

算法设计与分析(2026年春季学期)

Advanced Topics

授课老师: 栗师
南京大学计算机学院

Outline

1 Randomized Algorithms

- Freivald's matrix multiplication verification algorithm
- Randomized Algorithm for Global Min-Cut

2 Finding Small Vertex Covers: Fixed Parameterized Tractability

3 Approximation Algorithms using Greedy

4 Approximation Using LP Rounding and Primal Dual

5 More Advanced Algorithms *

Why do we use randomized algorithms?

- simpler algorithms: quick-sort, minimum-cut, and Max 3-SAT.
- faster algorithms: polynomial identity testing, Freivald's matrix multiplication verification algorithm, sampling and fingerprinting.
- mathematical beauty: Nash equilibrium for 0-sum game
- proof of existence of objects: union bound, Lovasz local lemma.

Price of using randomness

- The algorithm may be incorrect with some probability (Monte Carlo Algorithm)
- The algorithm may take a long time to terminate (Las Vegas Algorithm)

Outline

- 1 Randomized Algorithms
 - Freivald's matrix multiplication verification algorithm
 - Randomized Algorithm for Global Min-Cut
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *

Matrix Multiplication Verification

Input: 3 matrices $A, B, C \in \mathbb{Z}^{n \times n}$

Output: whether if $C = AB$

- trivial: compute $C' = AB$ and check if $C' = C$.
- time = matrix multiplication time
 - naive algorithm: $O(n^3)$
 - Strassen's algorithm: $O(n^{2.81})$
 - Best known algorithm for matrix multiplication: $O(n^{2.3719})$.
- **Freivald's algorithm:** **randomized** algorithm with $O(n^2)$ time.

Freivald's Algorithm: one experiment

- 1: randomly choose a vector $r \in \{0, 1\}^n$
- 2: **return** $ABr = Cr$

Q: What is the running time of the algorithm?

- $(AB)r$: matrix-multiplication time
- $A(Br)$: $O(n^2)$ time

Analysis of correctness

- $AB = C$: algorithm outputs true with probability 1.
- $AB \neq C$: algorithm may incorrectly output true.

Lemma If $AB \neq C$, then the algorithm outputs false with probability at least $1/2$.

Lemma If $AB \neq C$, then the algorithm outputs false with probability at least $1/2$.

Proof.

- $D := C - AB \neq 0$ $Cr = ABr \iff Dr = 0$
- $\exists i, j \in [n], D_{i,j} \neq 0$

$$D_i r = \sum_{j'=1}^n D_{i,j'} r_{j'} = X + Y, \quad X = \sum_{j' \in [n], j' \neq j} D_{i,j'} r_{j'}, Y = D_{i,j} r_j$$

$$\begin{aligned} \Pr[D_i r \neq 0] &= \Pr[Y \neq -X] \\ &= \sum_{x \in \mathbb{Z}} \Pr[X = x] \cdot \Pr[Y \neq -x | X = x] \\ &= \sum_{x \in \mathbb{Z}} \Pr[X = x] \cdot \Pr[D_{i,j} r_j \neq -x | X = x] \\ &\geq \sum_{x \in \mathbb{Z}} \Pr[X = x] \cdot \frac{1}{2} = \frac{1}{2}. \end{aligned}$$

□

- probabilities:

	true	false
$AB = C$	1	0
$AB \neq C$	$\leq 1/2$	$\geq 1/2$

Freivald's Algorithm: k experiments

- 1: **for** $t \leftarrow 1$ to k **do**
- 2: randomly choose a vector $r \in \{0, 1\}^n$
- 3: **if** $ABr \neq Cr$ **then return false**
- 4: **return true**

- probabilities with k experiments:

	true	false
$AB = C$	1	0
$AB \neq C$	$\leq 1/2^k$	$\geq 1 - 1/2^k$

- to achieve δ probability of mistake, need $\log_2 \frac{1}{\delta} = O(\log \frac{1}{\delta})$ experiments.

- Frievald's algorithm is a **Monte Carlo** algorithm.

Def. A Monte Carlo algorithm is a randomized algorithm whose output may be incorrect with some probability.

- For a Monte Carlo algorithm that outputs true/false, we say the algorithm has one-sided error if it makes error only if the correct output is true (or false).

Def. A **Las-Vegas** algorithm is a randomized algorithm that always outputs a correct solution but has randomized running time.

Table: Comparisons between Monta Carlo and Las Vegas Algorithms.

	correctness	running time
Monta Carlo	may be wrong	usually has good worst-case running time
Las Vegas	always correct	may take a long time and usually only has good “expected running time”

Lemma Given a Las Vegas algorithm \mathcal{A} with expected running time at most $T(n)$, we can design a Monte Carlo algorithm \mathcal{A}' with worst-case running time $O(T(n))$ and error at most 0.99.

- 0.99 can be changed to any $c < 1$

Proof.

- run \mathcal{A} for $100T(n)$ time
- if \mathcal{A} terminated, output what \mathcal{A} outputs
- otherwise, declare failure
- **Markov Inequality:**

$$\Pr[\mathcal{A} \text{ runs for more than } 100T(n) \text{ time}] \leq 1/100$$

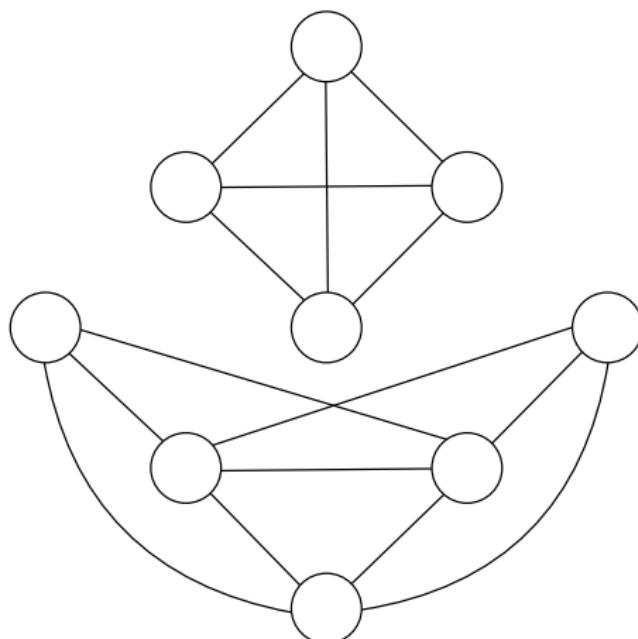
Outline

- 1 Randomized Algorithms
 - Freivald's matrix multiplication verification algorithm
 - Randomized Algorithm for Global Min-Cut
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *

Global Min-Cut Problem

Input: a connected graph $G = (V, E)$

Output: the minimum number of edges whose removal will disconnect G



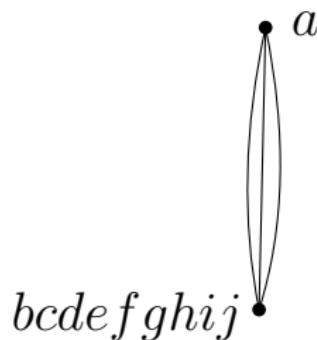
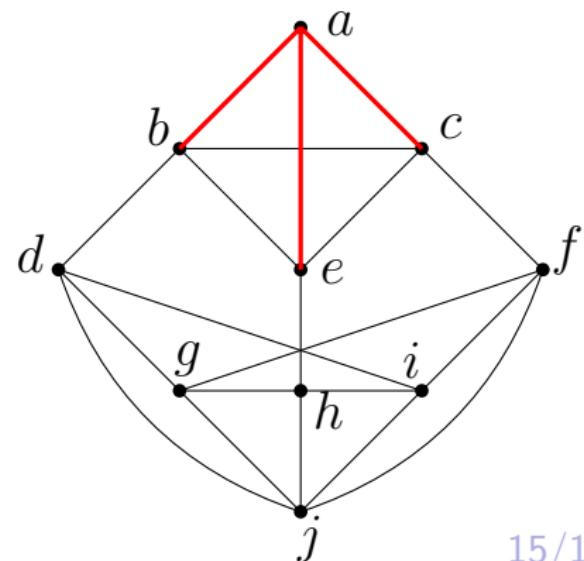
Solving Global Min-Cut Using s - t Min-Cut

- 1: let G' be the directed graph obtained from G by replacing every edge with two anti-parallel edges
- 2: **for** a fixed $s \in V$ and every pair $t \in V \setminus \{s\}$ **do**
- 3: obtain the minimum cut separating s and t in G , by solving the maximum flow instance with graph G' , source s and sink t
- 4: output the smallest minimum cut we found

- Time = $O(n) \times (\text{Time for Maximum Flow})$

Karger's Randomized Algorithm for Min-Cut

- 1: $G' = (V', E') \leftarrow G$
- 2: **while** $|V'| > 2$ **do**
- 3: pick $uv \in E'$ uniformly at random
- 4: contract uv in G' , keeping parallel edges, but not self-loops
- 5: **return** the cut in G correspondent to E'



Obs. Contraction does not decrease size of min-cut.

Lemma If $G' = (V', E')$ has size of min-cut being c , then $|E'| \geq |V'|c/2$

Proof.

Every vertex will have degree at least c , and thus $2|E'| \geq |V'|c$. □

- let $C \subseteq E$ be a fixed min-cut of G
- an iteration fails if we chose some edge $e \in C$ to contract.

Coro. Focus on some iteration where we have the graph $G' = (V', E')$ with $n' = |V'|$ at the beginning. Suppose all previous iterations succeed. Then the probability this iteration fails is at most $\frac{c}{n'c/2} = \frac{2}{n'}$.

- The probability that the algorithm succeeds is at least

$$\begin{aligned}
 & \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{3}\right) \\
 &= \frac{n-2}{n} \times \frac{n-3}{n-1} \times \frac{n-4}{n-2} \times \cdots \times \frac{1}{3} = \frac{2}{n(n-1)}
 \end{aligned}$$

Coro. Any graph G has at most $\frac{n(n-1)}{2}$ distinct minimum cuts.

- $A := \frac{n(n-1)}{2}$: algorithm succeeds with probability at least $\frac{1}{A}$
- Running the algorithm for Ak times will increase the probability to

$$1 - (1 - \frac{1}{A})^{Ak} \geq 1 - e^{-k}.$$

- To get a success probability of $1 - \delta$, run the algorithm for $O(n^2 \log \frac{1}{\delta})$ times.

Equivalent Algorithm

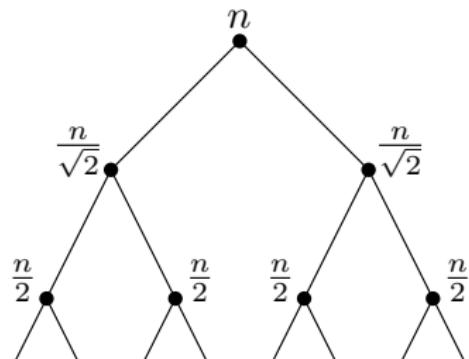
- 1: give every edge a weight in $[0, 1]$ uniformly at random.
- 2: solve the MST on the graph G with the weights, using either Kruskal or Prim's algorithm
- 3: remove the heaviest edge in the MST,
- 4: let U and $V \setminus U$ be the vertex sets of two components
- 5: **return** the cut in G between U and $V \setminus U$

- run it once: time = $O(m + n \log n)$
- to get success probability $1 - \delta$: time = $O(n^2(m + n \log n) \log \frac{1}{\delta})$

Karger-Stein: A Faster Algorithm

Karger-Stein($G = (V, E)$)

- 1: **if** $|V| \leq 6$ **then return** min cut of G directly
- 2: **repeat twice** and return the smaller cut:
- 3: run Karger(G) down to $\lceil n/\sqrt{2} \rceil$ vertices, to obtain G'
- 4: consider the candidate cut returned by Karger-Stein(G')



- Running time:
$$T(n) = 2T\left(\frac{n}{\sqrt{2}}\right) + O(n^2)$$
- $T(n) = O(n^2 \log n)$

Karger-Stein($G = (V, E)$)

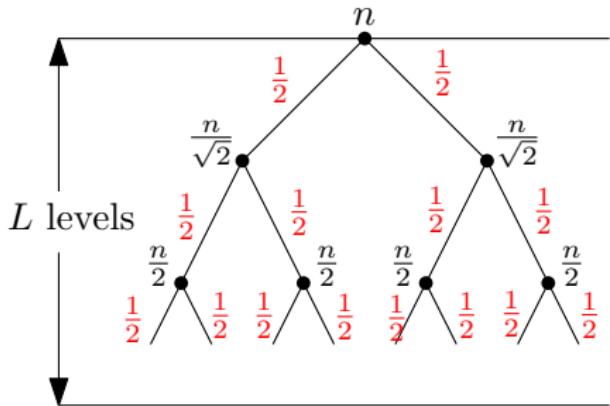
- 1: **if** $|V| \leq 6$ **then return** min cut of G directly
- 2: **repeat** twice and return the smaller cut:
- 3: run Karger(G) down to $\lceil n/\sqrt{2} \rceil + 1$ vertices, to obtain G'
- 4: consider the candidate cut returned by Karger-Stein(G')

Analysis of Probability of Success

- running Karger(G) down to $\lceil n/\sqrt{2} \rceil + 1$ vertices, success probability is at least

$$\begin{aligned} & \frac{n-2}{n} \times \frac{n-3}{n-1} \times \cdots \times \frac{\lceil n/\sqrt{2} \rceil}{\lceil n/\sqrt{2} \rceil + 2} = \frac{(\lceil n/\sqrt{2} \rceil + 1) \lceil n/\sqrt{2} \rceil}{n(n-1)} \\ & \geq \frac{n^2/2 + n/\sqrt{2}}{n^2 - n} \geq \frac{1}{2} \end{aligned}$$

- recursion for Probability: $P(n) \geq 1 - \left(1 - \frac{1}{2}P\left(\frac{n}{\sqrt{2}}\right)\right)^2$



- every edge is chosen w.p $1/2$
- success if we choose some root-to-leaf path
- what is the success probability in terms of L ?

Lemma $P_L \geq \frac{1}{L+1}$.

Proof.

- $L = 0$: a singleton, holds trivially.
- induction:

$$\begin{aligned}
 P_L &= 1 - \left(1 - \frac{1}{2}P_{L-1}\right)^2 \geq 1 - \left(1 - \frac{1}{2L}\right)^2 = \frac{1}{L} - \frac{1}{4L^2} \\
 &= \frac{4L-1}{4L^2} \geq \frac{1}{L+1}
 \end{aligned}$$

□

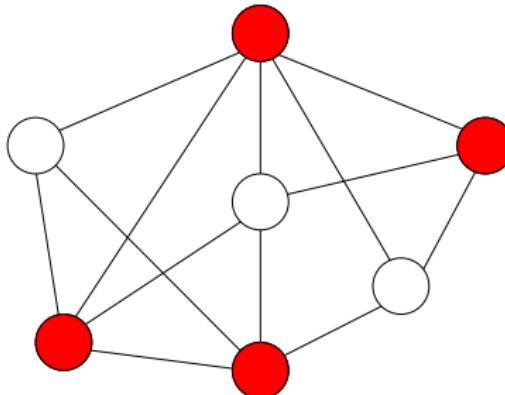
Karger-Stein($G = (V, E)$)

- 1: **if** $|V| \leq 6$ **then return** min cut of G directly
- 2: **repeat** twice and return the smaller cut:
- 3: run Karger(G) down to $\lceil n/\sqrt{2} \rceil + 1$ vertices, to obtain G'
- 4: consider the candidate cut returned by Karger-Stein(G')

- Running time: $O(n^2 \log n)$
- Success probability: $\Omega\left(\frac{1}{\log n}\right)$
- Repeat $O(\log n)$ times can increase the probability to a constant

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *



Vertex-Cover Problem

Input: $G = (V, E)$

Output: a vertex cover C with minimum $|C|$

- (The decision version of) vertex-cover is NP-complete.

Q: What if we are only interested in a vertex cover of size at most k , for some small number k ?

Q: What if we are only interested in a vertex cover of size at most k , for some constant k ?

- Motivation: if the minimum vertex cover is too big, then the solution becomes meaningless.
- Enumeration gives a $O(kn^{k+1})$ -time algorithm.
- For moderately large k (e.g., $n = 1000, k = 10$), algorithm is impractical.

Lemma There is an algorithm with running time $O(2^k \cdot kn)$ to check if G contains a vertex cover of size at most k or not.

- Remark: m does not appear in the running time. Indeed, if $m > kn$, then there is no vertex cover of size k .

Vertex-Cover($G' = (V', E')$, k)

- 1: **if** $|E'| = \emptyset$ **then return true**
- 2: **if** $k = 0$ **then return false**
- 3: pick any edge $(u, v) \in E'$
- 4: **return** Vertex-Cover($G' \setminus u, k - 1$) or Vertex-Cover($G' \setminus v, k - 1$)

- $G' \setminus u$: the graph obtained from G' by removing u and its incident edges
- Correctness: if $(u, v) \in E'$, we must choose u or choose v to cover (u, v) .
- Running time: 2^k recursions and each recursion has running time $O(kn)$.

Def. A problem is fixed parameterized tractable (FPT) with respect to a parameter k , if it can be solved in $f(k) \cdot \text{poly}(n)$ time, where n is the size of its input and $\text{poly}(n) = \bigcup_{t=0}^{\infty} O(n^t)$.

- Vertex cover is fixed parameterized tractable with respect to the size k of the optimum solution.

Outline

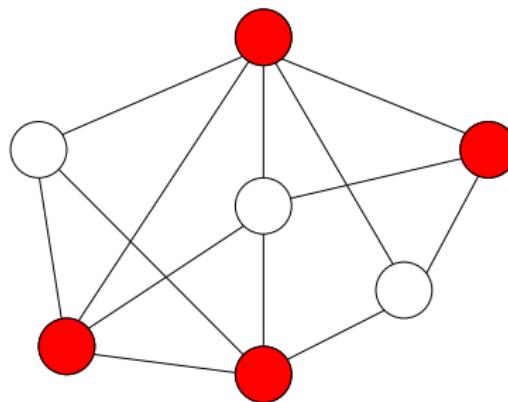
- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
 - 2-Approximation Algorithm for Vertex Cover
 - f -Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1 - \frac{1}{e})$ -Approximation for Maximum Coverage
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
 - 2-Approximation Algorithm for Vertex Cover
 - f -Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1 - \frac{1}{e})$ -Approximation for Maximum Coverage
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *

Vertex Cover Problem

Def. Given a graph $G = (V, E)$, a **vertex cover** of G is a subset $C \subseteq V$ such that for every $(u, v) \in E$ then $u \in C$ or $v \in C$.



Vertex-Cover Problem

Input: $G = (V, E)$

Output: a vertex cover C with minimum $|C|$

First Try: A “Natural” Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover

```
1:  $E' \leftarrow E, C \leftarrow \emptyset$ 
2: while  $E' \neq \emptyset$  do
3:   let  $v$  be the vertex of the maximum degree in  $(V, E')$ 
4:    $C \leftarrow C \cup \{v\}$ ,
5:   remove all edges incident to  $v$  from  $E'$ 
6: return  $C$ 
```

Theorem Greedy algorithm is an $(\ln n + 1)$ -approximation for vertex-cover.

- We prove it for the more general set cover problem
- The logarithmic factor is tight for this algorithm

2-Approximation Algorithm for Vertex Cover

```
1:  $E' \leftarrow E, C \leftarrow \emptyset$ 
2: while  $E' \neq \emptyset$  do
3:   let  $(u, v)$  be any edge in  $E'$ 
4:    $C \leftarrow C \cup \{u, v\}$ 
5:   remove all edges incident to  $u$  and  $v$  from  $E'$ 
6: return  $C$ 
```

- counter-intuitive: adding both u and v to C seems wasteful
- intuition for the 2-approximation ratio:
 - optimum solution C^* must cover edge (u, v) , using either u or v
 - we select both, so we are always ahead of the optimum solution
 - we use at most 2 times more vertices than C^* does

2-Approximation Algorithm for Vertex Cover

```
1:  $E' \leftarrow E, C \leftarrow \emptyset$ 
2: while  $E' \neq \emptyset$  do
3:   let  $(u, v)$  be any edge in  $E'$ 
4:    $C \leftarrow C \cup \{u, v\}$ 
5:   remove all edges incident to  $u$  and  $v$  from  $E'$ 
6: return  $C$ 
```

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.

Proof.

- Let E' be the set of edges (u, v) considered in Step 3
- Observation: E' is a matching and $|C| = 2|E'|$
- To cover E' , the optimum solution needs $|E'|$ vertices

□

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
 - 2-Approximation Algorithm for Vertex Cover
 - f -Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1 - \frac{1}{e})$ -Approximation for Maximum Coverage
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *

Set Cover with Bounded Frequency f

Input: $U, |U| = n$: ground set

$$S_1, S_2, \dots, S_m \subseteq U$$

every $j \in U$ appears in at most f subsets in
 $\{S_1, S_2, \dots, S_m\}$

Output: minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$

Vertex Cover = Set Cover with Frequency 2

- edges \Leftrightarrow elements
- vertices \Leftrightarrow sets
- every edge (element) can be covered by 2 vertices (sets)

f -Approximation Algorithm for Set Cover with Frequency f

```
1:  $C \leftarrow \emptyset$ 
2: while  $\bigcup_{i \in C} S_i \neq U$  do
3:   let  $e$  be any element in  $U \setminus \bigcup_{i \in C} S_i$ 
4:    $C \leftarrow C \cup \{i \in [m] : e \in S_i\}$ 
5: return  $C$ 
```

Theorem The algorithm is a f -approximation algorithm.

Proof.

- Let U' be the set of all elements e considered in Step 3
- Observation: no set S_i contains two elements in U'
- To cover U' , the optimum solution needs $|U'|$ sets
- $C \leq f \cdot |U'|$

□

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
 - 2-Approximation Algorithm for Vertex Cover
 - f -Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1 - \frac{1}{e})$ -Approximation for Maximum Coverage
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *

Set Cover

Input: $U, |U| = n$: ground set

$$S_1, S_2, \dots, S_m \subseteq U$$

Output: minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$

Greedy Algorithm for Set Cover

- 1: $C \leftarrow \emptyset, U' \leftarrow U$
- 2: **while** $U' \neq \emptyset$ **do**
- 3: choose the i that maximizes $|U' \cap S_i|$
- 4: $C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i$
- 5: **return** C

- g : minimum number of sets needed to cover U

Lemma Let $u_t, t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$u_t \leq \left(1 - \frac{1}{g}\right) \cdot u_{t-1}.$$

Proof.

- Consider the g sets $S_1^*, S_2^*, \dots, S_g^*$ in optimum solution
- $S_1^* \cup S_2^* \cup \dots \cup S_g^* = U$
- at beginning of step t , some set in $S_1^*, S_2^*, \dots, S_g^*$ must contain $\geq \frac{u_{t-1}}{g}$ uncovered elements
- $u_t \leq u_{t-1} - \frac{u_{t-1}}{g} = \left(1 - \frac{1}{g}\right) u_{t-1}$. □

Proof of $(\ln n + 1)$ -approximation.

- Let $t = \lceil g \cdot \ln n \rceil$. $u_0 = n$. Then

$$u_t \leq \left(1 - \frac{1}{g}\right)^{g \cdot \ln n} \cdot n < e^{-\ln n} \cdot n = n \cdot \frac{1}{n} = 1.$$

- So $u_t = 0$, approximation ratio $\leq \frac{\lceil g \cdot \ln n \rceil}{g} \leq \ln n + 1$. □

- A more careful analysis gives a H_n -approximation, where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ is the n -th harmonic number.
- $\ln(n + 1) < H_n < \ln n + 1$.

$(1 - c) \ln n$ -hardness for any $c = \Omega(1)$

Let $c > 0$ be any constant. There is no polynomial-time $(1 - c) \ln n$ -approximation algorithm for set-cover, unless

- $\text{NP} \subseteq \text{quasi-poly-time}$, [Lund, Yannakakis 1994; Feige 1998]
- $\text{P} = \text{NP}$. [Dinur, Steuer 2014]

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
 - 2-Approximation Algorithm for Vertex Cover
 - f -Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1 - \frac{1}{e})$ -Approximation for Maximum Coverage
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *

- set cover: use smallest number of sets to cover all elements.
- **maximum coverage**: use k sets to cover maximum number of elements

Maximum Coverage

Input: $U, |U| = n$: ground set,

$$S_1, S_2, \dots, S_m \subseteq U, \quad k \in [m]$$

Output: $C \subseteq [m], |C| = k$ with the maximum $\bigcup_{i \in C} S_i$

Greedy Algorithm for Maximum Coverage

- 1: $C \leftarrow \emptyset, U' \leftarrow U$
- 2: **for** $t \leftarrow 1$ to k **do**
- 3: choose the i that maximizes $|U' \cap S_i|$
- 4: $C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i$
- 5: **return** C

Theorem Greedy algorithm gives $(1 - \frac{1}{e})$ -approximation for maximum coverage.

Proof.

- o : max. number of elements that can be covered by k sets.
- p_t : #(covered elements) by greedy algorithm after step t
- $p_t \geq p_{t-1} + \frac{o - p_{t-1}}{k}$
- $o - p_t \leq o - p_{t-1} - \frac{o - p_{t-1}}{k} = \left(1 - \frac{1}{k}\right)(o - p_{t-1})$
- $o - p_k \leq \left(1 - \frac{1}{k}\right)^k (o - p_0) \leq \frac{1}{e} \cdot o$
- $p_k \geq \left(1 - \frac{1}{e}\right) \cdot o$

□

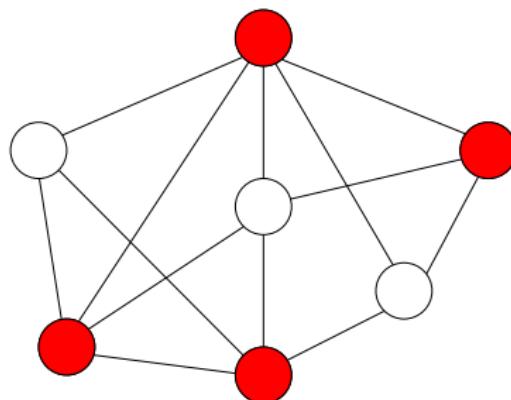
Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
- 4 Approximation Using LP Rounding and Primal Dual
 - 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming Rounding
 - 2-Approximation Algorithm for Weighted Vertex Cover Using Primal-Dual
 - 2-Approximation Algorithm for Unrelated Machine Scheduling
- 5 More Advanced Algorithms *

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
- 4 Approximation Using LP Rounding and Primal Dual
 - 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming Rounding
 - 2-Approximation Algorithm for Weighted Vertex Cover Using Primal-Dual
 - 2-Approximation Algorithm for Unrelated Machine Scheduling
- 5 More Advanced Algorithms *

Def. Given a graph $G = (V, E)$, a **vertex cover** of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.



Weighted Vertex-Cover Problem

Input: $G = (V, E)$ with vertex weights $\{w_v\}_{v \in V}$

Output: a vertex cover S with minimum $\sum_{v \in S} w_v$

Integer Programming for Weighted Vertex Cover

- For every $v \in V$, let $x_v \in \{0, 1\}$ indicate whether we select v in the vertex cover S
- The integer programming for weighted vertex cover:

$$\begin{aligned} (\text{IP}_{\text{wvc}}) \quad \min \quad & \sum_{v \in V} w_v x_v \quad \text{s.t.} \\ & x_u + x_v \geq 1 \quad \forall (u, v) \in E \\ & x_v \in \{0, 1\} \quad \forall v \in V \end{aligned}$$

- $(\text{IP}_{\text{wvc}}) \Leftrightarrow$ weighted vertex cover
- Thus it is NP-hard to solve integer programmings in general

- Integer programming for WVC:

$$\begin{aligned}
 (\text{IP}_{\text{WVC}}) \quad \min \quad & \sum_{v \in V} w_v x_v \quad \text{s.t.} \\
 & x_u + x_v \geq 1 \quad \forall (u, v) \in E \\
 & x_v \in \{0, 1\} \quad \forall v \in V
 \end{aligned}$$

- Linear programming relaxation for WVC:

$$\begin{aligned}
 (\text{LP}_{\text{WVC}}) \quad \min \quad & \sum_{v \in V} w_v x_v \quad \text{s.t.} \\
 & x_u + x_v \geq 1 \quad \forall (u, v) \in E \\
 & x_v \in [0, 1] \quad \forall v \in V
 \end{aligned}$$

- let $\text{IP} = \text{value of } (\text{IP}_{\text{WVC}})$, $\text{LP} = \text{value of } (\text{LP}_{\text{WVC}})$
- Then, $\text{LP} \leq \text{IP}$

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

- 1: Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$
- 2: Thus, $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- 3: Let $S = \{u \in V : x_u \geq 1/2\}$ and output S

Lemma S is a vertex cover of G .

Proof.

- Consider any edge $(u, v) \in E$: we have $x_u^* + x_v^* \geq 1$
- Thus, either $x_u^* \geq 1/2$ or $x_v^* \geq 1/2$
- Thus, either $u \in S$ or $v \in S$.

□

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

- 1: Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$
- 2: Thus, $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- 3: Let $S = \{u \in V : x_u \geq 1/2\}$ and output S

Lemma S is a vertex cover of G .

Lemma $\text{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot LP$.

Proof.

$$\begin{aligned}\text{cost}(S) &= \sum_{u \in S} w_u \leq \sum_{u \in S} w_u \cdot 2x_u^* = 2 \sum_{u \in S} w_u \cdot x_u^* \\ &\leq 2 \sum_{u \in V} w_u \cdot x_u^* = 2 \cdot LP.\end{aligned}$$

□

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

- 1: Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$
- 2: Thus, $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- 3: Let $S = \{u \in V : x_u^* \geq 1/2\}$ and output S

Lemma S is a vertex cover of G .

Lemma $\text{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot LP$.

Theorem Algorithm is a 2-approximation algorithm for WVC.

Proof.

$$\text{cost}(S) \leq 2 \cdot LP \leq 2 \cdot IP = 2 \cdot \text{cost(best vertex cover)}.$$

□

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
- 4 Approximation Using LP Rounding and Primal Dual
 - 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming Rounding
 - 2-Approximation Algorithm for Weighted Vertex Cover Using Primal-Dual
 - 2-Approximation Algorithm for Unrelated Machine Scheduling
- 5 More Advanced Algorithms *

LP Relaxation

$$\min \sum_{v \in V} w_v x_v$$

$$\begin{aligned} x_u + x_v &\geq 1 & \forall (u, v) \in E \\ x_v &\geq 0 & \forall v \in V \end{aligned}$$

Dual LP

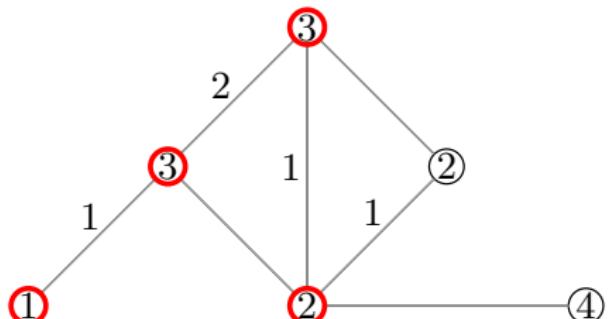
$$\max \sum_{e \in E} y_e$$

$$\begin{aligned} \sum_{e \in \delta(v)} y_e &\leq w_v & \forall v \in V \\ y_e &\geq 0 & \forall e \in E \end{aligned}$$

- Algorithm constructs **integral primal solution** x and dual solution y simultaneously.

Primal-Dual Algorithm for Weighted Vertex Cover

- 1: $x \leftarrow 0, y \leftarrow 0$, all edges said to be **uncovered**
- 2: **while** there exists at least one uncovered edge **do**
- 3: take such an edge e arbitrarily
- 4: increasing y_e until the dual constraint for one end-vertex v of e becomes tight
- 5: $x_v \leftarrow 1$, claim all edges incident to v are **covered**
- 6: **return** x



Lemma

- 1 x satisfies all primal constraints
- 2 y satisfies all dual constraints
- 3 $P \leq 2D \leq 2D^* \leq 2 \cdot \text{opt}$
 $P := \sum_{v \in V} x_v$: value of x
 $D := \sum_{e \in E} y_e$: value of y
 D^* : dual LP value

Proof of $P \leq 2D$.

$$\begin{aligned} P &= \sum_{v \in V} w_v x_v \leq \sum_{v \in V} x_v \sum_{e \in \delta(v)} y_e = \sum_{(u,v) \in E} y_{(u,v)} (x_u + x_v) \\ &\leq 2 \sum_{e \in E} y_e = 2D. \end{aligned}$$

□

- a more general framework: construct an arbitrary **maximal** dual solution y ; choose the vertices whose dual constraints are tight
- y is maximal: increasing any coordinate y_e makes y infeasible
- primal-dual algorithms do not need to solve LPs
- LPs are used in analysis only
- faster than LP-rounding algorithm in general

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
- 4 Approximation Using LP Rounding and Primal Dual
 - 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming Rounding
 - 2-Approximation Algorithm for Weighted Vertex Cover Using Primal-Dual
 - 2-Approximation Algorithm for Unrelated Machine Scheduling
- 5 More Advanced Algorithms *

Unrelated Machine Scheduling

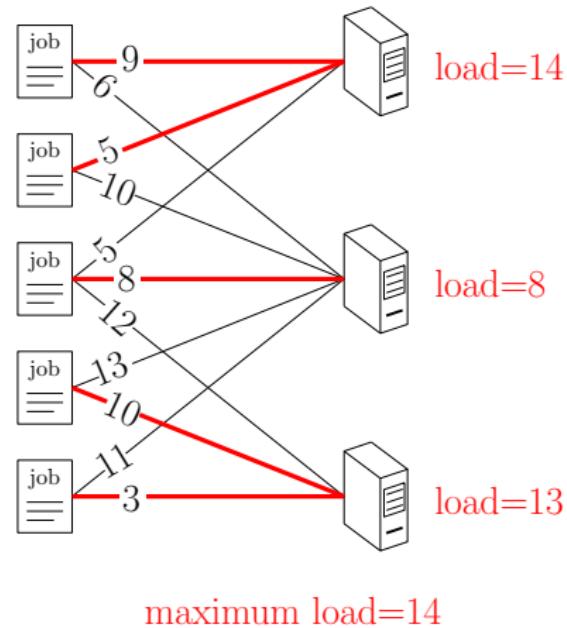
Input: $J, |J| = n$: jobs

$M, |M| = m$: machines

p_{ij} : processing time of job j on machine i

Output: assignment $\sigma : J \mapsto M$, so as to minimize makespan:

$$\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_{ij}$$



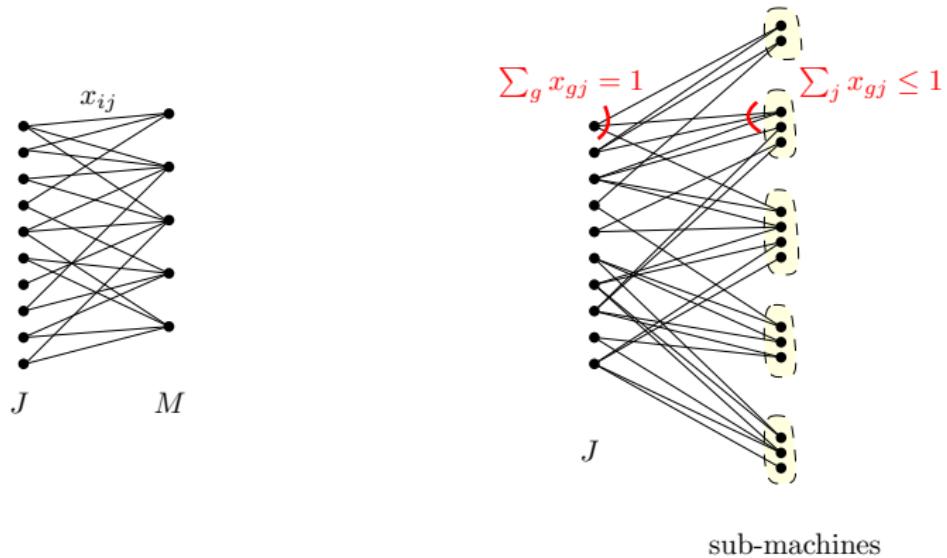
- Assumption: we are given a target makespan T , and $p_{ij} \in [0, T] \cup \{\infty\}$
- x_{ij} : fraction of j assigned to i

$$\sum_i x_{ij} = 1 \quad \forall j \in J$$

$$\sum_j p_{ij} x_{ij} \leq T \quad \forall i \in M$$

$$x_{ij} \geq 0 \quad \forall ij$$

2-Approximate Rounding Algorithm of Shmoys-Tardos

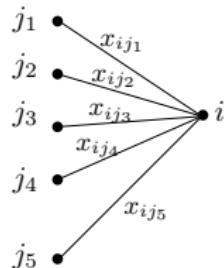


Obs. x between J and sub-machines is a point in the bipartite-matching polytope, where all jobs in J are matched.

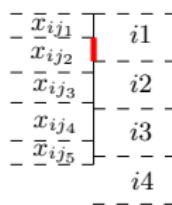
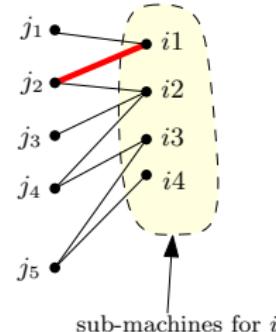
- Recall bipartite matching polytope is integral.
- x is a **convex combination** of matchings.
- Any matching in the combination covers all jobs J .

Lemma Any matching in the combination gives an schedule of makespan $\leq 2T$.

Lemma Any matching in the combination gives an schedule of makespan $\leq 2T$.



$$p_{ij_1} \geq p_{ij_2} \geq \dots \geq p_{ij_5}$$



Proof.

- focus on machine i , let i_1, i_2, \dots, i_a be the sub-machines for i
- assume job k_t is assigned to sub-machine i_t .

$$\begin{aligned}
 (\text{load on } i) &= \sum_{t=1}^a p_{ik_t} \leq p_{ik_1} + \sum_{t=2}^a \sum_j x_{i_{t-1}j} \cdot p_{ij} \\
 &\leq p_{ik_1} + \sum_j x_{ij} p_{ij} \leq T + T = 2T.
 \end{aligned}$$

□

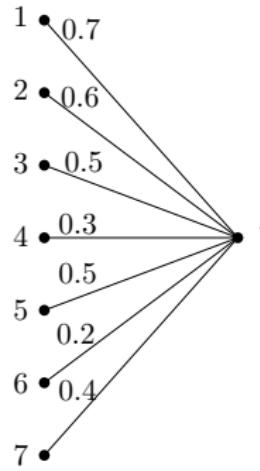
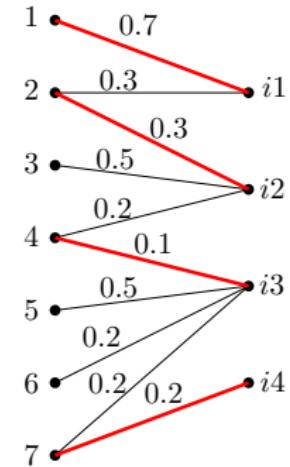
- fix i , use p_j for p_{ij}
- $p_1 \geq p_2 \geq \dots \geq p_7$
- worst case:
 - $1 \rightarrow i1, 2 \rightarrow i2$
 - $4 \rightarrow i3, 7 \rightarrow i4$

$$p_1 \leq T$$

$$p_2 \leq 0.7p_1 + 0.3p_2$$

$$p_4 \leq 0.3p_2 + 0.5p_3 + 0.2p_4$$

$$p_7 \leq 0.1p_4 + 0.5p_5 + 0.2p_6 + 0.2p_7$$



$$p_1 + p_2 + p_4 + p_7 \leq T + (0.7p_1 + 0.3p_2) + (0.3p_2 + 0.5p_3 + 0.2p_4) + (0.1p_4 + 0.5p_5 + 0.2p_6 + 0.2p_7)$$

$$\leq T + (0.7p_1 + 0.6p_2 + 0.5p_3 + 0.3p_4 + 0.5p_5 + 0.2p_6 + 0.4p_7)$$

$$\leq T + T = 2T$$

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *
 - Randomized Select and Quicksort
 - $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
 - Solving NP-Hard Problems on Bounded-Tree-Width Graphs
 - FPTAS for Knapsack Problem
 - PTAS for Makespan Minimization on Identical Machines

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *
 - Randomized Select and Quicksort
 - $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
 - Solving NP-Hard Problems on Bounded-Tree-Width Graphs
 - FPTAS for Knapsack Problem
 - PTAS for Makespan Minimization on Identical Machines

Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

29	38	45	25	15	37	17	64	82	75	94	92	69	76	85
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

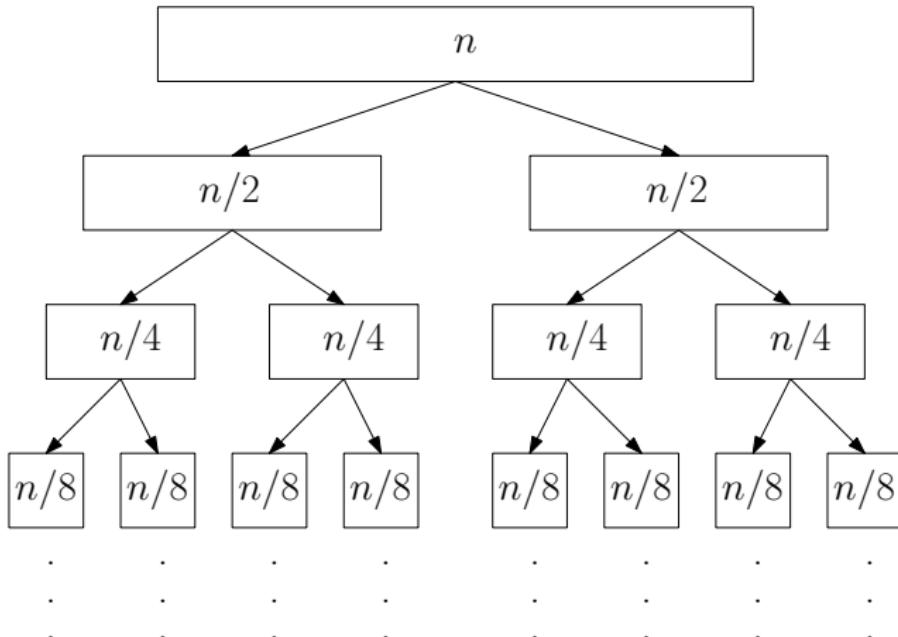
25	15	17	29	38	45	37	64	82	75	94	92	69	76	85
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Quicksort

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow$ lower median of A
- 3: $A_L \leftarrow$ elements in A that are less than x \\\ Divide
- 4: $A_R \leftarrow$ elements in A that are greater than x \\\ Divide
- 5: $B_L \leftarrow$ quicksort($A_L, A_L.size$) \\\ Conquer
- 6: $B_R \leftarrow$ quicksort($A_R, A_R.size$) \\\ Conquer
- 7: $t \leftarrow$ number of times x appear A
- 8: return the array obtained by concatenating B_L , the array containing t copies of x , and B_R

- Recurrence $T(n) \leq 2T(n/2) + O(n)$
- Running time = $O(n \log n)$



- Each level has total running time $O(n)$
- Number of levels = $O(\log n)$
- Total running time = $O(n \log n)$

Randomized Quicksort Algorithm

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow$ a random element of A (x is called a **pivot**)
- 3: $A_L \leftarrow$ elements in A that are less than x \\\ Divide
- 4: $A_R \leftarrow$ elements in A that are greater than x \\\ Divide
- 5: $B_L \leftarrow$ quicksort($A_L, A_L.size$) \\\ Conquer
- 6: $B_R \leftarrow$ quicksort($A_R, A_R.size$) \\\ Conquer
- 7: $t \leftarrow$ number of times x appear A
- 8: return the array obtained by concatenating B_L , the array containing t copies of x , and B_R

Variant of Randomized Quicksort Algorithm

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: **repeat**
- 3: $x \leftarrow$ a random element of A (x is called a **pivot**)
- 4: $A_L \leftarrow$ elements in A that are less than x \ \ \ Divide
- 5: $A_R \leftarrow$ elements in A that are greater than x \ \ \ Divide
- 6: **until** $A_L.size \leq 3n/4$ and $A_R.size \leq 3n/4$
- 7: $B_L \leftarrow$ quicksort($A_L, A_L.size$) \ \ \ Conquer
- 8: $B_R \leftarrow$ quicksort($A_R, A_R.size$) \ \ \ Conquer
- 9: $t \leftarrow$ number of times x appear A
- 10: return the array obtained by concatenating B_L , the array containing t copies of x , and B_R

Analysis of Variant

- 1: $x \leftarrow$ a random element of A
- 2: $A_L \leftarrow$ elements in A that are less than x
- 3: $A_R \leftarrow$ elements in A that are greater than x

Q: What is the probability that $A_L.size \leq 3n/4$ and $A_R.size \leq 3n/4$?

A: At least $1/2$

Analysis of Variant

```
1: repeat  
2:    $x \leftarrow$  a random element of  $A$   
3:    $A_L \leftarrow$  elements in  $A$  that are less than  $x$   
4:    $A_R \leftarrow$  elements in  $A$  that are greater than  $x$   
5: until  $A_L.size \leq 3n/4$  and  $A_R.size \leq 3n/4$ 
```

Q: What is the expected number of iterations the above procedure takes?

A: At most 2

- Suppose an experiment succeeds with probability $p \in (0, 1]$, independent of all previous experiments.

- 1: **repeat**
- 2: run an experiment
- 3: **until** the experiment succeeds

Lemma The expected number of experiments we run in the above procedure is $1/p$.

Lemma The expected number of experiments we run in the above procedure is $1/p$.

Proof

$$\begin{aligned}\text{Expectation} &= p + (1 - p)p \times 2 + (1 - p)^2 p \times 3 + (1 - p)^3 p \times 4 \\ &\quad + \cdots \\ &= p \sum_{i=1}^{\infty} (1 - p)^{i-1} i \quad = \quad p \sum_{j=1}^{\infty} \sum_{i=j}^{\infty} (1 - p)^{i-1} \\ &= p \sum_{j=1}^{\infty} (1 - p)^{j-1} \frac{1}{1 - (1 - p)} \quad = \quad \sum_{j=1}^{\infty} (1 - p)^{j-1} \\ &= (1 - p)^0 \frac{1}{1 - (1 - p)} = 1/p\end{aligned}$$

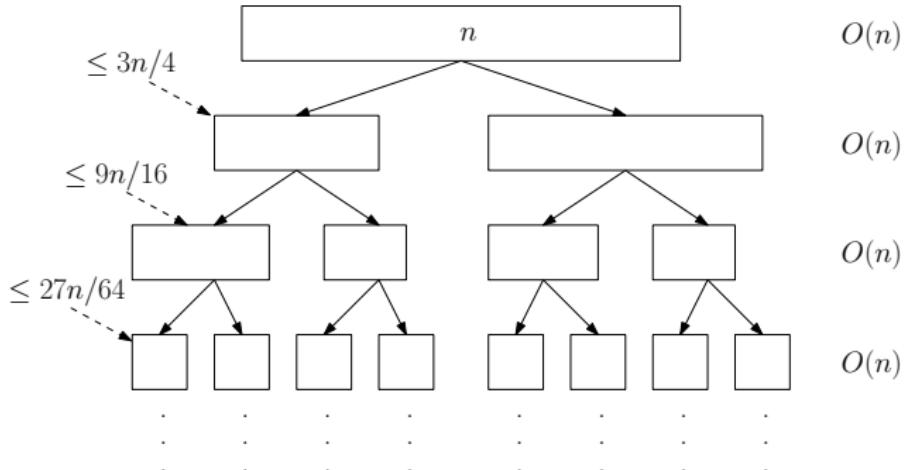
Variant Randomized Quicksort Algorithm

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: **repeat**
- 3: $x \leftarrow$ a random element of A (x is called a **pivot**)
- 4: $A_L \leftarrow$ elements in A that are less than x \ \ Divide
- 5: $A_R \leftarrow$ elements in A that are greater than x \ \ Divide
- 6: **until** $A_L.size \leq 3n/4$ and $A_R.size \leq 3n/4$
- 7: $B_L \leftarrow$ quicksort($A_L, A_L.size$) \ \ Conquer
- 8: $B_R \leftarrow$ quicksort($A_R, A_R.size$) \ \ Conquer
- 9: $t \leftarrow$ number of times x appear A
- 10: return the array obtained by concatenating B_L , the array containing t copies of x , and B_R

Analysis of Variant

- Divide and Combine: takes $O(n)$ time
- Conquer: break an array of size n into two arrays, each has size at most $3n/4$. Recursively sort the 2 sub-arrays.



- Number of levels $\leq \log_{4/3} n = O(\log n)$

Randomized Quicksort Algorithm

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow$ a random element of A (x is called a **pivot**)
- 3: $A_L \leftarrow$ elements in A that are less than x \\\ Divide
- 4: $A_R \leftarrow$ elements in A that are greater than x \\\ Divide
- 5: $B_L \leftarrow$ quicksort($A_L, A_L.size$) \\\ Conquer
- 6: $B_R \leftarrow$ quicksort($A_R, A_R.size$) \\\ Conquer
- 7: $t \leftarrow$ number of times x appear A
- 8: return the array obtained by concatenating B_L , the array containing t copies of x , and B_R

- Intuition: the quicksort algorithm should be better than the variant.

Analysis of Randomized Quicksort Algorithm

- $T(n)$: an upper bound on the **expected** running time of the randomized quicksort algorithm on n elements
- Assuming we choose the element of rank i as the pivot.
- The left sub-instance has size at most $i - 1$
- The right sub-instance has size at most $n - i$
- Thus, the expected running time in this case is $(T(i - 1) + T(n - i)) + O(n)$
- Overall, we have

$$\begin{aligned} T(n) &= \frac{1}{n} \sum_{i=1}^n (T(i - 1) + T(n - i)) + O(n) \\ &= \frac{2}{n} \sum_{i=0}^{n-1} T(i) + O(n) \end{aligned}$$

- Can prove $T(n) \leq c(n \log n)$ for some constant c by reduction

Analysis of Randomized Quicksort Algorithm

The induction step of the proof:

$$\begin{aligned} T(n) &\leq \frac{2}{n} \sum_{i=0}^{n-1} T(i) + c'n \leq \frac{2}{n} \sum_{i=0}^{n-1} ci \log i + c'n \\ &\leq \frac{2c}{n} \left(\sum_{i=0}^{\lfloor n/2 \rfloor - 1} i \log \frac{n}{2} + \sum_{i=\lfloor n/2 \rfloor}^{n-1} i \log n \right) + c'n \\ &\leq \frac{2c}{n} \left(\frac{n^2}{8} \log \frac{n}{2} + \frac{3n^2}{8} \log n \right) + c'n \\ &= c \left(\frac{n}{4} \log n - \frac{n}{4} + \frac{3n}{4} \log n \right) + c'n \\ &= cn \log n - \frac{cn}{4} + c'n \leq cn \log n \quad \text{if } c \geq 4c' \end{aligned}$$

Indirect Analysis Using Number of Comparisons

- Running time = $O(\text{number of comparisons})$
- $\forall 1 \leq i < j \leq n$, $D_{i,j}$ indicates if we compared the i -th smallest element with the j -th smallest element
- number of comparisons = $\sum_{1 \leq i < j \leq n} D_{i,j}$

Lemma $\mathbb{E}[D_{i,j}] = \frac{2}{j-i+1}$.

Proof.

- A' : sorted array for A . Focus on $A'[i..j]$.
- pivot outside $A'[i]$: $A'[i \dots j]$ will be passed to left or right recursion; go to that recursion
- pivot inside $A'[i]$: $A'[i]$ and $A'[j]$ will be separated; call this critical recursion
- $A[i]$ and $A[j]$ are compared in the critical recursion with probability $\frac{2}{j-i+1}$.

Randomized Selection Algorithm

selection(A, n, i)

```
1: if  $n = 1$  then return  $A$ 
2:  $x \leftarrow$  random element of  $A$  (called pivot)
3:  $A_L \leftarrow$  elements in  $A$  that are less than  $x$            ▷ Divide
4:  $A_R \leftarrow$  elements in  $A$  that are greater than  $x$        ▷ Divide
5: if  $i \leq A_L.size$  then
6:   return selection( $A_L, A_L.size, i$ )                  ▷ Conquer
7: else if  $i > n - A_R.size$  then
8:   return selection( $A_R, A_R.size, i - (n - A_R.size)$ ) ▷ Conquer
9: else
10:  return  $x$ 
```

- **expected** running time = $O(n)$

Randomized Selection

- $X_j, j = 0, 1, 2, \dots$: the size of A in the j -th recursion

$$\begin{aligned}\mathbb{E}[X_{j+1} | X_j = n'] &\leq \frac{1}{n'} \sum_{k=1}^{n'} \max\{k-1, n'-k\} \\ &\leq \frac{1}{n'} \left(\int_{k=0}^{n'/2} (n'-k) \mathrm{d}k + \int_{k=n'/2}^{n'} k \mathrm{d}k \right) \\ &= \frac{1}{n'} \left(\left(n'k - \frac{k^2}{2} \right) \Big|_0^{n'/2} + \frac{k^2}{2} \Big|_{n'/2}^{n'} \right) \\ &= \frac{1}{n'} \left(\frac{n'^2}{2} - \frac{n'^2}{8} + \frac{n'^2}{2} - \frac{n'^2}{8} \right) = \frac{3n'}{4}.\end{aligned}$$

- $\mathbb{E}[X_{j+1}] \leq \frac{3}{4} \mathbb{E}[X_j]$
- $X_0 = n \implies \mathbb{E}[X_j] \leq \left(\frac{3}{4}\right)^j n$

$$\begin{aligned}& \mathbb{E}[\text{running time of randomized selection}] \\& \leq \mathbb{E} \left[O(1) \sum_{j=0}^{\infty} X_j \right] \leq O(1) \sum_{j=0}^{\infty} \mathbb{E}[X_j] \\& \leq O(1) \sum_{j=0}^{\infty} \left(\frac{3}{4} \right)^j n = O(1) \cdot 4n = O(n).\end{aligned}$$

$$\begin{aligned}
\mathbb{E} [\text{number of comparisons}] &= \mathbb{E} \left[\sum_{1 \leq i < j \leq n} D_{i,j} \right] \\
&= \sum_{1 \leq i < j \leq n} \mathbb{E} [D_{i,j}] = 2 \sum_{1 \leq i < j \leq n} \frac{1}{j - i + 1} \\
&\leq 2n \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \right) \\
&= \Theta(n \log n).
\end{aligned}$$

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *
 - Randomized Select and Quicksort
 - $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
 - Solving NP-Hard Problems on Bounded-Tree-Width Graphs
 - FPTAS for Knapsack Problem
 - PTAS for Makespan Minimization on Identical Machines

Approximation Algorithms

An algorithm for an optimization problem is an **α -approximation algorithm**, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an α -factor of the cost (or value) of the optimum solution.

- opt : cost (or value) of the optimum solution
- sol : cost (or value) of the solution produced by the algorithm
- α : approximation ratio
- For minimization problems:
 - $\alpha \geq 1$ and we require $\text{sol} \leq \alpha \cdot \text{opt}$
- For maximization problems, there are two conventions:
 - $\alpha \leq 1$ and we require $\text{sol} \geq \alpha \cdot \text{opt}$
 - $\alpha \geq 1$ and we require $\text{sol} \geq \text{opt}/\alpha$

Max 3-SAT

Input: n boolean variables x_1, x_2, \dots, x_n

m clauses, each clause is a disjunction of 3 literals from 3 distinct variables

Output: an assignment so as to satisfy as many clauses as possible

Example:

- clauses: $x_2 \vee \neg x_3 \vee \neg x_4$, $x_2 \vee x_3 \vee \neg x_4$,
 $\neg x_1 \vee x_2 \vee x_4$, $x_1 \vee \neg x_2 \vee x_3$, $\neg x_1 \vee \neg x_2 \vee \neg x_4$
- We can satisfy all the 5 clauses: $x = (1, 1, 1, 0, 1)$

Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable $x_u = 1$ with probability $1/2$, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

Proof.

- for each clause C_j , let $Z_j = 1$ if C_j is satisfied and 0 otherwise
- $Z = \sum_{j=1}^m Z_j$ is the total number of satisfied clauses
- $\mathbb{E}[Z_j] = 7/8$: out of 8 possible assignments to the 3 variables in C_j , 7 of them will make C_j satisfied
- $\mathbb{E}[Z] = \mathbb{E} \left[\sum_{j=1}^m Z_j \right] = \sum_{j=1}^m \mathbb{E}[Z_j] = \sum_{j=1}^m \frac{7}{8} = \frac{7}{8}m$, by linearity of expectation. □

Randomized Algorithm for Max 3-SAT

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

- Since the optimum solution can satisfy at most m clauses, lemma gives a randomized $7/8$ -approximation for Max-3-SAT.

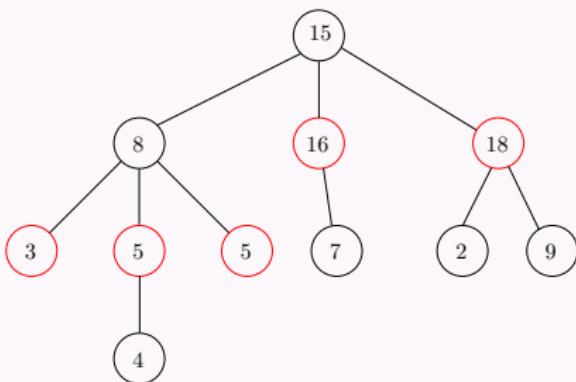
Theorem ([Hastad 97]) Unless $P = NP$, there is no ρ -approximation algorithm for MAX-3-SAT for any $\rho > 7/8$.

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *
 - Randomized Select and Quicksort
 - $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
 - Solving NP-Hard Problems on Bounded-Tree-Width Graphs
 - FPTAS for Knapsack Problem
 - PTAS for Makespan Minimization on Identical Machines

- Many NP-hard problems on general graphs are easy on trees.
- Greedy algorithms: independent set, vertex cover, dominating set,
- Dynamic programming: weighted versions of above problems

Example: Maximum-Weight Independent Set



- dynamic programming:
- $f[i, 0]$: optimum value in tree i when i is not chosen
- $f[i, 1]$: optimum value in tree i

- Reason why many problems can be solved using DP on trees: the child-trees of a vertex i are only connected through i .

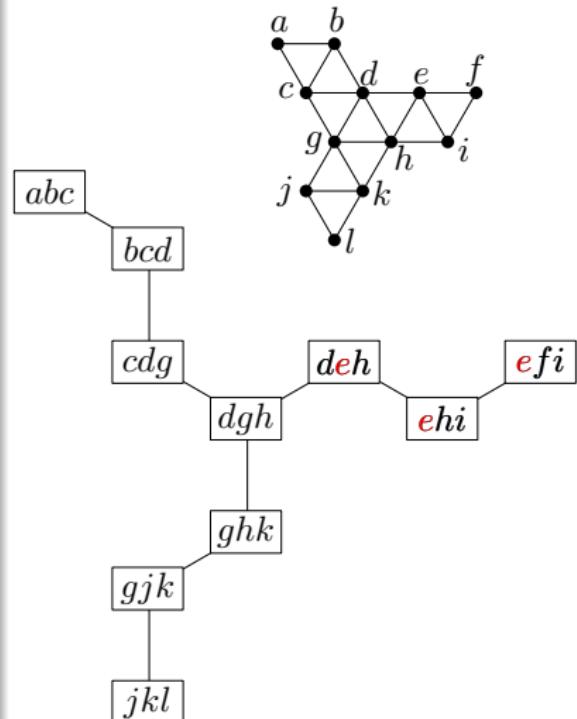
Bounded-Tree-Width Graphs

Def. A **tree decomposition** of a graph $G = (V, E)$ consists of

- a tree T with node set U , and
- a subset $V_t \subseteq V$ for every $t \in U$, which we call the **bag** for t ,

satisfying the following properties:

- (**Vertex Coverage**) Every $v \in V$ appears in at least one bag.
- (**Edge Coverage**) For every $(u, v) \in E$, some bag contains both u and v .
- (**Coherence**) For every $u \in V$, the nodes $t \in U : u \in V_t$ induce a connected sub-graph of T .

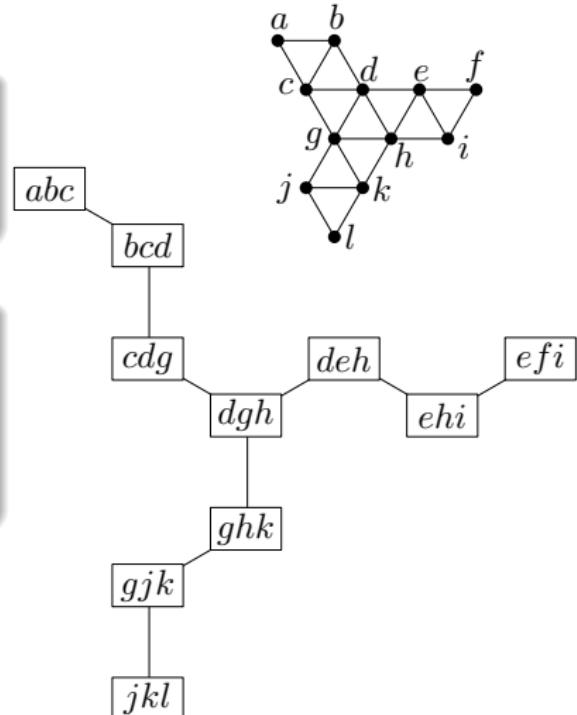


Bounded-Tree-Width Graphs

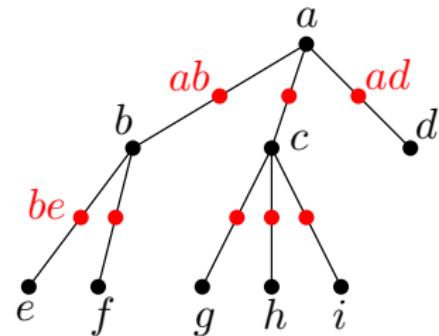
Def. The tree-width of the tree-decomposition $(T, (V_t)_{t \in U})$ is defined as $\max_{t \in U} |V_t| - 1$.

Def. The tree-width of a graph $G = (V, E)$, denoted as $\text{tw}(G)$, is the minimum tree-width of a tree decomposition $(T, (V_t)_{t \in U})$ of G .

- The graph on the top right has tree-width 2.



Obs. A (non-empty) tree has tree-width 1.



Lemma A graph has tree-width 1 if and only if it is a (non-empty) forest.

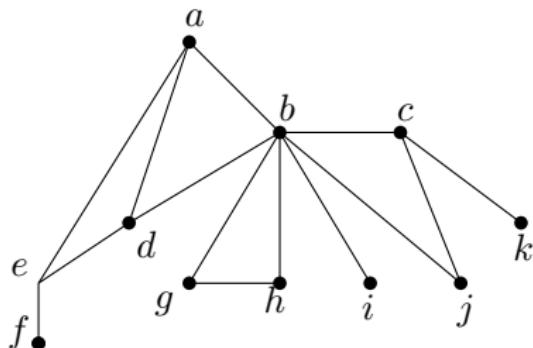
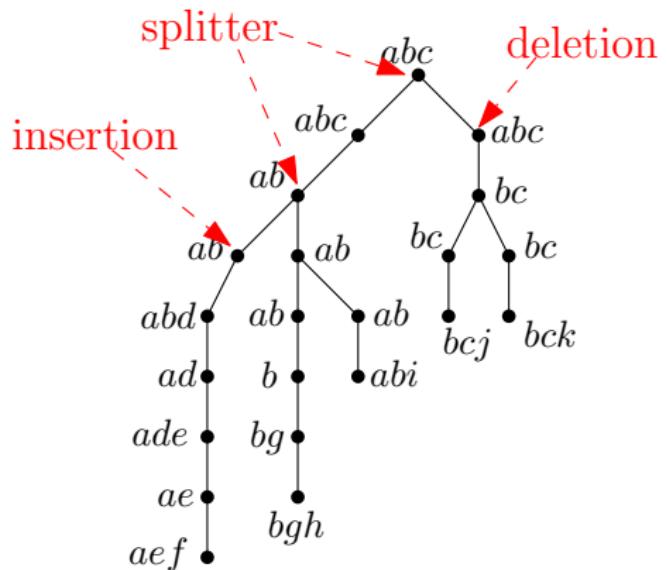
- Many problems on graphs with small tree-width can be solved using dynamic programming.
- Typically, the running time will be exponential in $\text{tw}(G)$.

Example: Maximum Weight Independent Set

- given $G = (V, E)$, a tree-decomposition $(T, (V_t)_{t \in U})$ of G with tree-width tw .
- vertex weights $w \in \mathbb{R}_{>0}^V$.
- find an independent set S of G with the maximum total weight.

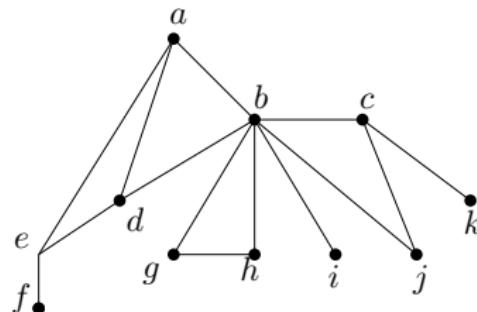
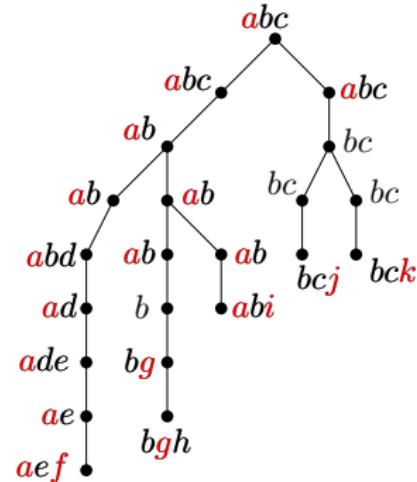
Assumption: every node in T has at most 2 children. Moreover, every internal nodes in T is one of the following types:

- **Splitter**: a node t with two children t' and t'' , $V_t = V_{t'} = V_{t''}$
- **Insertion node**: a node t with one child t' , $\exists u \notin V_t, V_{t'} = V_t \cup \{u\}$
- **Deletion node**: a node t with one child t' , $\exists u \in V_t, V_{t'} = V_t \setminus \{u\}$



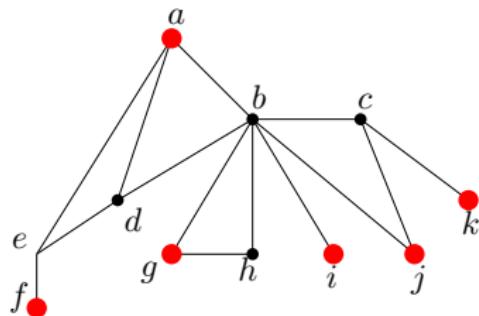
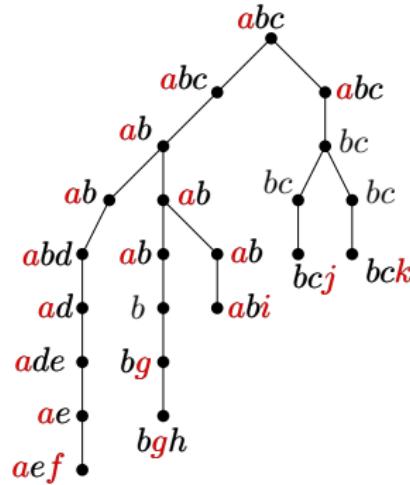
Def. Given a graph $G = (V, E)$, and a tree decomposition $(T, (V_t)_{t \in U})$, a **valid labeling** of T is a vector $(R_t)_{t \in U}$ of sets, one for every node t , such that the following conditions hold.

- $R_t \subseteq V_t, \forall t \in U$, and R_t is an independent set in G
- $R_t = R_{t'} = R_{t''}$ for a S-node t , and its two children t', t'' .
- $R_{t'} \setminus \{u\} = R_t$ for an I-node t and its child t' with $V_{t'} = V_t \cup \{u\}$.
- $R_{t'} = R_t \setminus \{u\}$ for a D-node t and its child t' with $V_{t'} = V_t \setminus \{u\}$.



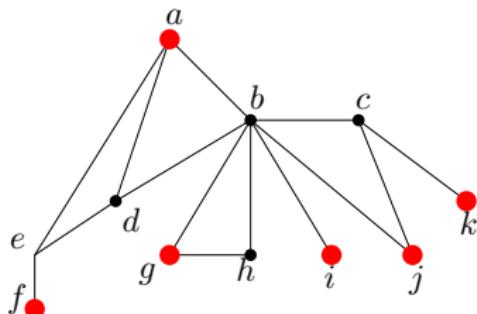
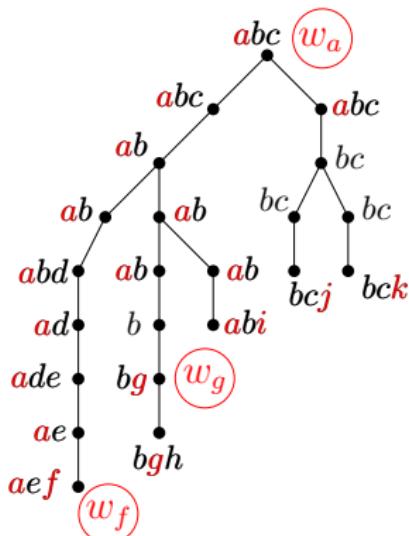
Lemma If S is an IS of G , then $(R_t := S \cap V_t)_{t \in U}$ is a valid labeling.

Lemma If $(R_t)_{t \in U}$ is a valid labeling, then $\bigcup_t R_t$ is an IS.



- Therefore, there is an one-to-one mapping between independent sets and valid labelings.

- For every $t \in U$, every $R \subseteq V_t$ that is an IS in G (we call R a label for t), we define a weight $w_t(R)$.
- for the root t and a label R for t , $w_t(R) = \sum_{v \in R} w_r$.
- for an insertion node t with the child t' such that $V_{t'} = V_t \cup \{u\}$, a label R for t' , we define $w_{t'}(R) = w_u$ if $u \in R$ and 0 otherwise.
- For all other cases, the weights are defined as 0



- Problem: find a valid labeling for T with maximum weight

Dynamic Programming

- $\forall t \in U$, a label R for t : let $f(t, R)$ be the maximum weight of a valid (partial) labeling for the sub-tree of T rooted at t .

$$f(t, R) := \begin{cases} w_t(R) & t \text{ is a leaf} \\ w_t(R) + f(t', R) + f(t'', R) & t \text{ is an S-node with children } t' \text{ and } t'' \\ w_t(R) + \max\{f(t', R), f(t', R \cup \{u\})\} & t \text{ is I-node w. child } t', V_{t'} = V_t \cup \{u\} \\ w_t(R) + f(t', R \setminus \{u\}) & t \text{ is D-node w. child } t', V_{t'} = V_t \setminus \{u\} \end{cases}$$

- In I-node case, if $R \cup \{u\}$ is an invalid label, then $f(t, R \cup \{u\}) = -\infty$.

- The running time of the dynamic programming: $O(2^{\text{tw}} \cdot \text{tw} \cdot n)$.
- It is efficient when tw is $O(\log n)$.

Q: Suppose we are only given G with tree-width tw , how can we find a tree-decomposition of width tw ?

- This is an NP-hard problem.
- We can achieve a weaker goal: find a tree-decomposition of width at most 4tw in time $f(\text{tw}) \cdot \text{poly}(n)$, where $f(\text{tw})$ is a function of tw .
- If $\text{tw} = O(1)$, the algorithm runs in polynomial time.
- The constant 4 is acceptable.

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *
 - Randomized Select and Quicksort
 - $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
 - Solving NP-Hard Problems on Bounded-Tree-Width Graphs
 - **FPTAS for Knapsack Problem**
 - PTAS for Makespan Minimization on Identical Machines

Knapsack Problem

Input: an integer bound $W > 0$

a set of n items, each with an integer weight $w_i > 0$

a value $v_i > 0$ for each item i

Output: a subset S of items that

$$\text{maximizes } \sum_{i \in S} v_i \quad \text{s.t. } \sum_{i \in S} w_i \leq W.$$

- Motivation: you have budget W , and want to buy a subset of items of maximum total value

Greedy Algorithm

- 1: sort items according to non-increasing order of v_i/w_i
- 2: **for** each item in the ordering **do**
- 3: take the item if we have enough budget

- Bad example: $W = 100, n = 2, w = (1, 100), v = (1.1, 100)$.
- Optimum takes item 2 and greedy takes item 1.

DP for Knapsack Problem

- $opt[i, W']$: the optimum value when budget is W' and items are $\{1, 2, 3, \dots, i\}$.

$$opt[i, W'] = \begin{cases} 0 & i = 0 \\ opt[i - 1, W'] & i > 0, w_i > W' \\ \max \left\{ \begin{array}{l} opt[i - 1, W'] \\ opt[i - 1, W' - w_i] + v_i \end{array} \right\} & i > 0, w_i \leq W' \end{cases}$$

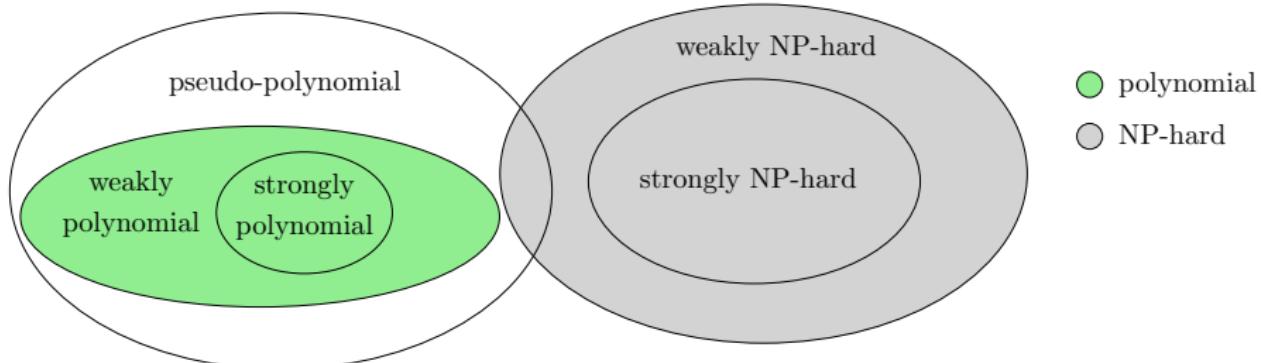
- Running time of the algorithm is $O(nW)$.

Q: Is this a polynomial time?

A: No.

- The input size is polynomial in n and $\log W$; running time is polynomial in n and W .
- The running time is **pseudo-polynomial**.

- n : number of integers W : maximum value of all integers
- **pseudo-polynomial time**: $\text{poly}(n, W)$ (e.g., DP for Knapsack)
- **weakly polynomial time**: $\text{poly}(n, \log W)$ (e.g., Euclidean Algorithm for Greatest Common Divisor)
- **strongly polynomial time**: $\text{poly}(n)$ time, assuming basic operations on integers taking $O(1)$ time (e.g., Kruskal's)
- **weakly NP-hard**: NP-hard to solve in time $\text{poly}(n, \log W)$
- **strongly NP-hard**: NP-hard even if $W = \text{poly}(n)$



Idea for improving the running time to polynomial

- If we make weights upper bounded by $\text{poly}(n)$, then pseudo-polynomial time becomes polynomial time
- Coarsening the weights: $w'_i = \lfloor \frac{w_i}{A} \rfloor$ for some appropriately defined integer A .
- However, coarsening weights will change the problem.

•	weight budget constraint	:	hard
•	maximum value requirement	:	soft
- We coarsen the values instead
- In the DP, we use values as parameters

- Let A be some integer to be defined later
- $v'_i := \lfloor \frac{v_i}{A} \rfloor$ be the scaled value of item i
- Definition of DP cells: $f[i, V'] = \min_{S \subseteq [i]: v'(S) \geq V'} w(S)$

$$f[i, V'] = \begin{cases} 0 & V' \leq 0 \\ \infty & i = 0, V' > 0 \\ \min \left\{ \begin{array}{l} f[i-1, V'] \\ f[i-1, V' - v'_i] + w_i \end{array} \right\} & i > 0, V' > 0 \end{cases}$$

- Output A times the largest V' such that $f[n, V'] \leq W$.

- Instance \mathcal{I} : (v_1, v_2, \dots, v_n) opt: optimum value of \mathcal{I}
- Instance \mathcal{I}' : (Av'_1, \dots, Av'_n) opt': optimum value of \mathcal{I}'

$$v_i - A < Av'_i \leq v_i, \quad \forall i \in [n]$$

$$\implies \text{opt} - nA < \text{opt}' \leq \text{opt}$$

- $\text{opt} \geq v_{\max} := \max_{i \in [n]} v_i$ (assuming $w_i \leq W, \forall i$)
- setting $A := \left\lfloor \frac{\epsilon \cdot v_{\max}}{n} \right\rfloor$: $(1 - \epsilon)\text{opt} \leq \text{opt}' \leq \text{opt}$
- $\forall i, v'_i = O\left(\frac{n}{\epsilon}\right) \implies \text{running time} = O\left(\frac{n^3}{\epsilon}\right)$

Theorem There is a $(1 + \epsilon)$ -approximation for the knapsack problem in time $O\left(\frac{n^3}{\epsilon}\right)$.

Def. A polynomial-time approximation scheme (PTAS) is a family of algorithms A_ϵ , where A_ϵ for every $\epsilon > 0$ is a (polynomial-time) $(1 \pm \epsilon)$ -approximation algorithm.

- Remark: the approximation ratio is $1 + \epsilon$ or $1 - \epsilon$, depending on whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme A_ϵ such that the running time of A_ϵ is $\text{poly}(n, \frac{1}{\epsilon})$ for input instances of n .

- So, Knapsack admits an FPTAS.

Q: Assume $P \neq NP$. What is a necessary condition for a NP-hard problem to admit an FPTAS?

- Vertex cover? Maximum independent set?

Outline

- 1 Randomized Algorithms
- 2 Finding Small Vertex Covers: Fixed Parameterized Tractability
- 3 Approximation Algorithms using Greedy
- 4 Approximation Using LP Rounding and Primal Dual
- 5 More Advanced Algorithms *
 - Randomized Select and Quicksort
 - $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
 - Solving NP-Hard Problems on Bounded-Tree-Width Graphs
 - FPTAS for Knapsack Problem
 - PTAS for Makespan Minimization on Identical Machines

Makespan Minimization on Identical Machines

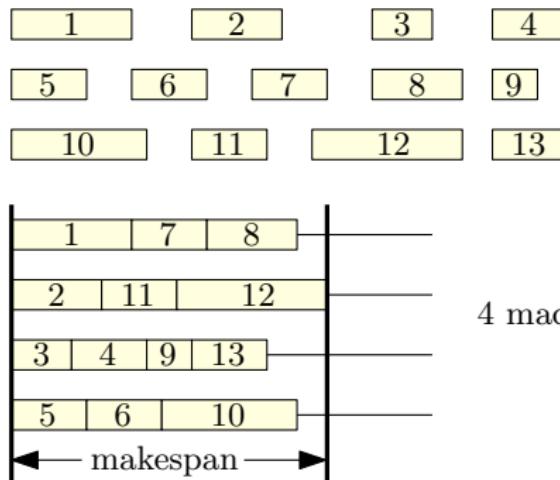
Input: n jobs index as $[n]$

each job $j \in [n]$ has a processing time $p_j \in \mathbb{Z}_{>0}$

m machines

Output: schedule of jobs on machines with minimum **makespan**

$\sigma : [n] \rightarrow [m]$ with minimum $\max_{i \in [m]} \sum_{j \in \sigma^{-1}(i)} p_j$



4 machines

Greedy Algorithm

- 1: start from an empty schedule
- 2: **for** $j = 1$ to n **do**
- 3: put job j on the machine with the smallest load

Analysis of $(2 - \frac{1}{m})$ -Approximation for Greedy Algorithm

$$p_{\max} := \max_{j \in [n]} p_j$$

$$\text{alg} \leq p_{\max} + \frac{1}{m} \cdot \left(\sum_{j \in [n]} p_j - p_{\max} \right) = \left(1 - \frac{1}{m} \right) p_{\max} + \frac{1}{m} \sum_{j \in [n]} p_j$$

$$\left. \begin{array}{lcl} \text{opt} & \geq & p_{\max} \\ \text{opt} & \geq & \frac{1}{m} \sum_{j \in [n]} p_j \end{array} \right\} \Rightarrow \text{alg} \leq \left(2 - \frac{1}{m} \right) \text{opt}$$

Q: What happens if all items have size at most $\epsilon \cdot \text{opt}$?

A: $\text{alg} \leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\max} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon)\text{opt}$.

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: We can **round** the sizes, so that $\#(\text{distinct sizes})$ is small

Overview of Algorithm

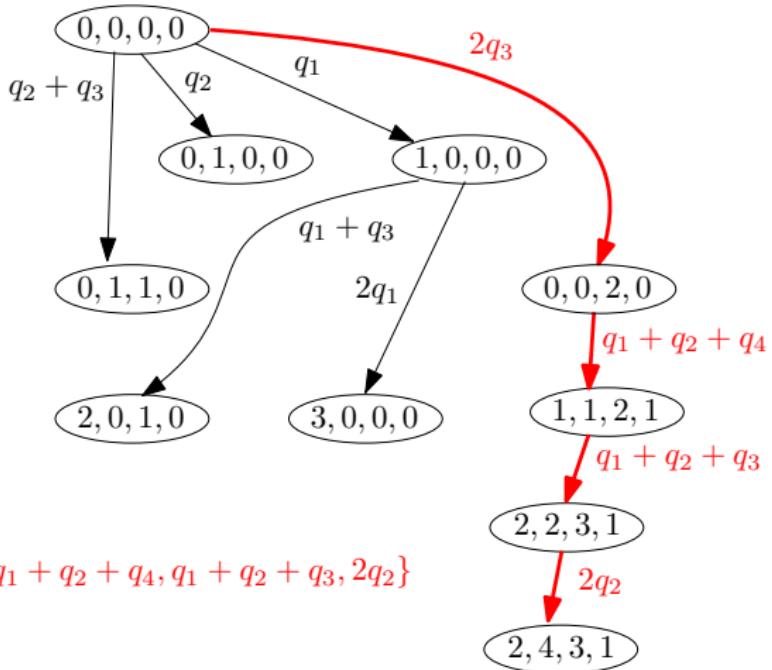
- 1: declare j small if $p_j < \epsilon \cdot p_{\max}$ and big otherwise
- 2: use truncation + DP to solve the instance defined by big jobs
- 3: use DP for instance $(p'_j)_{j \text{ big}}$ to schedule big jobs
- 4: add small jobs to schedule greedily

Dynamic Programming for Big Jobs

- $B := \{j \in [n] : p_j \geq \epsilon p_{\max}\}$: set of big jobs
- $p'_j := \max\{\epsilon p_{\max}(1 + \epsilon)^t \leq p_j : t \in \mathbb{Z}\}, \forall j \in B$
 p'_j is the **rounded size** of j
- $k := |\{p'_j : j \in B\}|$: #(distinct rounded sizes)
$$k \leq 1 + \log_{1+\epsilon} \frac{p_{\max}}{\epsilon p_{\max}} = O\left(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon}\right)$$
- $\{q_1, q_2, \dots, q_k\} := \{p'_j : j \in B\}$: the k distinct rounded sizes
- n_1, \dots, n_k : #(big jobs) with rounded sizes being q_1, \dots, q_k

Constructing a Directed Acyclic Graph $G = (V, E)$

- a vertex (a_1, \dots, a_k) , $a_i \in [0, n_i]$, $\forall i \in [k]$
- denotes the instance with a_1 jobs of size q_1 , a_2 jobs of size q_2 , \dots , a_k jobs of size q_k
- an arc $(a_1, \dots, a_k) \rightarrow (b_1, \dots, b_k)$ of weight $\sum_{i=1}^k (b_i - a_i)q_i$, if $a_i \leq b_i, \forall i \in [k]$, and $a_i < b_i$ for some $i \in [k]$
 - reducing instance (b_1, \dots, b_k) to (a_1, \dots, a_k) requires 1 machine of load $\sum_{i=1}^k (b_i - a_i)q_i$
- Goal: find a path from $(0, \dots, 0)$ to (n_1, \dots, n_k) of at most m edges, so as to minimize the **maximum** weight on the path.
- problem can be solved in $O(m \cdot |E|)$ time using DP
- $O(m \cdot |E|) = O(m \cdot n^{2k}) = n^{O\left(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon}\right)}$.



Analysis of Algorithm for Big Jobs

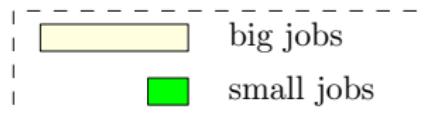
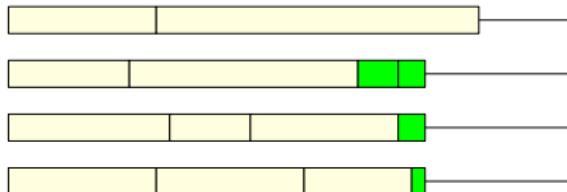
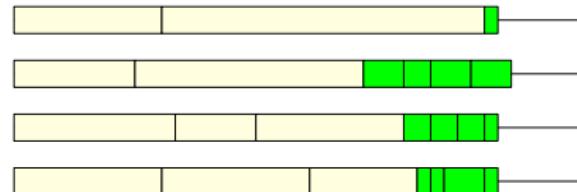
- \mathcal{I}_B : instance $(p_j)_{j \in B}$ opt_B : its optimum makespan
- \mathcal{I}'_B : instance $(p'_j)_{j \in B}$ opt'_B : its optimum makespan
- $\text{opt}'_B \leq \text{opt}_B$
- schedule for $\mathcal{I}'_B \Rightarrow$ schedule for \mathcal{I}_B :
$$(1 + \epsilon)\text{-blowup in makespan}$$

Theorem The dynamic programming algorithm gives a schedule of makespan at most $(1 + \epsilon)\text{opt}_B$ in time $n^{O\left(\frac{1}{\epsilon} \log \frac{1}{\epsilon}\right)}$.

Adding small jobs to schedule

- 1: starting from the schedule for big jobs
- 2: **for** every small job j **do**
- 3: add j to the machine with the smallest load

Analysis of the Final Algorithm



- Case 1: makespan is not increased by small jobs

$$\text{alg} \leq (1 + \epsilon) \text{opt}_B \leq (1 + \epsilon) \text{opt}.$$

- Case 2: makespan is increased by small jobs

- loads between any two machines differ by at most size of a small job, which is at most $\epsilon \cdot p_{\max}$

$$\text{alg} \leq \epsilon \cdot p_{\max} + \frac{1}{m} \sum_{j \in [n]} p_j \leq \epsilon \cdot \text{opt} + \text{opt} = (1 + \epsilon) \cdot \text{opt}.$$