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Flow Network

Abstraction of fluid flowing through edges
Digraph G = (V,E) with source s ∈ V and sink t ∈ V
No edges enter s
No edges leave t

Edge capacity ce ∈ R>0 for every e ∈ E
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Def. An s-t flow is a function f : E → R such that

for every e ∈ E: 0 ≤ f(e) ≤ ce (capacity conditions)

for every v ∈ V \ {s, t}:∑
e∈δin(v)

f(e) =
∑

e∈δout(v)

f(e). (conservation conditions)

The value of a flow f is

val(f) :=
∑

e∈δout(s)

f(e).

Maximum Flow Problem
Input: directed network G = (V,E), capacity function

c : E → R>0, source s ∈ V and sink t ∈ V

Output: an s-t flow f in G with the maximum val(f)
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Maximum Flow Problem: Example
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Greedy Algorithm

Start with empty flow: f(e) = 0 for every e ∈ E

Define the residual capacity of e to be ce − f(e)

Find an augmenting path: a path from s to t, where all edges
have positive residual capacity

Augment flow along the path as much as possible

Repeat until we got stuck
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Greedy Algorithm: Example
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Greedy Algorithm Does Not Always Give a

Optimum Solution
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Fix the Issue: Allowing “Undo” Flow Sent
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Assumption (u, v) and (v, u) are not both in E

Def. For a s-t flow f , the residual graph Gf of G = (V,E) w.r.t f
contains:

the vertex set V ,

for every e = (u, v) ∈ E with f(e) < ce, a forward edge
e = (u, v), with residual capacity cf (e) = ce − f(e),

for every e = (u, v) ∈ E with f(e) > 0, a backward edge
e′ = (v, u), with residual capacity cf (e

′) = f(e).
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Residual Graph: One More Example
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Agumenting Path

Augmenting the flow along a path P from s to t in Gf

Augment(P )

1: b← min
e∈P

cf (e)

2: for every (u, v) ∈ P do
3: if (u, v) is a forward edge then
4: f(u, v)← f(u, v) + b
5: else ▷ (u, v) is a backward edge
6: f(v, u)← f(v, u)− b

7: return f
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Example for Augmenting Along a Path
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Ford-Fulkerson’s Method

Ford-Fulkerson(G, s, t, c)

1: let f(e)← 0 for every e in G
2: while there is a path from s to t in Gf do
3: let P be any simple path from s to t in Gf

4: f ←augment(f, P )

5: return f
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Ford-Fulkerson: Example
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Correctness of Ford-Fulkerson’s Method

1 The procedure augment(f, P ) maintains the two conditions:

for every e ∈ E: 0 ≤ f(e) ≤ ce (capacity conditions)
for every v ∈ V \ {s, t}:∑

e∈δin(v)

f(e) =
∑

e∈δout(v)

f(e). (conservation conditions)

2 When Ford-Fulkerson’s Method terminates, val(f) is maximized

3 Ford-Fulkerson’s Method will terminate
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for every e ∈ E: 0 ≤ f(e) ≤ ce (capacity conditions)

for every v ∈ V \ {s, t}:∑
e into v

f(e) =
∑

e out of v

f(e). (conservation conditions)

s t

for an edge e correspondent to a forward edge :
b ≤ ce − f(e) =⇒ f(e) + b ≤ ce

for an edge e correspondent to a backward edge :
b ≤ f(e) =⇒ f(e)− b ≥ 0
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Correctness of Ford-Fulkerson’s Method
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Def. An s-t cut of G = (V,E) is a pair (S ⊆ V, T = V \ S) such
that s ∈ S and t ∈ T .

Def. The cut value of an s-t cut is

c(S, T ) :=
∑

e=(u,v)∈E:u∈S,v∈T

ce.

Def. Given an s-t flow f and an s-t cut (S, T ), the net flow sent
from S to T is

f(S, T ) :=
∑

e=(u,v)∈E:u∈S,v∈T

f(e)−
∑

e=(u,v)∈E:u∈T,v∈S

f(e).



22/81

Def. An s-t cut of G = (V,E) is a pair (S ⊆ V, T = V \ S) such
that s ∈ S and t ∈ T .

Def. The cut value of an s-t cut is

c(S, T ) :=
∑

e=(u,v)∈E:u∈S,v∈T

ce.

Def. Given an s-t flow f and an s-t cut (S, T ), the net flow sent
from S to T is

f(S, T ) :=
∑

e=(u,v)∈E:u∈S,v∈T

f(e)−
∑

e=(u,v)∈E:u∈T,v∈S

f(e).



22/81

Def. An s-t cut of G = (V,E) is a pair (S ⊆ V, T = V \ S) such
that s ∈ S and t ∈ T .

Def. The cut value of an s-t cut is

c(S, T ) :=
∑

e=(u,v)∈E:u∈S,v∈T

ce.

Def. Given an s-t flow f and an s-t cut (S, T ), the net flow sent
from S to T is

f(S, T ) :=
∑

e=(u,v)∈E:u∈S,v∈T

f(e)−
∑

e=(u,v)∈E:u∈T,v∈S

f(e).



23/81

s t

a

b

c

d

6/16

5/
13

6/12

4/9

9/14

5/
7

7/
20

4/4

0/
4

G

Obs. f(S, T ) ≤ c(S, T ) s-t cut (S, T ).

Obs. f(S, T ) = val(f) for any s-t flow f and any s-t cut (S, T ).
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s-t cut (S,T )
c(S, T ) for every s-t flowf.
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Coro.
val(f) ≤ min

s-t cut (S,T )
c(S, T ) for every s-t flowf.

We will prove

Main Lemma The flow f found by the Ford-Fulkerson’s Method
satisfies

val(f) = c(S, T ) for some s-t cut (S, T ).

Corollary and Main Lemma implies

Maximum Flow Minimum Cut Theorem

sup
s-t flow f

val(f) = min
s-t cut (S,T )

c(S, T ).
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Main Lemma The flow f found by the Ford-Fulkerson’s Method
satisfies

val(f) = c(S, T ) for some s-t cut (S, T ).

Proof of Main Lemma.

When algorithm terminates, no path from s to t in Gf ,

What can we say about Gf?

There is a s-t cut (S, T ), such that there are no edges from S to T

For every e = (u, v) ∈ E, u ∈ S, v ∈ T , we have f(e) = ce

For every e = (u, v) ∈ E, u ∈ T, v ∈ S, we have f(e) = 0

Thus,
val(f) = f(S, T ) =

∑
e=(u,v)∈E,u∈S,v∈T

f(e)−
∑

e=(u,v)∈E,u∈T,v∈S

f(e) =∑
e=(u,v)∈E,u∈S,v∈T

ce = c(S, T ).
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Correctness of Ford-Fulkerson’s Method

1 The procedure augment(f, P ) maintains the two conditions:

for every e ∈ E: 0 ≤ f(e) ≤ ce (capacity conditions)
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Ford-Fulkerson’s Method will Terminate

Intuition:

In every iteration, we increase the flow value by some amount

There is a maximum flow value

So the algorithm will finally reach the maximum value

However, the algorithm may not terminate if some capacities are
irrational numbers. (“Pathological cases”)
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Lemma Ford-Fulkerson’s Method will terminate if all capacities are
integers.

Proof.

The maximum flow value is finite (not ∞).

In every iteration, we increase the flow value by at least 1.

So the algorithm will terminate.

Integers can be replaced by rational numbers.
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Correctness of Ford-Fulkerson’s Method

1 The procedure augment(f, P ) maintains the two conditions:

for every e ∈ E: 0 ≤ f(e) ≤ ce (capacity conditions)
for every v ∈ V \ {s, t}:∑

e∈δin(v)

f(e) =
∑

e∈δout(v)

f(e). (conservation conditions)

2 When Ford-Fulkerson’s Method terminates, val(f) is maximized

3 Ford-Fulkerson’s Method will terminate



31/81

Outline

1 Network Flow

2 Ford-Fulkerson Method

3 Correctness of Ford-Fulkerson’s Method and Maximum Flow
Minimum Cut Theorem

4 Running Time of Ford-Fulkerson-Type Algorithm
Shortest Augmenting Path Algorithm
Capacity-Scaling Algorithm

5 Bipartite Matching Problem

6 s-t Edge-Disjoint Paths Problem

7 More Applications



32/81

Running time of the Generic Ford-Fulkerson’s

Algorithm

Ford-Fulkerson(G, s, t, c)

1: let f(e)← 0 for every e in G
2: while there is a path from s to t in Gf do
3: let P be any simple path from s to t in Gf

4: f ←augment(f, P )

5: return f

O(m)-time for Steps 3 and 4 in each iteration

Total time = O(m)× number of iterations

Assume all capacities are integers, then algorithm may run up to
val(f ∗) iterations, where f ∗ is the optimum flow

Total time = O(m · val(f ∗))

Running time is “Pseudo-polynomial”
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The Upper Bound on Running Time Is Tight!
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Better choices for choosing augmentation paths:

Choose the shortest augmentation path

Choose the augmentation path with the largest bottleneck
capacity
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Shortest Augmenting Path

shortest-augmenting-path(G, s, t, c)

1: let f(e)← 0 for every e in G
2: while there is a path from s to t in Gf do
3: P ← breadth-first-search(Gf , s, t)
4: f ←augment(f, P )

5: return f

Due to [Dinitz 1970] and [Edmonds-Karp, 1970]
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Running Time of Shortest Augmenting Path

Algorithm

Lemma 1. Throughout the algorithm, length of shortest path from
s to t in Gf never decreases.
2. After at most m shortest path augmentations, the length of the
shortest path from s to t in Gf strictly increases.

Length of shortest path is between 1 and n− 1

Algorithm takes at most O(mn) iterations

Shortest path from s to t can be found in O(m) time using BFS

Theorem The shortest-augmenting-path algorithm runs in time
O(m2n).
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Proof of Lemma: Focus on Gf

· · · · · ·

L0 L1 L2 L3 Lk−1 Lk

Divide V into levels: Li contains the set of vertices v such that
the length of shortest path from s to v in Gf is i

Forth edges : edges from Li to Li+1 for some i
Side edges : edges from Li to Li for some i
Back edges: edges from Li to Lj for some i > j
No jump edges: edges from Li to Lj for j ≥ i+ 2
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Proof of Lemma: Focus on Gf

· · · · · ·

L0 L1 L2 L3 Lk−1 Lk

Assuming t ∈ Lk, shortest s→ t path uses k forth edges

After augmenting along the path, back edges will be added to Gf

One forth edge will be removed from Gf

In O(m) iterations, there will be no paths from s to t of length k
in Gf .
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Improving the O(m2n) Running Time for Shortest

Path Augmentation Algorithm

For some networks, O(mn)-augmentations are necessary

Idea for improved running time: reduce running time for each
iteration

Simple idea ⇒ O(mn2) [Dinic 1970]

Dynamic Trees ⇒ O(mn log n) [Sleator-Tarjan 1983]
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Capacity-Scaling Algorithm

Idea: find the augment path from s to t with the largest
bottleneck capacity

Assumption: Capacities are integers between 1 and C

capacity-scaling(G, s, t, c)

1: let f(e)← 0 for every e in G
2: ∆← largest power of 2 which is at most C
3: while ∆ ≥ 1 do do
4: while there exists an augmenting path P with bottleneck

capacity at least ∆ do
5: f ←augment(f, P )

6: ∆← ∆/2

7: return f
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Obs. The outer while loop repeats 1 + ⌊log2C⌋ times.

Lemma At the beginning of ∆-scale phase, the value of the
max-flow is at most val(f) + 2m∆.

Each augmentation increases the flow value by at least ∆

Thus, there are at most 2m augmentations for ∆-scale phase.

Theorem The number of augmentations in the scaling max-flow
algorithm is at most O(m logC). The running time of the algorithm
is O(m2 logC).
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Polynomial Time

Assume all capacities are integers between 1 and C.

Ford-Fulkerson O(m2C) pseudo-polynomial

Capacity-scaling: O(m2 logC) weakly-polynomial

Shortest-Path-Augmenting: O(m2n) strongly-polynomial

Polynomial : weakly-polynomial and strongly-polynomial
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Brief History

Algorithm Year Time Description
Ford-Fulkerson 1956 O(mf) Ford-Fulkerson Method.
Edmonds-Karp 1972 O(nm2) Shortest Augmenting Paths

Dinic 1970 O(n2m) SAP with blocking Flows
Goldberg-Tarjan 1988 O(n3) Generic Push-Relabel
Goldberg-Tarjan 1988 O(n2

√
m) PR using highest-label nodes

Chen et al. 2022 O(m1+o(1)) LP-solver, dynamic algorithms

Chen et al. [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva, 2022].
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Bipartite Graphs

Def. A graph G = (V,E) is bipartite if the vertices V can be
partitioned into two subsets L and R such that every edge in E is
between a vertex in L and a vertex in R.

L

R
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Def. Given a bipartite graph G = (L ∪R,E), a matching in G is a
set M ⊆ E of edges such that every vertex in V is an endpoint of at
most one edge in M .

Maximum Bipartite Matching Problem

Input: bipartite graph G = (L ∪R,E)

Output: a matching M in G of the maximum size

L

R
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Reduce Maximum Bipartite Matching to Maximum

Flow Problem

L
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Reduce Maximum Bipartite Matching to Maximum

Flow Problem

Create a digraph G′ = (L ∪R ∪ {s, t}, E ′) with capacity
c : E ′ → R≥0:

Add a source s and a sink t
Add an edge from s to each vertex u ∈ L of capacity 1
Add an edge from each vertex v ∈ R to t of capacity 1
Direct all edges in E from L to R, and assign ∞ capacity (or
capacity 1) to them

Compute the maximum flow from s to t in G′

The maximum flow gives a matching

Running time:

Ford-Fulkerson: O(m×max flow value) = O(mn).
Hopcroft-Karp: O(mn1/2) time
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Proof. ≤.
Given a maximum matching M ⊆ E, send a flow along each edge
e ∈M and thus we have a flow of value |M |.
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Proof. ≥.

The maximum flow f in G′ is integral since all capacities are
integral

Let M to be the set of edges e from L to R with f(e) = 1

M is a matching of size that equals to the flow value
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Perfect Matching

Def. Given a bipartite graph G = (L ∪R,E) with |L| = |R|, a
perfect matching M of G is a matching such that every vertex
v ∈ L ∪R participates in exactly one edge in M .

Assuming |L| = |R| = n, when does G = (L ∪R,E) have a perfect
matching?

L

R

For X ⊆ L, define N(X) = {v ∈ R : ∃u ∈ X, (u, v) ∈ E}
|N(X)| < X for some X ⊆ L ⇐⇒ no perfect matching
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Hall’s Theorem Let G = (L ∪R,E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|N(X)| ≥ |X| for every X ⊆ L.

Proof. =⇒.
If G has a perfect matching, then vertices matched to X ⊆ N(X);
thus |N(X)| ≥ |X|.
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Proof. ⇐=.

Contrapositive: if no perfect
matching, then
∃X ⊆ L, |N(X)| < |X|
Consider the network flow
instance

There is a s-t cut (S, T ) of
value at most n− 1

Define Ls, Lt, Rs, Rt as in
figure
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Outline

1 Network Flow

2 Ford-Fulkerson Method

3 Correctness of Ford-Fulkerson’s Method and Maximum Flow
Minimum Cut Theorem

4 Running Time of Ford-Fulkerson-Type Algorithm
Shortest Augmenting Path Algorithm
Capacity-Scaling Algorithm

5 Bipartite Matching Problem

6 s-t Edge-Disjoint Paths Problem

7 More Applications
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s-t Edge Disjoint Paths

Input: a directed (or undirected) graph G = (V,E) and s, t ∈ V

Output: the maximum number of edge-disjoint paths from s to t in
G

s t
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Solving the maximum flow problem, where all capacities are 1

All flow values are integral (i.e, either 0 or 1)

From flow to disjoint paths

find an arbitrary s→ t path where all edges have flow value 1

change the flow values of the path to 0 and repeat

s t
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Theorem The maximum number of edge disjoint paths from s to t
equals the minimum value of an s-t cut (S, T ).

s t
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s-t Edge Disjoint Paths in Undirected Graphs

s t

an undirected edge → two anti-parallel directed edges.

Solving the s-t maximum flow problem in the directed graph

Convert the flow to paths

Issue: both e = (u, v) and e′ = (v, u) are used

Fix: if this happens we change f(e) = f(e′) = 0
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Menger’s Theorem

Menger’s Theorem In an undirected graph, the maximum number
of edge-disjoint paths between s to t is equal to the minimum
number of edges whose removal disconnects s and t.

s t

s-t connectivity measures how well s and t are connected.
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Global Min-Cut Problem
Input: a connected graph G = (V,E)

Output: the minimum number of edges whose removal will
disconnect G
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Solving Global Min-Cut Using Maximum Flow

1: let G′ be the directed graph obtained from G by replacing every
edge with two anti-parallel edges

2: for every pair s ̸= t of vertices do
3: obtain the minimum cut separating s and t in G, by solving

the maximum flow instance with graph G′,source s and sink t

4: output the smallest minimum cut we found

Need to solve Θ(n2) maximum flow instances

Can we do better?

Yes. We can fix s. We only need to enumerate t
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Extension of Network Flow: Circulation Problem
Input: A digraph G = (V,E)

capacities c ∈ ZE
≥0

supply vector d ∈ ZV with
∑

v∈V dv = 0

Output: whether there exists f : E → Z≥0 s.t.∑
e∈δout(v)

f(e)−
∑

e∈δin(v)

f(e) = dv ∀v ∈ V

0 ≤ f(e) ≤ ce ∀e ∈ E

dv denotes the net supply of a good

dv > 0: there is a supply of dv at v

dv < 0: there is a demand of −dv at v

problem: whether we can match the supplies and demands
without violating capacity constraints
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Reduction to maximum flow
add a super-source s and a super-sink t to network

for every v ∈ V with dv > 0: add edge (s, v) of capacity dv

for every v ∈ V with dv < 0: add edge (v, t) of capacity −dv
check if maximum flow has value

∑
v:dv>0 dv
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d(S) :=
∑

v∈S dv,∀S ⊆ V .

c(S, V \ S) := ∑
(u,v)∈E:u∈S,v /∈S c(u,v).

Lemma The instance is feasible if and only if for every S ⊆ V ,
d(S) ≤ c(S, V \ S).

Proof of “only if” direction.

if for some S ⊆ V , c(S, V \ S) < d(S), then the demand in S can
not be sent out of S.

It remains to consider the “if” direction
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Proof of “if” Direction

Lemma The instance is feasible if and only if for every S ⊆ V ,
d(S) ≤ c(S, V \ S).

assume instance is infeasible:
max-flow < d(A)

A := {v ∈ V : dv > 0}
B := {v ∈ V : dv < 0}
(S ∋ s, T ∋ t): min-cut

G
A B

s t

d(T ∩ A) + |d(S ∩B)|+ c(S \ {s}, T \ {t}) < d(A)

d(T ∩ A)− d(S ∩B) + c(S \ {s}, T \ {t}) < d(A)

c(S \ {s}, T \ {t}) < d(S ∩ A) + d(S ∩B) = d(S \ {s})

Define S ′ = S \ {s}: d(S ′) > c(S ′, V \ S ′).
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Circulation Problem with Capacity Lower Bounds

Input: A digraph G = (V,E)

capacities c ∈ ZE
≥0

capacity lower bounds l ∈ ZE
≥0, 0 ≤ le ≤ ce

supply vector d ∈ ZV with
∑

v∈V dv = 0

Output: whether there exists f : E → Z≥0 s.t.∑
e∈δout(v)

f(e)−
∑

e∈δin(v)

f(e) = dv ∀v ∈ V

le ≤ f(e) ≤ ce ∀e ∈ E
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Removing Capacity Lower Bounds

[2, 5]
8 5

handling e = (u, v) with le > 0

d′u ← du − le

d′v ← dv + le

c′e ← ce − le

l′e ← 0

in old instance: flow is f(e) ∈ [le, ce] =⇒ f(e)− le ∈ [0, ce − le]

in new instance: flow is f(e)− le ∈ [0, c′e]
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Survey Design

Input: integers n, k ≥ 1 and E ⊆ [n]× [k]

integers 0 ≤ ci ≤ c′i,∀i ∈ [n]

integers 0 ≤ pj ≤ p′j,∀j ∈ [k]

Output: E ′ ⊆ E s.t.

ci ≤ |{j ∈ [k] : (i, j) ∈ E ′}| ≤ c′i, ∀i ∈ [n]

pj ≤ |{i ∈ [m] : (i, j) ∈ E ′}| ≤ p′j, ∀j ∈ [k]

Background

[n]: customers, [k]:products

ij ∈ E: customer i purchased product j and can do a survey

every customer i needs to do between ci and c′i surveys

every product j needs to collect between pj and p′j surveys
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Reduction to Circulation
vertices {s, t} ⊎ [n] ⊎ [k],

(i, j) ∈ E: (i, j) with bounds
[0, 1]

∀i: (s, i) with bounds [ci, c
′
i]

∀j: (j, t) with bounds [pj, p
′
i]

(t, s) with bounds [0,∞]

s t

customers surveys

[0, 1]

[ci, c
′
i] [pj , p

′
j ]

i j
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Reduction to Circulation
vertices {s, t} ⊎ [n] ⊎ [k],
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Airline Scheduling

Input: a DAG G = (V,E)

Output: the minimum number of disjoint paths in G to cover all
vertices

Background
vertex : a flight

edge (u, v): an aircraft that serves u
can serve v immediately

goal: minimize the number of aircrafts
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Reduction to the Circulation Problem

split v into (vin, vout)

add s, and (s, vin),∀v
add t, and (vout, t), ∀v
set lower and upper
bounds

add t→ s of capacity k

find minimum k s.t.
instance is feasible
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Image Segmentation

Input: A graph G = (V,E), with edge costs c ∈ ZE
≥0

two reward vectors a, b ∈ ZV
≥0

Output: a cut (A,B) of G so as to maximize∑
v∈A

av +
∑
v∈B

bv −
∑

(u,v)∈E:|{u,v}∩A|=1

c(u,v)

Background
av: the likelihood of v being a foreground pixel

bv: the likelihood of v being a background pixel

c(u,v): the penalty for separating u and v

need to maximize total reward - total penalty
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Reduction to Network
Flow

replace (u, v) with two
anti-parallel arcs

add source s and arcs
(s, v),∀v
add sink t and arcs
(v, t),∀v
set capacities

The cut value of (S = {s} ∪ A, {t} ∪B) is∑
v∈B

av +
∑
v∈A

bv +
∑

(u,v)∈E:|{u,v}∩A|=1

c(u,v)

=
∑
v∈V

(av + bv)−
(∑

v∈A

av +
∑
v∈B

bv −
∑

(u,v)∈E:|{u,v}∩A|=1

c(u,v)

)
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The cut value of (S = {s} ∪ A, {t} ∪B) is∑
v∈V

(av + bv)−
(∑

v∈A

av +
∑
v∈B

bv −
∑

(u,v)∈E:|{u,v}∩A|=1

c(u,v)

)
=

∑
v∈V

(av + bv)−
(
objective of (A,B)

)

So, maximizing the objective of (A,B) is equivalent to minimizing
the cut value.
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Project Selection

Input: A DAG G = (V,E)

revenue on vertices: p ∈ ZV ; pv’s could be negative.

Output: A set B ⊆ V satisfying the precedence constraints:

v ∈ B =⇒ u ∈ B, ∀(u, v) ∈ E

Motivation
Motivation: (u, v) ∈ E: u is a
prerequisite of v, to select v,
we must select u

Goal: maximize the revenue
subject to the precedence
constraint.

-3

-7

6

10

-2

-1
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Reduction

add source s and sink t

pv < 0: (s, v) of capacity −pv
pv > 0: (v, t) of capacity pv

L = {v : pv < 0}
R = {v : pv > 0}.
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s t
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∞

S = A ∪ {s}

T = B ∪ {t}

L

L

L

L

R

R

B is a valid solution ⇐⇒ c(S, T ) ̸=∞

when B is valid, c(S, T ) =
∑

v∈R pv −
∑

v∈B pv

so, to maximize
∑

v∈B pv, we need to minimize c(S, T ).
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More Applications

Graph orientation

maximum independent set (and minimum vertex cover) in a
bipartite graph

· · ·
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