算法设计与分析(2025年春季学期) Linear Programming

授课老师:栗师 南京大学计算机学院

Outline

Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs

2 Linear Programming Duality

Integral Polytopes: Exact Algorithms Using LP

- Bipartite Matching Polytope
- *s*-*t* Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

Outline

Linear Programming

Introduction

- Preliminaries
- Methods for Solving Linear Programs
- 2 Linear Programming Duality
- Integral Polytopes: Exact Algorithms Using LP
 - Bipartite Matching Polytope
 - *s*-*t* Flow Polytope
 - Weighted Interval Scheduling Problem and Totally Unimodular Matrices

 $\min \quad 7x_1 + 4x_2$ $x_1 + x_2 \ge 5$ $x_1 + 2x_2 \ge 6$ $4x_1 + x_2 \ge 8$ $x_1, x_2 \ge 0$

min

 $x_1 + 2x_2 \ge 6$ $4x_1 + x_2 > 8$ $x_1, x_2 \ge 0$

min

- optimum point: $x_1 = 1, x_2 = 4$
- value = $7 \times 1 + 4 \times 4 = 23$

Standard Form of Linear Programming

 $\min \quad c_1 x_1 + c_2 x_2 + \dots + c_n x_n \quad \text{s.t.}$ $\sum A_{1,1} x_1 + A_{1,2} x_2 + \dots + A_{1,n} x_n \ge b_1$ $\sum A_{2,1} x_1 + A_{2,2} x_2 + \dots + A_{2,n} x_n \ge b_2$ $\vdots \quad \vdots \quad \vdots \quad \vdots$ $\sum A_{m,1} x_1 + A_{m,2} x_2 + \dots + A_{m,n} x_n \ge b_m$ $x_1, x_2, \dots, x_n \ge 0$

Standard Form of Linear Programming

Let
$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
, $c = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$,
 $A = \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{pmatrix}$, $b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$.
Then, LP becomes min $c^{T}x$ s.t.
 $Ax \ge b$
 $x \ge 0$

 $\bullet \geq$ means coordinate-wise greater than or equal to

Standard Form of Linear Programming min $c^{T}x$ s.t. Ax > b

 $x \ge 0$

• Linear programmings can be solved in polynomial time

Algorithm	Theory	Practice
Simplex Method	Exponential Time	Works Well
Ellipsoid Method	Polynomial Time	Slow
Internal Point Methods	Polynomial Time	Works Well

- [Fourier, 1827]: Fourier-Motzkin elimination method
- [Kantorovich, Koopmans 1939]: formulated the general linear programming problem

- [Fourier, 1827]: Fourier-Motzkin elimination method
- [Kantorovich, Koopmans 1939]: formulated the general linear programming problem
- [Dantzig 1946]: simplex method
- [Khachiyan 1979]: ellipsoid method, polynomial time, proved linear programming is in P
- [Karmarkar, 1984]: interior-point method, polynomial time, algorithm is pratical

Outline

Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs
- 2 Linear Programming Duality
- Integral Polytopes: Exact Algorithms Using LP
 - Bipartite Matching Polytope
 - *s*-*t* Flow Polytope
 - Weighted Interval Scheduling Problem and Totally Unimodular Matrices

• feasible region: the set of x's satisfying $Ax \ge b, x \ge 0$

- feasible region: the set of x's satisfying $Ax \ge b, x \ge 0$
- feasible region is a polyhedron

- feasible region: the set of x's satisfying $Ax \ge b, x \ge 0$
- feasible region is a polyhedron
- if every coordinate has an upper and lower bound in the polyhedron, then the polyhedron is a polytope

convex

convex

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

• We say x is a convex combination of $x^{(1)}, x^{(2)}, \cdots, x^{(t)}$ if the following condition holds: there exist $\lambda_1, \lambda_2, \cdots, \lambda_t \in [0, 1]$ such that

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

• We say x is a convex combination of $x^{(1)}, x^{(2)}, \cdots, x^{(t)}$ if the following condition holds: there exist $\lambda_1, \lambda_2, \cdots, \lambda_t \in [0, 1]$ such that

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

• We say x is a convex combination of $x^{(1)}, x^{(2)}, \cdots, x^{(t)}$ if the following condition holds: there exist $\lambda_1, \lambda_2, \cdots, \lambda_t \in [0, 1]$ such that

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

• We say x is a convex combination of $x^{(1)}, x^{(2)}, \cdots, x^{(t)}$ if the following condition holds: there exist $\lambda_1, \lambda_2, \cdots, \lambda_t \in [0, 1]$ such that

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

• let P be polytope, $x \in P$. If there are no other points $x', x'' \in P$ such that x is a convex combination of x' and x'', then x is called a vertex/extreme point of P

• let P be polytope, $x \in P$. If there are no other points $x', x'' \in P$ such that x is a convex combination of x' and x'', then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the convex hull of the vertices.

• let P be polytope, $x \in P$. If there are no other points $x', x'' \in P$ such that x is a convex combination of x' and x'', then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the convex hull of the vertices.

 $P = \operatorname{convex-hull}(\{x^1, x^2, x^3, x^4, x^5\})$

Lemma Let $x \in \mathbb{R}^n$ be an extreme point in a *n*-dimensional polytope. Then, there are *n* constraints in the definition of the polytope, such that *x* is the unique solution to the linear system obtained from the *n* constraints by replacing inequalities to equalities.

Lemma Let $x \in \mathbb{R}^n$ be an extreme point in a *n*-dimensional polytope. Then, there are *n* constraints in the definition of the polytope, such that *x* is the unique solution to the linear system obtained from the *n* constraints by replacing inequalities to equalities.

Lemma Let $x \in \mathbb{R}^n$ be an extreme point in a *n*-dimensional polytope. Then, there are *n* constraints in the definition of the polytope, such that *x* is the unique solution to the linear system obtained from the *n* constraints by replacing inequalities to equalities.

Lemma Let $x \in \mathbb{R}^n$ be an extreme point in a *n*-dimensional polytope. Then, there are *n* constraints in the definition of the polytope, such that *x* is the unique solution to the linear system obtained from the *n* constraints by replacing inequalities to equalities.

Lemma If the feasible region of a linear program is a polytope, then the opimum value can be attained at some vertex of the polytope.

Lemma Let $x \in \mathbb{R}^n$ be an extreme point in a *n*-dimensional polytope. Then, there are *n* constraints in the definition of the polytope, such that *x* is the unique solution to the linear system obtained from the *n* constraints by replacing inequalities to equalities.

Lemma If the feasible region of a linear program is a polytope, then the opimum value can be attained at some vertex of the polytope.

Special cases (for minimization linear programs):

- ullet if feasible region is empty, then its value is ∞
- ullet if the feasible region is unbounded, then its value can be $-\infty$

Outline

Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs
- 2 Linear Programming Duality
- Integral Polytopes: Exact Algorithms Using LP
 - Bipartite Matching Polytope
 - *s*-*t* Flow Polytope
 - Weighted Interval Scheduling Problem and Totally Unimodular Matrices

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

• the number of iterations might be expoentially large; but algorithm runs fast in practice

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- the number of iterations might be expoentially large; but algorithm runs fast in practice
- [Spielman-Teng,2002]: smoothed analysis

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

• polynomial time

Ellipsoid Method

• [Khachiyan, 1979]

Ellipsoid Method

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not

Ellipsoid Method

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

• polynomial time, but impractical

Q: The exact running time of these algorithms?

Q: The exact running time of these algorithms?

- it depends on many parameters: #variables, #constraints, #(non-zero coefficients), magnitude of integers
- precision issue

Q: The exact running time of these algorithms?

- it depends on many parameters: #variables, #constraints, #(non-zero coefficients), magnitude of integers
- precision issue

Open Problem

Can linear programming be solved in strongly polynomial time algorithm?

Applications of Linear Programming

- domain: computer science, mathematics, operations research, economics
- types of problems: transportation, scheduling, clustering, network routing, resource allocation, facility location

Applications of Linear Programming

- domain: computer science, mathematics, operations research, economics
- types of problems: transportation, scheduling, clustering, network routing, resource allocation, facility location

Research Directions

- polynomial time exact algorithm
- polynomial time approximation algorithm
- sub-routines for the branch-and-bound method for integer programming
- other algorithmic models: online algorithm, distributed algorithms, dynamic algorithms, fast algorithms

Outline

Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs

2 Linear Programming Duality

Integral Polytopes: Exact Algorithms Using LP

- Bipartite Matching Polytope
- *s*-*t* Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

$$\begin{array}{ll} \min & 7x_1 + 4x_2 \\ & x_1 + x_2 \geq 5 \\ & x_1 + 2x_2 \geq 6 \\ & 4x_1 + x_2 \geq 8 \\ & x_1, x_2 \geq 0 \end{array}$$

optimum point: x₁ = 1, x₂ = 4
 value = 7 × 1 + 4 × 4 = 23

Q: How can we prove a lower bound for the value?

$$\begin{array}{ll} \min & 7x_1 + 4x_2 \\ x_1 + x_2 \geq 5 \\ x_1 + 2x_2 \geq 6 \\ 4x_1 + x_2 \geq 8 \\ x_1, x_2 \geq 0 \end{array}$$

optimum point: x₁ = 1, x₂ = 4
 value = 7 × 1 + 4 × 4 = 23

Q: How can we prove a lower bound for the value?

•
$$7x_1 + 4x_2 \ge 2(x_1 + x_2) + (x_1 + 2x_2) \ge 2 \times 5 + 6 = 16$$

•
$$7x_1 + 4x_2 \ge (x_1 + 2x_2) + 1.5(4x_1 + x_2) \ge 6 + 1.5 \times 8 = 18$$

•
$$7x_1 + 4x_2 \ge (x_1 + x_2) + (x_1 + 2x_2) + (4x_1 + x_2) \ge 5 + 6 + 8 = 19$$

- $7x_1 + 4x_2 \ge 4(x_1 + x_2) \ge 4 \times 5 = 20$
- $7x_1 + 4x_2 \ge 3(x_1 + x_2) + (4x_1 + x_2) \ge 3 \times 5 + 8 = 23$

Primal LP

$$\min \quad 7x_1 + 4x_2$$

$$x_1 + x_2 \ge 5$$

$$x_1 + 2x_2 \ge 6$$

$$4x_1 + x_2 \ge 8$$

$$x_1, x_2 \ge 0$$

Primal LP

 $\min \quad 7x_1 + 4x_2$ $x_1 + x_2 \ge 5$ $x_1 + 2x_2 \ge 6$ $4x_1 + x_2 \ge 8$ $x_1, x_2 \ge 0$

A way to prove lower bound on the value of primal LP

 $7x_1 + 4x_2 \quad (\text{if } 7 \ge y_1 + y_2 + 4y_3 \text{ and } 4 \ge y_1 + 2y_2 + y_3) \\ \ge y_1(x_1 + x_2) + y_2(x_1 + 2x_2) + y_3(4x_1 + x_2) \quad (\text{if } y_1, y_2, y_3 \ge 0) \\ \ge 5y_1 + 6y_2 + 8y_3.$

• Goal: need to maximize $5y_1 + 6y_2 + 8y_3$

Primal LP	Dual LP
$\min \begin{array}{c} 7x_1 + 4x_2 \\ x_1 + x_2 \ge 5 \end{array}$	max $5y_1 + 6y_2 + 8y_3$ s.t.
$x_1 + 2x_2 \ge 6$	$y_1 + y_2 + 4y_3 \le 7$
$4x_1 + x_2 \ge 8$	$y_1 + 2y_2 + y_3 \le 4$
$x_1, x_2 \ge 0$	$y_1, y_2 \ge 0$

A way to prove lower bound on the value of primal LP

 $7x_1 + 4x_2 \quad (\text{if } 7 \ge y_1 + y_2 + 4y_3 \text{ and } 4 \ge y_1 + 2y_2 + y_3) \\ \ge y_1(x_1 + x_2) + y_2(x_1 + 2x_2) + y_3(4x_1 + x_2) \quad (\text{if } y_1, y_2, y_3 \ge 0) \\ \ge 5y_1 + 6y_2 + 8y_3.$

• Goal: need to maximize $5y_1 + 6y_2 + 8y_3$

Primal LP

Dual LP

Theorem (weak duality theorem) $D \leq P$.

Theorem (strong duality theorem) D = P.

• Can always prove the optimality of the primal solution, by adding up primal constraints.

Primal LPDual LPmin $c^T x$ s.t.max $b^T y$ s.t. $Ax \ge b$ $A^T y \le c$ $x \ge 0$ $y \ge 0$

• D =value of dual LP

Theorem (weak duality theorem) $D \leq P$.

Proof.

- x^* : optimal primal solution
- y^* : optimal dual solution

$$D = b^{\mathrm{T}} y^* \le (Ax^*)^{\mathrm{T}} y^* = (x^*)^{\mathrm{T}} A^{\mathrm{T}} y^* \le (x^*)^{\mathrm{T}} c = c^{\mathrm{T}} x^* = P.$$

Lemma (Variant of Farkas Lemma) $Ax \le b, x \ge 0$ is infeasible, if and only if $y^{\mathrm{T}}A \ge 0, y^{\mathrm{T}}b < 0, y \ge 0$ is feasible.

Lemma (Variant of Farkas Lemma) $Ax \le b, x \ge 0$ is infeasible, if and only if $y^{T}A \ge 0, y^{T}b < 0, y \ge 0$ is feasible.

•
$$\forall \epsilon > 0, \begin{pmatrix} -A \\ c^{\mathrm{T}} \end{pmatrix} x \leq \begin{pmatrix} -b \\ P - \epsilon \end{pmatrix}, x \geq 0$$
 is infeasible

Lemma (Variant of Farkas Lemma) $Ax \le b, x \ge 0$ is infeasible, if and only if $y^{T}A \ge 0, y^{T}b < 0, y \ge 0$ is feasible.

•
$$\forall \epsilon > 0, \begin{pmatrix} -A \\ c^{\mathrm{T}} \end{pmatrix} x \le \begin{pmatrix} -b \\ P - \epsilon \end{pmatrix}, x \ge 0$$
 is infeasible

• There exists $y \in \mathbb{R}^m_{\geq 0}, \alpha \geq 0$, such that $(y^{\mathrm{T}}, \alpha) \begin{pmatrix} -A \\ c^{\mathrm{T}} \end{pmatrix} \geq 0$, $(y^{\mathrm{T}}, \alpha) \begin{pmatrix} -b \\ P - \epsilon \end{pmatrix} < 0$

Lemma (Variant of Farkas Lemma) $Ax \le b, x \ge 0$ is infeasible, if and only if $y^{T}A \ge 0, y^{T}b < 0, y \ge 0$ is feasible.

•
$$\forall \epsilon > 0, \begin{pmatrix} -A \\ c^{\mathrm{T}} \end{pmatrix} x \leq \begin{pmatrix} -b \\ P - \epsilon \end{pmatrix}, x \geq 0$$
 is infeasible

• There exists $y \in \mathbb{R}^m_{\geq 0}, \alpha \geq 0$, such that $(y^{\mathrm{T}}, \alpha) \begin{pmatrix} -A \\ c^{\mathrm{T}} \end{pmatrix} \geq 0$, $(y^{\mathrm{T}}, \alpha) \begin{pmatrix} -b \\ P - \epsilon \end{pmatrix} < 0$

• we can prove $\alpha > 0$; assume $\alpha = 1$

Lemma (Variant of Farkas Lemma) $Ax \le b, x \ge 0$ is infeasible, if and only if $y^{T}A \ge 0, y^{T}b < 0, y \ge 0$ is feasible.

•
$$\forall \epsilon > 0, \begin{pmatrix} -A \\ c^{\mathrm{T}} \end{pmatrix} x \leq \begin{pmatrix} -b \\ P - \epsilon \end{pmatrix}, x \geq 0$$
 is infeasible

• There exists $y \in \mathbb{R}^m_{\geq 0}, \alpha \geq 0$, such that $(y^T, \alpha) \begin{pmatrix} -A \\ c^T \end{pmatrix} \geq 0$, $(y^T, \alpha) \begin{pmatrix} -b \\ P-\epsilon \end{pmatrix} < 0$

• we can prove $\alpha > 0$; assume $\alpha = 1$

•
$$-y^{\mathrm{T}}A + c^{\mathrm{T}} \ge 0, -y^{\mathrm{T}}b + P - \epsilon < 0 \iff A^{\mathrm{T}}y \le c, b^{\mathrm{T}}y > P - \epsilon$$

Lemma (Variant of Farkas Lemma) $Ax \le b, x \ge 0$ is infeasible, if and only if $y^{T}A \ge 0, y^{T}b < 0, y \ge 0$ is feasible.

•
$$\forall \epsilon > 0, \begin{pmatrix} -A \\ c^{\mathrm{T}} \end{pmatrix} x \leq \begin{pmatrix} -b \\ P - \epsilon \end{pmatrix}, x \geq 0$$
 is infeasible

• There exists $y \in \mathbb{R}^m_{\geq 0}, \alpha \geq 0$, such that $(y^{\mathrm{T}}, \alpha) \begin{pmatrix} -A \\ c^{\mathrm{T}} \end{pmatrix} \geq 0$, $(y^{\mathrm{T}}, \alpha) \begin{pmatrix} -b \\ P - \epsilon \end{pmatrix} < 0$

• we can prove $\alpha > 0$; assume $\alpha = 1$

•
$$-y^{\mathrm{T}}A + c^{\mathrm{T}} \ge 0, -y^{\mathrm{T}}b + P - \epsilon < 0 \iff A^{\mathrm{T}}y \le c, b^{\mathrm{T}}y > P - \epsilon$$

• $\forall \epsilon > 0, D > P - \epsilon \implies D = P \text{ (since } D \le P \text{)}$

Example

Primal LP	Dual LP
min $5x_1 + 6x_2 + x_3$ s.t.	max $2y_1 + 5y_2 + 7y_3$ s.t.
$2x_1 + 5x_2 - 3x_3 \ge 2$	$2y_1 + 3y_2 + y_3 \le 5$
$3x_1 - 2x_2 + x_3 \ge 5$	$5y_1 - 2y_2 + 2y_3 \le 6$
$x_1 + 2x_2 + 3x_3 \ge 7$	$-3y_1 + y_2 + 3y_3 \ge 1$
$x_1, x_2, x_3 \ge 0$	$y_1, y_2, y_3 \ge 0$
Primal Solution	Dual Solution

	Dual Solution
$x_1 = 1.6, x_2 = 0.6$	$y_1 = 1, y_2 = 5/8$
$x_3 = 1.4, value = 13$	$y_3 = 9/8$, value $= 13$

$$5x_1 + 6x_2 + x_3$$

$$\geq (2x_1 + 5x_2 - 3x_3) + \frac{5}{8}(3x_1 - 2x_2 + x_3) + \frac{9}{8}(x_1 + 2x_2 + 3x_3)$$

$$\geq 2 + \frac{5}{8} \times 5 + \frac{9}{8} \times 7$$

= 13

Outline

Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs

2 Linear Programming Duality

Integral Polytopes: Exact Algorithms Using LP

- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

Def. A polytope $P \subseteq \mathbb{R}^n$ is said to be integral, if all vertices of P are in \mathbb{Z}^n .
Def. A polytope $P \subseteq \mathbb{R}^n$ is said to be integral, if all vertices of P are in \mathbb{Z}^n .

 For some combinatorial optimization problems, a polynomial-sized LP Ax ≤ b already defines an integral polytope, whose vertices correspond to valid integral solutions. **Def.** A polytope $P \subseteq \mathbb{R}^n$ is said to be integral, if all vertices of P are in \mathbb{Z}^n .

- For some combinatorial optimization problems, a polynomial-sized LP Ax ≤ b already defines an integral polytope, whose vertices correspond to valid integral solutions.
- Such a problem can be solved directly using the LP:

$$\max / \min \quad c^{\mathrm{T}}x \quad Ax \le b.$$

Outline

Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs

2 Linear Programming Duality

Integral Polytopes: Exact Algorithms Using LP Bipartite Matching Polytope

- *s*-*t* Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

Maximum Weight Bipartite Matching Input: bipartite graph $G = (L \uplus R, E)$ edge weights $w \in \mathbb{Z}_{>0}^E$ Output: a matching $M \subseteq E$ so as to maximize $\sum_{e \in M} w_e$

LP Relaxation $\max \sum_{e \in E} w_e x_e$ $\sum_{e \in \delta(v)} x_e \le 1 \quad \forall v \in L \cup R$ $x_e \ge 0 \quad \forall e \in E$ • In IP: $x_e \in \{0, 1\}$: $e \in M$?

LP Relaxation $\max \sum_{e \in E} w_e x_e$ $\sum_{e \in \delta(v)} x_e \le 1 \quad \forall v \in L \cup R$ $x_e \ge 0 \quad \forall e \in E$ • In IP: $x_e \in \{0, 1\}$: $e \in M$?

LP Relaxation $\max \sum_{e \in E} w_e x_e$ $\sum_{e \in \delta(v)} x_e \le 1 \quad \forall v \in L \cup R$ $x_e \ge 0 \quad \forall e \in E$ • In IP: $x_e \in \{0, 1\}$: $e \in M$?

LP Relaxation

$$\max \sum_{e \in E} w_e x_e$$
$$\sum_{e \in \delta(v)} x_e \le 1 \quad \forall v \in L \cup R$$
$$x_e \ge 0 \quad \forall e \in E$$

• In IP: $x_e \in \{0, 1\}$: $e \in M$? • $\chi^M \in \{0, 1\}^E$: $\chi^M_e = 1$ iff $e \in M$

Theorem The LP polytope is integral: It is the convex hull of $\{\chi^M : M \text{ is a matching}\}.$

Proof.

• take x in the polytope P

- take x in the polytope P
- prove: x non integral $\implies x$ non-vertex

- take x in the polytope P
- prove: x non integral $\implies x$ non-vertex

• find
$$x', x'' \in P$$
: $x' \neq x'', x = \frac{1}{2}(x' + x'')$

- take x in the polytope P
- prove: x non integral $\implies x$ non-vertex
- find $x', x'' \in P$: $x' \neq x'', x = \frac{1}{2}(x' + x'')$
- case 1: fractional edges contain a cycle

- take \boldsymbol{x} in the polytope \boldsymbol{P}
- prove: x non integral $\implies x$ non-vertex
- find $x',x''\in P \text{:}\ x'\neq x'',x=\frac{1}{2}(x'+x'')$
- case 1: fractional edges contain a cycle
 - color edges in cycle blue and red

- take \boldsymbol{x} in the polytope \boldsymbol{P}
- prove: x non integral $\implies x$ non-vertex
- find $x',x''\in P \text{:}\ x'\neq x'',x=\frac{1}{2}(x'+x'')$
- case 1: fractional edges contain a cycle
 - color edges in cycle blue and red
 - $x'{:} + \epsilon$ for blue edges, $-\epsilon$ for red edges
 - $x'': -\epsilon$ for blue edges, $+\epsilon$ for red edges

- take x in the polytope P
- prove: x non integral $\Longrightarrow x$ non-vertex
- find $x', x'' \in P$: $x' \neq x'', x = \frac{1}{2}(x' + x'')$
- case 1: fractional edges contain a cycle
 - color edges in cycle blue and red
 - $x'{:}~+\epsilon$ for blue edges, $-\epsilon$ for red edges
 - $x''\colon -\epsilon$ for blue edges, $+\epsilon$ for red edges
- case 2: fractional edges form a forest

- take \boldsymbol{x} in the polytope \boldsymbol{P}
- prove: x non integral $\Longrightarrow x$ non-vertex
- find $x',x''\in P \text{:}\ x'\neq x'',x=\frac{1}{2}(x'+x'')$
- case 1: fractional edges contain a cycle
 - color edges in cycle blue and red
 - x': $+\epsilon$ for blue edges, $-\epsilon$ for red edges
 - $x''\colon -\epsilon$ for blue edges, $+\epsilon$ for red edges
- case 2: fractional edges form a forest
 - color edges in a leaf-leaf path blue and red

- take \boldsymbol{x} in the polytope \boldsymbol{P}
- prove: x non integral $\Longrightarrow x$ non-vertex
- find $x',x'' \in P \colon x' \neq x'', x = \frac{1}{2}(x' + x'')$
- case 1: fractional edges contain a cycle
 - color edges in cycle blue and red
 - x': $+\epsilon$ for blue edges, $-\epsilon$ for red edges
 - x'': $-\epsilon$ for blue edges, $+\epsilon$ for red edges
- case 2: fractional edges form a forest
 - color edges in a leaf-leaf path blue and red
 - $x'{:}~+\epsilon$ for blue edges, $-\epsilon$ for red edges
 - x'': $-\epsilon$ for blue edges, $+\epsilon$ for red edges

Outline

Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs

2 Linear Programming Duality

Integral Polytopes: Exact Algorithms Using LP Bipartite Matching Polytope

- *s*-*t* Flow Polytope
- Weighted Interval Scheduling Problem and Totally Unimodular Matrices

Example: *s*-*t* Flow Polytope

Flow Network

- directed graph G = (V, E), source $s \in V$, sink $t \in V$, edge capacities $c_e \in \mathbb{Z}_{>0}, \forall e \in E$
 - s has no incoming edges, t has no outgoing edges

Def. A *s*-*t* flow is a vector $f \in \mathbb{R}^{E}_{\geq 0}$ satisfying the following conditions:

•
$$\forall e \in E, 0 \le f(e) \le c_e$$
 (capacity constraints)
• $\forall v \in V \setminus \{s, t\},$

$$\sum_{e \in \delta^{in}(v)} f(e) = \sum_{e \in \delta^{out}(v)} f(e)$$
 (flow conservation)

The value of flow f is defined as:

$$\mathsf{val}(f) := \sum_{e \in \delta^\mathsf{out}(s)} f(e) = \sum_{e \in \delta^\mathsf{in}(t)} f(e)$$

Input: flow network (G = (V, E), c, s, t)

Output: maximum value of a s-t flow f

Input: flow network (G = (V, E), c, s, t)

Output: maximum value of a s-t flow f

Input: flow network (G = (V, E), c, s, t)

Output: maximum value of a s-t flow f

Ford-Fulkerson method

Input: flow network (G = (V, E), c, s, t)**Output:** maximum value of a *s*-*t* flow *f*

- Ford-Fulkerson method
- Maximum-Flow Min-Cut Theorem: value of the maximum flow is equal to the value of the minimum *s*-*t* cut

LP for Maximum Flow

LP for Maximum Flow

Theorem The LP polytope is integral.

LP for Maximum Flow

Theorem The LP polytope is integral.

Sketch of Proof.

- Take any s-t flow x; consider fractional edges E'
- \bullet Every $v \notin \{s,t\}$ must be incident to $0 \text{ or } \geq 2 \text{ edges in } E'$
- $\bullet\,$ Ignoring the directions of E', it contains a cycle, or a s-t path
- We can increase/decrease flow values along cyle/path

Outline

Linear Programming

- Introduction
- Preliminaries
- Methods for Solving Linear Programs

2 Linear Programming Duality

Integral Polytopes: Exact Algorithms Using LP

- Bipartite Matching Polytope
- *s*-*t* Flow Polytope

Weighted Interval Scheduling Problem and Totally Unimodular Matrices

Input: n activities, activity i starts at time s_i , finishes at time f_i , and has weight $w_i > 0$

i and j can be scheduled together iff $\left[s_{i},f_{i}\right)$ and $\left[s_{j},f_{j}\right)$ are disjoint

Output: maximum weight subset of jobs that can be scheduled

• optimum value= 220

Input: n activities, activity i starts at time s_i , finishes at time f_i , and has weight $w_i > 0$

i and j can be scheduled together iff $\left[s_{i},f_{i}\right)$ and $\left[s_{j},f_{j}\right)$ are disjoint

Output: maximum weight subset of jobs that can be scheduled

- optimum value= 220
- Classic Problem for Dynamic Programming

Theorem The LP polytope is integral.

Linear Program $\max \sum_{j \in [n]} x_j w_j$ $\sum_{j \in [n]: t \in [s_j, f_j)} x_j \le 1 \quad \forall t \in [T]$ $x_j \ge 0 \quad \forall j \in [n]$ **Theorem** The LP polytope is integral.

Def. A matrix $A \in \mathbb{R}^{m \times n}$ is said to be tototally unimodular (TUM), if every sub-square of A has determinant in $\{-1, 0, 1\}$.

Linear Program	Theorem The LP polytope is
max $\sum x_j w_j$	integral.
$\sum_{\substack{j \in [n] \\ j \in [n]: t \in [s_j, f_j)}} x_j \le 1 \qquad \forall t \in [T]$ $x_j \ge 0 \qquad \forall j \in [n]$	Def. A matrix $A \in \mathbb{R}^{m \times n}$ is said to be tototally unimodular (TUM), if every sub-square of A has determinant in $\{-1, 0, 1\}$.

Theorem If a polytope P is defined by $Ax \ge b, x \ge 0$ with a totally unimodular matrix A and integral b, then P is integral.
Weighted Interval Scheduling Problem

Theorem If a polytope P is defined by $Ax \ge b, x \ge 0$ with a totally unimodular matrix A and integral b, then P is integral.

Lemma A matrix $A \in \{0, 1\}^{m \times n}$ where the 1's on every column form an interval is TUM.

• So, the matrix for the LP is TUM, and the polytope is integral $\frac{1}{100}$

- Every vertex $x \in P$ is the unique solution to the linear system (after permuting coordinates): $\begin{pmatrix} A' & 0 \\ 0 & I \end{pmatrix} x = \begin{pmatrix} b' \\ 0 \end{pmatrix}$, where
 - A' is a square submatrix of A with $\det(A') = \pm 1$, b' is a sub-vector of b,
 - and the rows for b^\prime are the same as the rows for $A^\prime.$

- Every vertex $x \in P$ is the unique solution to the linear system (after permuting coordinates): $\begin{pmatrix} A' & 0 \\ 0 & I \end{pmatrix} x = \begin{pmatrix} b' \\ 0 \end{pmatrix}$, where
 - A' is a square submatrix of A with $\det(A') = \pm 1$, b' is a sub-vector of b,
 - ${\ensuremath{\, \bullet }}$ and the rows for b' are the same as the rows for A'.

• Let
$$x = \begin{pmatrix} x^1 \\ x^2 \end{pmatrix}$$
, so that $A'x^1 = b'$ and $x^2 = 0$.

- Every vertex $x \in P$ is the unique solution to the linear system (after permuting coordinates): $\begin{pmatrix} A' & 0 \\ 0 & I \end{pmatrix} x = \begin{pmatrix} b' \\ 0 \end{pmatrix}$, where
 - A' is a square submatrix of A with $\det(A') = \pm 1$, b' is a sub-vector of b,
 - and the rows for b^\prime are the same as the rows for $A^\prime.$
- Let $x = \begin{pmatrix} x^1 \\ x^2 \end{pmatrix}$, so that $A'x^1 = b'$ and $x^2 = 0$.
- Cramer's rule: $x_i^1 = \frac{\det(A'_i|b)}{\det(A')}$ for every $i \implies x_i^1$ is integer $A'_i|b$: the matrix of A' with the *i*-th column replaced by b

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \ge \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4, x_5 > 0$$

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \ge \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

The following equation system may give a vertex:

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

43/52

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Equivalently, the vertex satisfies

$$\begin{pmatrix} a_{1,2} & a_{1,3} & 0 & 0 & 0 \\ a_{3,2} & a_{3,3} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \\ x_1 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Proof.

 \bullet wlog assume every row of A' contains one 1 and one -1

- ${\, \bullet \,}$ wlog assume every row of A' contains one 1 and one -1
 - otherwise, we can reduce the matrix

- ${\, \bullet \,}$ wlog assume every row of A' contains one 1 and one -1
 - otherwise, we can reduce the matrix
- treat A' as a directed graph: columns \equiv vertices, rows \equiv arcs

- ${\, \bullet \,}$ wlog assume every row of A' contains one 1 and one -1
 - otherwise, we can reduce the matrix
- treat A' as a directed graph: columns \equiv vertices, rows \equiv arcs
- #edges = #vertices \implies underlying undirected graph contains a cycle \implies det(A') = 0

Proof.

- ${\, \bullet \,}$ wlog assume every row of A' contains one 1 and one -1
 - otherwise, we can reduce the matrix
- treat A' as a directed graph: columns \equiv vertices, rows \equiv arcs
- #edges = #vertices \implies underlying undirected graph contains a cycle \implies det(A') = 0

Lemma Let $A \in \{0, \pm 1\}^{m \times n}$ such that every row of A contains at most one 1 and one -1. Then A is TUM.

Proof.

- ${\, \bullet \,}$ wlog assume every row of A' contains one 1 and one -1
 - otherwise, we can reduce the matrix
- treat A' as a directed graph: columns \equiv vertices, rows \equiv arcs
- #edges = #vertices \implies underlying undirected graph contains a cycle \implies det(A') = 0

Lemma Let $A \in \{0, \pm 1\}^{m \times n}$ such that every row of A contains at most one 1 and one -1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the polytope is integral.

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 & 0 \end{pmatrix}$$

 $= (0 \quad 0 \quad 0 \quad 0 \quad 0)$

Proof.

• take any square submatrix A' of A,

- take any square submatrix A' of A,
- the 1's on every row of A' form an interval.

- take any square submatrix A' of A,
- the 1's on every row of A' form an interval.
- A'M is a matrix satisfying condition of first lemma, where $M = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & -1 & 1 \end{pmatrix}. \det(M) = 1.$

- take any square submatrix A' of A,
- the 1's on every row of A' form an interval.
- A'M is a matrix satisfying condition of first lemma, where $M = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & -1 & 1 \end{pmatrix}. \det(M) = 1.$ • $\det(A'M) \in \{0, \pm 1\} \implies \det(A') \in \{0, \pm 1\}.$

 $\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}$

• (col 1, col 2 - col 1, col 3 - col 2, col 4 - col 3, col 5 - col 4)

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix} \implies \begin{pmatrix} 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

• $(col \ 1, col \ 2 - col \ 1, col \ 3 - col \ 2, col \ 4 - col \ 3, col \ 5 - col \ 4)$

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix} \implies \begin{pmatrix} 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

(col 1, col 2 - col 1, col 3 - col 2, col 4 - col 3, col 5 - col 4)
every row has at most one 1, at most one -1

Lemma The edge-vertex incidence matrix A of a bipartite graph is totally-unimodular.

Proof.

• $G = (L \uplus R, E)$: the bipartite graph

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- $\bullet~A':$ obtained from A by negating columns correspondent to R

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- $\bullet~A^\prime:$ obtained from A by negating columns correspondent to R
- $\bullet\,$ each row of A' has exactly one +1, and exactly one -1

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- $\bullet~A^\prime:$ obtained from A by negating columns correspondent to R
- $\bullet\,$ each row of A' has exactly one +1, and exactly one -1
- $\bullet \implies A' \text{ is TUM} \Longleftrightarrow A \text{ is TUM}$

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- $\bullet~A^\prime:$ obtained from A by negating columns correspondent to R
- $\bullet\,$ each row of A' has exactly one +1, and exactly one -1
- \implies A' is TUM \iff A is TUM

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- $\bullet~A^\prime:$ obtained from A by negating columns correspondent to R
- $\bullet\,$ each row of A' has exactly one +1, and exactly one -1
- \implies A' is TUM \iff A is TUM

/1	0	0	1	0	0
1	0	0	0	1	0
1	0	0	0	0	1
0	1	0	1	0	0
0	1	0	0	0	1
$\setminus 0$	0	1	0	1	0/

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- $\bullet~A^\prime:$ obtained from A by negating columns correspondent to R
- $\bullet\,$ each row of A' has exactly one +1, and exactly one -1
- \implies A' is TUM \iff A is TUM

$$\begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 0 \end{pmatrix}$$

• remark: bipartiteness is needed. The edge-vertex incidence matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ of a triangle has determinant 2.

• remark: bipartiteness is needed. The edge-vertex incidence matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ of a triangle has determinant 2.

Coro. Bipartite matching polytope is integral.

In summary, given a matrix $A \in \{-1, 0, 1\}^{m \times n}$, A is TUM if one of the conditions hold:

• every row of A has at most one 1 and at most one -1 (network flow polytope)

• $A \in \{0,1\}^{m \times n}$, and the 1's in every row form an interval (interval scheduling polytope)

• A is edge-vertex incidence matrix of a bipartite graph (bipartite matching polytope)

- $G = (L \uplus R, E)$: bipartite graph
- $\bullet~\mathsf{MM}(G):$ the size of the maximum matching of G
- $\bullet~\mathsf{MVC}(G)$: the size of the minimum vertex cover of G
- Using MFMC theorem, we know MM(G) = MVC(G)

- $G = (L \uplus R, E)$: bipartite graph
- $\bullet~\mathsf{MM}(G):$ the size of the maximum matching of G
- $\bullet~\mathsf{MVC}(G)$: the size of the minimum vertex cover of G
- $\bullet\,$ Using MFMC theorem, we know $\mathsf{MM}(G)=\mathsf{MVC}(G)$
- A new proof using LP duality:

- Both LP polytopes are integral
- MM(G) = primal value = dual value = MVC(G)