BRSO 5 21T (2025 HF 24 4)
Greedy Algorithms

ZIRZ - R
R R B AR

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Goals of algorithm design
@ Design efficient algorithms to solve problems

© Design more efficient algorithms to solve problems

Common Paradigms for Algorithm Design

Greedy Algorithms

Divide and Conquer

Dynamic Programming

(]

Greedy algorithms are often for optimization problems.

They often run in polynomial time due to their simplicity.

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Def. A strategy is safe: there is always an optimum solution that
agrees with the decision made according to the strategy.

@ Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling

© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue

@ Data Compression and Huffman Code
@ Summary

5/87

Box Packing
Input: n boxes of capacities ¢y, co, -+ , ¢,
m items of sizes s1, 82, , Sm
Can put at most 1 item in a box
Item j can be put into box ¢ if s5; < ¢;

Output: A way to put as many items as possible in the boxes.

Example:
@ Box capacities: 60, 40, 25, 15, 12
@ ltem sizes: 45, 42, 20, 19, 16

e Can put 3 items in boxes: 45 — 60,20 — 40,19 — 25

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing
@ Q: Take box 1. Which item should we put in box 17
@ A: The item of the largest size that can be put into the box.

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

@ Intuition: putting the item gives us the easiest residual problem.

e formal proof via exchanging argument:

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.
@ Take any optimum solution S. If j is put into Box 1 in S, done.

@ Otherwise, assume this is what happens in S
box 1

S | | | | I [-ocecoc

55 &5 3

item j/ item j

@ s < s;, and swapping gives another solution .5’

e S’ is also an optimum solution. In S’, j is put into Box 1.

@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

@ Trivial: we decided to put Item 5 into Box 1, and the remaining
instance is obtained by removing Item 7 and Box 1.

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
1. T+{1,2,3,--- ,m}
2: for i < 1 ton do
3: if some item in T can be put into box ¢ then
7 < the largest item in T" that can be put into box i
print(“put item j in box ")
T T\ {j}

e & g2

Exchange argument: Proof of Safety of a Strategy

@ let .S be an arbitrary optimum solution.
e if S is consistent with the greedy choice, done.

@ otherwise, show that it can be modified to another optimum
solution S’ that is consistent with the choice.

@ The procedure is not a part of the algorithm.

@ Toy Example: Box Packing

@ Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling

© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue

@ Data Compression and Huffman Code
@ Summary

13/87

Interval Scheduling
Input: n jobs, job ¢ with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A maximum-size subset of mutually compatible jobs

8 9

[

[]

»
»

e
D
. b

01 2 3
T

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

»

T 1 T

01 2 3 456 789
1 [

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

H

c 1 2 3 4 5 6 7 8 9 ,
- Emm
-] ==
e
e
. . .

:

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time? Yes!
o 1 2 3 4 5 6 7T 8§ 9

»

e
—
| o e
N

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.

@ Take an arbitrary optimum solution S

e If it contains 7, done

@ Otherwise, replace the first job in S with j to obtain another
optimum schedule S’.

St I | | | | | |
o
S | | | | | |

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

@ What is the remaining task after we decided to schedule ;7

@ Is it another instance of interval scheduling problem? Yes!

01

i NG

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S« 0

2: while A # () do

3: J < argminjcqa fjr

4: S+ SU{j}, A« {j/eA:sy>f;}
5: return S

0 1 2 3 4 5 6 7 8 9

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S+ 0

2: while A # () do

3: j + arg minj/eA fj’

4 S« SU{j},; A«{jeA:sy > f;}
5. return S

Running time of algorithm?
e Naive implementation: O(n?) time

@ Clever implementation: O(nlgn) time

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2:t+0, 5«0

3: for every j € [n] according to non-decreasing order of f; do
4: if s; >t then

5: S+ SU {j}

6: %= Jfg

7: return S 0O 1 2 3 4 5 6 7 8

@ Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling

© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue

@ Data Compression and Huffman Code
@ Summary

23/87

Scheduling to minimize lateness

Input: n jobs, each job j € [n]| with a processing time p, and
deadline d;

Output: schedule jobs on 1 machine, to minimize the max. lateness

Cj: completion time of j lateness [; := max{C; — d;,0}

@ Example input:

0123 45 6 7 8 910

J lalb|c|d S S
pi|3]3]2]1 solution 1 | a I b [c 141
d; |5]7|4]|8 solution 2 [€1 a I D ||

@ solution 1: max lateness = max{0,3 — 5,6 —7,8 —4,9 -8} =4
@ solution 2: max lateness = max{0,2 —4,5—-5,8 - 7,9 -8} =1
@ solution 2 is better

Candidate algorithms
Schedule the jobs in some natural order. Which order should we

choose?
@ Ascending order of processing times p;

@ Ascending order of slackness d; — p;
© Ascending order of deadline d;.

Lemma The ascending order of deadlines d; (the Earliest Deadline
First order or the EDF order) is the optimum schedule.

@ maximum lateness = max {O, maxc{C; — dj}}.

dj > dj/

o before: max{t+p; —d;,t+p;+py —dy} =t +p;+py —dy
o after: max{t+ p;, —dj,t+p; +p;y —d;}

@ pyy —dy < pj+py —djy and p; +py —d; < pj+py—dy

o max{t +py —dy,t+p;+py —d;} <t+p;j+pyp—dj

@ after swapping, the maximum of the two terms strictly decreases

Repeated Swapping (for Analysis Only)

1: let S be any schedule (i.e, a permutation of [n])

2: while there are two adjacent jobs j and j' in .S, with j before j
and dj > dj/ do

3: swap j and j'in S

Q: Does the algorithm terminate? J

A: Yes. Number of inversions go down! J

@ (j,j') is an inversion in S if j appears before j' and d; > d;.

@ So the algorithm converges to an EDF order.

Q: What if there are multiple EDF orders, i.e., some jobs have the
same deadline? J

A: All EDF orders have the same maximum lateness. J

@ Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling

© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue

@ Data Compression and Huffman Code
@ Summary

28,87

Scheduling to Minimize Weighted Completion Time
Input: A set of n jobs [n] :={1,2,3,--- ,n}
each job j has a weight w; and processing time p;

Output: an ordering of jobs so as to minimize the total weighted
completion time of jobs

pa =1 Pp=2 pc=3

=] [] c

wy =2 wy =5 wy =7
wy = 2 wy =5 we =17 wp =5 we =7 wy = 2
[a [b c . b c [a [
0 1 2 3 4 5 6 0 1 2 3 4 5 6

cost =2x14+5x3+T7x6=>59 cost =5 x2+Tx5+2x6=57

Candidate algorithms

Schedule the jobs in some natural order. Which order should we
choose?

@ Ascending order of processing times p;
@ Descending order of slackness w;

© Ascending order of p; — w;

@ Ascending order of p;/w;

Def. The Smith ratio of a job is w;/p;.

Lemma The descending order of Smith ratios (the Smith rule) is
optimum.

@ A schedule S, j is right before j'.

Q: How does the total weighted completion time change if we swap
j and j? oy do gl)= ooy i)
A:

Wilty = Wiy)

Therefore, swapping decrease the weighted completion time if
Py P

w]-/ wy

Using the same argument as for the maximum lateness problem:
ascending order of p;/w; is optimum.

Indeed, optimum weighted completion time is

Zijj+ Z min{w;pj, wyp;}.

j€[n] 1<j<y3'<n

Outline

© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue

Offline Caching

cache
page
@ Cache that can store k pages sequence .

i
IR
(1] [5] [4]
(1] [2] [4]
(1] [2] [5]
(1] [2] [3]
1] [2]]3]
1] [2] 3]

misses = 6

@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

@ Cache hit happens if requested
page already in cache.

X X X X X %

@ Goal: minimize the number of
cache misses.

=] o] [] [=]] (=] [[=]

A Better Solution for Example

cache cache

sequencel (L] 1 LI
Cx 0 e)
LB % B [s] [
A[s][4] | % (][] [a
2] [a] | % [1][5][2
LI2l[s]) v 5] [2
11[21[3] | % [1][3][2
all2fls] v [z
L] l2] 8] i v [ls]l2.

misses =6 misses = 5

(=] (2] [e2] [] [eo] [~] [[=]
X X X X X %

Offline Caching Problem

Input: £ : the size of cache
We use [n] for {1,2,3,--- ,n}.

n : number of pages
P1, P2, P3,°++ , pr € [n]: sequence of requests

Output: iy,i9,143,- -+ ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

A: Use the offline solution as a benchmark to measure the
“competitive ratio” of online algorithms

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): always evict the first page in cache

@ LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

o LFU(Least-Frequently-Used): Evict page that was least frequently
requested

@ All the above algorithms are not optimum!

@ Indeed all the algorithms are “online”, i.e, the decisions can be
made without knowing future requests. Online algorithms can not
be optimum.

FIFO is not optimum

—
)

O
o
D
N
+
n

=] B Lo [=]

FIFO

NN

% [][]
x [1][2][]
x [1][2][3]
x [4][2] 3]
x [4][1][3]

misses = H

Furthest-in-Future

N

x (U 1[]
x [1[2][]
x [1][2][3]
x [1][4] [3]

misses = 4

Optimum Offline Caching

Furthest-in-Future (FF) |

@ Algorithm: every time, evict the page that is not requested until
furthest in the future, if we need to evict one.

@ The algorithm is not an online algorithm, since the decision at a
step depends on the request sequence in the future.

Furthest-in-Future (FF)

requests

=]] [eo] [ro] [=]

X X X X

FIFO
N
I
1) [2] [

x (4] 1] [3]

misses = 5

Furthest-in-Future

LI

Cx [0
ox [2] []
o x [1][2][3]
- x [1][4] [3]

misses = 4

Example

requests

=

=

-

|
[Rl)

1])[4 [2) [5) [3] [2] [4) [3) Lo 5] (3)

X X

X

X X X X
L) O)) O) =) [2] [[2) [(5] [5]

5

=

L 00] [s) [s] [s] [3) (3] [3] [8) [3] [3] [3]
L O L L) [a) [4] o [4f [a) [4) [a) [4) [4]

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Offline Caching Problem

Input: k : the size of cache
n : number of pages
P1, P2, 03, ,PT € [n] sequence of requests
P1,D2, - Dk € {empty} U [n]: initial set of pages in cache
Output: iy,149,143,- -, € {hit,empty} U [n]
e empty stands for an empty page
o “hit” means evicting no pages

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p* is evicted at time 1.

Proof.
Q@ S: any optimum solution
@ p*: page in cache not requested until furthest in the future.

o In the example, p* = 3.
© Assume S evicts some p’ # p* at time 1; otherwise done.

o In the example, p’ = 2.

,,,,,, (4l [s][4][6] o] [8] .

X Xv X

1] (1] [5] [5] [5]
S:|2]]4)]4] 4] 4

3] [3] [3] [3] [6]

X Xv X

1] 5] 5])5
§':|2] 4] 4] 4] 14

31 (2] [2] [2] [6]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

© From now on, S" will “copy” S.

,,,,,,
X Xv
[5] [5] - [o]
s: 2] [4|[4)[4] [8
313 3] [3] - [5]
- X Xv
[[5] [5] -+ [e]
s':[2] [4|[4) [4] [8]
3l[2] 2] 2] - [2]

Proof.

@ If S evicted the page p*, S” will evict the page p’. Then, the
cache status of S and that of S” will be the same. S and S” will
be exactly the same from now on.

@ Assume S did not evict p*(=3) before we see p'(=2).

,,,,,, (alf[slfal - o] [8] .
X Xv X
L[] 5] 5] e 6]]2
S:|2| 44| 4] [8]8
ENRENEIREIRSREIRE]
X Xv
1 [a] 5] [5] - 6] [6]
§':|2] 4] 4] 4] [8]]8
31 12] [2] [2] - [2] |2

Proof.

Q If S evicts p*(=3) for p'(=2), then S won't be optimum. Assume
otherwise.

@ So far, S’ has 1 less page-miss than S does.
@ The status of S’ and that of S only differ by 1 page.

e]=]=Jo6 [~
SIESEL: SN SE

H
4
2|

Proof.
@ We can then guarantee that S’ make at most the same number of
page-misses as S does.

o Idea: if S has a page-hit and S’ has a page-miss, we use the
opportunity to make the status of S’ the same as that of S. O

@ Thus, we have shown how to create another solution S’ with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. It is safe to evict p* at time 1.

Theorem The furthest-in-future strategy is optimum.

1. fort < 1to T do

2 if p, is in cache then do nothing

3 else if there is an empty page in cache then

4: evict the empty page and load p; in cache

5 else

6 p* < page in cache that is not used furthest in the future
7 evict p* and load p; in cache

Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'log k).

@ For each page p, use a linked list (or an array with dynamic size)
to store the time steps in which p is requested.

e We can find the next time a page is requested easily.
@ Use a priority queue data structure to hold all the pages in cache,

so that we can easily find the page that is requested furthest in
the future.

v

time | 0] 112 3\4\5\6\7\8\9\10\11\12\

pages | |P1|P5 P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXYV XV VYV KKV

P1: | 1110 priority queue
. ages | priority
P2 [4]7 pag values
P3: | 69|12 P5 o0
P3 o0

P5: | 21511

1: for every p < 1 ton do

0

NGO R W

10:
11:
12:

13:

times[p] < array of times in which p is requested, in
increasing order > put oo at the end of array
pointer|[p| « 1
() < empty priority queue
for every t < 1 to T do
pointer|p;] « pointer[p,] + 1
if p, € @ then
Q.increase-key(py, times|p;, pointer|p]]), print “hit”,
continue
if Q.size() < k then
print “load p; to an empty page "
else
p < Q.extract-max(), print “evict p and load p;"

Q.insert(py, times|py, pointer(p]]) > add p; to @ with key
value times|p;, pointer|p|]|

Outline

© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue

@ Let V be a ground set of size n.

Def. A priority queue is an abstract data structure that maintains a

set U C V of elements, each with an associated key value, and

supports the following operations:

@ insert(v, key_value): insert an element v € V' \ U, with associated
key value key_value.

o decrease key(v, new_key_value): decrease the key value of an
element v € U to new_key value

@ extract_min(): return and remove the element in U with the
smallest key value

Simple Implementations for Priority Queue

@ n = size of ground set V

data structures | insert | extract_min | decrease_key
array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)
heap O(lgn) O(lgn) O(lgn)

Heap

The elements in a heap is organized using a complete binary tree:

Nodes are indexed as {1,2,3,--- s}
Parent of node i: [i/2]

Left child of node 7: 2:

Right child of node i: 2i + 1

Heap

A heap H contains the following fields

@ s: size of U (number of elements in the heap)

e Ali],1 <i < s: the element at node i of the tree
@ p[v],v € U: the index of node containing v

@ keylv],v € U: the key value of element v

A= (g, ¢ e, D)
o p['f1=1plg]=2p[c]=3,
pl'e’] = 4,p[b’] =5

Heap

The following heap property is satisfied:

e for any two nodes 4, j such that ¢ is the parent of j, we have
key[ALi]] < key[AU]]

A heap. Numbers in the circles denote key values of elements.

insert(v, key value)

heapify-up(7)

insert(v, key value) 1: while i > 1 do

s+ s+1 22§« |i/2]
2: Als] v 3: if key|Ali]] < key[A[j]] then
3 plv] + s 4: swap A[i] and Alj]
4: keylv] < key_value 5: plA[i]] < i, p[AlJ]] « Jj
5: heapify_up(s) 6: i

7: else break

extract_min()

extract min() heapify-down (%)

1: ret < A[l] 1: while 2; < s do

2: All] Als] 2. if2i=sor

3: plA[1]] « 1 key[A[2i]] < key[A[2i 4 1]] then

4: s+—s—1 3: j o 2i

5. if s > 1 then 4 else

6 heapify_down(1) 5 e 2i+1

7: return ret . 6. if key[A[j]] < key[Al:]] then

7: swap A[i] and A[j]

decrease key(v, key val . p[A[]] < i, p[A[j]] < j

1: key[v] < key_value 9: 14

2: heapify-up(p[v]) 10: else break

@ Running time of heapify_up and heapify_down: O(Ign)

@ Running time of insert, exact_min and decrease_key: O(lgn)

data structures | insert | extract_min | decrease_key
array O(1) O(n) O(1)
sorted array O(n) 0(1) O(n)
heap O(lgn) O(lgn) O(lgn)

Two Definitions Needed to Prove that the
Procedures Maintain Heap Property

Def. We say that H is almost a heap except that key|A[i]] is too
small if we can increase key[A[i]] to make H a heap.

Def. We say that H is almost a heap except that key[A[i]] is too
big if we can decrease key[A[i]] to make H a heap.

@ Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling

© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue

@ Data Compression and Huffman Code
@ Summary

67/87

Encoding Letters Using Bits

@ 8 letters a,b,c,d,e, f,g,h in a language
@ need to encode a message using bits

@ idea: use 3 bits per letter
a | blcldlel|flgl|h

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
deacfg — 011100000010101110

Q: Can we have a better encoding scheme?

@ Seems unlikely: must use 3 bits per letter

Q: What if some letters appear more frequently than the others?

J

Q: If some letters appear more frequently than the others, can we
have a better encoding scheme?

A: Using variable-length encoding scheme might be more efficient. J

Idea

@ using fewer bits for letters that are more frequently used, and
more bits for letters that are less frequently used.

Q: What is the issue with the following encoding scheme?
° a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c.

Solution
Use prefix codes to guarantee a unique decoding.

Prefix Codes

such that for two distinct z,y € S, y(x) is not a prefix of v(y).

0 1
a b c d / \
001 | 0000 | 0001 | 100 v\ /\®
e o S8
11 | 1010 | 1011 | 01

db db

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

) SN

001

0000

0001

e

f

g

100 V%@ /%

11

1010

1011

. 28
Jh @Y

e 0001,/001/100/0000/01/01/11/1010/0001/001/

@ cadbhhefca

Properties of Encoding Tree

1
,% \ @ Rooted binary tree

@ Left edges labelled 0 and right
/ \® / \@ edges labelled 1
@ A leaf corresponds to a code
E@ 5 for some letter
@ If coding scheme is not
! wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

example

letters a |blc|d] e

frequencies 1834 /6|10
scheme 1 length || 2 |3 |3 |2]| 2 | total =89
scheme 2 length || 1 |3 |3 |3 | 3 | total =87
scheme 3 length | 1 |4 4| 3| 2 || total = 84

AN TN 77

\
S

scheme 1 scheme 2 scheme 3

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make? J

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?

@ Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree. |

Which Two Letters Can Be Safely Put Together
As Brothers?

@ Focus on the “structure” of the optimum encoding tree

@ There are two deepest leaves that are brothers

Q best to put the two least

--frenquent symbols here!

Lemma It is safe to make the two least frequent letters brothers.

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers. ‘

@ So we can irrevocably decide to make the two least frequent
letters brothers.

Q: Is the residual problem another instance of the best prefix codes
problem? ‘

A: Yes, though it is not immediate to see why.]

@ f,.: the frequency of the letter x in the support.
@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

> fuds
O zeS
= Z fxdm + fmldxl + fmzdxg
encoding tree for z€S\{z1,22}

S\ {21, 22} U {2’} = > folat (for + far)da,

z€S\{z1,22}
zeS\{z1,x2}
@ @ = Z .ffl}d.’lf + fI/
Def: fl’, — fml + fftg

zeS\{z1,z2}U{z'}

In order to minimize

> foda,

€S

we need to minimize

> fuda

zeS\{z1,z2}U{z’'}

subject to that d is the depth function for an encoding tree of
S \ {$1, .1'2}.

@ This is exactly the best prefix codes problem, with letters
S\ {z1, 2} U {2’} and frequency vector f!

Example

Def. The codes given the greedy algorithm is called the Huffman
codes.

Huffman(S, f)

1: while |S| > 1 do

2 let z1, x5 be the two letters with the smallest f values
3 introduce a new letter 2’ and let fy = fo, + fu,

4: let 1 and 25 be the two children of 2’

5 S+ S\ {x1,z}U{2'}

6:

return the tree constructed

Algorithm using Priority Queue

Huffman(S, f)

1: @ < build-priority-queue(.S)

2: while ().size > 1 do

3 x1 < Q.extract-min()

4 T9 < @Q.extract-min()

5: introduce a new letter 2’ and let f,y = fo, + fu,
6 let z; and 25 be the two children of z’

7 Q.insert (2, fur)

8:

return the tree constructed

@ Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling

© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue

@ Data Compression and Huffman Code
@ Summary

83,87

Summary for Greedy Algorithms

Greedy Algorithm

Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

@ Interval scheduling problem: schedule the job j* with the earliest
deadline
o Offline Caching: evict the page that is used furthest in the future

Huffman codes: make the two least frequent letters brothers

Summary for Greedy Algorithms

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Def. A strategy is “safe” if there is always an optimum solution
that “agrees with” the decision made according to the strategy.

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S
o If S agrees with the decision made according to the strategy, done
@ So assume S does not agree with decision
@ Change S slightly to another optimum solution S’ that agrees
with the decision
o Interval scheduling problem: exchange j* with the first job in an
optimal solution
o Offline caching: a complicated “copying” algorithm

e Huffman codes: move the two least frequent letters to the deepest
leaves.

Summary for Greedy Algorithms

A Common Way to Analyze Greedy Algorithms

Prove that the reasonable strategy is “safe” (key)

Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Interval scheduling problem: remove j* and the jobs it conflicts
with
Offline caching: trivial

Huffman codes: merge two letters into one

Two problems that do not fall into the category: lateness,
weighted completion time

	Toy Example: Box Packing
	Interval Scheduling
	Scheduling to Minimize Lateness
	Weighted Completion Time Scheduling
	Offline Caching
	Heap: Concrete Data Structure for Priority Queue

	Data Compression and Huffman Code
	Summary

