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Example of Linear Programming

T2

min Try + 4z,
T1+ 292> 5
1+ 2x9 > 6
4y +1x9 > 8

1,72 >0

NOWw et &y -1 00 ©

@ optimum point: 1 = 1,290 =4
o value=7x144x4=23

—_




Standard Form of Linear Programming

min C1T1 + CoTy + -+ - + Cry s.t.

Z Az + Arpzg + -+ Ay, > by
Z Ag121 + Agowg + -+ - + Aoy > bo

Z Am,lxl + Am,2x2 + -+ Am,n$n Z bm

L1, T, 71:7120



Standard Form of Linear Programming

T1
Let x = x:2 , c=
.
A A A n
e Az A.z,z Az | -
Am,l Am72 R Am,n
Then, LP becomes min cta
Az >b
x>0

@ > means coordinate-wise greater than or equal to



Standard Form of Linear Programming

min clx s.t.

Ax >b

@ Linear programmings can be solved in polynomial time

Algorithm Theory Practice

Simplex Method Exponential Time | Works Well

Ellipsoid Method Polynomial Time Slow

Internal Point Methods | Polynomial Time | Works Well




History

e [Fourier, 1827]: Fourier-Motzkin elimination method

o [Kantorovich, Koopmans 1939]: formulated the general linear
programming problem

o [Dantzig 1946]: simplex method

@ [Khachiyan 1979]: ellipsoid method, polynomial time, proved
linear programming is in P

o [Karmarkar, 1984]: interior-point method, polynomial time,
algorithm is pratical
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Preliminaries

o feasible region: the set of x's satisfying
Axr > b,z >0

o feasible region is a polyhedron

o if every coordinate has an upper and lower

bound in the polyhedron, then the
polyhedron is a polytope

Polyhedron



Def. A set of points P C R" is said to be convex if for every
x,x' € P and two reals «, 5 € [0, 1] with o + 8 = 1, we have
ar + ar’ € P.

convex not convex

Obs. A polyhedron is convex.




Preliminaries

@ We say z is a convex combination of 2z, 22 ...
, At € [0, 1] such

following condition holds: there exist A\, A, - - -
that

M+Xo+-+xh=1, Az® 4 x2® +

@ The set of convex combinations of (), z(? ...
convex hull of these points

x
z! z?
e
A
: 22 3
! \
convex-hull({z*, 22}) \

convex-hull({z!, 22, 23})

,z®) if the

"+>\tI(t):x

. 2® is called the



Preliminaries

@ let P be polytope, x € P. If there are no other points 2/, 2" € P
such that z is a convex combination of 2’ and z”, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

P = convex-hull({z!, 22, 23, 2%, 25})



Preliminaries

A2
x2 <9

Lemma Let x € R™ be an extreme
point in a n-dimensional polytope. Then,
there are n constraints in the definition of

z; = 0—a
|z + 29 = 8-

‘\‘411 + a9 >8

the polytope, such that z is the unique nE
solution to the linear system obtained nrEmst

from the n constraints by replacing nel ‘

inequalities to equalities. I 7 =T

T+ 2x9 =6

Lemma |If the feasible region of a linear program is a polytope, then
the opimum value can be attained at some vertex of the polytope.

Special cases (for minimization linear programs):
o if feasible region is empty, then its value is oo
o if the feasible region is unbounded, then its value can be —oc
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Simplex Method

o [Dantzig, 1946]

@ move from one vertex to another, so
as to improve the objective

@ repeat until we reach an optimum
vertex

@ the number of iterations might be expoentially large; but
algorithm runs fast in practice

@ [Spielman-Teng,2002]: smoothed analysis
16/52



Interior Point Method

o [Karmarkar, 1984]

@ keep the solution inside the
polytope

@ design penalty function so that
the solution is not too close to
the boundary

@ the final solution will be
arbitrarily close to the optimum
solution

@ polynomial time
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Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains the
feasible region

@ query a separation oracle if the center
of ellipsid is in the feasible region:

e yes: then the feasible region is not

empty
e no: cut the elliposid in half, find ,
smaller ellipsoid to enclose the P

half-ellipsoid, and repeat

@ polynomial time, but impractical



Q: The exact running time of these algorithms?

@ it depends on many parameters: #variables, #constraints,
#(non-zero coefficients), magnitude of integers

@ precision issue

Open Problem

Can linear programming be solved in strongly polynomial time
algorithm?




Applications of Linear Programming

@ domain: computer science, mathematics, operations research,
economics

@ types of problems: transportation, scheduling, clustering, network
routing, resource allocation, facility location

Research Directions

@ polynomial time exact algorithm

@ polynomial time approximation algorithm

@ sub-routines for the branch-and-bound method for integer
programming

@ other algorithmic models: online algorithm, distributed algorithms,
dynamic algorithms, fast algorithms
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min Try + 42,
T1+x2 295
T, + 219 > 6
4oy + 29 > 8

x1,22 >0

@ optimum point: 1 = 1,29 =4
o value=7x1+4x4=23

Q: How can we prove a lower bound for the value?

Ty + 4wy > 2(xy + 22) + (21 +222) > 2 x5+ 6 =16

Try + 4xe > (21 + 2x9) + 1.5(4xy + 22) > 6+ 1.5 x 8 =18
Txy 4+ 4xe > (x1 + 22) + (21 + 229) + (421 +22) > 54+6+8 =19
Ty + 4wy > 4(1 +22) >4 x5=20

Tr1 + 4x9 > 3(x1 + x2) + (41 +22) >3 X 5+8=23




Primal LP Dual LP

min 721 + 42y max oY1 + 6ys + 8y s.t.
Ty + X9 > 5
1+ 229 > 6 Y1+ y2 +4y3 <7
4z1 + 39 > 8 Y1+ 2y2 +ys < 4
r1,T9 > 0 Y1,y2 > 0

A ”

A way to prove lower bound on the value of primal LP

Tr1 + 4z (if 7>y +y2 +4ys and 4 > y; + 2y + y3)
> Y1 (x1 + 22) + yo(21 + 222) + ys(4a1 + 22)  (if Y1, 92,93 > 0)
> 9y + 6y2 + 8ys.

@ Goal: need to maximize 5y; + 6ys + 8ys




Primal LP ‘Dual LP
i 7 4
i L 4 max 511 + 6y + 8ys s.t.
T1+x2 > 5
.T1+2.T226 y1+y2+4y3§7
4z + 79 > 8 Y1+ 2y +ys < 4
4
11 5 7
A=11 2 b=1 6 c= < 4 )
4 1 8
min ¢z s.t. max bly s.t.
Ax > ATy <e
x>0 y=>0




Primal LP Dual LP

min ¢’z s.t. max by s.t.
Ax > b ATy <e
x>0 y=>0

@ P = value of primal LP
@ D = value of dual LP

Theorem (weak duality theorem) D < P.

Theorem (strong duality theorem) D = P.

@ Can always prove the optimality of the primal solution, by adding
up primal constraints.



Primal LP Dual LP

min ¢’z s.t. max by s.t.
Ax > b ATy <e
x>0 y=>0

@ P = value of primal LP
@ D = value of dual LP

Theorem (weak duality theorem) D < P.

Proof.
@ z*: optimal primal solution

@ y*: optimal dual solution
D= bTy* S (A.T*)Ty* — ($*)TATy* S (x*)Tc — CTLE* — P




Proof of Strong Duality Theorem

Lemma (Variant of Farkas Lemma) Az < b,z > 0 is infeasible, if
and only if yTA > 0,y™h < 0,y > 0 is feasible.

° Ve>0,( f)xﬁ (P_b€> ,x > 0 is infeasible

c
@ There exists y € RZ;, a > 0, such that (y°, ) o = 0

(7, 0) (P__b 6) <0 _

@ we can prove o > 0; assume o = 1
o yTA+cT >0, —yTb+P—e<0<+= ATy <c,bTy>P—¢
eVe>0,D>P—¢ = D=P (since D<P) O




Example

Primal LP
min
2x1 + 519 — 313 > 2

31’1 —2$2+$3 2 5
$1+2$2+3£L’3 > 7

T1, %9, 3 > 0

53?1 + 6$2 +x3 s.t

Dual LP

max 2y1 -+ 52/2 -+ 7y3

2y1 +3y2 +y3 <5
5y1 — 2y2 +2y3 < 6
—3y1+y2+3ys > 1
Y1,Y2,43 = 0

s.t.

Primal Solution
T = 1.6,$2 = 0.6

r3 = 1.4,value = 13

Dual Solution
yi=1,92=5/8
y3 = 9/8,value = 13




51’1 + 6?[32 + I3

) 9
> (2551 + 5£C2 — 31’3) + §<3$1 — 21’2 + 553) + g(%l + 2%’2 + 31’3)

5 9
>24+-—xb+-=-x7
> +8>< +8

=13
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Def. A polytope P C R" is said to be integral, if all vertices of P
are in Z™.

@ For some combinatorial optimization problems, a polynomial-sized
LP Axz < b already defines an integral polytope, whose vertices
correspond to valid integral solutions.

@ Such a problem can be solved directly using the LP:

max / min cTr Az <b.
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Maximum Weight Bipartite Matching
Input: bipartite graph G = (LW R, F)
edge weights w € ZZ,
Output: a matching M C E so as to
maximize ), We

Z]-(Eijgl szwfl

LP Relaxation @ InIP:z.€{0,1}: e M?
M E. UM _ 1
s Zwe% o M e {0,1}F: x2 =1iff
eecM
eck
Z re <1 VwelLUR Theorem The LP polytope is
e€d(v) integral: It is the convex hull of

e >0 VeeFE {xM : M is a matching}.




Theorem The LP polytope is integral: It is the convex hull of
{xM : M is a matching}.

Proof. |
o take x in the polytope P
@ prove: x non integral => x non-vertex

: ) 1
o find ',2" € P: 2’ # 2", 2 = 5(2' + 2") L
@ case 1: fractional edges contain a cycle

e color edges in cycle blue and red
o 2': +e for blue edges, —e¢ for red edges +e
o z'': —e for blue edges, +¢ for red edges

@ case 2: fractional edges form a forest

o color edges in a leaf-leaf path blue and red
o 2': +e for blue edges, —e¢ for red edges
o 2'": —e for blue edges, +¢ for red edges [
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Example: s-t Flow Polytope

Flow Network

o directed graph G = (V, E), source s € V, sink t € V, edge
capacities ¢, € Z~g,Ve € E

e s has no incoming edges, t has no outgoing edges




Def. A s-t flow is a vector f € ]Rgo satisfying the following
conditions:

o Vee E,0< f(e) <ece (capacity constraints)
o Vv e V\{s,t}

Z f(e Z f(e) (flow conservation)
e€dn (v) e€dout(v)
The value of flow f is defined as:

val(f Zf = ) fle)

e€dout(s ecdin(t)



Maximum Flow Problem
Input: flow network (G = (V, E),c, s,t)

Output: maximum value of a s-t flow f

@ Ford-Fulkerson method

@ Maximum-Flow Min-Cut
Theorem: value of the
maximum flow is equal to the
value of the minimum s-t cut




LP for Maximum Flow
max Z T,
eE(Sin(t)
Te < Cp Vee FE

Z Te — er:O Yo e V\ {s,t}

ee(sout(v) e€din (1))

Te >0 Vee FE

Theorem The LP polytope is integral.

Sketch of Proof.

o Take any s-t flow x; consider fractional edges E’

e Every v ¢ {s,t} must be incident to 0 or > 2 edges in £’

@ Ignoring the directions of E’, it contains a cycle, or a s-t path

@ We can increase/decrease flow values along cyle/path ]
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Weighted Interval Scheduling Problem

Input: n activities, activity ¢ starts at time s;, finishes at time f;,
and has weight w; > 0
i and j can be scheduled together iff [s;, f;) and [s;, f;)
are disjoint

Output: maximum weight subset of jobs that can be scheduled

[ w T %] @ [
=10
s 1 [

@ optimum value= 220

@ Classic Problem for Dynamic Programming



Weighted Interval Scheduling Problem

Linear Program Theorem The LP polytope is
max Z 2w; integral.
j€mn]

Def. A matrix A € R™*" is said
to be tototally unimodular
(TUM), if every sub-square of A
;=20  Vj€[n] has determinant in {—1,0,1}.

Jj€ln]:tels;,f5)

Theorem |If a polytope P is defined by Az > b,z > 0 with a totally
unimodular matrix A and integral b, then P is integral.

Lemma A matrix A € {0, 1}™*"™ where the 1's on every column
form an interval is TUM.

@ So, the matrix for the LP is TUM, and the polytope is integral.



Theorem |If a polytope P is defined by Ax > b, x > 0 with a totally
unimodular matrix A and integral b, then P is integral.

Proof.

@ Every vertex z € P is the unique solution to the linear system
. : A0 b
(after permuting coordinates): o 1/5={o) where

o A’ is a square submatrix of A with det(A’) = +1, V' is a sub-vector
of b,
e and the rows for b’ are the same as the rows for A’.

1
o Letz= (;) so that A'z! =¥ and 22 = 0.

det(A!|b)
det(A")
Al|b: the matrix of A’ with the i-th column replaced by b O

e Cramer's rule: z} = for every i = x} is integer




Example for the Proof

T
11 G122 13 aAi4 ais T2 by
G2,1 Q22 A3 A4 Q25 x3 | > | bo
az1 4az2 assz az4a G35 Ty b3
Ts

X1,X2,T3,Ty4,Ts Z 0

The following equation system may give a vertex:

1,1 a2 @13 Ai4 Q15 T by

8
no

S
oY

@31 aAz2 33 A34 G35
1 0 0 0 0 xr3 | =
0 0 0 1 0 Ty
0 0 0 0 1 Ty

o O O



Example for the Proof

11 A1z AaArsz aia Qais
azi AaAzz AaAz3 aA3z4 a35
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

Equivalently, the vertex satisfies

Q12 413 0 0 O
azo2 Aas3 0 00
0 0 100
0 0 010
0 0 0 01

T b1
i) 65
T3 = 0
Ty 0
T5 0

L2 b

T3 bs

T = 0

Ty 0

Ty 0



Lemma Let A" € {0, £1}"*" such that every row of A’ contains at
most one 1 and one —1. Then det(A4’) € {0, +1}.

Proof.

@ wlog assume every row of A’ contains one 1 and one —1
e otherwise, we can reduce the matrix

o treat A’ as a directed graph: columns = vertices, rows = arcs

o #edges = #vertices = underlying undirected graph contains a
cycle = det(A’) =0 O

Lemma Let A € {0, £1}™ ™ such that every row of A contains at
most one 1 and one —1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the polytope
is integral.



Example for the Proof
0
0
0
0

= (0 0 0 0 0



Lemma A matrix A € {0, 1}™*™ where the 1's on every row form
an interval is TUM.

Proof.
@ take any square submatrix A’ of A,
@ the 1's on every row of A’ form an interval.

o A'M is a matrix satisfying condition of first lemma, where
1 0 0 -+ 0
11 0 --- 0
M=\|: : ct . det(M) = 1.
0 0 1 0

o 0 --- =11
o det(A'M) € {0,£1} = det(A’) € {0,+1}.




Example for the Proof

CLLLOON ey o100
001111 11110 1000 -1
000011 00111 =1001H0 0
000110 00011 0001 0
011110 01111 0100 0

@ (col 1,col 2 —col 1, col 3 —col 2,col 4 — col 3,col 5 — col 4)

@ every row has at most one 1, at most one —1



Lemma The edge-vertex incidence matrix A of a bipartite graph is
totally-unimodular.

Proof.

e G =(LWYR,E): the bipartite graph

e A’: obtained from A by negating columns correspondent to R
@ each row of A’ has exactly one +1, and exactly one —1

o — A'isTUM < A is TUM O]
Example
1 4 1 00 -1 O 0
100 0 -1 0
1 00 O 0 -1
2 5 010 -1 0 0
01 0 O 0 -1
3 6 001 0 -1 0



@ remark: bipartiteness is needed. The edge-vertex incidence matrix
01 1

1 0 1] of atriangle has determinant 2.

110

Coro. Bipartite matching polytope is integral.




In summary, given a matrix A € {—1,0,1}™*", A is TUM if one of
the conditions hold:

@ every row of A has at most one 1 and at most one -1
(network flow polytope)

e Aec{0,1}"" and the 1's in every row form an interval
(interval scheduling polytope)

@ A is edge-vertex incidence matrix of a bipartite graph
(bipartite matching polytope)



G = (LW R, E): bipartite graph

MM(G): the size of the maximum matching of G

°

°

e MVC(G) : the size of the minimum vertex cover of G
@ Using MFMC theorem, we know MM(G) =

°

A new proof using LP duality:

LP for MM
max er
eckE
Z 7.<1 Yoc€LWR
e€d(v)
Te >0 Vee B

@ Both LP polytopes are integral

MVC(G)
LP for MVC
min Z Yo
veELWR
Yo+ Yo > 1 V(u,v) € E
y, >0 Vue LUR

e MM(G) = primal value = dual value = MVC(G)
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