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Example of Linear Programming

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum point: x1 = 1, x2 = 4

value = 7× 1 + 4× 4 = 23
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Standard Form of Linear Programming

min c1x1 + c2x2 + · · ·+ cnxn s.t.∑
A1,1x1 + A1,2x2 + · · ·+ A1,nxn ≥ b1∑
A2,1x1 + A2,2x2 + · · ·+ A2,nxn ≥ b2

...
...

...
...∑

Am,1x1 + Am,2x2 + · · ·+ Am,nxn ≥ bm

x1, x2, · · · , xn ≥ 0
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Standard Form of Linear Programming

Let x =


x1

x2
...
xn

 , c =


c1
c2
...
cn

 ,

A =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

...
...

...
Am,1 Am,2 · · · Am,n

 , b =


b1
b2
...
bm

 .

Then, LP becomes min cTx s.t.
Ax ≥ b

x ≥ 0

≥ means coordinate-wise greater than or equal to
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Standard Form of Linear Programming

min cTx s.t.

Ax ≥ b

x ≥ 0

Linear programmings can be solved in polynomial time

Algorithm Theory Practice

Simplex Method Exponential Time Works Well

Ellipsoid Method Polynomial Time Slow

Internal Point Methods Polynomial Time Works Well
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History

[Fourier, 1827]: Fourier-Motzkin elimination method

[Kantorovich, Koopmans 1939]: formulated the general linear
programming problem

[Dantzig 1946]: simplex method

[Khachiyan 1979]: ellipsoid method, polynomial time, proved
linear programming is in P

[Karmarkar, 1984]: interior-point method, polynomial time,
algorithm is pratical
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Preliminaries

feasible region: the set of x’s satisfying
Ax ≥ b, x ≥ 0

feasible region is a polyhedron

if every coordinate has an upper and lower
bound in the polyhedron, then the
polyhedron is a polytope

Polyhedron
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Def. A set of points P ⊆ Rn is said to be convex if for every
x, x′ ∈ P and two reals α, β ∈ [0, 1] with α + β = 1, we have
αx+ αx′ ∈ P .

Obs. A polyhedron is convex.
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Preliminaries

We say x is a convex combination of x(1), x(2), · · · , x(t) if the
following condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1] such
that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

The set of convex combinations of x(1), x(2), · · · , x(t) is called the
convex hull of these points

x1 x2
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Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

P



13/52

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

P



13/52

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

P



13/52

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

not a vertex

P



13/52

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

not a vertex

P



13/52

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

not a vertex

P



13/52

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

not a vertex

not a vertex

P



13/52

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

vertices

P



13/52

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

vertices

P



13/52

Preliminaries

let P be polytope, x ∈ P . If there are no other points x′, x′′ ∈ P
such that x is a convex combination of x′ and x′′, then x is called
a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

x1

x2

x3
x4

x5

P

P = convex-hull({x1, x2, x3, x4, x5})



14/52

Preliminaries

Lemma Let x ∈ Rn be an extreme
point in a n-dimensional polytope. Then,
there are n constraints in the definition of
the polytope, such that x is the unique
solution to the linear system obtained
from the n constraints by replacing
inequalities to equalities.

x1

x2

Feasible Region
x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

x2 ≤ 9

x1 ≤ 7

x1 ≥ 0

x2 ≥ 0

Lemma If the feasible region of a linear program is a polytope, then
the opimum value can be attained at some vertex of the polytope.

Special cases (for minimization linear programs):

if feasible region is empty, then its value is ∞
if the feasible region is unbounded, then its value can be −∞
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Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis
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Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so that
the solution is not too close to
the boundary

the final solution will be
arbitrarily close to the optimum
solution

polynomial time
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Q: The exact running time of these algorithms?

it depends on many parameters: #variables, #constraints,
#(non-zero coefficients), magnitude of integers

precision issue

Open Problem
Can linear programming be solved in strongly polynomial time
algorithm?
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Applications of Linear Programming

domain: computer science, mathematics, operations research,
economics

types of problems: transportation, scheduling, clustering, network
routing, resource allocation, facility location

Research Directions
polynomial time exact algorithm

polynomial time approximation algorithm

sub-routines for the branch-and-bound method for integer
programming

other algorithmic models: online algorithm, distributed algorithms,
dynamic algorithms, fast algorithms
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min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum point: x1 = 1, x2 = 4

value = 7× 1 + 4× 4 = 23

Q: How can we prove a lower bound for the value?

7x1 + 4x2 ≥ 2(x1 + x2) + (x1 + 2x2) ≥ 2× 5 + 6 = 16

7x1 + 4x2 ≥ (x1 + 2x2) + 1.5(4x1 + x2) ≥ 6 + 1.5× 8 = 18

7x1 +4x2 ≥ (x1 + x2)+ (x1 +2x2)+ (4x1 + x2) ≥ 5+ 6+8 = 19

7x1 + 4x2 ≥ 4(x1 + x2) ≥ 4× 5 = 20

7x1 + 4x2 ≥ 3(x1 + x2) + (4x1 + x2) ≥ 3× 5 + 8 = 23
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Primal LP
min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

Dual LP

max 5y1 + 6y2 + 8y3 s.t.

y1 + y2 + 4y3 ≤ 7

y1 + 2y2 + y3 ≤ 4

y1, y2 ≥ 0

A way to prove lower bound on the value of primal LP

7x1 + 4x2 (if 7 ≥ y1 + y2 + 4y3 and 4 ≥ y1 + 2y2 + y3)

≥ y1(x1 + x2) + y2(x1 + 2x2) + y3(4x1 + x2) (if y1, y2, y3 ≥ 0)

≥ 5y1 + 6y2 + 8y3.

Goal: need to maximize 5y1 + 6y2 + 8y3
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Primal LP
min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

Dual LP

max 5y1 + 6y2 + 8y3 s.t.
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A =

 1 1
1 2
4 1

 b =

 5
6
8

 c =

(
7
4

)

min cTx s.t.
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ATy ≤ c

y ≥ 0
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Primal LP

min cTx s.t.

Ax ≥ b

x ≥ 0

Dual LP

max bTy s.t.

ATy ≤ c

y ≥ 0

P = value of primal LP

D = value of dual LP

Theorem (weak duality theorem) D ≤ P .

Theorem (strong duality theorem) D = P .

Can always prove the optimality of the primal solution, by adding
up primal constraints.
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Primal LP

min cTx s.t.

Ax ≥ b

x ≥ 0

Dual LP

max bTy s.t.

ATy ≤ c

y ≥ 0

P = value of primal LP

D = value of dual LP

Theorem (weak duality theorem) D ≤ P .

Proof.
x∗: optimal primal solution

y∗: optimal dual solution

D = bTy∗ ≤ (Ax∗)Ty∗ = (x∗)TATy∗ ≤ (x∗)Tc = cTx∗ = P.
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Proof of Strong Duality Theorem

Lemma (Variant of Farkas Lemma) Ax ≤ b, x ≥ 0 is infeasible, if
and only if yTA ≥ 0, yTb < 0, y ≥ 0 is feasible.

∀ϵ > 0,

(
−A
cT

)
x ≤

(
−b

P − ϵ

)
, x ≥ 0 is infeasible

There exists y ∈ Rm
≥0, α ≥ 0, such that (yT, α)

(
−A
cT

)
≥ 0,

(yT, α)

(
−b

P − ϵ

)
< 0

we can prove α > 0; assume α = 1

−yTA+ cT ≥ 0,−yTb+ P − ϵ < 0 ⇐⇒ ATy ≤ c, bTy > P − ϵ

∀ϵ > 0, D > P − ϵ =⇒ D = P (since D ≤ P )
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Example

Primal LP

min 5x1 + 6x2 + x3 s.t.

2x1 + 5x2 − 3x3 ≥ 2

3x1 − 2x2 + x3 ≥ 5

x1 + 2x2 + 3x3 ≥ 7

x1, x2, x3 ≥ 0

Primal Solution
x1 = 1.6, x2 = 0.6

x3 = 1.4, value = 13

Dual LP

max 2y1 + 5y2 + 7y3 s.t.

2y1 + 3y2 + y3 ≤ 5

5y1 − 2y2 + 2y3 ≤ 6

−3y1 + y2 + 3y3 ≥ 1

y1, y2, y3 ≥ 0

Dual Solution
y1 = 1, y2 = 5/8

y3 = 9/8, value = 13
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5x1 + 6x2 + x3

≥ (2x1 + 5x2 − 3x3) +
5

8
(3x1 − 2x2 + x3) +

9

8
(x1 + 2x2 + 3x3)

≥ 2 +
5

8
× 5 +

9

8
× 7

= 13
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Def. A polytope P ⊆ Rn is said to be integral, if all vertices of P
are in Zn.

For some combinatorial optimization problems, a polynomial-sized
LP Ax ≤ b already defines an integral polytope, whose vertices
correspond to valid integral solutions.

Such a problem can be solved directly using the LP:

max /min cTx Ax ≤ b.
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Maximum Weight Bipartite Matching

Input: bipartite graph G = (L ⊎R,E)

edge weights w ∈ ZE
>0

Output: a matching M ⊆ E so as to
maximize

∑
e∈M we

5
3

4

LP Relaxation

max
∑
e∈E

wexe∑
e∈δ(v)

xe ≤ 1 ∀v ∈ L ∪R

xe ≥ 0 ∀e ∈ E

In IP: xe ∈ {0, 1}: e ∈ M?

χM ∈ {0, 1}E: χM
e = 1 iff

e ∈ M

Theorem The LP polytope is
integral: It is the convex hull of
{χM : M is a matching}.
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Theorem The LP polytope is integral: It is the convex hull of
{χM : M is a matching}.

Proof.

take x in the polytope P

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in a leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1
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Outline

1 Linear Programming
Introduction
Preliminaries
Methods for Solving Linear Programs

2 Linear Programming Duality

3 Integral Polytopes: Exact Algorithms Using LP
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem and Totally Unimodular
Matrices
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Example: s-t Flow Polytope

Flow Network
directed graph G = (V,E), source s ∈ V , sink t ∈ V , edge
capacities ce ∈ Z>0,∀e ∈ E

s has no incoming edges, t has no outgoing edges

s t

a

b d

c12

14

9

4 7

16

13

20

4
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Def. A s-t flow is a vector f ∈ RE
≥0 satisfying the following

conditions:

∀e ∈ E, 0 ≤ f(e) ≤ ce (capacity constraints)

∀v ∈ V \ {s, t},∑
e∈δin(v)

f(e) =
∑

e∈δout(v)

f(e) (flow conservation)

The value of flow f is defined as:

val(f) :=
∑

e∈δout(s)

f(e) =
∑

e∈δin(t)

f(e)
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Maximum Flow Problem
Input: flow network (G = (V,E), c, s, t)

Output: maximum value of a s-t flow f

s t

a

b d

c12

14

9

4 7

16

13

20

4

Ford-Fulkerson method

Maximum-Flow Min-Cut
Theorem: value of the
maximum flow is equal to the
value of the minimum s-t cut
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LP for Maximum Flow

max
∑

e∈δin(t)

xe

xe ≤ ce ∀e ∈ E∑
e∈δout(v)

xe −
∑

e∈δin(v)

xe = 0 ∀v ∈ V \ {s, t}

xe ≥ 0 ∀e ∈ E

Theorem The LP polytope is integral.

Sketch of Proof.
Take any s-t flow x; consider fractional edges E ′

Every v /∈ {s, t} must be incident to 0 or ≥ 2 edges in E ′

Ignoring the directions of E ′, it contains a cycle, or a s-t path

We can increase/decrease flow values along cyle/path
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Weighted Interval Scheduling Problem
Input: n activities, activity i starts at time si, finishes at time fi,

and has weight wi > 0

i and j can be scheduled together iff [si, fi) and [sj, fj)
are disjoint

Output: maximum weight subset of jobs that can be scheduled

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30
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80

70

optimum value= 220

Classic Problem for Dynamic Programming
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Weighted Interval Scheduling Problem

Linear Program

max
∑
j∈[n]

xjwj∑
j∈[n]:t∈[sj ,fj)

xj ≤ 1 ∀t ∈ [T ]

xj ≥ 0 ∀j ∈ [n]

Theorem The LP polytope is
integral.

Def. A matrix A ∈ Rm×n is said
to be tototally unimodular
(TUM), if every sub-square of A
has determinant in {−1, 0, 1}.

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a totally
unimodular matrix A and integral b, then P is integral.

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every column
form an interval is TUM.

So, the matrix for the LP is TUM, and the polytope is integral.
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Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a totally
unimodular matrix A and integral b, then P is integral.

Proof.

Every vertex x ∈ P is the unique solution to the linear system

(after permuting coordinates):

(
A′ 0
0 I

)
x =

(
b′

0

)
, where

A′ is a square submatrix of A with det(A′) = ±1, b′ is a sub-vector
of b,
and the rows for b′ are the same as the rows for A′.

Let x =

(
x1

x2

)
, so that A′x1 = b′ and x2 = 0.

Cramer’s rule: x1
i =

det(A′
i|b)

det(A′)
for every i =⇒ x1

i is integer

A′
i|b: the matrix of A′ with the i-th column replaced by b
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Example for the Proof

a1,1 a1,2 a1,3 a1,4 a1,5
a2,1 a2,2 a2,3 a2,4 a2,5
a3,1 a3,2 a3,3 a3,4 a3,5



x1

x2

x3

x4

x5

 ≥

b1
b2
b3


x1, x2, x3, x4, x5 ≥ 0

The following equation system may give a vertex:
a1,1 a1,2 a1,3 a1,4 a1,5
a3,1 a3,2 a3,3 a3,4 a3,5
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



x1

x2

x3

x4

x5

 =


b1
b3
0
0
0
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Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains at
most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.

wlog assume every row of A′ contains one 1 and one −1

otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph contains a
cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains at
most one 1 and one −1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the polytope
is integral.
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Example for the Proof

1 −1 0 0 0 0 0
0 −1 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 1 −1 0 0
0 0 −1 0 0 1 0
0 0 0 0 −1 0 1
1 0 0 0 −1 0 0



1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)
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Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row form
an interval is TUM.

Proof.

take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 0 0 · · · 0
−1 1 0 · · · 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · −1 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.



47/52

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row form
an interval is TUM.

Proof.
take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 0 0 · · · 0
−1 1 0 · · · 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · −1 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.



47/52

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row form
an interval is TUM.

Proof.
take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 0 0 · · · 0
−1 1 0 · · · 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · −1 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.



47/52

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row form
an interval is TUM.

Proof.
take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 0 0 · · · 0
−1 1 0 · · · 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · −1 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.



47/52

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row form
an interval is TUM.

Proof.
take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 0 0 · · · 0
−1 1 0 · · · 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · −1 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.



48/52

Example for the Proof


0 1 1 1 0 0
1 1 1 1 0 0
0 0 1 1 1 1
0 0 0 0 1 1
0 0 0 1 1 0
0 1 1 1 1 0



=⇒


0 1 0 0 −1
1 0 0 0 −1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0



(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1
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Lemma The edge-vertex incidence matrix A of a bipartite graph is
totally-unimodular.

Proof.

G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1

=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 0 1 0
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remark: bipartiteness is needed. The edge-vertex incidence matrix0 1 1
1 0 1
1 1 0

 of a triangle has determinant 2.

Coro. Bipartite matching polytope is integral.
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In summary, given a matrix A ∈ {−1, 0, 1}m×n, A is TUM if one of
the conditions hold:

every row of A has at most one 1 and at most one -1
(network flow polytope)

A ∈ {0, 1}m×n, and the 1’s in every row form an interval
(interval scheduling polytope)

A is edge-vertex incidence matrix of a bipartite graph
(bipartite matching polytope)
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G = (L ⊎R,E): bipartite graph

MM(G): the size of the maximum matching of G

MVC(G) : the size of the minimum vertex cover of G

Using MFMC theorem, we know MM(G) = MVC(G)

A new proof using LP duality:

LP for MM

max
∑
e∈E

xe∑
e∈δ(v)

xe ≤ 1 ∀v ∈ L ⊎R

xe ≥ 0 ∀e ∈ E

LP for MVC

min
∑

v∈L⊎R

yv

yu + yv ≥ 1 ∀(u, v) ∈ E

αu ≥ 0 ∀u ∈ L ⊎R

Both LP polytopes are integral

MM(G) = primal value = dual value = MVC(G)
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