计算机学院

Outline

- $lue{1}$ Graphs
- 2 Connectivity and Graph Traversa
 - Testing Bipartiteness
- Topological Ordering
- 4 Bridges and 2-Edge-Connected Components
 - O(n+m)-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices
- **5** Strong Connectivity in Directed Graphs
 - Tarjan's O(n+m)-Time Algorithm for Finding SCCes

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

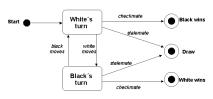
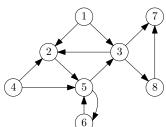


Figure: Transition Graphs

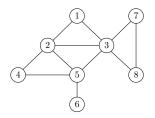
(Undirected) Graph G = (V, E)



- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- ullet E: pairwise relationships among V;
 - \bullet (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{3,7\},\{3,8\},\{4,5\},\{5,6\},\{7,8\}\}$

Abuse of Notations

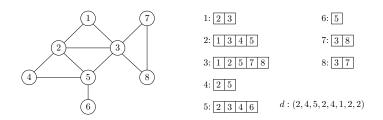
- For (undirected) graphs, we often use (i,j) to denote the set $\{i,j\}$.
- We call (i, j) an unordered pair; in this case (i, j) = (j, i).



• $E = \{(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7), (3,8), (4,5), (5,6), (7,8)\}$

- Social Network : Undirected
- Transition Graph: Directed
- Road Network : Directed or Undirected
- Internet : Directed or Undirected

Representation of Graphs



- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - A is symmetric if graph is undirected
- Linked lists
 - ullet For every vertex v, there is a linked list containing all neighbours of v.

7/52

• If graph is static: store neighbors of all vertices in a length-2m array, where the neighbors of any vertex are consecutive.

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of \boldsymbol{v}	O(n)	$O(d_v)$

Outline

- Graphs
- 2 Connectivity and Graph Traversal
 - Testing Bipartiteness
- Topological Ordering
- 4 Bridges and 2-Edge-Connected Components
 - O(n+m)-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices
- **(5)** Strong Connectivity in Directed Graphs
 - Tarjan's O(n+m)-Time Algorithm for Finding SCCes

Connectivity Problem

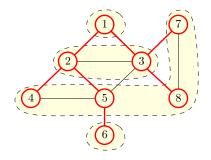
Input: graph G = (V, E), (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j



Implementing BFS using a Queue

```
BFS(s)

1: head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s

2: mark s as "visited" and all other vertices as "unvisited"

3: while head \leq tail do

4: v \leftarrow queue[head], head \leftarrow head + 1

5: for all neighbours u of v do

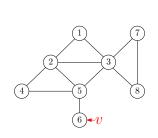
6: if u is "unvisited" then

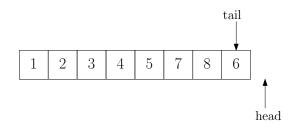
7: tail \leftarrow tail + 1, queue[tail] = u

8: mark u as "visited"
```

• Running time: O(n+m).

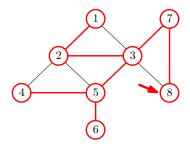
Example of BFS via Queue





Depth-First Search (DFS)

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



Implementing DFS using Recurrsion

$\mathsf{DFS}(s)$

- 1: mark all vertices as "unvisited"
- 2: recursive-DFS(s)

recursive-DFS(v)

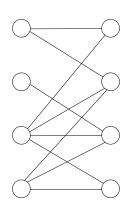
- 1: mark v as "visited"
- 2: **for** all neighbours u of v **do**
- 3: **if** u is unvisited **then** recursive-DFS(u)

Outline

- Graphs
- 2 Connectivity and Graph Traversal
 - Testing Bipartiteness
- Topological Ordering
- 4 Bridges and 2-Edge-Connected Components
 - O(n+m)-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices
- Strong Connectivity in Directed Graphs
 - Tarjan's O(n+m)-Time Algorithm for Finding SCCes

Testing Bipartiteness: Applications of BFS

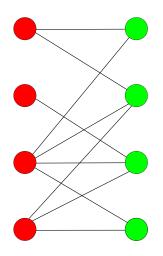
Def. A graph G=(V,E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u,v)\in E$, we have either $u\in L,v\in R$ or $v\in L,u\in R$.

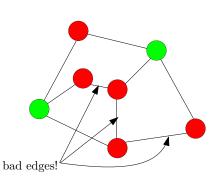


Testing Bipartiteness

- ullet Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- ...
- Report "not a bipartite graph" if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component

Test Bipartiteness





Testing Bipartiteness using BFS

$\mathsf{BFS}(s)$

```
1: head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s
 2: mark s as "visited" and all other vertices as "unvisited"
 3: color[s] \leftarrow 0
 4: while head < tail do
        v \leftarrow queue[head], head \leftarrow head + 1
 5:
        for all neighbours u of v do
 6:
             if u is "unvisited" then
 7:
                 tail \leftarrow tail + 1, queue[tail] = u
 8:
                 mark u as "visited"
 9:
                 color[u] \leftarrow 1 - color[v]
10:
             else if color[u] = color[v] then
11:
                 print("G is not bipartite") and exit
12:
```

Testing Bipartiteness using BFS

```
1: mark all vertices as "unvisited" 2: for each vertex v \in V do
```

3: **if** v is "unvisited" **then**

4: test-bipartiteness(v)

5: print("G is bipartite")

Obs. Running time of algorithm = O(n + m)

Outline

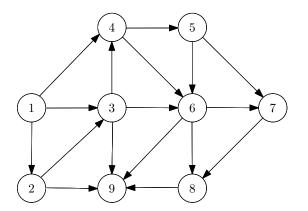
- Graphs
- 2 Connectivity and Graph Traversa
 - Testing Bipartiteness
- Topological Ordering
- 4 Bridges and 2-Edge-Connected Components
 - O(n+m)-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices
- **Strong Connectivity in Directed Graphs**
 - Tarjan's O(n+m)-Time Algorithm for Finding SCCes

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

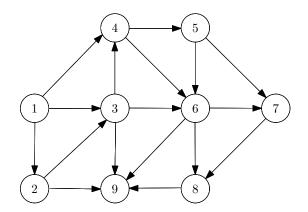
Output: 1-to-1 function $\pi: V \to \{1, 2, 3 \cdots, n\}$, so that

• if $(u, v) \in E$ then $\pi(u) < \pi(v)$



Topological Ordering

 Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.



Topological Ordering

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v=0$

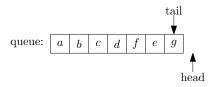
topological-sort(G)

- 1: let $d_v \leftarrow 0$ for every $v \in V$
- 2: for every $v \in V$ do
- 3: **for** every u such that $(v, u) \in E$ **do**
- 4: $d_u \leftarrow d_u + 1$
- 5: $S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$
- 6: while $S \neq \emptyset$ do
- 7: $v \leftarrow \text{arbitrary vertex in } S, S \leftarrow S \setminus \{v\}$
- 8: $i \leftarrow i + 1, \pi(v) \leftarrow i$
- 9: **for** every u such that $(v, u) \in E$ **do**
- 10: $d_u \leftarrow d_u 1$
- 11: **if** $d_u = 0$ **then** add u to S
- 12: if i < n then output "not a DAG"
- ullet S can be represented using a queue or a stack
- Running time = O(n+m)

${\cal S}$ as a Queue or a Stack

DS	Queue	Stack
Initialization	$head \leftarrow 1, tail \leftarrow 0$	$top \leftarrow 0$
Non-Empty?	$head \le tail$	top > 0
Add(v)	$tail \leftarrow tail + 1 \\ S[tail] \leftarrow v$	$top \leftarrow top + 1 \\ S[top] \leftarrow v$
Retrieve v	$v \leftarrow S[head] \\ head \leftarrow head + 1$	$v \leftarrow S[top] \\ top \leftarrow top - 1$

Example

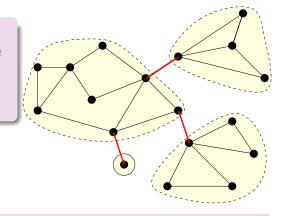


Outline

- Graphs
- Connectivity and Graph Traversal
 - Testing Bipartiteness
- Topological Ordering
- 4 Bridges and 2-Edge-Connected Components
 - O(n+m)-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices
- 5 Strong Connectivity in Directed Graphs
 - Tarjan's O(n+m)-Time Algorithm for Finding SCCes

Def. Given G = (V, E), $e \in E$ is called a bridge if the removal of e from G will increase its number of connected components.

• When G is connected, $e \in E$ is a bridge iff its removal will disconnect G.



Def. A graph G=(V,E) is 2-edge-connected if for every two $u,v\in V$, there are two edge disjoint paths connecting u and v.

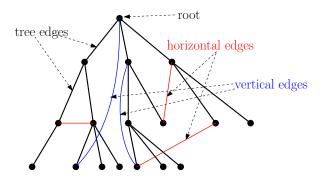
Lemma Let B be the set of bridges in a graph G=(V,E). Then, every connected component in $(V,E\setminus B)$ is 2-edge-connected. Every such component is called a 2-edge-connected component of G.

Outline

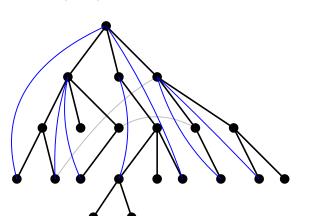
- Graphs
- Connectivity and Graph Traversal
 - Testing Bipartiteness
- Topological Ordering
- 4 Bridges and 2-Edge-Connected Components
 - O(n+m)-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices
- 5 Strong Connectivity in Directed Graphs
 - Tarjan's O(n+m)-Time Algorithm for Finding SCCes

Vertical and Horizontal Edges

- G = (V, E): connected graph
- $T = (V, E_T)$: rooted spanning tree of G
- $(u,v) \in E \setminus E_T$ is
 - \bullet vertical if one of u and v is an ancestor of the other in T,
 - horizontal otherwise.



• G = (V, E): connected graph

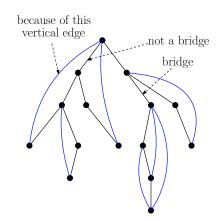


T: a DFS tree for G

Q: Can there be a horizontal edges (u, v) w.r.t T?

A: No!

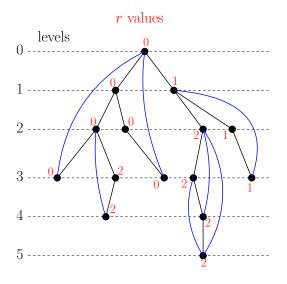
- G = (V, E): connected graph
- \bullet T: a DFS tree for G
- G contains only tree and vertical edges
- vertical edges: not bridges



Lemma

- $(u,v) \in T$, u is parent
- (u, v) is not a bridge $\iff \exists$ vertical edge connecting an (inclusive) descendant of v and an (inclusive) ancestor of u

- v.l: the level of vertex v in DFS tree
- T_v : subtree rooted at v
- v.r: the smallest level that can be reached by a vertical edge from T_v
- (parent(u), u) is a bridge if and only if $u.r \geq u.l.$



```
recursive-DFS(v)
```

```
1: mark v as "visited"
 2: v.r \leftarrow \infty
 3: for all neighbours u of v do
        if u is unvisited then
                                                               \triangleright u is a child of v
 4.
             u.l \leftarrow v.l + 1
 5:
             recursive-DFS(u)
 6:
             if u.r > u.l then claim (v, u) is a bridge
 7:
             if u.r < v.r then v.r \leftarrow u.r
 8:
        else if u.l < v.l - 1 then \triangleright u is ancestor but not parent
 9:
             if u.l < v.r then v.r \leftarrow u.l
10:
```

finding-bridges

- 1: mark all vertices as "unvisited"
- 2: for every $v \in V$ do
- 3: **if** v is unvisited **then**
- 4: $v.l \leftarrow 0$
- 5: recursive-DFS(v)
- Running time: O(n+m)

Outline

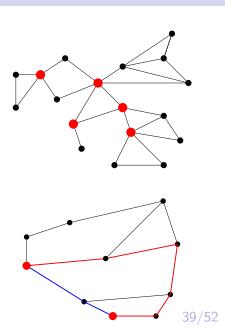
- Graphs
- 2 Connectivity and Graph Traversal
 - Testing Bipartiteness
- Topological Ordering
- Bridges and 2-Edge-Connected Components
 - O(n+m)-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices
- 5 Strong Connectivity in Directed Graphs
 - Tarjan's O(n+m)-Time Algorithm for Finding SCCes

Cut vertices

Def. A vertex is a cut vertex of G=(V,E) if its removal will increase the number of connected components of G.

Def. A graph G=(V,E) is 2-(vertex-)connected (or biconnected) if for every $u,v\in V$, there are 2 internally-disjoint paths between u and v.

Lemma A graph G = (V, E) with $|V| \ge 3$ does not contain a cut vertex, if and only if it is biconnected.



Q: How can we find the cut vertices?

A: With a small modification to the algorithm for finding bridges.

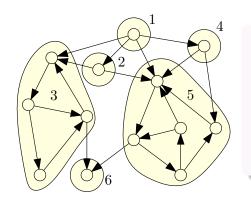
Outline

- Graphs
- 2 Connectivity and Graph Traversa
 - Testing Bipartiteness
- Topological Ordering
- 4 Bridges and 2-Edge-Connected Components
 - O(n+m)-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices
- 5 Strong Connectivity in Directed Graphs
 - Tarjan's O(n+m)-Time Algorithm for Finding SCCes

- directed graph G = (V, E).
- it may happen: there is a $u \to v$ path, but no $v \to u$ path.

Def. A directed graph G=(V,E) is strongly connected if for every $u,v\in V$, there is a path from u to v in G.

Def. A strongly connected component (SCC) of a directed graph G is a maximal strongly connected subgraph of G.



- Define equivalence relation: u and v are related if they are reachable from each other
- ullet equivalence class \equiv SCC
- After contracting each SCC, G becomes a directed-acyclic (multi-)graph (DAG).

 $\mathbf{Q} \colon$ How can we check if a directed graph G = (V, E) is strongly-connected?

A:

- Run a traversal algorithm (either BFS or DFS) from s twice, one on G, one on G with all directions of edges reversed
- \bullet If we reached all vertices in both algorithms, then G is strongly-connected
- Otherwise, it is not.

Q: How can we find all strongly-connected components (SCCes) of a directed graph G?

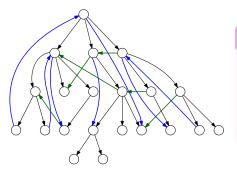
A: A much harder problem. Tarjan's O(n+m)-time algorithm.

Outline

- Graphs
- 2 Connectivity and Graph Traversal
 - Testing Bipartiteness
- Topological Ordering
- 4 Bridges and 2-Edge-Connected Components
 - O(n+m)-Time Algorithm to Find Bridges
 - Related Concept: Cut Vertices
- 5 Strong Connectivity in Directed Graphs
 - Tarjan's O(n+m)-Time Algorithm for Finding SCCes

Type of Edges w.r.t a Directed DFS Tree

- directed graph, G = (V, E), a DFS-tree T,
- ullet assuming every vertex is reachable from the root of T



type of edges in G w.r.t T

- tree edges: edges in T
- upwards (vertical) edges
- downwards (vertical) edges
- leftwards horizontal edges

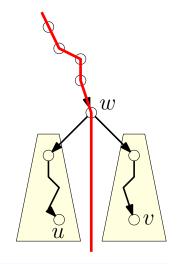
Q: Can there be rightwards horizontal edges?

A: No!

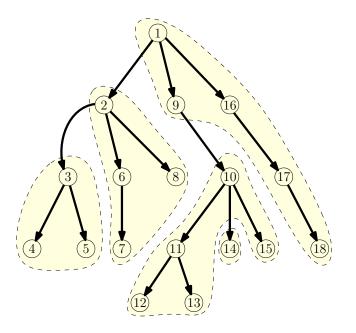
Lemma Suppose u and v are in the same SCC, and w is the lowest common ancestor (LCA) of u and v in T. Then w is the same SCC as u and v.

Proof.

• Idea: using leftward, upwards and tree edges, u can not reach v without touching w or its ancestors.



Lemma The vertices in every SCC of G induce a sub-tree in T.

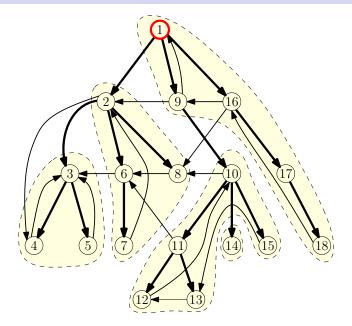


An Intermediate Algorithm to Keep in Mind

- 1: build the DFS tree T
- 2: **while** T is not empty **do**
- 3: find the first vertex v in the posterior-order-traversal of T satisfying the following property: there are no edges from T_v to outside T_v
- 4: claim vertices in T_v as a SCC, remove them from T and all edges incident to them from T and G

Illustration of Intermediate Algorithm

Illustration of Tarjan's Algorithm



finding strongly connected components

- 1: $statck \leftarrow \text{empty stack}, i \leftarrow 0$
- 2: **for** every $v \in V$ **do**: $v.i \leftarrow \bot, onstack[i] \leftarrow$ **false**
- 3: **for** every $v \in V$ **do**
- 4: **if** $v.i = \bot$ **then** recursive-DFS(v)

recursive-DFS(v)

- 1: $i \leftarrow i + 1, v.i \leftarrow i, v.r \leftarrow i$
- 2: $stack.push(v), onstack[v] \leftarrow \mathsf{true}$
- 3: for every outgoing edge (v,u) of v do
- 4: **if** $u.i = \bot$ **then** recursive-DFS(u)
- 5: **if** onstack[u] and u.r < v.r **then** $v.r \leftarrow u.r$
- 6: if v.r = v.i then
- 7: pop all vertices in stack after v, including v itself
- 8: set onstack of these vertices to be **false**
- 9: declare that these vertices form an SCC

Running time of the algorithm is O(n+m).