BERTT 5 501 (2025 F 224 1)
Network Flow

BORZ: LT
R R 2T BB

@ Network Flow

© Ford-Fulkerson Method

© Correctness of Ford-Fulkerson's Method and Maximum Flow
Minimum Cut Theorem

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm
@ Capacity-Scaling Algorithm

© Bipartite Matching Problem
@ s-t Edge-Disjoint Paths Problem
@ More Applications

2/81

Flow Network

@ Abstraction of fluid flowing through edges

e Digraph G = (V, E) with source s € V and sink t € V/
o No edges enter s
o No edges leave ¢

e Edge capacity ¢, € Ry for everye € £

Def. An s-t flow is a function f : ' — R such that

o foreveryee E: 0 < f(e) <ce (capacity conditions)

o for every v € V'\ {s,t}:

Z fle) = Z f(e). (conservation conditions)

e€din (v) eEJout (V)
The value of a flow f is

val(f) == > fle

Geéout()

Maximum Flow Problem

Input: directed network G = (V, E), capacity function
c: E—Ryg, source s € V andsinkt € V

Output: an s-t flow f in G with the maximum val(f)

Maximum Flow Problem: Example

@ Network Flow

© Ford-Fulkerson Method

© Correctness of Ford-Fulkerson's Method and Maximum Flow
Minimum Cut Theorem

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm
@ Capacity-Scaling Algorithm

© Bipartite Matching Problem
@ s-t Edge-Disjoint Paths Problem
@ More Applications

6/81

Greedy Algorithm
e Start with empty flow: f(e) =0 for every e € E
@ Define the residual capacity of e to be c. — f(e)

e Find an augmenting path: a path from s to ¢, where all edges
have positive residual capacity

Augment flow along the path as much as possible

Repeat until we got stuck

Greedy Algorithm: Example

Greedy Algorithm Does Not Always Give a
Optimum Solution

7
\\\ <4

Fix the Issue: Allowing “Undo” Flow Sent

Assumption (u,v) and (v,u) are not both in £

Def. For a s-t flow f, the residual graph G of G = (V, E) w.r.t f
contains:

@ the vertex set V/,

o for every e = (u,v) € E with f(e) < c., a forward edge
e = (u,v), with residual capacity c¢(e) = c. — f(e),

° for every e = (u,v) € E with f(e) > 0, a backward edge
), with residual capacity cs(e') = f(e).

@\3@

Original graph G and f Residual Graph G

Residual Graph: One More Example

Agumenting Path

Augmenting the flow along a path P from s to ¢t in G

Augment(P)
1 b+ min cr(e)
2: for every (u,v) € P do
if (u,v) is a forward edge then
4 f(u,v) < f(u,v)+0b
5: else > (u,v) is a backward edge
6
7

f(v,u) < f(v,u) —b

Example for Augmenting Along a Path

Ford-Fulkerson’'s Method

Ford-Fulkerson(G, s, t, ¢)

1: let f(e) < 0O for every e in G

2: while there is a path from s to t in Gy do

3: let P be any simple path from s to ¢ in G
4 f <augment(f, P)

5

. return f

Fulkerson: Example

Ford-

Outline

© Correctness of Ford-Fulkerson's Method and Maximum Flow
Minimum Cut Theorem

Correctness of Ford-Fulkerson's Method

@ The procedure augment(f, P) maintains the two conditions:

o foreveryec E: 0< f(e) <c. (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

eEdin (v) eE€dout (V)

@ When Ford-Fulkerson’s Method terminates, val(f) is maximized
© Ford-Fulkerson’'s Method will terminate

Correctness of Ford-Fulkerson's Method

© The procedure augment(f, P) maintains the two conditions:

o foreveryec E: 0< f(e) <c. (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

eEdin (v) eE€dout (V)

@ When Ford-Fulkerson’s Method terminates, val(f) is maximized
© Ford-Fulkerson’'s Method will terminate

o foreveryee E: 0 < f(e) <ece (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

e into v e out of v

net increase = —b

net increase = b

e for an edge e correspondent to a forward edge :
b<c.— fle) = fle)+b<c

o for an edge e correspondent to a backward edge :
b< fle) = f(e)—b>0

Correctness of Ford-Fulkerson's Method

@ The procedure augment(f, P) maintains the two conditions:

o foreveryec E: 0< f(e) <c. (capacity conditions)
o for every v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

eEdin (v) eE€dout (V)

@ When Ford-Fulkerson's Method terminates, val(f) is maximized
© Ford-Fulkerson's Method will terminate

Def. An s-t cut of G = (V,E) is a pair (S CV,T =V \S) such
that s€ SandteT.

Def. The cut value of an s-t cut is

c(S,T) = Z Ce.

e=(u,v)EEueSweT

Def. Given an s-t flow f and an s-t cut (S,7"), the net flow sent
from S to T is

f(5,T) = > fle) - > f(e).

e=(u,v)EEUES,VET e=(u,v)EEUET VES

o(S,T) =14+ 12 =26

& f(S,T)=9+6-4=11
a\

Obs. f(S,T) < ¢(S,T) st cut (S, 7). J

Obs. f(S,T) =val(f) for any s-t flow f and any s-t cut (S, 7). |

Coro.

| < i S,T) f -t fl .
val(f) < o CI&I&T) c(S,T) for every s-t flowf J

LT val(f) < min ¢(S,T) for every s-t flowf.
s-t cut (S,T)

We will prove

Main Lemma The flow f found by the Ford-Fulkerson's Method

satisfies
val(f) = ¢(S,T) for some s-t cut (S, 7).

Corollary and Main Lemma implies

Maximum Flow Minimum Cut Theorem

sup val(f) = min ¢(5,7T).
s-t flow f (f) st cut (S,T) ()

Maximum Flow Minimum Cut Theorem

sup val = min ¢(S,T).
s-t flol\i/ f (f) s-t cut (S,T) ()

Main Lemma The flow f found by the Ford-Fulkerson's Method

satisfies
val(f) = ¢(S,T) for some s-t cut (S, T).

Proof of Main Lemma.
@ When algorithm terminates, no path from s to t in Gy,

What can we say about G?

There is a s-t cut (S, T), such that there are no edges from S to T
For every e = (u,v) € E,u € S,v € T, we have f(e) =c,

For every e = (u,v) € E,u € T,v € S, we have f(e) =0

Thus,

vallf)=f(ST) = >, flo- > fl=

e=(u,v)EEueSweT e=(u,v)EEueTWES

Z ce =c(S,T). O

e=(u,v)eE,ueS,weT

Correctness of Ford-Fulkerson's Method

@ The procedure augment(f, P) maintains the two conditions:

o foreveryec E: 0< f(e) <c. (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

eEdin (v) eE€dout (V)

@ When Ford-Fulkerson’s Method terminates, val(f) is maximized
© Ford-Fulkerson’'s Method will terminate

Ford-Fulkerson’'s Method will Terminate

Intuition:

@ In every iteration, we increase the flow value by some amount
@ There is a maximum flow value

@ So the algorithm will finally reach the maximum value

However, the algorithm may not terminate if some capacities are
irrational numbers. (“Pathological cases")

Lemma Ford-Fulkerson’s Method will terminate if all capacities are
integers.

Proof.
@ The maximum flow value is finite (not o).
@ In every iteration, we increase the flow value by at least 1.

@ So the algorithm will terminate. O

@ Integers can be replaced by rational numbers.

Correctness of Ford-Fulkerson's Method

@ The procedure augment(f, P) maintains the two conditions:

o foreveryec E: 0< f(e) <c. (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

eEdin (v) eE€dout (V)

@ When Ford-Fulkerson’s Method terminates, val(f) is maximized
© Ford-Fulkerson’'s Method will terminate

Outline

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm
@ Capacity-Scaling Algorithm

Running time of the Generic Ford-Fulkerson's
Algorithm

Ford-Fulkerson(G, s,t, ¢)

1: let f(e) < 0 for every e in G

2: while there is a path from s to ¢ in G do

3: let P be any simple path from s to ¢t in G
4 f <augment(f, P)

5

. return f

O(m)-time for Steps 3 and 4 in each iteration
Total time = O(m)x number of iterations

Assume all capacities are integers, then algorithm may run up to
val(f*) iterations, where f* is the optimum flow

Total time = O(m - val(f*))
Running time is “Pseudo-polynomial”

The Upper Bound on Running Time Is Tight!

Better choices for choosing augmentation paths:
@ Choose the shortest augmentation path

@ Choose the augmentation path with the largest bottleneck
capacity

Outline

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm

Shortest Augmenting Path

shortest-augmenting-path(G, s, ¢, ¢)
1: let f(e) < 0O for every e in G
2: while there is a path from s to t in Gy do
3: P < breadth-first-search(Gy, s,)
4 f <augment(f, P)
5

. return f

Due to [Dinitz 1970] and [Edmonds-Karp, 1970]

Running Time of Shortest Augmenting Path
Algorithm

Lemma 1. Throughout the algorithm, length of shortest path from
s to t in Gy never decreases.

2. After at most m shortest path augmentations, the length of the
shortest path from s to ¢ in G strictly increases.

@ Length of shortest path is between 1 and n — 1
@ Algorithm takes at most O(mn) iterations
@ Shortest path from s to ¢ can be found in O(m) time using BFS

Theorem The shortest-augmenting-path algorithm runs in time
O(m?n).

Proof of Lemma: Focus on G/

Divide V' into levels: L; contains the set of vertices v such that
the length of shortest path from s to v in Gy is %

Forth edges : edges from L; to L;,, for some ¢

Side edges : edges from L; to L; for some i

Back edges: edges from L; to L; for some i > j

No jump edges: edges from L; to L; for j > i+ 2

Proof of Lemma: Focus on G/

@ Assuming t € Ly, shortest s — ¢ path uses k forth edges
@ After augmenting along the path, back edges will be added to G
@ One forth edge will be removed from G

@ In O(m) iterations, there will be no paths from s to ¢ of length &
in Gf.

Improving the O(m*n) Running Time for Shortest
Path Augmentation Algorithm

@ For some networks, O(mn)-augmentations are necessary

@ Idea for improved running time: reduce running time for each
iteration

e Simple idea = O(mn?) [Dinic 1970]
@ Dynamic Trees = O(mnlogn) [Sleator-Tarjan 1983]

Outline

@ Running Time of Ford-Fulkerson-Type Algorithm

@ Capacity-Scaling Algorithm

Capacity-Scaling Algorithm

@ Idea: find the augment path from s to ¢ with the largest
bottleneck capacity

@ Assumption: Capacities are integers between 1 and C'

capacity-scaling(G, s, t, ¢)

1: let f(e) < 0O for every e in G
A < largest power of 2 which is at most C'
while A > 1 do do
while there exists an augmenting path P with bottleneck
capacity at least A do
f <—augment(f, P)

6: A+ AJ2
7: return f

N

S

Obs. The outer while loop repeats 1 + |log, C'| times.

Lemma At the beginning of A-scale phase, the value of the
max-flow is at most val(f) + 2mA.

@ Each augmentation increases the flow value by at least A

@ Thus, there are at most 2m augmentations for A-scale phase.

Theorem The number of augmentations in the scaling max-flow
algorithm is at most O(mlog C). The running time of the algorithm
is O(m?log O).

Polynomial Time

Assume all capacities are integers between 1 and C'.

Ford-Fulkerson O(m2C') pseudo-polynomial
Capacity-scaling: O(m?logC) | weakly-polynomial
Shortest-Path-Augmenting: O(m?n) strongly-polynomial

@ Polynomial : weakly-polynomial and strongly-polynomial

Brief History

Algorithm Year Time Description
Ford-Fulkerson | 1956 | O(mf) | Ford-Fulkerson Method.
Edmonds-Karp | 1972 | O(nm?) | Shortest Augmenting Paths
Dinic 1970 | O(n*m) | SAP with blocking Flows
Goldberg-Tarjan | 1988 O(n?) Generic Push-Relabel
Goldberg-Tarjan | 1988 | O(n?y/m) | PR using highest-label nodes
Chen et al. 2022 | O(m!*°M) [LP-solver, dynamic algorithms

@ Chen et al. [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva, 2022].

@ Network Flow

© Ford-Fulkerson Method

© Correctness of Ford-Fulkerson's Method and Maximum Flow
Minimum Cut Theorem

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm
@ Capacity-Scaling Algorithm

© Bipartite Matching Problem
@ s-t Edge-Disjoint Paths Problem
@ More Applications

45/81

Bipartite Graphs

Def. A graph G = (V, E) is bipartite if the vertices V' can be
partitioned into two subsets L and R such that every edge in E is
between a vertex in L and a vertex in R.

Def. Given a bipartite graph G = (LU R, F), a matching in G is a
set M C FE of edges such that every vertex in V is an endpoint of at
most one edge in M.

v

Maximum Bipartite Matching Problem
Input: bipartite graph G = (LU R, F)

Output: a matching M in G of the maximum size

Reduce Maximum Bipartite Matching to Maximum
Flow Problem

Reduce Maximum Bipartite Matching to Maximum
Flow Problem

o Create a digraph G’ = (LU RU {s,t}, E') with capacity
c: B — RZO:

Add a source s and a sink ¢

Add an edge from s to each vertex u € L of capacity 1

Add an edge from each vertex v € R to t of capacity 1

Direct all edges in E from L to R, and assign oo capacity (or

capacity 1) to them

@ Compute the maximum flow from s to ¢t in G’
@ The maximum flow gives a matching
@ Running time:

o Ford-Fulkerson: O(m x max flow value) = O(mn).
o Hopcroft-Karp: O(mn'/?) time

Lemma Size of max matching = value of max flow in G’ J

Proof. <.
Given a maximum matching M C FE, send a flow along each edge
e € M and thus we have a flow of value |M|. O

Lemma Size of max matching = value of max flow in G’

Proof. >.

@ The maximum flow f in G’ is integral since all capacities are
integral

@ Let M to be the set of edges e from L to R with f(e) =1

@ M is a matching of size that equals to the flow value

DA

N

Perfect Matching

Def. Given a bipartite graph G = (LU R, E) with |L| = |R|, a
perfect matching M of (G is a matching such that every vertex
v € L U R participates in exactly one edge in M.

Assuming |L| = |R| = n, when does G = (L U R, E) not have a
perfect matching?

@ For X C L, define N(X)={ve R:Jue X, (uv) € E}
@ |[N(X)| < X for some X C L = no perfect matching

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Proof. =—.

If G has a perfect matching, then vertices matched to X C N(X);
thus |[N(X)| > | X]. O

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Proof. <«—.

e Contrapositive: if no perfect
matching, then
X C L, |N(X)| < |X]|

@ Consider the network flow
instance

@ Thereis a s-t cut (S,T) of
value at most n — 1

@ Define L,, L;, R, R; as in
figure [

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Proof. <«——.

e Contrapositive: if no perfect
matching, then
X C L, |N(X)| < |X]|

@ No edges from L, to R;, since
their capacities are oo

o ¢(S,T) = |Li| + |Rs| < n
o |N(Ly)| < |Rs| <n—|L| =
| Ls|. O

V.

@ Network Flow

© Ford-Fulkerson Method

© Correctness of Ford-Fulkerson's Method and Maximum Flow
Minimum Cut Theorem

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm
@ Capacity-Scaling Algorithm

© Bipartite Matching Problem
@ s-t Edge-Disjoint Paths Problem
@ More Applications

56,81

s-t Edge Disjoint Paths
Input: a directed (or undirected) graph G = (V, F) and s,t € V

Output: the maximum number of edge-disjoint paths from s to ¢ in

@ Solving the maximum flow problem, where all capacities are 1
o All flow values are integral (i.e, either 0 or 1)

From flow to disjoint paths

o find an arbitrary s — t path where all edges have flow value 1

@ change the flow values of the path to 0 and repeat

Theorem The maximum number of edge disjoint paths from s to ¢
equals the minimum value of an s-t cut (S, 7). J

s-t Edge Disjoint Paths in Undirected Graphs

@ an undirected edge — two anti-parallel directed edges.

@ Solving the s-t maximum flow problem in the directed graph
@ Convert the flow to paths

@ lIssue: both e = (u,v) and ¢ = (v, u) are used

e Fix: if this happens we change f(e) = f(¢/) =0

Menger's Theorem

Menger’'s Theorem In an undirected graph, the maximum number
of edge-disjoint paths between s to t is equal to the minimum
number of edges whose removal disconnects s and t.

s-t connectivity measures how well s and ¢ are connected.

Global Min-Cut Problem
Input: a connected graph G = (V, E)
Output: the minimum number of edges whose removal will
disconnect GG

Solving Global Min-Cut Using Maximum Flow

1. let G’ be the directed graph obtained from G by replacing every
edge with two anti-parallel edges

2: for every pair s # t of vertices do

3: obtain the minimum cut separating s and ¢ in GG, by solving
the maximum flow instance with graph G’,source s and sink ¢

4: output the smallest minimum cut we found

@ Need to solve ©(n?) maximum flow instances

@ Can we do better?
@ Yes. We can fix s. We only need to enumerate ¢

@ Network Flow

© Ford-Fulkerson Method

© Correctness of Ford-Fulkerson's Method and Maximum Flow
Minimum Cut Theorem

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm
@ Capacity-Scaling Algorithm

© Bipartite Matching Problem
@ s-t Edge-Disjoint Paths Problem
ﬂ More Applications

64/81

Extension of Network Flow: Circulation Problem
Input: A digraph G = (V, E)
capacities ¢ € ZZ,
supply vector d € ZV with 3~ _, d, =0
Output: whether there exists f : E — Z>¢ s.t.

S ofle)= D> fle) YoeV

e€dout(v) e€din(v)

ng()SCe V€EE

@ d, denotes the net supply of a good
@ d, > 0: there is a supply of d, at v
@ d, < 0: there is a demand of —d, at v

@ problem: whether we can match the supplies and demands
without violating capacity constraints

Example Reduction

Reduction to maximum flow

@ add a super-source s and a super-sink ¢ to network

e for every v € V with d, > 0: add edge (s, v) of capacity d,
e for every v € V with d, < 0: add edge (v, t) of capacity —d,

o check if maximum flow has value 3 ., _ d,

o d(S) =3, sd, VS C V.
° C(Sa Vv \ S) = Z(u,v)GE:uES,MZS Clu,v)-

Lemma The instance is feasible if and only if for every S C V,
d(S) <c(S,V\9).

Proof of “only if" direction.

e if for some S CV, ¢(S,V'\ §) < d(S), then the demand in S can
not be sent out of S. O

@ It remains to consider the “if" direction

Proof of “if" Direction

Lemma The instance is feasible if and only if for every S C V,

d(S) < c(S,V\ 9).

@ assume instance is infeasible:
max-flow < d(A)

e A={veV:d, >0}
e B:={veV:d, <0}
e (S3s,T>t): min-cut

S
&

G

A

VL]

_—

EZARETS
B

AT NA) +]dSNB)| +c(S\ {s},T\ {t}) < d(A)
dTNA) —dSNB)+c(S\ {s},T\ {t}) < d(A)
c(S\ {s}, T\ {t}) <d(SNA)+d(SNB)=d(S\ {s})

o Define S’ = S\ {s}: d(S") > (S, V \).

7
+

Circulation Problem with Capacity Lower Bounds
Input: A digraph G = (V, E)
capacities ¢ € ZZ,
capacity lower bounds I € ZZ;, 0 < I. < c.
supply vector d € ZV with 3~ _, d, =0
Output: whether there exists f : £ — Z> s.t.

Z f(e) Zf YveV

e€dout(v) e€din(v)

lrigf()gce VeGE

Removing Capacity Lower Bounds

2, 5]

8 e b handling e = (u,v) with [, > 0
1 Od;<_du_le
1
' o d «dy+1,
v ° (, +—c.— 1,
/
0, 3] @[, +0

60—N7

@ in old instance: flow is f(e) € [le,c.] = f(e) =l € [0,c. — L]

@ in new instance: flow is f(e) — [, € [0,c]

Survey Design
Input: integers n,k > 1 and E C [n] x [k]
integers 0 < ¢; < ¢}, Vi € [n]
integers 0 < p; < p’;,Vj € [K]
Output: £/ C E s.t.
a<|{jelk]:(i,j) € E'} <d, Vi € [n]
pi < i€ [m]: (i,j) € E'} < pj, vj € [k]

Background

@ [n]: customers, [k]:products

@ 15 € E: customer ¢ purchased product j and can do a survey
@ every customer i needs to do between ¢; and ¢, surveys

@ every product j needs to collect between p; and p; surveys

Reduction to Circulation

@ vertices {s,t} W [n| W [K],

e (i,j) € E: (i,j) with bounds
[0,1]

@ Vi: (s,4) with bounds [¢;, ¢/]

e Vj: (j,t) with bounds [p;, pf]

@ (t,s) with bounds [0, co]

customers

surveys

Airline Scheduling
Input: a DAG G = (V,E)

Output: the minimum number of disjoint paths in G to cover all
vertices

Background
@ vertex : a flight

@ edge (u,v): an aircraft that serves u
can serve v immediately

@ goal: minimize the number of aircrafts
v

Reduction to the Circulation Problem

split v into (Vin, Vout)
add s, and (s, viy), Vo
add ¢, and (vout, t), Vo

set lower and upper
bounds

add t — s of capacity £

@ find minimum k s.t.
instance is feasible

Image Segmentation
Input: A graph G = (V, E), with edge costs ¢ € Zgo
two reward vectors a,b € ZY,

Output: a cut (A, B) of G so as to maximize

Z ay + Z bv - Z C(u,v)

vEA veB (u,v)€E:|{u,v}NA|=1

Background

@ a,: the likelihood of v being a foreground pixel
@ b,: the likelihood of v being a background pixel
® C(uu): the penalty for separating u and v

@ need to maximize total reward - total penalty

Reduction to Network
Flow

e replace (u,v) with two
anti-parallel arcs

@ add source s and arcs
(s,v),Vv

@ add sink t and arcs
(v,t), Yo

@ set capacities
@ The cut value of (S ={s} UA,{t}UB)is

Z ay + Z bv + Z Clu,w)

veB vEA (u,v)€E:{u,v}NA|=1

=3 (@, +b,) - (Z a,+ Y b, — > C(w))

veV veA veB (u,v)€E:|{u,v}NA|=1

@ The cut value of (S ={s}UA{t}UB)is

Z(av +by) (Zav Zb - Z C(u7v)>

veV veEA veB (u,v)€E:|{u,v}NA|=1
= Z a, + b,) — (objective of (A, B))
veV

@ So, maximizing the objective of (A, B) is equivalent to minimizing
the cut value.

Project Selection
Input: A DAG G = (V, E)
revenue on vertices: p € Z"; p,'s could be negative.
Output: A set B C V satisfying the precedence constraints:
veEB = ueB, V(uv)€EFE

Motivation

e Motivation: (u,v) € E: uis a
prerequisite of v, to select v,
we must select u

@ Goal: maximize the revenue
subject to the precedence
constraint.

Reduction

@ add source s and sink ¢

@ p, <0: (s,v) of capacity —p,
e p, > 0: (v,t) of capacity p,
o L={v:p, <0}

e R={v:p, >0}

@ precedence edges: oo capacity | T=BU{t)

e min-cut (S ={s} UA,T = {t} UB)
@ no oo-capacity edges from A to B
@ cut value is

YNop)+ D == b= . Pt D p

vEBNL vEANR vEBNL vEBNR vER

=D P

vER veEB

@ B is a valid solution <= ¢(5,T) # o0

e when B is valid, ¢(S,T) = Y cpPv — 2 vep Po

@ so, to maximize > . p,, we need to minimize ¢(S,T).

More Applications

@ Graph orientation

@ maximum independent set (and minimum vertex cover) in a
bipartite graph

	Network Flow
	Ford-Fulkerson Method
	Correctness of Ford-Fulkerson's Method and Maximum Flow Minimum Cut Theorem
	Running Time of Ford-Fulkerson-Type Algorithm
	Shortest Augmenting Path Algorithm
	Capacity-Scaling Algorithm

	Bipartite Matching Problem
	s-t Edge-Disjoint Paths Problem
	More Applications

