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Course Webpage:
https://tcs.nju.edu.cn/shili/courses/2025spring-algo

https://tcs.nju.edu.cn/shili/courses/2025spring-algo
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Course Information

Time: Tuesdays and Thursdays, 10:10am - 12:00pm

Location: 仙II-319

Instructor: Shi Li (栗师)

Email: [first name][last name][at][nju][dot][edu][dot][cn]
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Logistics

Instructor’s Office Hours: Wednesdays 11:00am-12:00pm

Location: 计算机系楼605

TA: 梁梓豪(zhliang[at]smail[dot]nju[dot]edu[dot]cn)
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What You Will Learn

How to analyze the correctness and running time of an algorithm.

Classic algorithms for classic problems

sorting, minimum spanning tree, shortest paths

Algorithm design paradigms

greedy algorithms, divide and conquer, dynamic programming

Network flow, linear programming, and problem reductions.

NP-completeness.

Advanced topics

randomized algorithms, approximation algorithms, fixed-parameter
tractability, online algorithms
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Prerequisites

Basic skills in formulating mathematical proofs.

Courses on data structures covering:

Linked lists, arrays, stacks, queues, priority queues, trees, graphs.

Some programming experience using Python, C, C++, or Java.
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Textbook

Required Textbook:

Jon Kleinberg and Eva Tardos, Algorithm
Design, 1st Edition, 2005, Pearson.

Reference Book:

Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein,
Introduction to Algorithms, 3rd Edition,
2009, MIT Press.
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Grading

Your final grade will be calculated as follows:

5 Homework Assignments: 20%.

Midterm Exam: 20% or 30%.

Final Exam: 60% or 50%.

Overall Score: The highest of the following weighting schemes:

20% Homework + 20% Midterm + 60% Final

20% Homework + 30% Midterm + 50% Final

Note: Both exams are closed-book.
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Policies for Assignments

No late submissions will be accepted.

Do not search online for solutions or use AI tools to generate
solutions.

Allowed Materials: Textbook, reference book, course slides, and
instructor-distributed materials.

Collaboration:

You may discuss with classmates but must write solutions
independently.
Write down the names of collaborators.



11/74

Use of AI Tools

AI tools (e.g., ChatGPT, DeepSeek) are allowed as learning
tools but prohibited for solving homework problems.

AI-generated content may contain errors; you are responsible to
verify correctness

Rule: Once you begin working on an assignment, you must
complete it without searching for solutions online or using AI tools.
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Tentative Schedule

Topic Time
Introduction 4 hours
Graph Basics 4 hours
Greedy Algorithms 6 hours
Divide and Conquer 6 hours
Dynamic Programming 6 hours
Graph Algorithms 6 hours
Midterm Exam 2 hours
Network Flow 6 hours
NP-Completeness 6 hours
Linear Programming 4 hours
Advanced Topics 10 hours
Final Review 2 hours
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What is an Algorithm?

Donald Knuth: An algorithm is a
finite, definite effective procedure,
with some input and some output.

finite: description is finite, (stronger requirement: terminate in
finite number of steps)

definite: clearly defined, no ambiguity

effective: must be realizable using a finite amount of resources

input: take 0 or some inputs

output: produce 1 or more outputs
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What is an Algorithm?

Computational problem: specifies the input/output relationship.

An algorithm solves a computational problem if it produces the
correct output for any given input.
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Examples

Greatest Common Divisor
Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:
Input: 210, 270

Output: 30

Algorithm: Euclidean algorithm

gcd(270, 210) = gcd(210, 270 mod 210) = gcd(210, 60)

(270, 210)→ (210, 60)→ (60, 30)→ (30, 0)
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Examples

Sorting

Input: sequence of n numbers (a1, a2, · · · , an)
Output: a permutation (a′1, a

′
2, · · · , a′n) of the input sequence such

that a′1 ≤ a′2 ≤ · · · ≤ a′n

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

Algorithms: insertion sort, merge sort, quicksort, . . .
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Examples

Shortest Path
Input: directed graph G = (V,E), s, t ∈ V

Output: a shortest path from s to t in G

16 1

1 5 4
2

104

3

s

333 t

Algorithm: Dijkstra’s algorithm
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Algorithm = Computer Program?

Algorithm: “abstract”, can be specified using computer program,
English, pseudo-codes or flow charts.

Computer program: “concrete”, implementation of algorithm,
using a particular programming language
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Pseudo-Code

Pseudo-Code:

Euclidean(a, b)

1: while b > 0 do
2: (a, b)← (b, a mod b)

3: return a

Python program:

def gcd(a, b):

while b != 0:

a, b = b, a % b

return a

C++ program:

int Euclidean(int a, int b){
int c;

while (b > 0){
c = b;

b = a % b;

a = c;

}
return a;

}
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Theoretical Analysis of Algorithms

Main focus: correctness, running time (efficiency)

Sometimes: memory usage

Not covered in the course: engineering side

extensibility
modularity
object-oriented model
user-friendliness (e.g, GUI)
. . .

Why is it important to study the running time (efficiency) of an
algorithm?

1 feasible vs. infeasible
2 efficient algorithms: less engineering tricks needed, can use languages

aiming for easy programming (e.g, python)
3 fundamental
4 it is fun!
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Sorting Problem

Input: sequence of n numbers (a1, a2, · · · , an)
Output: a permutation (a′1, a

′
2, · · · , a′n) of the input sequence such

that a′1 ≤ a′2 ≤ · · · ≤ a′n

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59
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Insertion-Sort

At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15

iteration 2: 12, 53, 35, 21, 59, 15

iteration 3: 12, 35, 53, 21, 59, 15

iteration 4: 12, 21, 35, 53, 59, 15

iteration 5: 12, 21, 35, 53, 59, 15

iteration 6: 12, 15, 21, 35, 53, 59
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Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1: for j ← 2 to n do
2: key ← A[j]
3: i← j − 1
4: while i > 0 and A[i] > key do
5: A[i+ 1]← A[i]
6: i← i− 1

7: A[i+ 1]← key

j = 6

key = 15
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Analysis of Insertion Sort

Correctness

Running time
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Correctness of Insertion Sort

Invariant: after iteration j of outer loop, A[1..j] is the sorted array
for the original A[1..j].

after j = 1 : 53, 12, 35, 21, 59, 15

after j = 2 : 12, 53, 35, 21, 59, 15

after j = 3 : 12, 35, 53, 21, 59, 15

after j = 4 : 12, 21, 35, 53, 59, 15

after j = 5 : 12, 21, 35, 53, 59, 15

after j = 6 : 12, 15, 21, 35, 53, 59
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Analyzing Running Time of Insertion Sort

Q1: what is the size of input?

A1: Running time as the function of size

possible definition of size :

Sorting problem: # integers,
Greatest common divisor: total length of two integers
Shortest path in a graph: # edges in graph

Q2: Which input?

For the insertion sort algorithm: if input array is already sorted in
ascending order, then algorithm runs much faster than when it is
sorted in descending order.

A2: Worst-case analysis:

Running time for size n = worst running time over all possible arrays
of length n
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Analyzing Running Time of Insertion Sort

Q3: How fast is the computer?

Q4: Programming language?

A: They do not matter!

Important idea: asymptotic analysis
Focus on growth of running-time as a function, not any particular
value.
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32/74

Asymptotic Analysis: O-notation

Informal way to define O-notation:

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n2 − 18n+ 1028⇒ 3n3 ⇒ n3

3n3 + 2n2 − 18n+ 1028 = O(n3)

n2/100− 3n+ 10⇒ n2/100⇒ n2

n2/100− 3n+ 10 = O(n2)
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Asymptotic Analysis: O-notation

3n3 + 2n2 − 18n+ 1028 = O(n3)

n2/100− 3n2 + 10 = O(n2)

O-notation allows us to ignore

architecture of computer

programming language

how we measure the running time: seconds or # instructions?

to execute a← b+ c:

program 1 requires 10 instructions, or 10−8 seconds
program 2 requires 2 instructions, or 10−9 seconds
they only change by a constant in the running time, which will be
hidden by the O(·) notation
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Asymptotic Analysis: O-notation

Algorithm 1 runs in time O(n2)

Algorithm 2 runs in time O(n)

Does not tell which algorithm is faster for a specific n!

Algorithm 2 will eventually beat algorithm 1 as n increases.

For Algorithm 1: if we increase n by a factor of 2, running time
increases by a factor of 4

For Algorithm 2: if we increase n by a factor of 2, running time
increases by a factor of 2
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Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1: for j ← 2 to n do
2: key ← A[j]
3: i← j − 1
4: while i > 0 and A[i] > key do
5: A[i+ 1]← A[i]
6: i← i− 1

7: A[i+ 1]← key

Worst-case running time for iteration j of the outer loop?

Answer: O(j)

Total running time =
∑n

j=2O(j) = O(
∑n

j=2 j)

= O(n(n+1)
2
− 1) = O(n2)



35/74

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1: for j ← 2 to n do
2: key ← A[j]
3: i← j − 1
4: while i > 0 and A[i] > key do
5: A[i+ 1]← A[i]
6: i← i− 1

7: A[i+ 1]← key

Worst-case running time for iteration j of the outer loop?

Answer: O(j)

Total running time =
∑n

j=2O(j) = O(
∑n

j=2 j)

= O(n(n+1)
2
− 1) = O(n2)



35/74

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1: for j ← 2 to n do
2: key ← A[j]
3: i← j − 1
4: while i > 0 and A[i] > key do
5: A[i+ 1]← A[i]
6: i← i− 1

7: A[i+ 1]← key

Worst-case running time for iteration j of the outer loop?
Answer: O(j)

Total running time =
∑n

j=2O(j) = O(
∑n

j=2 j)

= O(n(n+1)
2
− 1) = O(n2)



35/74

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1: for j ← 2 to n do
2: key ← A[j]
3: i← j − 1
4: while i > 0 and A[i] > key do
5: A[i+ 1]← A[i]
6: i← i− 1

7: A[i+ 1]← key

Worst-case running time for iteration j of the outer loop?
Answer: O(j)

Total running time =
∑n

j=2O(j) = O(
∑n

j=2 j)

= O(n(n+1)
2
− 1) = O(n2)



36/74

Computation Model

Random-Access Machine (RAM) model

reading and writing A[j] takes O(1) time

Basic operations such as addition, subtraction and multiplication
take O(1) time

Each integer (word) has c log n bits, c ≥ 1 large enough

Reason: often we need to read the integer n and handle integers
within range [−nc, nc], it is convenient to assume this takes O(1)
time.

What is the precision of real numbers?

Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take O(n log n) time
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Asymptotically Positive Functions

Def. f : N→ R is an asymptotically positive function if:

∃n0 > 0 such that ∀n > n0 we have f(n) > 0

In other words, f(n) is positive for large enough n.

n2 − n− 30

Yes

2n − n20

Yes

100n− n2/10 + 50?

No

We only consider asymptotically positive functions.
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O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),

O(g(n)) =
{
function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

In short, f(n) ∈ O(g(n)) if f(n) ≤ cg(n) for some c > 0 and
every large enough n.

nn0

cg(n)

f (n)

f(n) = O(g(n))
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O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),

O(g(n)) =
{
function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

3n2 + 2n ∈ O(n2 − 10n)

Proof.
Let c = 4 and n0 = 50, for every n > n0 = 50, we have,

3n2 + 2n− c(n2 − 10n) = 3n2 + 2n− 4(n2 − 10n)

= −n2 + 42n ≤ 0.

3n2 + 2n ≤ c(n2 − 10n)
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O-Notation For a function g(n),

O(g(n)) =
{
function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

3n2 + 2n ∈ O(n2 − 10n)

3n2 + 2n ∈ O(n3 − 5n2)

n100 ∈ O(2n)

n3 /∈ O(10n2)

Asymptotic Notations O Ω Θ
Comparison Relations ≤
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Conventions

We use “f(n) = O(g(n))” to denote “f(n) ∈ O(g(n))”

3n2 + 2n = O(n2)

“=” is asymmetric: we do not write O(n2) = 3n2 + 2n

Analogy: Mike is a student. A student is Mike.

We use “O(g(n)) = O(g′(n))” to denote “O(g(n)) ⊆ O(g′(n))”.

O(3n2 + 2n) = O(n2)

Again, “=” is asymmetric.

O(n3) = O(3n2 + 2n) makes sense, but is wrong.

Analogy: All students are people.

Equalities can be chained: 3n2 + 2n = O(n2) = O(n3).
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Ω-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),

O(g(n)) =
{
function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

Ω-Notation For a function g(n),

Ω(g(n)) =
{
function f : ∃c > 0, n0 > 0 such that

f(n) ≥ cg(n),∀n ≥ n0

}
.

In short, f(n) ∈ Ω(g(n)) if f(n) ≥ cg(n) for some c and large
enough n.
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Ω-Notation For a function g(n),
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Ω-Notation: Asymptotic Lower Bound

Again, we use “=” instead of ∈.
4n2 = Ω(n− 10)
3n2 − n+ 10 = Ω(n2 − 20)

Asymptotic Notations O Ω Θ
Comparison Relations ≤ ≥

Theorem f(n) = O(g(n)) ⇔ g(n) = Ω(f(n)).
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Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function g(n),

Θ(g(n)) =
{
function f : ∃c2 ≥ c1 > 0, n0 > 0 such that

c1g(n) ≤ f(n) ≤ c2g(n), ∀n ≥ n0

}
.

f(n) = Θ(g(n)), then for large enough n, we have “f(n) ≈ g(n)”.

nn0

c1g(n)

f (n)

c2g(n)
f(n) = Θ(g(n))
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Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function g(n),

Θ(g(n)) =
{
function f : ∃c2 ≥ c1 > 0, n0 > 0 such that

c1g(n) ≤ f(n) ≤ c2g(n), ∀n ≥ n0

}
.

3n2 + 2n = Θ(n2 − 20n)

2n/3+100 = Θ(2n/3)

Asymptotic Notations O Ω Θ
Comparison Relations ≤ ≥ =

Theorem f(n) = Θ(g(n)) if and only if
f(n) = O(g(n)) and f(n) = Ω(g(n)).
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o and ω-Notations

o-Notation For a function g(n),

o(g(n)) =
{
function f : ∀c > 0,∃n0 > 0 such that

f(n) ≤ cg(n), ∀n ≥ n0

}
.

ω-Notation For a function g(n),

ω(g(n)) =
{
function f : ∀c > 0, ∃n0 > 0 such that

f(n) ≥ cg(n),∀n ≥ n0

}
.

Example:

3n2 + 5n+ 10 = o(n2 log n).

3n2 + 5n+ 10 = ω(n2/ log n).

Asymptotic Notations O Ω Θ o ω
Comparison Relations ≤ ≥ = < >
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Asymptotic Notations O Ω Θ o ω
Comparison Relations ≤ ≥ = < >

For two constants a, b ∈ R:
na = O(nb) if and only if a ≤ b

na = Ω(nb) if and only if a ≥ b

na = Θ(nb) if and only if a = b

na = o(nb) if and only if a < b

na = ω(nb) if and only if a > b
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Asymptotic Notations O Ω Θ o ω
Comparison Relations ≤ ≥ = < >

Facts on Comparison Relations
a ≤ b ⇐⇒ b ≥ a

a = b ⇐⇒ a ≤ b and a ≥ b

a < b =⇒ a ≤ b

a < b ⇐⇒ b > a

Correct Analogies

f(n) = O(g(n)) ⇐⇒ g(n) = Ω(f(n))

f(n) = Θ(g(n)) ⇐⇒ f(n) = O(g(n)) and f(n) = Ω(g(n))

f(n) = o(g(n)) =⇒ f(n) = O(g(n))

f(n) = o(g(n)) ⇐⇒ g(n) = ω(f(n))
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Asymptotic Notations O Ω Θ o ω
Comparison Relations ≤ ≥ = < >

Facts on Comparison Relations
a ≤ b or a ≥ b

a ≤ b ⇐⇒ a = b or a < b

Incorrect Analogies

f(n) = O(g(n)) or f(n) = Ω(g(n))

f(n) = O(g(n)) ⇐⇒ f(n) = Θ(g(n)) or f(n) = o(g(n))
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Incorrect Analogy

f(n) = O(g(n)) or f(n) = Ω(g(n))

f(n) = n2

g(n) =

{
1 if n is odd

n3 if n is even
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Recall: Informal way to define O-notation

ignoring lower order terms: 3n2 − 10n− 5→ 3n2

ignoring leading constant: 3n2 → n2

3n2 − 10n− 5 = O(n2)

In the formal definition of O(·), nothing tells us to ignore lower
order terms and leading constant.

3n2 − 10n− 5 = O(5n2 − 6n+ 5) is correct, though weird

3n2 − 10n− 5 = O(n2) is the most natural since n2 is the
simplest term we can have inside O(·).
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Notice that O denotes asymptotic upper bound

n2 + 2n = O(n3) is correct.

The following sentence is correct: the running time of insertion
sort is O(n4).

Usually we say: The running time of insertion sort is O(n2) and
the bound is tight.

Also correct: the worst-case running time of insertion sort is
Θ(n2).
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Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times



57/74

O(n) (Linear) Running Time

Computing the sum of n numbers

sum(A, n)

1: S ← 0
2: for i← 1 to n
3: S ← S + A[i]
4: return S
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O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29



58/74

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29



58/74

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3



58/74

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3



58/74

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5



58/74

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5



58/74

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7



58/74

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7



58/74

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8



58/74

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8



58/74

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20 25 29



58/74

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29
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O(n) (Linear) Running Time

merge(B,C, n1, n2) \\ B and C are sorted, with
length n1 and n2

1: A← []; i← 1; j ← 1
2: while i ≤ n1 and j ≤ n2 do
3: if B[i] ≤ C[j] then
4: append B[i] to A; i← i+ 1
5: else
6: append C[j] to A; j ← j + 1

7: if i ≤ n1 then append B[i..n1] to A
8: if j ≤ n2 then append C[j..n2] to A
9: return A

Running time = O(n) where n = n1 + n2.
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O(n log n) Running Time

merge-sort(A, n)

1: if n = 1 then
2: return A
3: B ← merge-sort

(
A
[
1..⌊n/2⌋

]
, ⌊n/2⌋

)
4: C ← merge-sort

(
A
[
⌊n/2⌋+ 1..n

]
, n− ⌊n/2⌋

)
5: return merge(B,C, ⌊n/2⌋, n− ⌊n/2⌋)
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O(n log n) Running Time

Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)
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O(n2) (Quadratic) Running Time

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest
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O(n2) (Quadratic) Running Time

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest
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O(n2) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

closest-pair(x, y, n)

1: bestd←∞
2: for i← 1 to n− 1 do
3: for j ← i+ 1 to n do
4: d←

√
(x[i]− x[j])2 + (y[i]− y[j])2

5: if d < bestd then
6: besti← i, bestj ← j, bestd← d

7: return (besti, bestj)

Closest pair can be solved in O(n log n) time!
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O(n3) (Cubic) Running Time

Multiply two matrices of size n× n

matrix-multiplication(A,B, n)

1: C ← matrix of size n× n, with all entries being 0
2: for i← 1 to n do
3: for j ← 1 to n do
4: for k ← 1 to n do
5: C[i, k]← C[i, k] + A[i, j]×B[j, k]

6: return C
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Beyond Polynomial Time: 2n

Def. An independent set of a graph G = (V,E) is a subset S ⊆ V
of vertices such that for every u, v ∈ S, we have (u, v) /∈ E.
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Beyond Polynomial Time: 2n

Maximum Independent Set Problem

Input: graph G = (V,E)

Output: the maximum independent set of G

max-independent-set(G = (V,E))

1: R← ∅
2: for every set S ⊆ V do
3: b← true
4: for every u, v ∈ S do
5: if (u, v) ∈ E then b← false

6: if b and |S| > |R| then R← S

7: return R

Running time = O(2nn2).



67/74

Beyond Polynomial Time: n!

Hamiltonian Cycle Problem
Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists
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Beyond Polynomial Time: n!

Hamiltonian(G = (V,E))

1: for every permutation (p1, p2, · · · , pn) of V do
2: b← true
3: for i← 1 to n− 1 do
4: if (pi, pi+1) /∈ E then b← false

5: if (pn, p1) /∈ E then b← false
6: if b then return (p1, p2, · · · , pn)
7: return “No Hamiltonian Cycle”

Running time = O(n!× n)
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O(log n) (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;
Output: whether t appears in A.

E.g, search 35 in the following array:
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O(log n) (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

binary-search(A, n, t)
1: i← 1, j ← n
2: while i ≤ j do
3: k ← ⌊(i+ j)/2⌋
4: if A[k] = t return true
5: if t < A[k] then j ← k − 1 else i← k + 1

6: return false

Running time = O(log n)
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Comparing the Orders of Running Times

Sort the functions from smallest to largest asymptotically
log n, n, n2, n log n, n!, 2n, en, nn, log(n!)

log n

log n = o(n), n = o(n log n), n log n = Θ(log(n!))

log(n!) = o(n2), n2 = o(2n), 2n = o(en)

en = o(n!), n! = o(nn)
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Terminologies

When we talk about upper bounds:

Logarithmic time: O(lg n)

Linear time: O(n)

Quadratic time: O(n2)

Cubic time: O(n3)

Polynomial time: O(nk) for some constant k

Exponential time: O(cn) for some c > 1

Sub-linear time: o(n)

Sub-quadratic time: o(n2)

When we talk about lower bounds:

Super-linear time: ω(n)

Super-quadratic time: ω(n2)

Super-polynomial time:
⋂

k>0 ω(n
k) = nω(1)
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Goal of Algorithm Design
Design algorithms to minimize the order of the running time.

Using asymptotic analysis allows us to ignore the leading
constants and lower order terms

Makes our life much easier! (E.g., the leading constant depends
on the implementation, complier and computer architecture of
computer.)
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Q: Can constants really be ignored?

e.g, how can we compare an algorithm with running time 0.1n2

with an algorithm with running time 1000n?

A:

Sometimes no

For most natural and simple algorithms, constants are not so big.

Algorithm with lower order running time beats algorithm with
higher order running time for reasonably large n.
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