算法设计与分析(2025年春季学期) NP-Completeness

授课老师:栗师 南京大学计算机学院

- The topics we discussed so far are **positive results**: how to design efficient algorithms for solving a given problem.
- NP-Completeness provides negative results: some problems can not be solved efficiently.
- **Q:** Why do we study negative results?

- The topics we discussed so far are **positive results**: how to design efficient algorithms for solving a given problem.
- NP-Completeness provides negative results: some problems can not be solved efficiently.
- **Q:** Why do we study negative results?
- \bullet A given problem X cannot be solved in polynomial time.
- Without knowing it, you will have to keep trying to find polynomial time algorithm for solving X. All our efforts are doomed!

Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant k > 0
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$

Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant k > 0
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant k > 0
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

- $\bullet\,$ For natural problems, if there is an $O(n^k)\mbox{-time}$ algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega(2^{n^c})$ for some c
- Do not need to worry about the computational model

Outline

Some Hard Problems

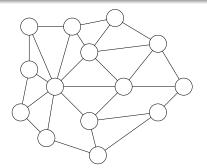
- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- Dealing with NP-Hard Problems
- 6 Summary

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

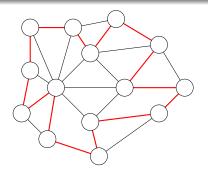


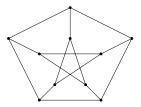
Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle





• The graph is called the Petersen Graph. It has no HC.

Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

• Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle

Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time

Hamiltonian Cycle (HC) Problem

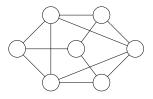
Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

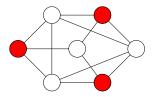
Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is NP-hard: it is unlikely that it can be solved in polynomial time.

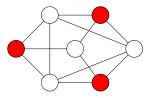
Def. An independent set of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.



Def. An independent set of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.



Def. An independent set of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

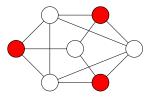


Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the size of the maximum independent set of G

Def. An independent set of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.



Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the size of the maximum independent set of G

• Maximum Independent Set is NP-hard

Formula Satisfiability

Input: boolean formula with n variables, with \lor, \land, \neg operators. **Output:** whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.

Formula Satisfiability

Input: boolean formula with n variables, with \lor, \land, \neg operators. **Output:** whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.
- Formula Satisfiablity is NP-hard

Outline

Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

- 4 NP-Complete Problems
- Dealing with NP-Hard Problems

6 Summary

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

• When we define the P and NP, we only consider decision problems.

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

• When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X', we can solve the original problem X in polynomial time.

Shortest Path

Input: graph G = (V, E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Shortest Path

Input: graph G = (V, E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

Output: whether there is an independent set of size at least k

Example: Sorting problem

• Input: (3, 6, 100, 9, 60)

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String:

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111101

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11110111110001

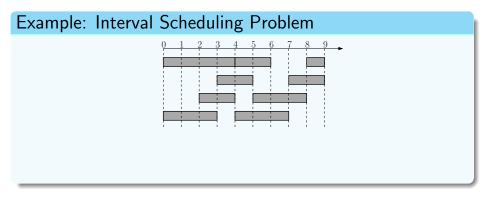
- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111101111100011111000011000001

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111101111100011111000011000001 1100001101

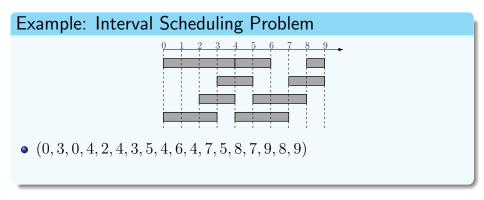
- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)

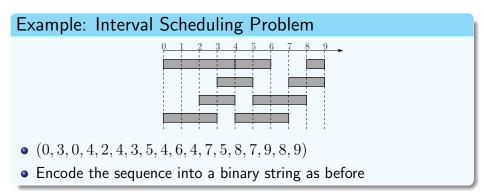
Encoding

Encoding



Encoding





Def. The size of an input is the length of the encoded string s for the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

Def. The size of an input is the length of the encoded string s for the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a "natural" encoding. We only care whether the running time is polynomial or not

Define Problem as a Function $X: \{0,1\}^* \to \{0,1\}$

Def. A decision problem X is a function mapping $\{0,1\}^*$ to $\{0,1\}$ such that for any $s \in \{0,1\}^*$, X(s) is the correct output for input s.

• $\{0,1\}^*$: the set of all binary strings of any length.

Define Problem as a Function $X: \{0,1\}^* \to \{0,1\}$

Def. A decision problem X is a function mapping $\{0, 1\}^*$ to $\{0, 1\}$ such that for any $s \in \{0, 1\}^*$, X(s) is the correct output for input s.

• $\{0,1\}^*$: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, A(s) = X(s) for any binary string s

Define Problem as a Function $X: \{0,1\}^* \to \{0,1\}$

Def. A decision problem X is a function mapping $\{0, 1\}^*$ to $\{0, 1\}$ such that for any $s \in \{0, 1\}^*$, X(s) is the correct output for input s.

• $\{0,1\}^*$: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, A(s) = X(s) for any binary string s

Def. A has a polynomial running time if there is a polynomial function $p(\cdot)$ so that for every string s, the algorithm A terminates on s in at most p(|s|) steps.

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

• The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.

• Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for HC

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for HC
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\mbox{-time}$ algorithm

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for HC
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\mbox{-time}$ algorithm

Q: Given a graph G = (V, E) with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for HC
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\mbox{-time}$ algorithm

Q: Given a graph G = (V, E) with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for HC
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\mbox{-time}$ algorithm

Q: Given a graph G = (V, E) with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for Ind-Set
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\text{-time}\,$ algorithm

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for Ind-Set
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\text{-time}\,$ algorithm

Q: Given graph G = (V, E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for Ind-Set
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\text{-time}\,$ algorithm

Q: Given graph G = (V, E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for Ind-Set
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\text{-time}\,$ algorithm

Q: Given graph G = (V, E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

• Certificate: a set of size k

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for Ind-Set
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\text{-time}\,$ algorithm

Q: Given graph G = (V, E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
- Certifier: check if the given set is really an independent set

- **Def.** B is an efficient certifier for a problem X if
- *B* is a polynomial-time algorithm that takes two input strings *s* and *t*, and outputs 0 or 1.
- there is a polynomial function p such that, X(s) = 1 if and only if there is string t such that $|t| \le p(|s|)$ and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.

- **Def.** B is an efficient certifier for a problem X if
- *B* is a polynomial-time algorithm that takes two input strings *s* and *t*, and outputs 0 or 1.
- there is a polynomial function p such that, X(s) = 1 if and only if there is string t such that $|t| \le p(|s|)$ and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

HC (Hamiltonian Cycle) \in NP

• Input: Graph G

HC (Hamiltonian Cycle) \in NP

- $\bullet~\mbox{Input:}~\mbox{Graph}~G$
- $\bullet\,$ Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $\bullet \ |\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G)|)$ for some polynomial function p

HC (Hamiltonian Cycle) \in NP

- \bullet Input: Graph G
- $\bullet\,$ Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $\bullet \ |\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G)|)$ for some polynomial function p
- Certifier B: B(G, S) = 1 if and only if S gives an HC in G
- Clearly, B runs in polynomial time

- $\bullet~\mbox{Input:}~\mbox{Graph}~G$
- $\bullet\,$ Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $\bullet \ |\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G)|)$ for some polynomial function p
- Certifier B: B(G, S) = 1 if and only if S gives an HC in G
- Clearly, B runs in polynomial time
- $HC(G) = 1 \iff \exists S, B(G, S) = 1$

• Input: graph G = (V, E) and integer k

- Input: graph G = (V, E) and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G,k)|)$ for some polynomial function p

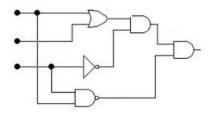
- Input: graph G = (V, E) and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G,k)|)$ for some polynomial function p
- Certifier $B {:}~ B((G,k),S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time

- Input: graph G = (V, E) and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G,k)|)$ for some polynomial function p
- Certifier $B {:}~ B((G,k),S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
- $\mathsf{MIS}(G,k) = 1 \quad \iff \quad \exists S, \ B((G,k),S) = 1$

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

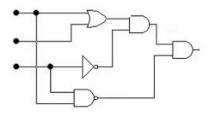
Output: whether there is an assignment such that the output is 1?



Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?



Is Circuit-Sat ∈ NP?

HC

Input: graph G = (V, E)

Output: whether G does not contain a Hamiltonian cycle

HC

Input: graph G = (V, E)Output: whether G does not contain a Hamiltonian cycle

• Is $\overline{HC} \in NP$?

HC

Input: graph G = (V, E)

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathsf{HC}} \in \mathsf{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.

HC

Input: graph G = (V, E)

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathsf{HC}} \in \mathsf{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely

HC

Input: graph G = (V, E)

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathsf{HC}} \in \mathsf{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- $\bullet\,$ Alice can only convince Bob that G is a no-instance

HC

Input: graph G = (V, E)

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathsf{HC}} \in \mathsf{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- $\bullet\,$ Alice can only convince Bob that G is a no-instance
- $\overline{\mathsf{HC}} \in \mathsf{Co-NP}$

Def. For a problem X, the problem \overline{X} is the problem such that $\overline{X}(s) = 1$ if and only if X(s) = 0.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in NP$.

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

• e.g. $(\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$ is a tautology

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

• e.g.
$$(\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$$
 is a tautology

• Bob can certify that a formula is not a tautology

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

• e.g.
$$(\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$$
 is a tautology

- Bob can certify that a formula is not a tautology
- Thus Tautology \in Co-NP

$\mathsf{P}\subseteq\mathsf{NP}$

Q: How can Alice convince Bob that *s* is a yes instance?

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

• The certificate is an empty string

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

- The certificate is an empty string
- $\bullet~{\rm Thus},~X\in{\rm NP}~{\rm and}~{\rm P}\subseteq{\rm NP}$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in \mathsf{NP}$ and $\mathsf{P} \subseteq \mathsf{NP}$
- Similarly, P \subseteq Co-NP, thus P \subseteq NP \cap Co-NP

• A famous, big, and fundamental open problem in computer science

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $\mathsf{P} \neq \mathsf{NP}$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.

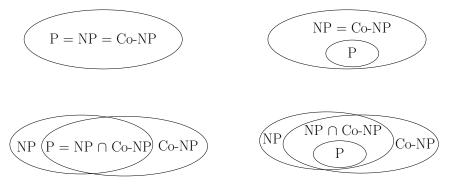
- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
 - if $\mathsf{P} \neq \mathsf{NP}$, then $\mathsf{HC} \notin \mathsf{P}$
 - HC \notin P, unless P = NP

• Again, a big open problem

- Again, a big open problem
- Most researchers believe NP \neq Co-NP.

4 Possibilities of Relationships

Notice that $X \in \mathsf{NP} \iff \overline{X} \in \mathsf{Co-NP}$ and $\mathsf{P} \subseteq \mathsf{NP} \cap \mathsf{Co-NP}$



• People commonly believe we are in the 4th scenario

Outline

Some Hard Problems

2 P, NP and Co-NP

Olynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

Dealing with NP-Hard Problems

5 Summary

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

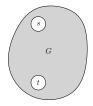
Lemma $HP \leq_P HC$.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

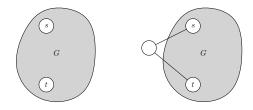


Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

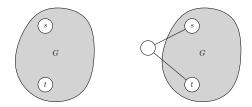


Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP \leq_{P} HC.



Obs. G has a HP from s to t if and only if graph on right side has a HC.

- **Def.** A problem X is called NP-complete if
- $\ \ \, \mathbf{M} \in \mathsf{NP}, \mathsf{ and}$
- **2** $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.

Def. A problem X is called NP-hard if

2
$$Y \leq_{\mathsf{P}} X$$
 for every $Y \in \mathsf{NP}$.

- **Def.** A problem X is called NP-complete if
- $\ \ \, \mathbf{M} \in \mathsf{NP}, \mathsf{ and}$
- **2** $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.

- **Def.** A problem X is called NP-complete if
- $X \in \mathsf{NP}$, and
- **2** $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.

Theorem If X is NP-complete and $X \in P$, then P = NP.

- **Def.** A problem X is called NP-complete if
- $X \in \mathsf{NP}$, and
- $Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

Theorem If X is NP-complete and $X \in P$, then P = NP.

• NP-complete problems are the hardest problems in NP

- **Def.** A problem X is called NP-complete if
- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

Theorem If X is NP-complete and $X \in P$, then P = NP.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

Outline

Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary

Def. A problem X is called NP-complete if • $X \in NP$, and • $Y \leq_P X$ for every $Y \in NP$.

Def. A problem X is called NP-complete if

- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$
 - How can we find a problem $X \in NP$ such that every problem $Y \in NP$ is polynomial time reducible to X? Are we asking for too much?

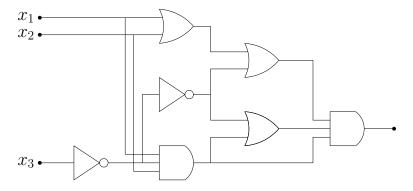
Def. A problem X is called NP-complete if

- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$
 - How can we find a problem X ∈ NP such that every problem Y ∈ NP is polynomial time reducible to X? Are we asking for too much?
 - No! There is indeed a large family of natural NP-complete problems

The First NP-Complete Problem: Circuit-Sat

Input: a circuit

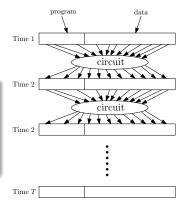
Output: whether the circuit is satisfiable



Circuit-Sat is NP-Complete

• key fact: algorithms can be converted to circuits

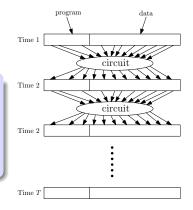
Fact Any algorithm that takes n bits as input and outputs 0/1 with running time T(n) can be converted into a circuit of size p(T(n)) for some polynomial function $p(\cdot)$.



Circuit-Sat is NP-Complete

• key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time T(n) can be converted into a circuit of size p(T(n)) for some polynomial function $p(\cdot)$.



- Then, we can show that any problem Y ∈ NP can be reduced to Circuit-Sat.
- We prove $HC \leq_P Circuit-Sat$ as an example.

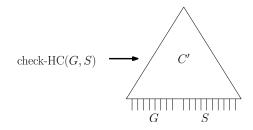
 $\operatorname{check-HC}(G,S)$

• Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.

 $\operatorname{check-HC}(G,S)$

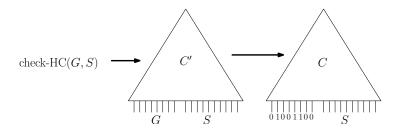
- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1

$\mathsf{HC} \leq_P \mathsf{Circuit-Sat}$



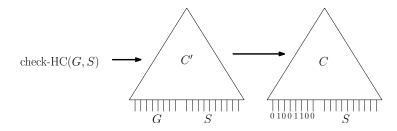
- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1
- Construct a circuit C' for the algorithm check-HC

$\mathsf{HC} \leq_P \mathsf{Circuit-Sat}$



- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1
- Construct a circuit C' for the algorithm check-HC
- hard-wire the instance G to the circuit C' to obtain the circuit C

$\mathsf{HC} \leq_P \mathsf{Circuit-Sat}$



- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1
- Construct a circuit C^\prime for the algorithm check-HC
- hard-wire the instance G to the circuit C' to obtain the circuit C
- G is a yes-instance if and only if C is satisfiable

$Y \leq_P \text{Circuit-Sat, For Every } Y \in \mathsf{NP}$

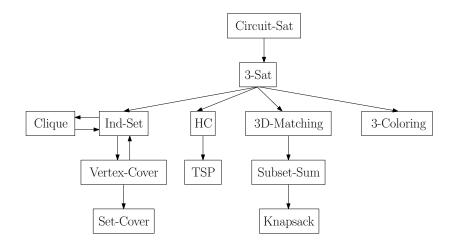
- Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t) returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that ${\rm check-Y}(s,t)$ returns 1
- Construct a circuit C^\prime for the algorithm check-Y
- hard-wire the instance s to the circuit C' to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

$Y \leq_P \text{Circuit-Sat, For Every } Y \in \mathsf{NP}$

- Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t) returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that ${\rm check-Y}(s,t)$ returns 1
- Construct a circuit C^\prime for the algorithm check-Y
- hard-wire the instance s to the circuit C' to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems



 $\operatorname{3-CNF}$ (conjunctive normal form) is a special case of formula:

• Boolean variables: x_1, x_2, \cdots, x_n

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$
- Clause: disjunction ("or") of at most 3 literals: $x_3 \vee \neg x_4$, $x_1 \vee x_8 \vee \neg x_9$, $\neg x_2 \vee \neg x_5 \vee x_7$

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$
- Clause: disjunction ("or") of at most 3 literals: $x_3 \vee \neg x_4$, $x_1 \vee x_8 \vee \neg x_9$, $\neg x_2 \vee \neg x_5 \vee x_7$
- 3-CNF formula: conjunction ("and") of clauses: $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

• To satisfy a 3-CNF, we need to satisfy all clauses

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

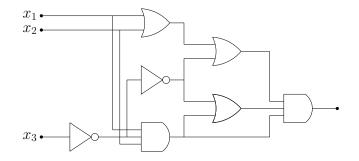
- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal

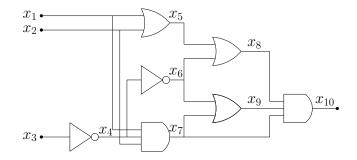
Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

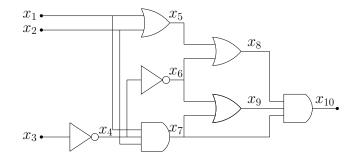
- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal
- Assignment $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$ satisfies $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

Circuit-Sat \leq_P 3-Sat





• Associate every wire with a new variable



- Associate every wire with a new variable
- The circuit is equivalent to the following formula:

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$$\begin{aligned} & (x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \\ & \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \\ & \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10} \end{aligned}$$

Convert each clause to a 3-CNF	
--------------------------------	--

$$x_5 = x_1 \lor x_2 \quad \Leftrightarrow$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$	
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	0	
1	1	1	1	45/90

$$\begin{aligned} & (x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \\ & \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \\ & \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10} \end{aligned}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
·	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

(

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1
	0 0 0	0 0 0 0 0 1 0 1 1 0 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
·	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1
				4

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
·	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
$(\neg x_1 \lor x_2 \lor x_5) \land$	1	0	1	1
$(x_1 \vee x_2 \vee x_5)$	1	1	0	0
	1	1	1	1

$$\begin{aligned} & (x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \\ & \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \\ & \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10} \end{aligned}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
$(\neg x_1 \lor x_2 \lor x_5) \land$	1	0	1	1
$(-\omega_1 \vee \omega_2 \vee \omega_5) \wedge (-\omega_1 \vee \omega_2 \vee \omega_5)$	1	1	0	0
	1	1	1	1 45/90

Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$	
	0	0	0	1	
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0	
	0	1	0	0	
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1	
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0	
$(\neg x_1 \lor x_2 \lor x_5) \land$	1	0	1	1	
(•)	1	1	0	0	
$(\neg x_1 \lor \neg x_2 \lor x_5)$	1	1	1	1 45/90)

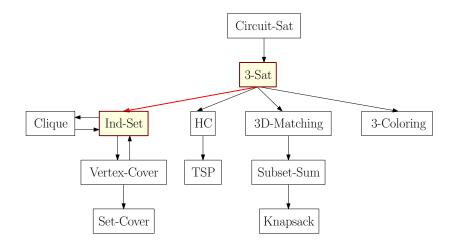
• Circuit \iff Formula \iff 3-CNF

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit

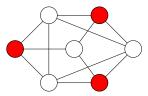
- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit
- Thus, Circuit-Sat \leq_P 3-Sat

Reductions of NP-Complete Problems



Recall: Independent Set Problem

Def. An independent set of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.



Independent Set (Ind-Set) Problem Input: G = (V, E), kOutput: whether there is an independent set of size k in G

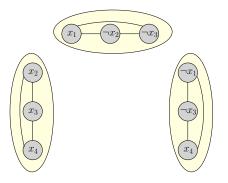
$3-Sat \leq_P Ind-Set$

• $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

$3\text{-Sat} \leq_P \mathsf{Ind-Set}$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

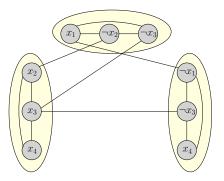
- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group



$3\text{-Sat} \leq_P \mathsf{Ind-Set}$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

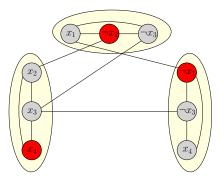
- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals



$3-Sat \leq_P Ind-Set$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

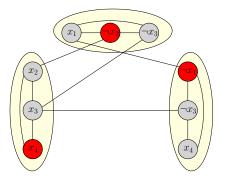
- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size k = #clauses



$3\text{-Sat} \leq_P \mathsf{Ind-Set}$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size k = #clauses

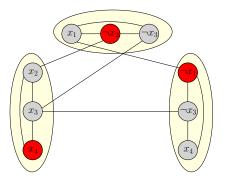


3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:

$3\text{-Sat} \leq_P \mathsf{Ind-Set}$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

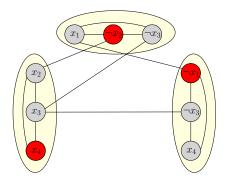
- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size k = #clauses



3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:

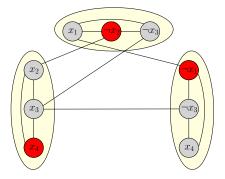
- $\bullet\,$ satisfying assignment $\Rightarrow\,$ independent set of size k
- independent set of size $k \Rightarrow$ satisfying assignment

• $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$



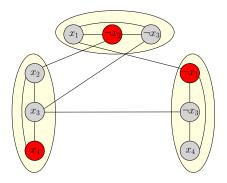
•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

• For every clause, at least 1 literal is satisfied



•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal



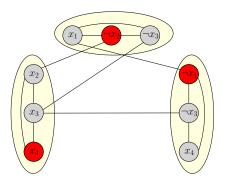
•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group



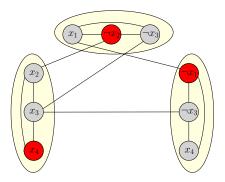
•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals

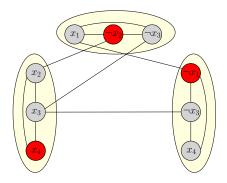


•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals
- An IS of size k

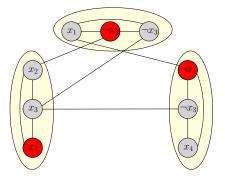


• $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

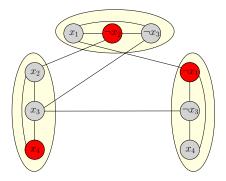


•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

• For every group, exactly one literal is selected in IS

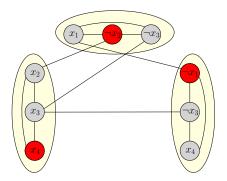


- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals



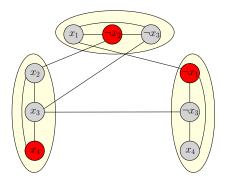
•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$

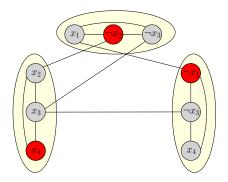


•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

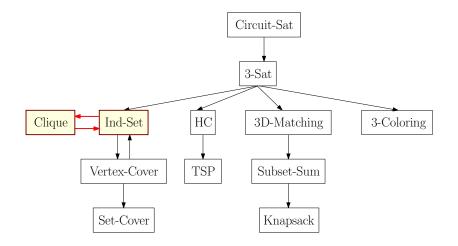
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
- If $\neg x_i$ is selected in IS, set $x_i = 0$

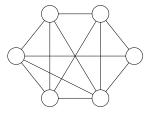


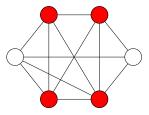
- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
- If $\neg x_i$ is selected in IS, set $x_i = 0$
- Otherwise, set x_i arbitrarily

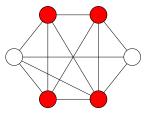


Reductions of NP-Complete Problems





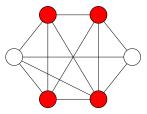




Clique Problem

Input: G = (V, E) and integer k > 0,

Output: whether there exists a clique of size k in G



Clique Problem

Input: G = (V, E) and integer k > 0,

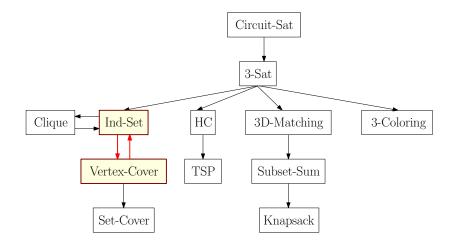
Output: whether there exists a clique of size k in G

• What is the relationship between Clique and Ind-Set?

Def. Given a graph G = (V, E), define $\overline{G} = (V, \overline{E})$ be the graph such that $(u, v) \in \overline{E}$ if and only if $(u, v) \notin E$.

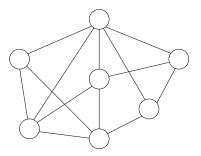
Obs. S is an independent set in G if and only if S is a clique in \overline{G} .

Reductions of NP-Complete Problems



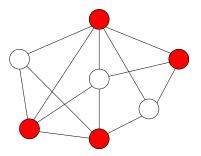
Vertex-Cover

Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.



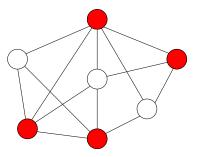
Vertex-Cover

Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.



Vertex-Cover

Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.



Vertex-Cover Problem

Input: G = (V, E) and integer k

Output: whether there is a vertex cover of G of size at most k

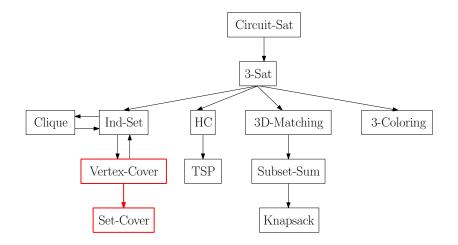
Vertex-Cover $=_P$ Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V, E) if and only if $V \setminus S$ is an independent set of G.

Reductions of NP-Complete Problems



Set Cover Input: $S_1, S_2, \dots, S_M \subseteq [N]$ with $\bigcup_{i \in [m]} S_i = [N]$ Output: The smallest set $I \subseteq [M]$ satisfying $\bigcup_{i \in I} S_i = [N]$

Set Cover Input: $S_1, S_2, \dots, S_M \subseteq [N]$ with $\bigcup_{i \in [m]} S_i = [N]$ Output: The smallest set $I \subseteq [M]$ satisfying $\bigcup_{i \in I} S_i = [N]$

• decision version: given t, does there exist a solution I with $|I| \leq t?$

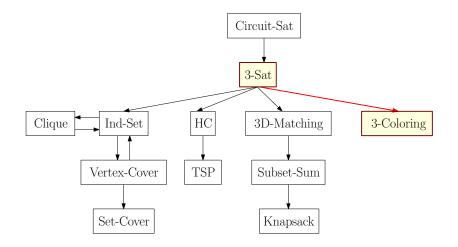
Set Cover Input: $S_1, S_2, \dots, S_M \subseteq [N]$ with $\bigcup_{i \in [m]} S_i = [N]$ Output: The smallest set $I \subseteq [M]$ satisfying $\bigcup_{i \in I} S_i = [N]$

• decision version: given t, does there exist a solution I with $|I| \leq t?$

Vertex Cover \leq_P Set Cover				
$\bullet m edges$	\Leftrightarrow	N elements		
• n vertices	\Leftrightarrow	$M {\rm sets}$		
• vertex is incident to edge $e \Leftrightarrow$				set contains element

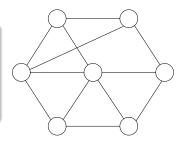
• Vertex cover is the special case of set cover where each element appears in exactly two sets.

Reductions of NP-Complete Problems



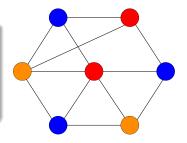
k-coloring problem

Def. A *k*-coloring of G = (V, E) is a function $f: V \rightarrow \{1, 2, 3, \dots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v)$. *G* is *k*-colorable if there is a *k*-coloring of *G*.



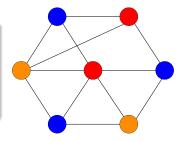
k-coloring problem

Def. A *k*-coloring of G = (V, E) is a function $f: V \rightarrow \{1, 2, 3, \dots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v)$. *G* is *k*-colorable if there is a *k*-coloring of *G*.



k-coloring problem

Def. A *k*-coloring of G = (V, E) is a function $f: V \to \{1, 2, 3, \dots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v)$. *G* is *k*-colorable if there is a *k*-coloring of *G*.



k-coloring problem

Input: a graph G = (V, E)

Output: whether G is k-colorable or not

Obs. A graph G is 2-colorable if and only if it is bipartite.

Q: How do we check if a graph G is 2-colorable?

Obs. A graph G is 2-colorable if and only if it is bipartite.

Q: How do we check if a graph G is 2-colorable?

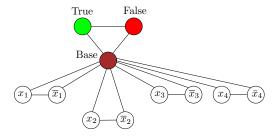
A: We check if *G* is bipartite.

• Construct the base graph

Base Graph

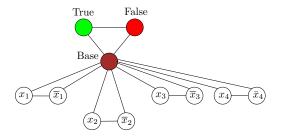
• Construct the base graph

Base Graph

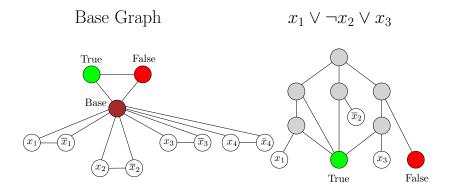


- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

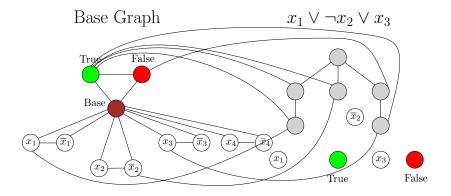
Base Graph $x_1 \lor \neg x_2 \lor x_3$



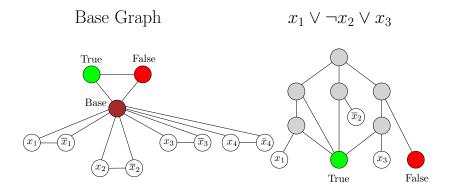
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



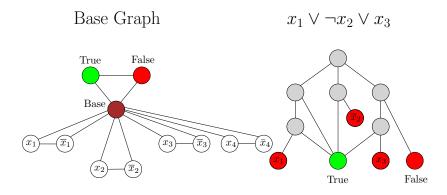
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



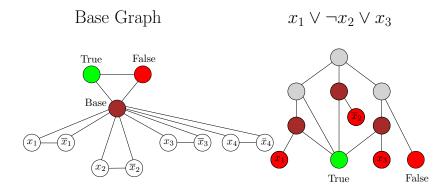
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



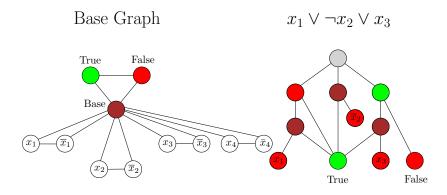
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



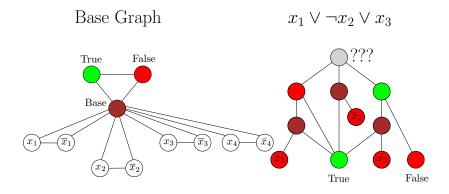
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



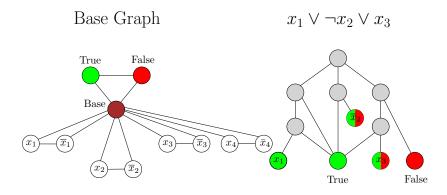
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



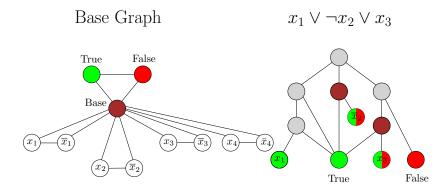
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



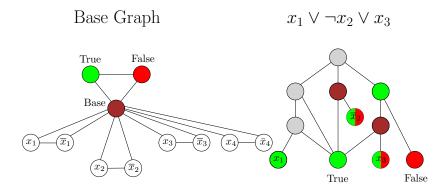
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



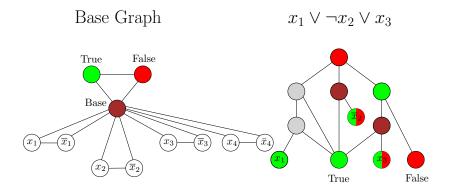
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



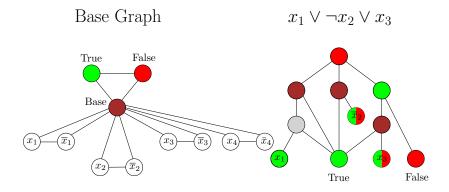
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



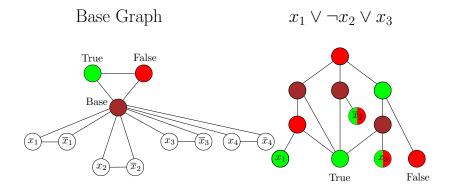
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



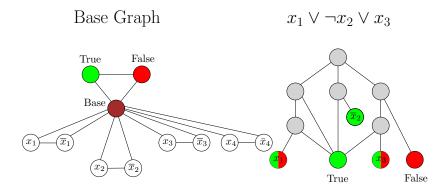
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



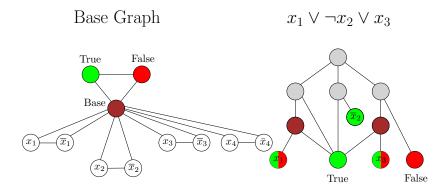
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



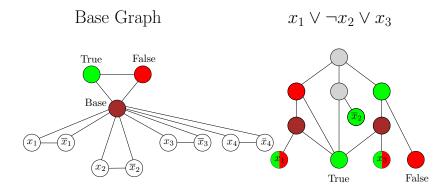
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



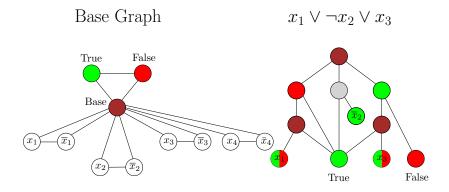
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



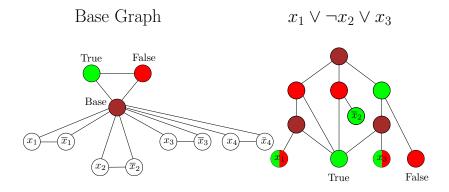
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



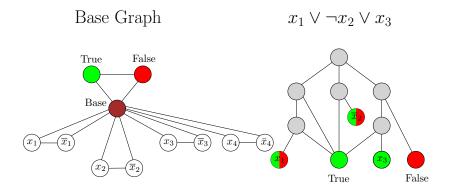
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



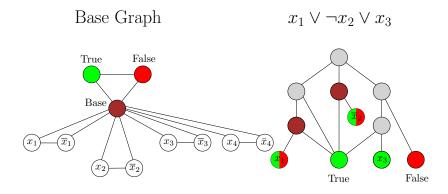
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



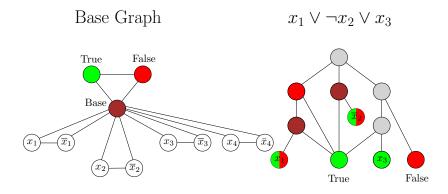
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

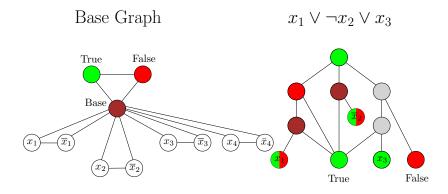


- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



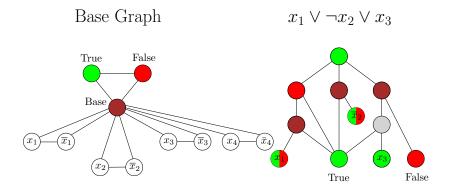
$3\text{-SAT} \leq_P 3\text{-Coloring}$

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



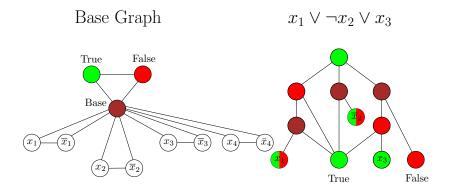
$3\text{-SAT} \leq_P 3\text{-Coloring}$

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

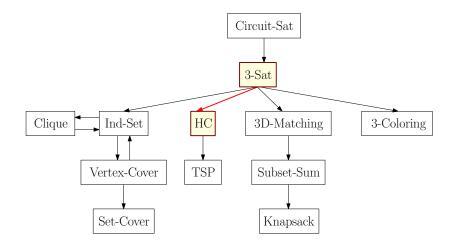


$3\text{-SAT} \leq_P 3\text{-Coloring}$

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



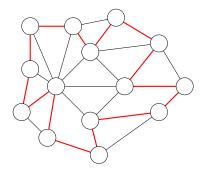
Reductions of NP-Complete Problems



Recall: Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

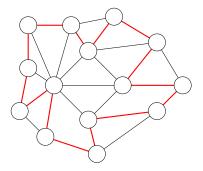
Output: whether G contains a Hamiltonian cycle



Recall: Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

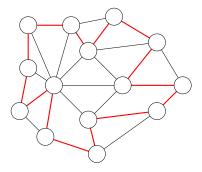


• We consider Hamiltonian Cycle Problem in directed graphs

Recall: Hamiltonian Cycle (HC) Problem

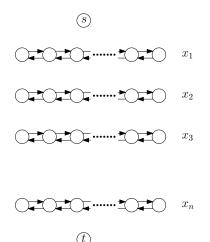
Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle



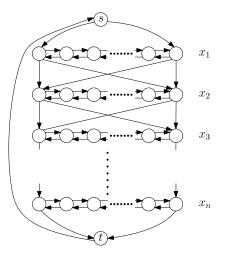
- We consider Hamiltonian Cycle Problem in directed graphs
- Exercise: HC-directed \leq_P HC

$3\text{-Sat} \leq_P \mathsf{Directed-HC}$



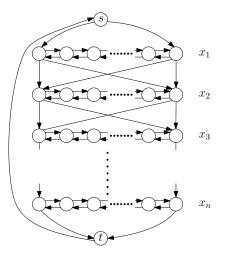
- Vertices s, t
- A long enough double-path P_i for each variable x_i

$3-Sat \leq_P Directed-HC$



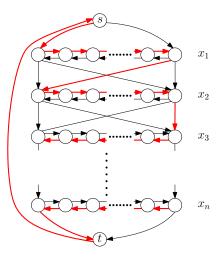
- Vertices s, t
- A long enough double-path P_i for each variable x_i
- Edges from s to P_1
- Edges from P_n to t
- Edges from P_i to P_{i+1}

$3-Sat \leq_P Directed-HC$



- \bullet Vertices $\boldsymbol{s}, \boldsymbol{t}$
- A long enough double-path P_i for each variable x_i
- Edges from s to P₁
- Edges from P_n to t
- Edges from P_i to P_{i+1}
- $x_i = 1 \iff \text{traverse } P_i$ from left to right

$3\text{-Sat} \leq_P \mathsf{Directed-HC}$

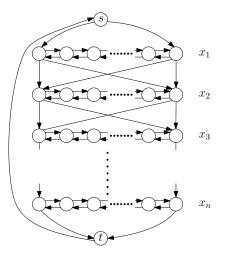


- \bullet Vertices s,t
- A long enough double-path P_i for each variable x_i
- Edges from s to P₁
- Edges from P_n to t
- Edges from P_i to P_{i+1}
- $x_i = 1 \iff \text{traverse } P_i$ from left to right

• e.g,

 $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$

$3\text{-Sat} \leq_P \mathsf{Directed-HC}$

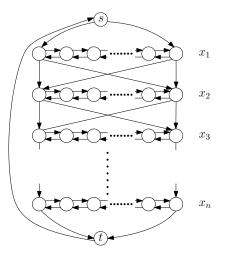


- \bullet Vertices $\boldsymbol{s}, \boldsymbol{t}$
- A long enough double-path P_i for each variable x_i
- Edges from s to P_1
- Edges from P_n to t
- Edges from P_i to P_{i+1}
- $x_i = 1 \iff \text{traverse } P_i$ from left to right

• e.g,

 $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$

3-Sat \leq_P Directed-HC



• There are exactly 2ⁿ different Hamiltonian cycles, each correspondent to one assignment of variables

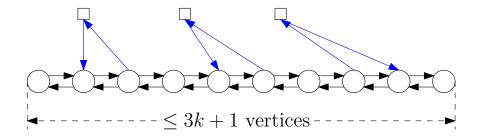
$3-Sat \leq_P Directed-HC$

 $c_1 = x_1 \vee \overline{x}_2 \vee x_3$ x_1 x_2 x_3 x_n

• There are exactly 2^n different Hamiltonian cycles, each correspondent to one assignment of variables

 Add a vertex for each clause, so that the vertex can be visited only if one of the literals is satisfied.

A Path Should Be Long Enough



• k: number of clauses

Yes-Instance for 3-Sat \Rightarrow Yes-Instance for Di-HC

 $c_1 = x_1 \vee \overline{x}_2 \vee x_3$ x_1 x_2 x_3 x_n

 In base graph, construct an HC according to the satisfying assignment

Yes-Instance for 3-Sat \Rightarrow Yes-Instance for Di-HC

 $c_1 = x_1 \vee \overline{x}_2 \vee x_3$ x_1 x_2 x_3 x_n

 In base graph, construct an HC according to the satisfying assignment

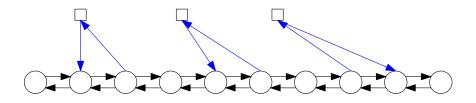
• For every clause, one literal is satisfied

Yes-Instance for 3-Sat \Rightarrow Yes-Instance for Di-HC

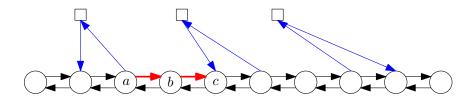
 $c_1 = x_1 \vee \overline{x}_2 \vee x_3$ x_1 x_2 x_3 x_n

In base graph, construct an HC according to the satisfying assignment

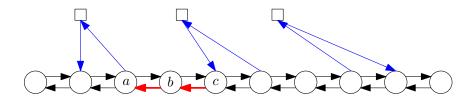
- For every clause, one literal is satisfied
- Visit the vertex for the clause by taking a "detour" from the path for the literal



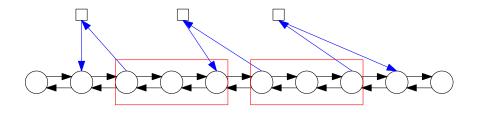
• Idea: for each path P_i , must follow the left-to-right or right-to-right pattern.



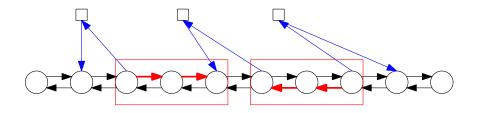
- Idea: for each path P_i , must follow the left-to-right or right-to-right pattern.
- To visit vertex b, can either go a-b-c or b-c-a



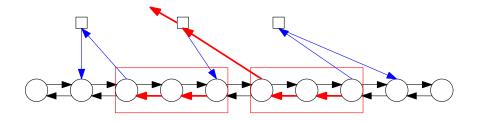
- Idea: for each path P_i , must follow the left-to-right or right-to-right pattern.
- To visit vertex b, can either go a-b-c or b-c-a



- Idea: for each path P_i , must follow the left-to-right or right-to-right pattern.
- To visit vertex b, can either go a-b-c or b-c-a
- Created "chunks" of 3 vertices.

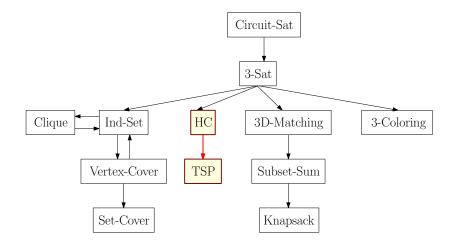


- Idea: for each path P_i , must follow the left-to-right or right-to-right pattern.
- To visit vertex b, can either go a-b-c or b-c-a
- Created "chunks" of 3 vertices.
- Directions of the chunks must be the same

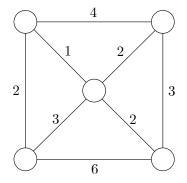


- Idea: for each path P_i , must follow the left-to-right or right-to-right pattern.
- To visit vertex b, can either go a-b-c or b-c-a
- Created "chunks" of 3 vertices.
- Directions of the chunks must be the same
- Can not take a detour to some other path

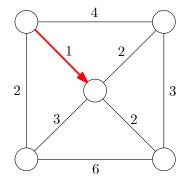
Reductions of NP-Complete Problems



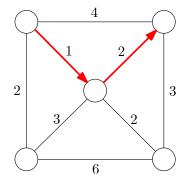
- A salesman needs to visit n cities $1,2,3,\cdots,n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



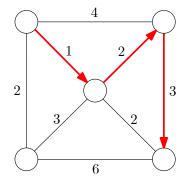
- A salesman needs to visit n cities $1,2,3,\cdots,n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



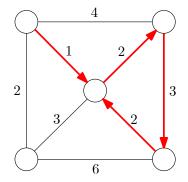
- A salesman needs to visit n cities $1,2,3,\cdots,n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



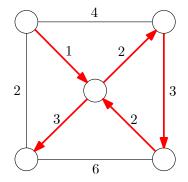
- A salesman needs to visit n cities $1,2,3,\cdots,n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



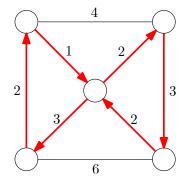
- A salesman needs to visit n cities $1,2,3,\cdots,n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



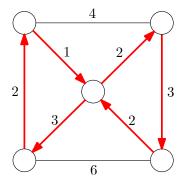
- A salesman needs to visit n cities $1,2,3,\cdots,n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



- A salesman needs to visit n cities $1,2,3,\cdots,n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



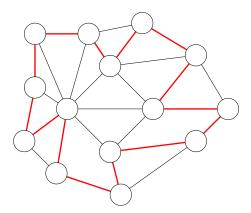
- A salesman needs to visit n cities $1,2,3,\cdots,n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



Travelling Salesman Problem (TSP)

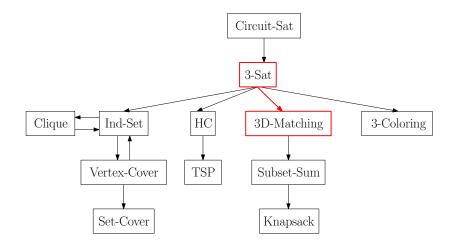
Input: a graph G = (V, E), weights $w : E \to \mathbb{R}_{\geq 0}$, and L > 0**Output:** whether there is a tour of length at most D

$\mathsf{HC} \leq_P \mathsf{TSP}$



Obs. There is a Hamilton cycle in G if and only if there is a tour for the salesman of length n = |V|.

Reductions of NP-Complete Problems



3D-Matching

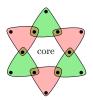
Input:
$$|X| = |Y| = |Z| = n$$
,
 $(x_1, y_1, z_1), (x_2, y_2, z_2), \dots, (x_m, y_m, z_m) \in X \times Y \times Z$
Dutput: whether there exists $S \subseteq [m], |S| = n$ such that
• $\{x_i : i \in S\} = X, \{y_i : i \in S\} = Y, \{z_i : i \in S\} = Z$

Input:
$$|X| = |Y| = |Z| = n$$
,
 $(x_1, y_1, z_1), (x_2, y_2, z_2), \dots, (x_m, y_m, z_m) \in X \times Y \times Z$
Dutput: whether there exists $S \subseteq [m], |S| = n$ such that
• $\{x_i : i \in S\} = X, \{y_i : i \in S\} = Y, \{z_i : i \in S\} = Z$

Input:
$$|X| = |Y| = |Z| = n$$
,
 $(x_1, y_1, z_1), (x_2, y_2, z_2), \dots, (x_m, y_m, z_m) \in X \times Y \times Z$
Dutput: whether there exists $S \subseteq [m], |S| = n$ such that
• $\{x_i : i \in S\} = X, \{y_i : i \in S\} = Y, \{z_i : i \in S\} = Z$

- core
 - •

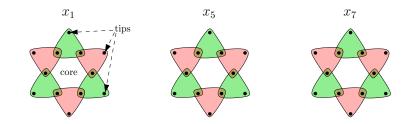
Input:
$$|X| = |Y| = |Z| = n$$
,
 $(x_1, y_1, z_1), (x_2, y_2, z_2), \dots, (x_m, y_m, z_m) \in X \times Y \times Z$
Dutput: whether there exists $S \subseteq [m], |S| = n$ such that
• $\{x_i : i \in S\} = X, \{y_i : i \in S\} = Y, \{z_i : i \in S\} = Z$



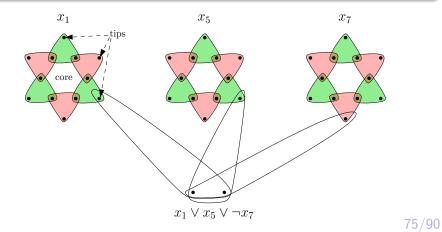
Input:
$$|X| = |Y| = |Z| = n$$
,
 $(x_1, y_1, z_1), (x_2, y_2, z_2), \dots, (x_m, y_m, z_m) \in X \times Y \times Z$
Dutput: whether there exists $S \subseteq [m], |S| = n$ such that
• $\{x_i : i \in S\} = X, \{y_i : i \in S\} = Y, \{z_i : i \in S\} = Z$



Input:
$$|X| = |Y| = |Z| = n$$
,
 $(x_1, y_1, z_1), (x_2, y_2, z_2), \dots, (x_m, y_m, z_m) \in X \times Y \times Z$
Dutput: whether there exists $S \subseteq [m], |S| = n$ such that
• $\{x_i : i \in S\} = X, \{y_i : i \in S\} = Y, \{z_i : i \in S\} = Z$



Input:
$$|X| = |Y| = |Z| = n$$
,
 $(x_1, y_1, z_1), (x_2, y_2, z_2), \cdots, (x_m, y_m, z_m) \in X \times Y \times Z$
Dutput: whether there exists $S \subseteq [m], |S| = n$ such that
• $\{x_i : i \in S\} = X, \{y_i : i \in S\} = Y, \{z_i : i \in S\} = Z$



Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

• In general, algorithm for \boldsymbol{Y} can call the algorithm for \boldsymbol{X} many times.

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- In general, algorithm for \boldsymbol{Y} can call the algorithm for \boldsymbol{X} many times.
- \bullet However, for most reductions, we call algorithm for X only once

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- In general, algorithm for \boldsymbol{Y} can call the algorithm for \boldsymbol{X} many times.
- $\bullet\,$ However, for most reductions, we call algorithm for X only once
- That is, for a given instance s_Y for Y, we only construct one instance s_X for X

- Given an instance s_Y of problem Y, show how to construct in polynomial time an instance s_X of problem such that:
 - s_Y is a yes-instance of $Y \Rightarrow s_X$ is a yes-instance of X
 - s_X is a yes-instance of $X \Rightarrow s_Y$ is a yes-instance of Y

Outline

Some Hard Problems

- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems

6 Summary

• Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, n = number variables

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, n = number variables
 - Best algorithm runs in time ${\cal O}(c^n)$ for some constant c>1

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, n = number variables
 - Best algorithm runs in time $O(c^n)$ for some constant c>1
 - Best lower bound is $\Omega(n)$

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, n = number variables
 - Best algorithm runs in time $O(c^n)$ for some constant c > 1
 - Best lower bound is $\Omega(n)$
- Essentially we have no techniques for proving lower bound for running time

Dealing with NP-Hard Problems

- Faster exponential time algorithms
- Solving the problem for special cases
- Fixed parameter tractability
- Approximation algorithms

3-SAT:

3-SAT:

• Brute-force: $O(2^n \cdot \operatorname{poly}(n))$

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

• Brute-force: $O(n! \cdot poly(n))$

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n! \cdot poly(n))$
- Better algorithm: $O(2^n \cdot poly(n))$

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n! \cdot poly(n))$
- Better algorithm: $O(2^n \cdot poly(n))$
- In practice: TSP Solver can solve Euclidean TSP instances with more than 100,000 vertices

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

trees

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs
- interval graphs

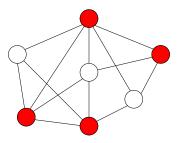
Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs
- interval graphs

• • • •

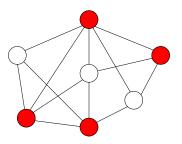
Fixed Parameter Tractability

Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)



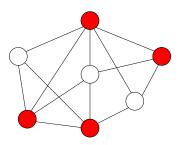
Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)
- Brute-force algorithm: $O(kn^{k+1})$



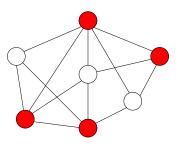
Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$



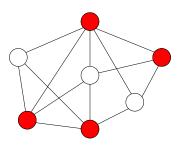
Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$
- Running time is $f(k)n^c$ for some c independent of k



Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$
- Running time is $f(k)n^c$ for some c independent of k
- Vertex-Cover is fixed-parameter tractable.



Approximation Algorithms

• For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time
- There is an 2-approximation for the vertex cover problem: we can efficiently find a vertex cover whose size is at most 2 times that of the optimal vertex cover

Outline

Some Hard Problems

- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- Dealing with NP-Hard Problems

- We consider decision problems
- Inputs are encoded as $\{0,1\}$ -strings

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class NP is the set of problems for which Alice can convince Bob a yes instance is a yes instance

- **Def.** B is an efficient certifier for a problem X if
- $\bullet \ B$ is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, X(s)=1 if and only if there is string t such that $|t|\leq p(|s|)$ and B(s,t)=1.

The string t such that B(s,t) = 1 is called a certificate.

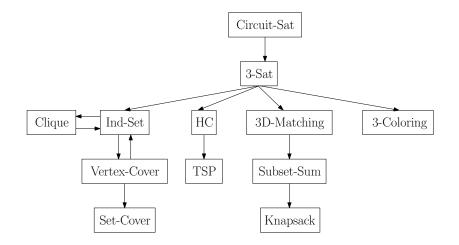
Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. A problem X is called NP-complete if

• $X \in \mathsf{NP}$, and

- **2** $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.
 - If any NP-complete problem can be solved in polynomial time, then ${\cal P}={\cal N}{\cal P}$
 - Unless P = NP, a NP-complete problem can not be solved in polynomial time



Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is a efficient certifier.
- Given a problem $X \in NP$, let B(s,t) be the certifier
- Convert B(s,t) to a circuit and hard-wire s to the input gates
- $\bullet \ s$ is a yes-instance if and only if the resulting circuit is satisfiable
- Proof of NP-Completeness for other problems by reductions