

算法设计与分析(2026年春季学期)

Divide-and-Conquer

授课老师: 栗师
南京大学计算机学院

Outline

- 1 Divide-and-Conquer
- 2 Counting Inversions
- 3 Solving Recurrences
- 4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- 7 FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- 8 Finding Closest Pair of Points in 2D Euclidean Space
- 9 Computing n -th Fibonacci Number

Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer

- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time

Divide-and-Conquer

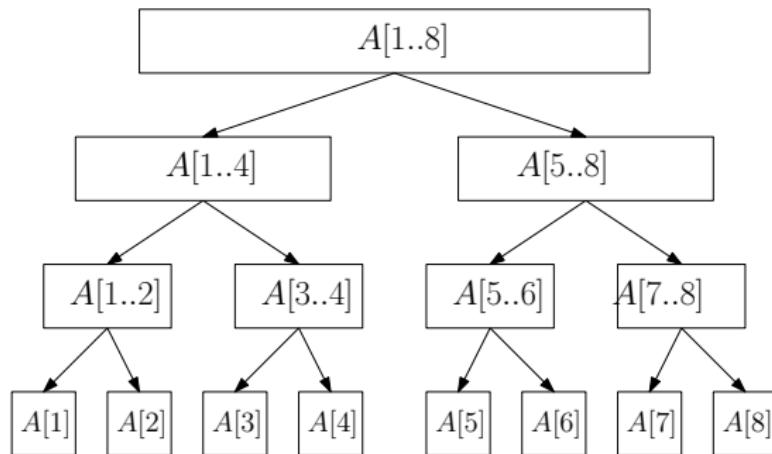
- **Divide:** Divide instance into many smaller instances
- **Conquer:** Solve each of smaller instances recursively and separately
- **Combine:** Combine solutions to small instances to obtain a solution for the original big instance

merge-sort(A, n)

```
1: if  $n = 1$  then  
2:     return  $A$   
3: else  
4:      $B \leftarrow \text{merge-sort}\left(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor\right)$   
5:      $C \leftarrow \text{merge-sort}\left(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil\right)$   
6:     return  $\text{merge}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$ 
```

- Divide: trivial
- Conquer: 4, 5
- Combine: 6

Running Time for Merge-Sort



- Each level takes running time $O(n)$
- There are $O(\log n)$ levels
- Running time = $O(n \log n)$
- Better than insertion sort

Running Time for Merge-Sort Using Recurrence

- $T(n)$ = running time for sorting n numbers, then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2 \end{cases}$$

- With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n/2) + O(n) & \text{if } n \geq 2 \end{cases}$$

- Even simpler: $T(n) = 2T(n/2) + O(n)$. (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)
- Solving this recurrence, we have $T(n) = O(n \log n)$ (we shall show how later)

Outline

- 1 Divide-and-Conquer
- 2 Counting Inversions
- 3 Solving Recurrences
- 4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- 7 FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- 8 Finding Closest Pair of Points in 2D Euclidean Space
- 9 Computing n -th Fibonacci Number

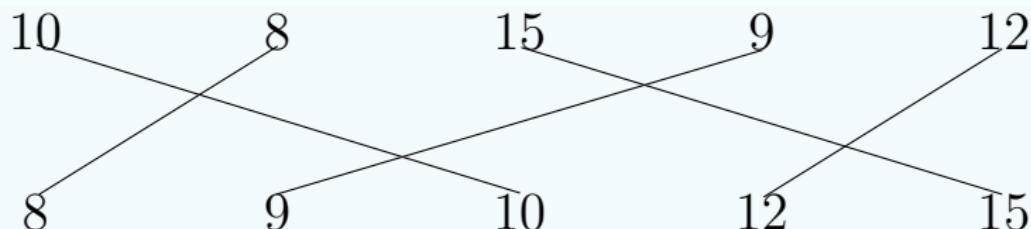
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:



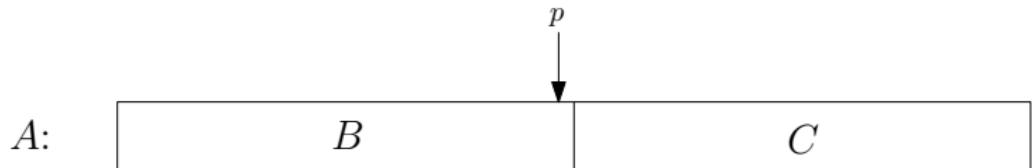
- 4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)

Naive Algorithm for Counting Inversions

count-inversions(A, n)

```
1:  $c \leftarrow 0$ 
2: for every  $i \leftarrow 1$  to  $n - 1$  do
3:   for every  $j \leftarrow i + 1$  to  $n$  do
4:     if  $A[i] > A[j]$  then  $c \leftarrow c + 1$ 
5: return  $c$ 
```

Divide-and-Conquer



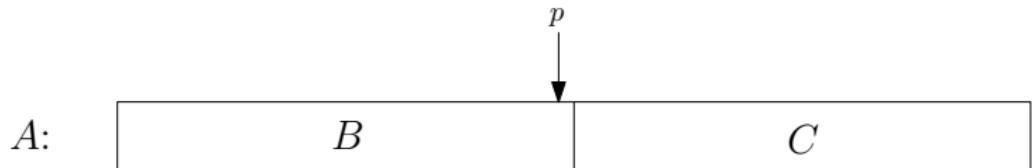
- $p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$
- $\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m$
 $m = \left| \{(i, j) : B[i] > C[j]\} \right|$

Q: How fast can we compute m , via trivial algorithm?

A: $O(n^2)$

- Can not improve the $O(n^2)$ time for counting inversions.

Divide-and-Conquer

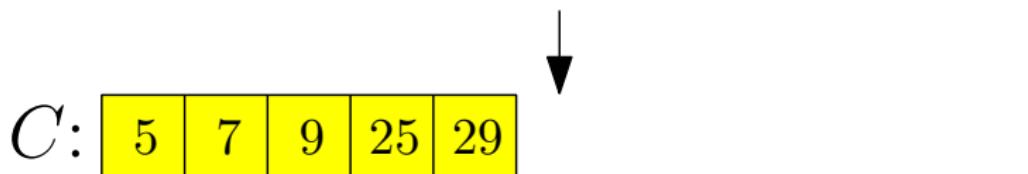


- $p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$
- $\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m$
$$m = \left| \left\{ (i, j) : B[i] > C[j] \right\} \right|$$

Lemma If both B and C are sorted, then we can compute m in $O(n)$ time!

Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:



+0 +2 +3 +3 +5 +5

Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count(B, C, n_1, n_2)

```
1: count  $\leftarrow 0$ ;  
2:  $A \leftarrow$  array of size  $n_1 + n_2$ ;  $i \leftarrow 1$ ;  $j \leftarrow 1$   
3: while  $i \leq n_1$  or  $j \leq n_2$  do  
4:   if  $j > n_2$  or ( $i \leq n_1$  and  $B[i] \leq C[j]$ ) then  
5:      $A[i + j - 1] \leftarrow B[i]$ ;  $i \leftarrow i + 1$   
6:     count  $\leftarrow$  count + ( $j - 1$ )  
7:   else  
8:      $A[i + j - 1] \leftarrow C[j]$ ;  $j \leftarrow j + 1$   
9: return ( $A, count$ )
```

Sort and Count Inversions in A

- A procedure that returns the sorted array of A and counts the number of inversions in A :

sort-and-count(A, n)

```
1: if  $n = 1$  then
2:     return  $(A, 0)$ 
3: else
4:      $(B, m_1) \leftarrow \text{sort-and-count}\left(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor\right)$ 
5:      $(C, m_2) \leftarrow \text{sort-and-count}\left(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil\right)$ 
6:      $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$ 
7:     return  $(A, m_1 + m_2 + m_3)$ 
```

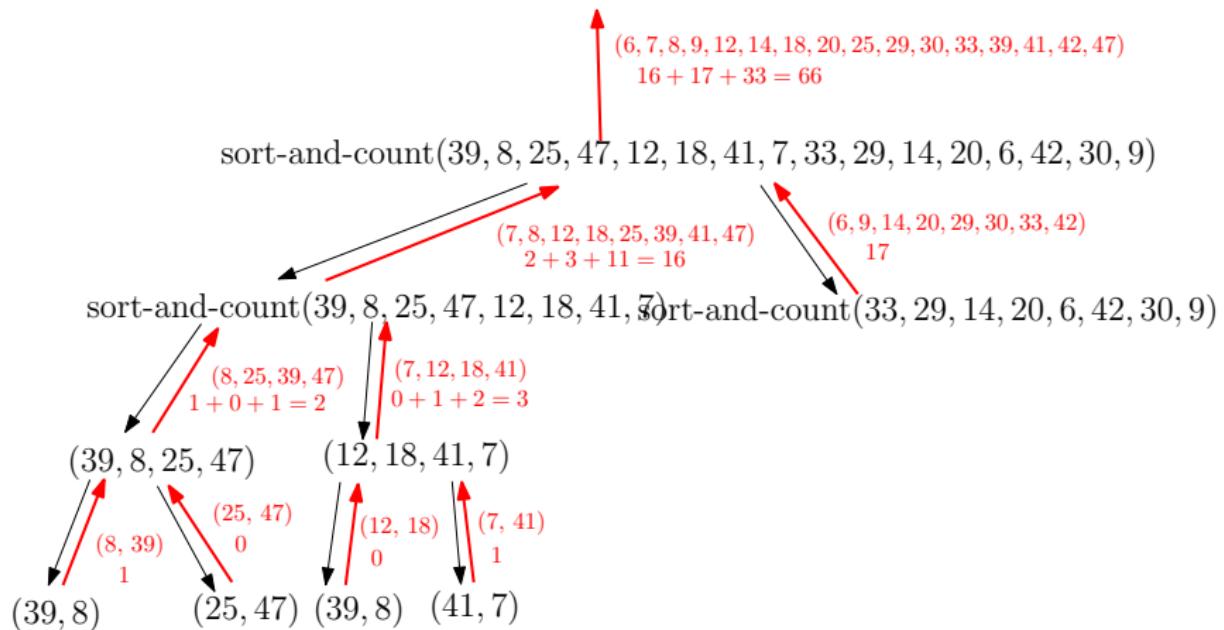
- Divide: trivial
- Conquer: 4, 5
- Combine: 6, 7

sort-and-count(A, n)

```
1: if  $n = 1$  then  
2:     return ( $A, 0$ )  
3: else  
4:      $(B, m_1) \leftarrow \text{sort-and-count}\left(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor\right)$   
5:      $(C, m_2) \leftarrow \text{sort-and-count}\left(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil\right)$   
6:      $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$   
7:     return ( $A, m_1 + m_2 + m_3$ )
```

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time = $O(n \log n)$

Example



Outline

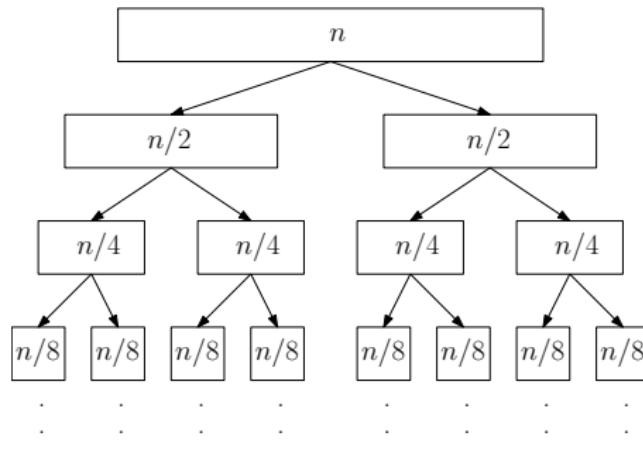
- 1 Divide-and-Conquer
- 2 Counting Inversions
- 3 Solving Recurrences
- 4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- 7 FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- 8 Finding Closest Pair of Points in 2D Euclidean Space
- 9 Computing n -th Fibonacci Number

Methods for Solving Recurrences

- The recursion-tree method
- The master theorem

Recursion-Tree Method

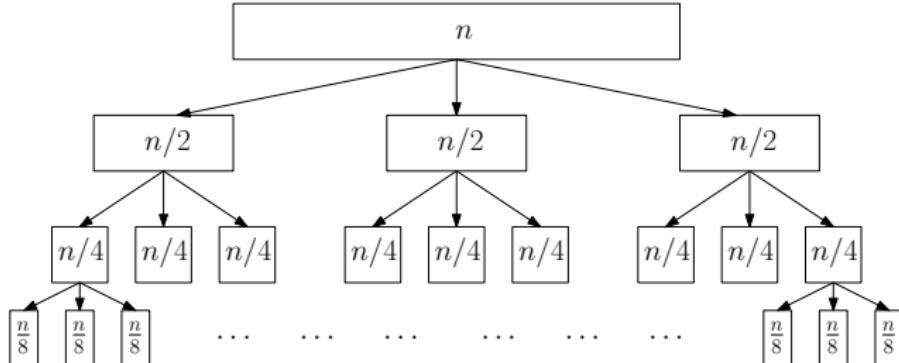
- $T(n) = 2T(n/2) + O(n)$



- Each level takes running time $O(n)$
- There are $O(\log n)$ levels
- Running time = $O(n \log n)$

Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

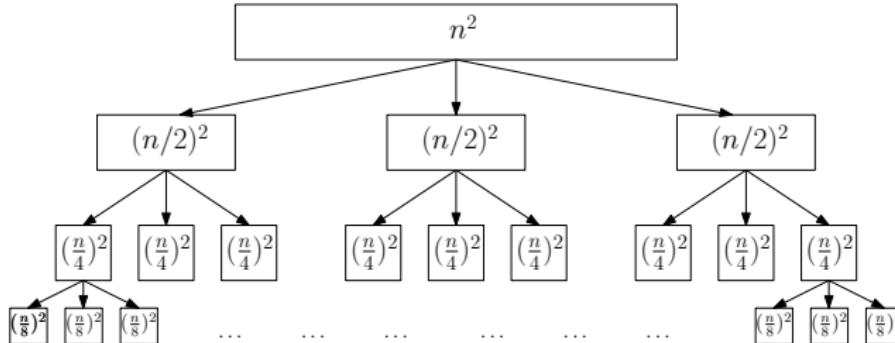


- Total running time at level i ? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level? $\log_2 n$
- Total running time?

$$\sum_{i=0}^{\log_2 n} \left(\frac{3}{2}\right)^i n = O\left(n \left(\frac{3}{2}\right)^{\log_2 n}\right) = O(3^{\log_2 n}) = O(n^{\log_2 3}).$$

Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$



- Total running time at level i ? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $\log_2 n$
- Total running time?

$$\sum_{i=0}^{\log_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2).$$

Master Theorem

Recurrences	a	b	c	time
$T(n) = 2T(n/2) + O(n)$	2	2	1	$O(n \log n)$
$T(n) = 3T(n/2) + O(n)$	3	2	1	$O(n^{\log_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1, b > 1, c \geq 0$ are constants. Then,

$$T(n) = \begin{cases} O(n^{\log_b a}) & \text{if } c < \log_b a \\ O(n^c \log n) & \text{if } c = \log_b a \\ O(n^c) & \text{if } c > \log_b a \end{cases}$$

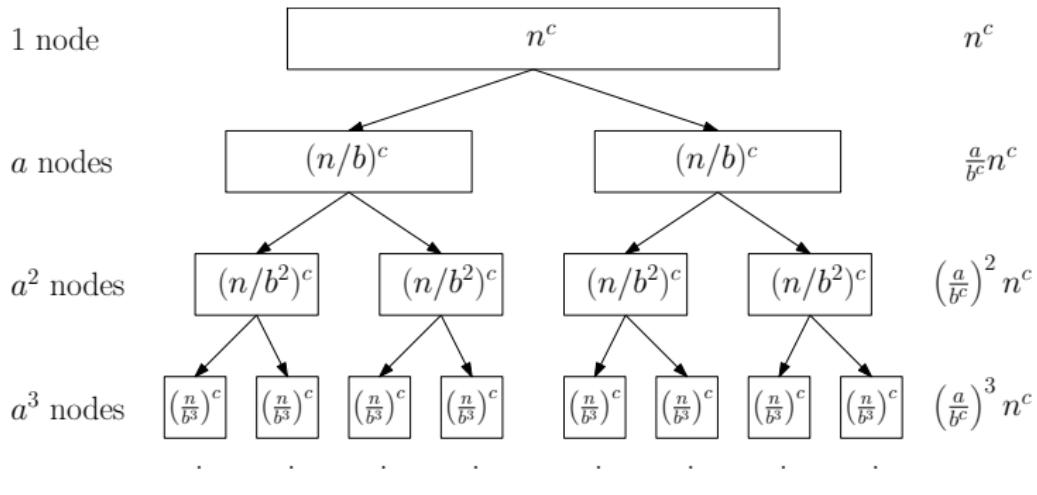
Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1, b > 1, c \geq 0$ are constants. Then,

$$T(n) = \begin{cases} O(n^{\log_b a}) & \text{if } c < \log_b a \\ O(n^c \log n) & \text{if } c = \log_b a \\ O(n^c) & \text{if } c > \log_b a \end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \log n)$
- Ex: $T(n) = 3T(n/2) + O(n)$. Case 1. $T(n) = O(n^{\log_2 3})$
- Ex: $T(n) = T(n/2) + O(1)$. Case 2. $T(n) = O(\log n)$
- Ex: $T(n) = 2T(n/2) + O(n^2)$. Case 3. $T(n) = O(n^2)$

Proof of Master Theorem Using Recursion Tree

$$T(n) = aT(n/b) + O(n^c)$$



- $c < \log_b a$: bottom-level dominates: $\left(\frac{a}{b^c}\right)^{\log_b n} n^c = n^{\log_b a}$
- $c = \log_b a$: all levels have same time: $n^c \log_b n = O(n^c \log n)$
- $c > \log_b a$: top-level dominates: $O(n^c)$

Outline

- 1 Divide-and-Conquer
- 2 Counting Inversions
- 3 Solving Recurrences
- 4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- 7 FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- 8 Finding Closest Pair of Points in 2D Euclidean Space
- 9 Computing n -th Fibonacci Number

Outline

- 1 Divide-and-Conquer
- 2 Counting Inversions
- 3 Solving Recurrences
- 4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- 7 FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- 8 Finding Closest Pair of Points in 2D Euclidean Space
- 9 Computing n -th Fibonacci Number

Quicksort vs Merge-Sort

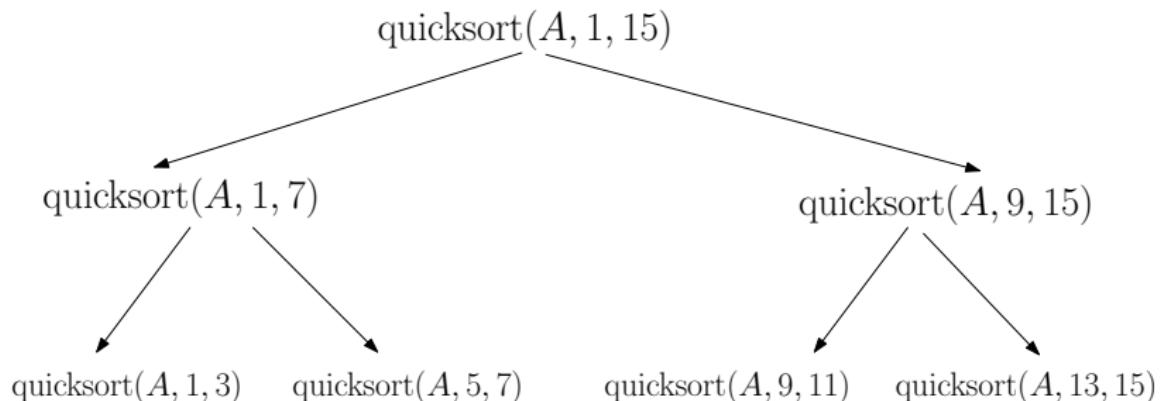
	Merge Sort	Quicksort
Divide	Trivial	Separate small and big numbers
Conquer	Recurse	Recurse
Combine	Merge 2 sorted arrays	Trivial

Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

A :

15	17	25	29	37	38	45	64	69	75	76	82	85	92	94
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----



Quicksort

quicksort(A, n)

```
1: if  $n \leq 1$  then return  $A$ 
2:  $x \leftarrow$  lower median of  $A$ 
3:  $A_L \leftarrow$  array of elements in  $A$  that are less than  $x$       \\\ Divide
4:  $A_R \leftarrow$  array of elements in  $A$  that are greater than  $x$   \\\ Divide
5:  $B_L \leftarrow$  quicksort( $A_L$ , length of  $A_L$ )          \\\ Conquer
6:  $B_R \leftarrow$  quicksort( $A_R$ , length of  $A_R$ )          \\\ Conquer
7:  $t \leftarrow$  number of times  $x$  appear  $A$ 
8: return concatenation of  $B_L$ ,  $t$  copies of  $x$ , and  $B_R$ 
```

- Recurrence $T(n) \leq 2T(n/2) + O(n)$
- Running time = $O(n \log n)$

Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

- ① There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
- ② Choose a **pivot randomly** and pretend it is the median (it is practical)

Quicksort Using A Random Pivot

quicksort(A, n)

```

1: if  $n \leq 1$  then return  $A$ 
2:  $x \leftarrow$  a random element of  $A$  ( $x$  is called a pivot)
3:  $A_L \leftarrow$  array of elements in  $A$  that are less than  $x$        $\backslash\backslash$  Divide
4:  $A_R \leftarrow$  array of elements in  $A$  that are greater than  $x$   $\backslash\backslash$  Divide
5:  $B_L \leftarrow$  quicksort( $A_L$ , length of  $A_L$ )                   $\backslash\backslash$  Conquer
6:  $B_R \leftarrow$  quicksort( $A_R$ , length of  $A_R$ )                   $\backslash\backslash$  Conquer
7:  $t \leftarrow$  number of times  $x$  appear  $A$ 
8: return concatenation of  $B_L$ ,  $t$  copies of  $x$ , and  $B_R$ 

```

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use **pseudo-random-generator**, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.

Quicksort Using A Random Pivot

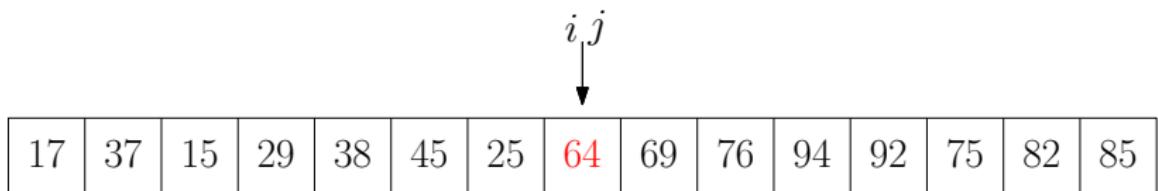
quicksort(A, n)

- 1: **if** $n \leq 1$ **then return** A
- 2: $x \leftarrow$ a random element of A (x is called a **pivot**)
- 3: $A_L \leftarrow$ array of elements in A that are less than x \\\ Divide
- 4: $A_R \leftarrow$ array of elements in A that are greater than x \\\ Divide
- 5: $B_L \leftarrow$ quicksort(A_L , length of A_L) \\\ Conquer
- 6: $B_R \leftarrow$ quicksort(A_R , length of A_R) \\\ Conquer
- 7: $t \leftarrow$ number of times x appear A
- 8: **return** concatenation of B_L , t copies of x , and B_R

Lemma The **expected** running time of the algorithm is $O(n \log n)$.

Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.



- To partition the array into two parts, we only need $O(1)$ extra space.

partition(A, ℓ, r)

```
1:  $p \leftarrow$  random integer between  $\ell$  and  $r$ , swap  $A[p]$  and  $A[\ell]$ 
2:  $i \leftarrow \ell, j \leftarrow r$ 
3: while true do
4:   while  $i < j$  and  $A[i] < A[j]$  do  $j \leftarrow j - 1$ 
5:   if  $i = j$  then break
6:   swap  $A[i]$  and  $A[j]$ ;  $i \leftarrow i + 1$ 
7:   while  $i < j$  and  $A[i] < A[j]$  do  $i \leftarrow i + 1$ 
8:   if  $i = j$  then break
9:   swap  $A[i]$  and  $A[j]$ ;  $j \leftarrow j - 1$ 
10: return  $i$ 
```

In-Place Implementation of Quick-Sort

quicksort(A, ℓ, r)

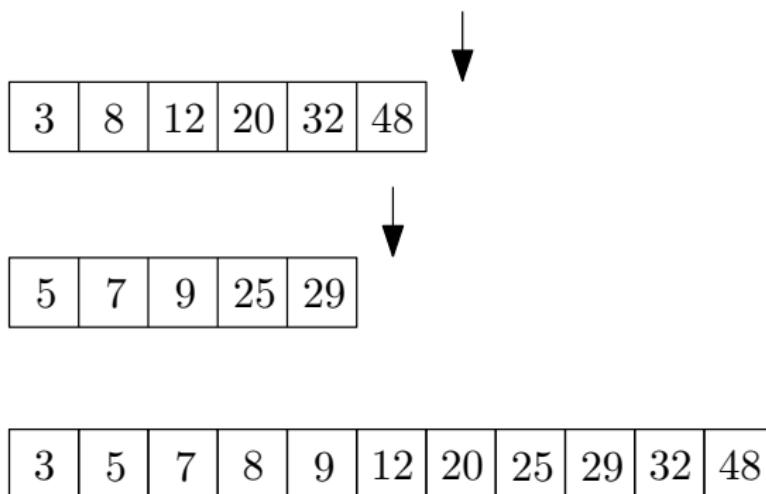
- 1: **if** $\ell \geq r$ **then return**
- 2: $m \leftarrow \text{partition}(A, \ell, r)$
- 3: $\text{quicksort}(A, \ell, m - 1)$
- 4: $\text{quicksort}(A, m + 1, r)$

- To sort an array A of size n , call $\text{quicksort}(A, 1, n)$.

Note: We pass the array A by reference, instead of by copying.

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays



Outline

- 1 Divide-and-Conquer
- 2 Counting Inversions
- 3 Solving Recurrences
- 4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- 7 FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- 8 Finding Closest Pair of Points in 2D Euclidean Space
- 9 Computing n -th Fibonacci Number

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

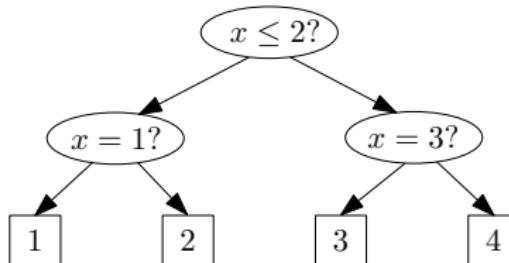
- To sort, we are only allowed to **compare** two elements
- We can not use “internal structures” of the elements

Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \log n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \dots, N\}$.
- You can ask Bob “yes/no” questions about x .

Q: How many questions do you need to ask Bob in order to know x ?

A: $\lceil \log_2 N \rceil$.



Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \dots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π .

Q: How many questions do you need to ask in order to get the permutation π ?

A: $\log_2 n! = \Theta(n \log n)$

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \dots, n\}$ in his hand.
- You can ask Bob questions of the form “*does i appear before j in π ?*”

Q: How many questions do you need to ask in order to get the permutation π ?

A: At least $\log_2 n! = \Theta(n \log n)$

Outline

- 1 Divide-and-Conquer
- 2 Counting Inversions
- 3 Solving Recurrences
- 4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- 7 FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- 8 Finding Closest Pair of Points in 2D Euclidean Space
- 9 Computing n -th Fibonacci Number

Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i -th smallest number in A

- Sorting solves the problem in time $O(n \log n)$.
- Our goal: $O(n)$ running time

Recall: Quicksort with Median Finder

quicksort(A, n)

- 1: **if** $n \leq 1$ **then return** A
- 2: $x \leftarrow$ lower median of A
- 3: $A_L \leftarrow$ elements in A that are less than x ▷ Divide
- 4: $A_R \leftarrow$ elements in A that are greater than x ▷ Divide
- 5: $B_L \leftarrow$ quicksort($A_L, A_L.size$) ▷ Conquer
- 6: $B_R \leftarrow$ quicksort($A_R, A_R.size$) ▷ Conquer
- 7: $t \leftarrow$ number of times x appear A
- 8: **return** the array obtained by concatenating B_L , the array containing t copies of x , and B_R

Selection Algorithm with Median Finder

selection(A, n, i)

```
1: if  $n = 1$  then return  $A$ 
2:  $x \leftarrow$  lower median of  $A$ 
3:  $A_L \leftarrow$  elements in  $A$  that are less than  $x$             $\triangleright$  Divide
4:  $A_R \leftarrow$  elements in  $A$  that are greater than  $x$         $\triangleright$  Divide
5: if  $i \leq A_L.size$  then
6:   return selection( $A_L, A_L.size, i$ )                   $\triangleright$  Conquer
7: else if  $i > n - A_R.size$  then
8:   return selection( $A_R, A_R.size, i - (n - A_R.size)$ )  $\triangleright$  Conquer
9: else
10:  return  $x$ 
```

- Recurrence for selection: $T(n) = T(n/2) + O(n)$
- Solving recurrence: $T(n) = O(n)$

Randomized Selection Algorithm

selection(A, n, i)

```
1: if  $n = 1$  thenreturn  $A$ 
2:  $x \leftarrow$  random element of  $A$  (called pivot)
3:  $A_L \leftarrow$  elements in  $A$  that are less than  $x$             $\triangleright$  Divide
4:  $A_R \leftarrow$  elements in  $A$  that are greater than  $x$        $\triangleright$  Divide
5: if  $i \leq A_L.size$  then
6:   return selection( $A_L, A_L.size, i$ )                   $\triangleright$  Conquer
7: else if  $i > n - A_R.size$  then
8:   return selection( $A_R, A_R.size, i - (n - A_R.size)$ )  $\triangleright$  Conquer
9: else
10:  return  $x$ 
```

- **expected** running time = $O(n)$

Outline

- 1 Divide-and-Conquer
- 2 Counting Inversions
- 3 Solving Recurrences
- 4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- 7 FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- 8 Finding Closest Pair of Points in 2D Euclidean Space
- 9 Computing n -th Fibonacci Number

Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$\begin{aligned}(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5) \\= 6x^6 - 9x^5 + 18x^4 - 15x^3 \\+ 4x^5 - 6x^4 + 12x^3 - 10x^2 \\- 10x^4 + 15x^3 - 30x^2 + 25x \\+ 8x^3 - 12x^2 + 24x - 20 \\= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20\end{aligned}$$

- **Input:** $(4, -5, 2, 3), (-5, 6, -3, 2)$
- **Output:** $(-20, 49, -52, 20, 2, -5, 6)$

Discrete Convolution on Finite Domain

- $f : \{0, 1, \dots, n-1\} \rightarrow \mathbb{R}, g : \{0, 1, \dots, m-1\} \rightarrow \mathbb{R}$
- the **convolution** of f and g , denoted as $h := f \times g$, is defined as

$$h(k) := \sum_{i,j: i+j=k} f(i)g(j) \quad \forall k \in \{0, 1, 2, \dots, m+n-2\}$$

	0	1	2	3	4	5	6
f	4	-5	2	3			
g	-5	6	-3	2			
$f \times g$	-20	49	-52	20	2	-5	6

Applications of Convolutions

- Polynomial and integer multiplication
- Signal and Image Processing
- Probability theory: Sum of two distributions
- Convolutional neural network

- Polynomial multiplication \Leftrightarrow Convolution
- We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication

- $16103416169 \times 424317167$
- $(16x^3 + 103x^2 + 416x + 169) \times (424x^2 + 317x + 167)$
- $6784x^5 + 48744x^4 + 211707x^3 + 220729x^2 + 123045x + 28223$
-
- $6784, 48744, 211707, 220729, 123045, 282236784, 48744, 211707, 220729$
- 6832955927852073223

Naïve Algorithm

polynomial-multiplication(A, B, n)

```
1: let  $C[k] \leftarrow 0$  for every  $k = 0, 1, 2, \dots, 2n - 2$ 
2: for  $i \leftarrow 0$  to  $n - 1$  do
3:   for  $j \leftarrow 0$  to  $n - 1$  do
4:      $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$ 
5: return  $C$ 
```

Running time: $O(n^2)$

Divide-and-Conquer for Polynomial Multiplication

$$p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4)$$

$$q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5)$$

- $p(x)$: degree of $n - 1$ (assume n is even)
- $p(x) = p_H(x)x^{n/2} + p_L(x)$,
- $p_H(x), p_L(x)$: polynomials of degree $n/2 - 1$.

$$\begin{aligned} pq &= (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \\ &= p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L \end{aligned}$$

Divide-and-Conquer for Polynomial Multiplication

$$\begin{aligned} pq &= (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \\ &= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \end{aligned}$$

$$\begin{aligned} \text{multiply}(p, q) &= \text{multiply}(p_H, q_H) \times x^n \\ &\quad + (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \\ &\quad + \text{multiply}(p_L, q_L) \end{aligned}$$

- Recurrence: $T(n) = 4T(n/2) + O(n)$
- $T(n) = O(n^2)$

Reduce Number from 4 to 3

$$\begin{aligned} pq &= (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \\ &= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \end{aligned}$$

- $p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L$

Divide-and-Conquer for Polynomial Multiplication

$$\begin{aligned}r_H &= \text{multiply}(p_H, q_H) \\r_L &= \text{multiply}(p_L, q_L)\end{aligned}$$

$$\begin{aligned}\text{multiply}(p, q) &= r_H \times x^n \\&\quad + (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \\&\quad + r_L\end{aligned}$$

- Solving Recurrence: $T(n) = 3T(n/2) + O(n)$
- $T(n) = O(n^{\log_2 3}) = O(n^{1.585})$

Assumption n is a power of 2. Arrays are 0-indexed.

multiply(A, B, n)

```
1: if  $n = 1$  then return  $(A[0]B[0])$ 
2:  $A_L \leftarrow A[0 \dots n/2 - 1], A_H \leftarrow A[n/2 \dots n - 1]$ 
3:  $B_L \leftarrow B[0 \dots n/2 - 1], B_H \leftarrow B[n/2 \dots n - 1]$ 
4:  $C_L \leftarrow \text{multiply}(A_L, B_L, n/2)$ 
5:  $C_H \leftarrow \text{multiply}(A_H, B_H, n/2)$ 
6:  $C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2)$ 
7:  $C \leftarrow \text{array of } (2n - 1) \text{ 0's}$ 
8: for  $i \leftarrow 0$  to  $n - 2$  do
9:    $C[i] \leftarrow C[i] + C_L[i]$ 
10:   $C[i + n] \leftarrow C[i + n] + C_H[i]$ 
11:   $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$ 
12: return  $C$ 
```

Example

$$(3 + 2x + 2x^2 + 4x^3 + x^4 + 2x^5 + x^6 + 5x^7) \\ \times (2 + x - x^2 + 2x^3 - 2x^4 - x^5 + 2x^6 - 2x^7)$$

$$6 + 7x + 3x^2 + 14x^3 + 6x^4 + 8x^6$$

$$(3 + 2x + 2x^2 + 4x^3) \\ \times (2 + x - x^2 + 2x^3)$$

$$(1 + 2x + x^2 + 5x^3) \\ \times (-2 - x + 2x^2 - 2x^3)$$

$$(4 + 4x + 3x^2 + 9x^3) \\ \times x^2$$

$$6 + 7x + 2x^2$$

$$(3 + 2x) \\ \times (2 + x)$$

$$-2 + 8x^2$$

$$(2 + 4x) \\ \times (-1 + 2x)$$

$$5 + 21x + 18x^2$$

$$(5 + 6x) \\ \times (1 + 3x)$$

0	1	2	3	4	5	6
6	7	2		-2	0	8
6	7	3	14	8		8

$$(5 + 21x + 18x^2) - (6 + 7x + 2x^2) - (-2 + 8x^2) = 1 + 14x + 8x^2$$

$$(6 + 7x + 2x^2) + (1 + 14x + 8x^2)x^2 + (-2 + 8x^2)x^4 \\ = 6 + 7x + 3x^2 + 14x^3 + 6x^4 + 8x^6$$

Outline

- 1 Divide-and-Conquer
- 2 Counting Inversions
- 3 Solving Recurrences
- 4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 **Strassen's Algorithm for Matrix Multiplication**
- 7 FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- 8 Finding Closest Pair of Points in 2D Euclidean Space
- 9 Computing n -th Fibonacci Number

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

```
1: for  $i \leftarrow 1$  to  $n$  do
2:   for  $j \leftarrow 1$  to  $n$  do
3:      $C[i, j] \leftarrow 0$ 
4:     for  $k \leftarrow 1$  to  $n$  do
5:        $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$ 
6:   return  $C$ 
```

- running time = $O(n^3)$

Try to Use Divide-and-Conquer

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Diagram illustrating the division of a $n \times n$ matrix into four $n/2 \times n/2$ submatrices. The top-left submatrix is A_{11} , the top-right is A_{12} , the bottom-left is A_{21} , and the bottom-right is A_{22} . The dimension $n/2$ is indicated by brackets above and to the right of the submatrices.

- $C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$
- `matrix_multiplication(A, B)` recursively calls `matrix_multiplication(A11, B11)`, `matrix_multiplication(A12, B21)`, \dots
- Recurrence for running time: $T(n) = 8T(n/2) + O(n^2)$
- $T(n) = O(n^3)$
- Strassen's Algorithm: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^{\log_2 7}) = O(n^{2.808})$

Strassen's Algorithm

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$n/2$ $n/2$ $n/2$ $n/2$

- $C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$
- $M_1 \leftarrow (A_{11} + A_{22}) \times (B_{11} + B_{22})$
- $M_2 \leftarrow (A_{21} + A_{22}) \times B_{11}$
- $M_3 \leftarrow A_{11} \times (B_{12} - B_{22})$
- $M_4 \leftarrow A_{22} \times (B_{21} - B_{11})$
- $M_5 \leftarrow (A_{11} + A_{12}) \times B_{22}$
- $M_6 \leftarrow (A_{21} - A_{11}) \times (B_{11} + B_{12})$
- $M_7 \leftarrow (A_{12} - A_{22}) \times (B_{21} + B_{22})$
- $C_{11} \leftarrow M_1 + M_4 - M_5 + M_7$
- $C_{12} \leftarrow M_3 + M_5$
- $C_{21} \leftarrow M_2 + M_4$
- $C_{22} \leftarrow M_1 - M_2 + M_3 + M_6$

Outline

- 1 Divide-and-Conquer
- 2 Counting Inversions
- 3 Solving Recurrences
- 4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- 7 FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- 8 Finding Closest Pair of Points in 2D Euclidean Space
- 9 Computing n -th Fibonacci Number

Interpolation of Polynomials

- $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1}$
- Known: given the value of $p(x)$ for n different values of x , p is uniquely determined
- $p(x) = 1 - x + 2x^2 : p(0) = 1, p(1) = 2, p(2) = 7.$

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}$$

- Given $p(0) = 1, p(1) = 2, p(2) = 7$, to recover p :

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 2 & -\frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

- $p(x) = 1 - x + 2x^2$

Using Interpolation for Polynomial Multiplication

- $p(x) = 1 - x + 2x^2$, $q(x) = 3 - x^2$
- Interpolation on 5 points $\{0, 1, 2, 3, 4\}$:

interpolation for p :

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 & 256 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 7 \\ 16 \\ 29 \end{pmatrix}$$

interpolation for q :

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 & 256 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ -1 \\ -6 \\ -13 \end{pmatrix}$$

Interpolation of pq :

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 & 256 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ -7 \\ -102 \\ -377 \end{pmatrix}$$

$$\begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 & 256 \end{pmatrix}^{-1} \begin{pmatrix} 3 \\ 4 \\ -7 \\ -96 \\ -377 \end{pmatrix}$$

$$\begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -\frac{25}{12} & 4 & -3 & \frac{4}{3} & -\frac{1}{4} \\ \frac{35}{24} & -\frac{13}{3} & \frac{19}{4} & -\frac{7}{3} & \frac{11}{24} \\ -\frac{5}{12} & \frac{3}{2} & -2 & \frac{7}{6} & -\frac{1}{4} \\ \frac{1}{24} & -\frac{1}{6} & \frac{1}{4} & -\frac{1}{6} & \frac{1}{24} \end{pmatrix} \begin{pmatrix} 3 \\ 4 \\ -7 \\ -96 \\ -377 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ 5 \\ 1 \\ -2 \end{pmatrix}$$

$$pq = (1 - x + 2x^2)(3 - x^2) = 3 - 3x + 5x^2 + x^3 - 2x^4$$

Multiplication of two polynomials of degree $n - 1$

- Choose $2n - 1$ distinct values $x_0, x_1, x_2, \dots, x_{m-1}$ carefully, $m = 2n - 1$
- Compute the interpolation of p and q :

$$M := \begin{pmatrix} 1 & x_0 & x_0^2 & x_0^3 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & x_1^3 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & x_2^3 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{m-1} & x_{m-1}^2 & x_{m-1}^3 & \cdots & x_{m-1}^{n-1} \end{pmatrix}$$

$$M \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{m-1} \end{pmatrix} \quad M \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} z_0 \\ z_1 \\ z_2 \\ \vdots \\ z_{m-1} \end{pmatrix}$$

Multiplication of two polynomials of degree $n - 1$

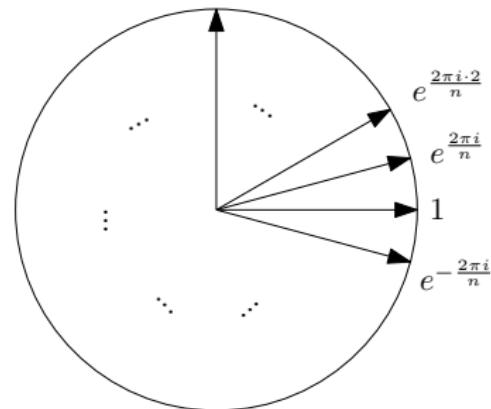
$$M \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{m-1} \end{pmatrix} = \begin{pmatrix} y_0 z_0 \\ y_1 z_1 \\ y_2 z_2 \\ \vdots \\ y_{m-1} z_{m-1} \end{pmatrix} \quad \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{m-1} \end{pmatrix} = M^{-1} \begin{pmatrix} y_0 z_0 \\ y_1 z_1 \\ y_2 z_2 \\ \vdots \\ y_{m-1} z_{m-1} \end{pmatrix}$$

$$\begin{aligned} & (a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}) \\ & \times (b_0 + b_1 x + b_2 x^2 + \cdots + b_{n-1} x^{n-1}) \\ & = (c_0 + c_1 x + c_2 x^2 + \cdots + c_{2n-2} x^{2n-2}) \end{aligned}$$

Q: How should we set x_0, x_1, \dots, x_{n-1} so that we can compute Ma and $M^{-1}y$ fast (for any $a, y \in \mathbb{R}^{\{0,1,\dots,n-1\}}$)?

A: Use the n complex roots of the equation $x^n = 1$

- $e^{\frac{2\pi i \cdot k}{n}} = \cos\left(\frac{2\pi \cdot k}{n}\right) + i \cdot \sin\left(\frac{2\pi \cdot k}{n}\right), k \in \{0, 1, \dots, n-1\}$
- $\omega := e^{\frac{2\pi i}{n}}$, n -th roots are $1, \omega, \omega^2, \dots, \omega^{n-1}$



$$F_n := \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \cdots & \omega^{-(n-1)} \end{pmatrix}$$

- Interpolation and Inverse-Interpolation:

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{pmatrix} = F_n \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{pmatrix} \quad \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{pmatrix} = F_n^{-1} \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{pmatrix}$$

- Interpolation: **Fast Fourier Transform (FFT)**
- Invert-Interpolation: **Inverse Fast Fourier Transform (iFFT)**

Fast Fourier Transform: Divide and Conquer

- Assume n is even.

Breaking polynomial into even and odd parts

- $p_{\text{even}}(x) := a_0 + a_2x + a_4x^2 + \cdots + a_{n-2}x^{n/2-1}$
- $p_{\text{odd}}(x) := a_1 + a_3x + a_5x^2 + \cdots + a_{n-1}x^{n/2-1}$
- $p(x) = p_{\text{even}}(x^2) + p_{\text{odd}}(x^2) \cdot x$

$$p(\omega^k) = p_{\text{even}}(\omega^{2k}) + p_{\text{odd}}(\omega^{2k}) \cdot \omega^k, \quad k = 0, 1, \dots, \frac{n}{2} - 1$$

$$p(\omega^{n/2+k}) = p_{\text{even}}(\omega^{2k}) - p_{\text{odd}}(\omega^{2k}) \cdot \omega^k, \quad k = 0, 1, \dots, \frac{n}{2} - 1$$

- Assume n is an integer power of 2

FFT($n, a_0, a_1, \dots, a_{n-1}$)

```
1: if  $n = 1$  then return ( $a_0$ )
2:  $(e_0, e_1, \dots, e_{n/2-1}) \leftarrow \text{FFT}(n/2, a_0, a_2, \dots, a_{n-2})$ 
3:  $(o_0, o_1, \dots, o_{n/2-1}) \leftarrow \text{FFT}(n/2, a_1, a_3, \dots, a_{n-1})$ 
4: for  $k \leftarrow 0, 1, 2, \dots, n/2 - 1$  do
5:    $y_k \leftarrow e_k + o_k \cdot \omega^k$ 
6:    $y_{n/2+k} \leftarrow e_k - o_k \cdot \omega^k$ 
7: return ( $y_0, y_1, \dots, y_{n-1}$ )
```

- Recurrence for running time: $T(n) = 2T(n/2) + O(n)$
- $T(n) = O(n \log n)$

Example for one recursion of FFT

- $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (3, 2, 1, 2, 5, 6, 1, 4)$

$$\begin{pmatrix} e_0 \\ e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 5 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ -2 \\ 6 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} o_0 \\ o_1 \\ o_2 \\ o_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 6 \\ 4 \end{pmatrix} = \begin{pmatrix} 14 \\ -4 - 2i \\ 2 \\ -4 + 2i \end{pmatrix}$$

- $\omega = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}i}{2}$
- $y_0 = e_0 + o_0 = 10 + 14 = 24$
- $y_1 = e_1 + o_1\omega = -2 + (-4 - 2i)\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}i}{2}\right) = -2 - 2\sqrt{2} - 3\sqrt{2}i$
- $y_6 = e_2 - o_2\omega^2 = 6 - 2i \quad y_7 = e_3 - o_3\omega^3$

$$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1}$$

$$q(x) = b_0 + b_1x + b_2x^2 + \cdots + b_{n-1}x^{n-1}$$

multiplying p and q ,

▷ assuming n is a power of 2

1: $y \leftarrow \text{FFT}(2n, a_0, a_1, \dots, a_{n-1}, 0, 0, \dots, 0)$

2: $z \leftarrow \text{FFT}(2n, b_0, b_1, \dots, b_{n-1}, 0, 0, \dots, 0)$

3: $c \leftarrow \text{iFFT}(2n, y_0z_0, y_1z_1, \dots, y_{2n-1}z_{2n-1})$

4: **return** $(c_0, c_1, \dots, c_{2n-2})$

- $\text{iFFT}(n, y_0, y_1, \dots, y_{n-1})$: inverse FFT procedure: multiplying input vector y by the inverse of F_n , which is

$$\frac{1}{n} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\ 1 & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-2(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \omega & \omega^2 & \cdots & \omega^{n-1} \end{pmatrix}$$

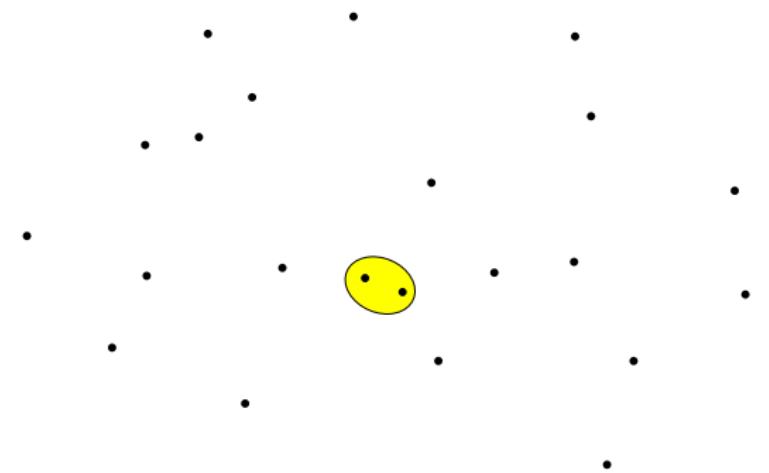
Outline

- 1 Divide-and-Conquer
- 2 Counting Inversions
- 3 Solving Recurrences
- 4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- 7 FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- 8 Finding Closest Pair of Points in 2D Euclidean Space
- 9 Computing n -th Fibonacci Number

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

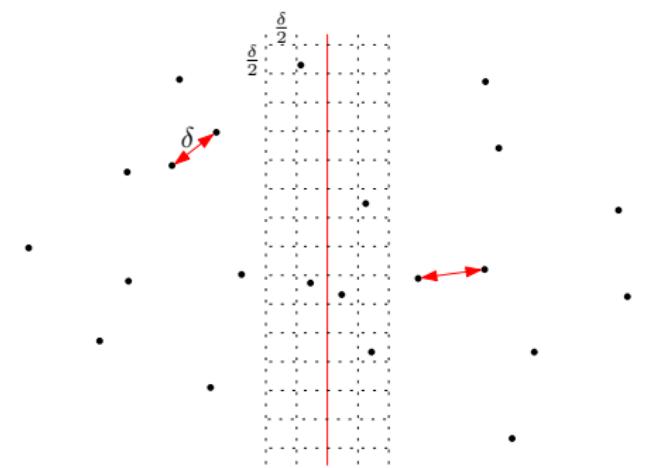
Output: the pair of points that are closest



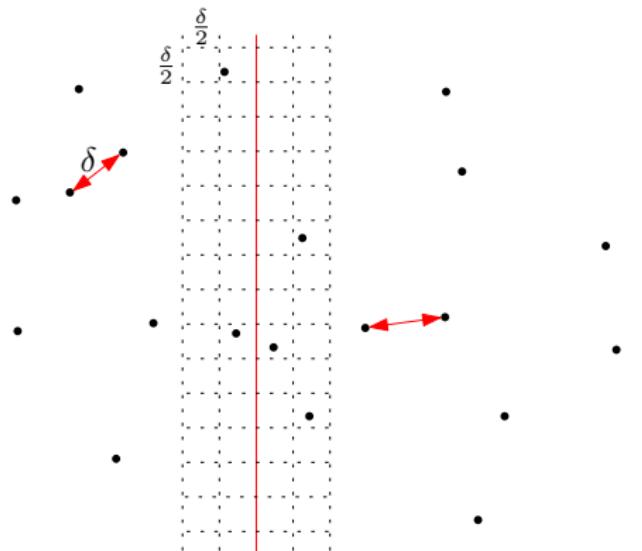
- Trivial algorithm: $O(n^2)$ running time

Divide-and-Conquer Algorithm for Closest Pair

- **Divide:** Divide the points into two halves via a vertical line
- **Conquer:** Solve two sub-instances recursively
- **Combine:** Check if there is a closer pair between left-half and right-half



Divide-and-Conquer Algorithm for Closest Pair



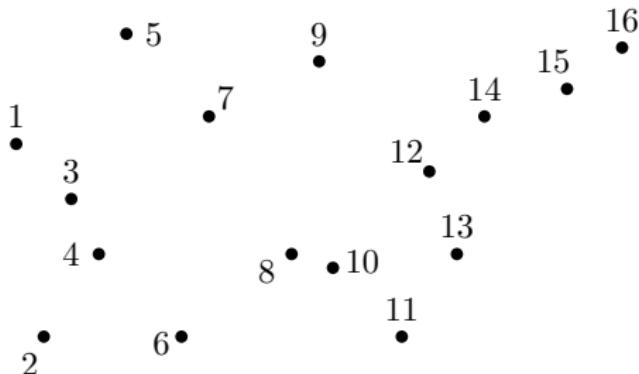
- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- Implementation: **Sort** points inside the stripe according to y -coordinates
- For every point, consider $O(1)$ points around it in the order

- time for combine step = $O(n \log n)$
- recurrence: $T(n) = 2T(n/2) + O(n \log n)$
- solving recurrence: $T(n) = O(n \log^2 n)$

Improve the running time of combine step to $O(n)$

- also sort the points in ascending order of y values at the beginning
- pass the sequence to the root recursion
- constructing two sub-sequences from the sequence, and pass them to the two sub-recursions respectively
- $T(n) = 2T(n/2) + O(n) \implies T(n) = O(n \log n)$

Example for Closest Pair



- $\text{CP}(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))$
- $\text{CP}(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))$
- $\text{CP}(1, 4, (1, 3, 4, 2))$
- $\text{CP}(5, 8, (5, 7, 8, 6))$
- $\text{CP}(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))$

Outline

- 1 Divide-and-Conquer
- 2 Counting Inversions
- 3 Solving Recurrences
- 4 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 5 Polynomial Multiplication
- 6 Strassen's Algorithm for Matrix Multiplication
- 7 FFT(Fast Fourier Transform): Polynomial Multiplication in $O(n \log n)$ Time
- 8 Finding Closest Pair of Points in 2D Euclidean Space
- 9 Computing n -th Fibonacci Number

Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

n-th Fibonacci Number

Input: integer $n > 0$

Output: F_n

Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

```
1: if  $n = 0$  return 0
2: if  $n = 1$  return 1
3: return Fib( $n - 1$ ) + Fib( $n - 2$ )
```

Q: Is the running time of the algorithm polynomial or exponential in n ?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n

Computing F_n : Reasonable Algorithm

Fib(n)

```
1:  $F[0] \leftarrow 0$ 
2:  $F[1] \leftarrow 1$ 
3: for  $i \leftarrow 2$  to  $n$  do
4:    $F[i] \leftarrow F[i - 1] + F[i - 2]$ 
5: return  $F[n]$ 
```

- Dynamic Programming
- Running time = $O(n)$

Computing F_n : Even Better Algorithm

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix}$$

...

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$$

power(n)

```
1: if  $n = 0$  then return  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 
2:  $R \leftarrow \text{power}(\lfloor n/2 \rfloor)$ 
3:  $R \leftarrow R \times R$ 
4: if  $n$  is odd then  $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ 
5: return  $R$ 
```

Fib(n)

```
1: if  $n = 0$  then return 0
2:  $M \leftarrow \text{power}(n - 1)$ 
3: return  $M[1][1]$ 
```

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
- $T(n) = O(\log n)$

Running time = $O(\log n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
- Even printing $F(n)$ requires time much larger than $O(\log n)$

Fixing the Problem

To compute F_n , we need $O(\log n)$ basic arithmetic operations on integers

Summary: Divide-and-Conquer

- **Divide:** Divide instance into many smaller instances
- **Conquer:** Solve each of smaller instances recursively and separately
- **Combine:** Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem

Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, FFT, . . . :
$$T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$$
- Polynomial Multiplication:
$$T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3})$$
- Matrix Multiplication:
$$T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7})$$
- To improve running time, design better algorithm for “combine” step, or reduce number of recursions, ...