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Greedy Algorithm
mainly for combinatorial optimization problems

trivial algorithm runs in exponential time

greedy algorithm gives an efficient algorithm

main focus of analysis: correctness of algorithm

Divide-and-Conquer
not necessarily for combinatorial optimization problems

trivial algorithm already runs in polynomial time

divide-and-conquer gives a more efficient algorithm

main focus of analysis: running time
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Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance
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merge-sort(A, n)

1: if n = 1 then
2: return A
3: else
4: B ← merge-sort

(
A
[
1..⌊n/2⌋

]
, ⌊n/2⌋

)

5: C ← merge-sort
(
A
[
⌊n/2⌋+ 1..n

]
, ⌈n/2⌉

)

6: return merge(B,C, ⌊n/2⌋, ⌈n/2⌉)

Divide: trivial

Conquer: 4, 5

Combine: 6
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Running Time for Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)

Better than insertion sort
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Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

{
O(1) if n = 1

T (⌊n/2⌋) + T (⌈n/2⌉) +O(n) if n ≥ 2

With some tolerance of informality:

T (n) =

{
O(1) if n = 1

2T (n/2) +O(n) if n ≥ 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n log n) (we shall
show how later)



7/91

Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

{
O(1) if n = 1

T (⌊n/2⌋) + T (⌈n/2⌉) +O(n) if n ≥ 2

With some tolerance of informality:

T (n) =

{
O(1) if n = 1

2T (n/2) +O(n) if n ≥ 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n log n) (we shall
show how later)



7/91

Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

{
O(1) if n = 1

T (⌊n/2⌋) + T (⌈n/2⌉) +O(n) if n ≥ 2

With some tolerance of informality:

T (n) =

{
O(1) if n = 1

2T (n/2) +O(n) if n ≥ 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n log n) (we shall
show how later)



7/91

Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

{
O(1) if n = 1

T (⌊n/2⌋) + T (⌈n/2⌉) +O(n) if n ≥ 2

With some tolerance of informality:

T (n) =

{
O(1) if n = 1

2T (n/2) +O(n) if n ≥ 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n log n) (we shall
show how later)



8/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number



9/91

Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: an sequence A of n numbers

Output: number of inversions in A

Example:

10 8 15 9 12

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)
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Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].
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Example:
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Naive Algorithm for Counting Inversions

count-inversions(A, n)
1: c← 0
2: for every i← 1 to n− 1 do
3: for every j ← i+ 1 to n do
4: if A[i] > A[j] then c← c+ 1

5: return c



11/91

Divide-and-Conquer

B CA:

p

p = ⌊n/2⌋, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
∣∣{(i, j) : B[i] > C[j]

}∣∣

Q: How fast can we compute m, via trivial algorithm?

A: O(n2)

Can not improve the O(n2) time for counting inversions.
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Divide-and-Conquer

B CA:

p

p = ⌊n/2⌋, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
∣∣{(i, j) : B[i] > C[j]

}∣∣

Lemma If both B and C are sorted, then we can compute m in
O(n) time!
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Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

total= 0B:

C:
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Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7
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Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8

2total= 02B:

C:

+0 +2
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Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0
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25B:

C:

+0 +2 +3



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12

25B:

C:

+0 +2 +3



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:
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12 20
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+0 +2 +3 +3
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Count Inversions between B and C

Procedure that merges B and C and counts inversions between B
and C at the same time

merge-and-count(B,C, n1, n2)
1: count← 0;
2: A← array of size n1 + n2; i← 1; j ← 1
3: while i ≤ n1 or j ≤ n2 do
4: if j > n2 or (i ≤ n1 and B[i] ≤ C[j]) then
5: A[i+ j − 1]← B[i]; i← i+ 1
6: count← count+ (j − 1)
7: else
8: A[i+ j − 1]← C[j]; j ← j + 1

9: return (A, count)
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Sort and Count Inversions in A

A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n)

1: if n = 1 then
2: return (A, 0)
3: else
4: (B,m1)← sort-and-count

(
A
[
1..⌊n/2⌋

]
, ⌊n/2⌋

)

5: (C,m2)← sort-and-count
(
A
[
⌊n/2⌋+ 1..n

]
, ⌈n/2⌉

)

6: (A,m3)← merge-and-count(B,C, ⌊n/2⌋, ⌈n/2⌉)
7: return (A,m1 +m2 +m3)

Divide: trivial

Conquer: 4, 5

Combine: 6, 7
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Running time = O(n log n)
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Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number
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Methods for Solving Recurrences

The recursion-tree method

The master theorem
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Recursion-Tree Method

T (n) = 2T (n/2) +O(n)
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Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)
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Recursion-Tree Method

T (n) = 3T (n/2) +O(n)

n

Total running time at level i?

n
2i
× 3i =

(
3
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n

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
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2

)i

n = O

(
n

(
3

2

)log2 n
)

= O(3log2 n) = O(nlog2 3).
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Master Theorem

Recurrences a b c time
T (n) = 2T (n/2) +O(n)

2 2 1

O(n log n)
T (n) = 3T (n/2) +O(n)

3 2 1

O(nlog2 3)
T (n) = 3T (n/2) +O(n2)

3 2 2

O(n2)

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





??

if c < logb a

??

if c = logb a

??

if c > logb a
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Proof of Master Theorem Using Recursion Tree
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Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number
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Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number
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Quicksort vs Merge-Sort

Merge Sort Quicksort
Divide Trivial Separate small and big numbers
Conquer Recurse Recurse
Combine Merge 2 sorted arrays Trivial
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Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 85

quicksort(A, 1, 15)

A:
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quicksort(A, 1, 3) quicksort(A, 5, 7)

quicksort(A, 9, 15)

quicksort(A, 9, 11)

15 75693817 9425 76 9237 45 856429 82
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Quicksort

quicksort(A, n)

1: if n ≤ 1 then return A

2: x← lower median of A
3: AL ← array of elements in A that are less than x \\ Divide
4: AR ← array of elements in A that are greater than x \\ Divide
5: BL ← quicksort(AL, length of AL) \\ Conquer
6: BR ← quicksort(AR, length of AR) \\ Conquer
7: t← number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Recurrence T (n) ≤ 2T (n/2) +O(n)

Running time = O(n log n)
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Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)
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Quicksort Using A Random Pivot

quicksort(A, n)

1: if n ≤ 1 then return A

2: x← a random element of A (x is called a pivot)
3: AL ← array of elements in A that are less than x \\ Divide
4: AR ← array of elements in A that are greater than x \\ Divide
5: BL ← quicksort(AL, length of AL) \\ Conquer
6: BR ← quicksort(AR, length of AR) \\ Conquer
7: t← number of times x appear A
8: return concatenation of BL, t copies of x, and BR
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Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.
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Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.
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Quicksort Using A Random Pivot

quicksort(A, n)

1: if n ≤ 1 then return A

2: x← a random element of A (x is called a pivot)
3: AL ← array of elements in A that are less than x \\ Divide
4: AR ← array of elements in A that are greater than x \\ Divide
5: BL ← quicksort(AL, length of AL) \\ Conquer
6: BR ← quicksort(AR, length of AR) \\ Conquer
7: t← number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Lemma The expected running time of the algorithm is O(n log n).
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 856429 17

To partition the array into two parts, we only need O(1) extra
space.
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partition(A, ℓ, r)

1: p← random integer between ℓ and r, swap A[p] and A[ℓ]
2: i← ℓ, j ← r
3: while true do
4: while i < j and A[i] < A[j] do j ← j − 1
5: if i = j then break

6: swap A[i] and A[j]; i← i+ 1
7: while i < j and A[i] < A[j] do i← i+ 1

8: if i = j then break

9: swap A[i] and A[j]; j ← j − 1

10: return i
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In-Place Implementation of Quick-Sort

quicksort(A, ℓ, r)

1: if ℓ ≥ r then return
2: m← patition(A, ℓ, r)
3: quicksort(A, ℓ,m− 1)
4: quicksort(A,m+ 1, r)

To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.
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Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29
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To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20 25 29 32 48
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Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number
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Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
To sort, we are only allowed to compare two elements

We can not use “internal structures” of the elements
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Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Ω(n log n).

Bob has one number x in his hand, x ∈ {1, 2, 3, · · · , N}.
You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: ⌈log2N⌉.

x = 1?

x ≤ 2?

x = 3?

1 2 3 4
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Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over {1, 2, 3, · · · , n} in his hand.

You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the
permutation π?

A: log2 n! = Θ(n log n)
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Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over {1, 2, 3, · · · , n} in his hand.

You can ask Bob questions of the form “does i appear before j in
π?”

Q: How many questions do you need to ask in order to get the
permutation π?

A: At least log2 n! = Θ(n log n)
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1 Divide-and-Conquer

2 Counting Inversions
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Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem
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Selection Problem
Input: a set A of n numbers, and 1 ≤ i ≤ n

Output: the i-th smallest number in A

Sorting solves the problem in time O(n log n).

Our goal: O(n) running time
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Recall: Quicksort with Median Finder

quicksort(A, n)

1: if n ≤ 1 then return A

2: x← lower median of A
3: AL ← elements in A that are less than x ▷ Divide
4: AR ← elements in A that are greater than x ▷ Divide
5: BL ← quicksort(AL, AL.size) ▷ Conquer
6: BR ← quicksort(AR, AR.size) ▷ Conquer
7: t← number of times x appear A
8: return the array obtained by concatenating BL, the array

containing t copies of x, and BR
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Selection Algorithm with Median Finder

selection(A, n, i)

1: if n = 1 then return A
2: x← lower median of A
3: AL ← elements in A that are less than x ▷ Divide
4: AR ← elements in A that are greater than x ▷ Divide
5: if i ≤ AL.size then
6: return selection(AL, AL.size, i) ▷ Conquer
7: else if i > n− AR.size then
8: return selection(AR, AR.size, i− (n− AR.size)) ▷ Conquer
9: else

10: return x

Recurrence for selection: T (n) = T (n/2) +O(n)

Solving recurrence: T (n) = O(n)
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Randomized Selection Algorithm

selection(A, n, i)

1: if n = 1 thenreturn A
2: x← random element of A (called pivot)
3: AL ← elements in A that are less than x ▷ Divide
4: AR ← elements in A that are greater than x ▷ Divide
5: if i ≤ AL.size then
6: return selection(AL, AL.size, i) ▷ Conquer
7: else if i > n− AR.size then
8: return selection(AR, AR.size, i− (n− AR.size)) ▷ Conquer
9: else

10: return x

expected running time = O(n)
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Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number
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Polynomial Multiplication
Input: two polynomials of degree n− 1

Output: product of two polynomials

Example:

(3x3 + 2x2 − 5x+ 4)× (2x3 − 3x2 + 6x− 5)

= 6x6 − 9x5 + 18x4 − 15x3

+ 4x5 − 6x4 + 12x3 − 10x2

− 10x4 + 15x3 − 30x2 + 25x

+ 8x3 − 12x2 + 24x− 20

= 6x6 − 5x5 + 2x4 + 20x3 − 52x2 + 49x− 20

Input: (4,−5, 2, 3), (−5, 6,−3, 2)
Output: (−20, 49,−52, 20, 2,−5, 6)
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Discrete Convolution on Finite Domain
f : {0, 1, · · · , n− 1} → R, g : {0, 1, · · · ,m− 1} → R
the convolution of f and g, denoted as h := f × g, is defined as

h(k) :=
∑

i,j:i+j=k

f(i)g(j) ∀k ∈ {0, 1, 2, · · · ,m+ n− 2}

0 1 2 3 4 5 6
f 4 -5 2 3
g -5 6 -3 2

f × g -20 49 -52 20 2 -5 6

Applications of Convolutions
Polynomial and integer multiplication

Signal and Image Processing

Probability theory: Sum of two distributions

Convolutional neural network

...
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Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication

16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6832955927852073223
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(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)
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6832955927852073223
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Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6784, 48744, 211707, 220729, 123073, 223

6832955927852073223
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Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6784, 48744, 211707, 220852, 073, 223

6832955927852073223
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Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6784, 48744, 211927, 852, 073, 223

6832955927852073223
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Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6784, 48955, 927, 852, 073, 223

6832955927852073223
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Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6832, 955, 927, 852, 073, 223

6832955927852073223
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Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6832, 955, 927, 852, 073, 223

6832955927852073223
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Näıve Algorithm

polynomial-multiplication(A,B, n)

1: let C[k]← 0 for every k = 0, 1, 2, · · · , 2n− 2
2: for i← 0 to n− 1 do
3: for j ← 0 to n− 1 do
4: C[i+ j]← C[i+ j] + A[i]×B[j]

5: return C

Running time: O(n2)
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Running time: O(n2)



54/91

Divide-and-Conquer for Polynomial Multiplication

p(x) = 3x3 + 2x2 − 5x+ 4 = (3x+ 2)x2 + (−5x+ 4)

q(x) = 2x3 − 3x2 + 6x− 5 = (2x− 3)x2 + (6x− 5)

p(x): degree of n− 1 (assume n is even)

p(x) = pH(x)x
n/2 + pL(x),

pH(x), pL(x): polynomials of degree n/2− 1.

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL
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Divide-and-Conquer for Polynomial Multiplication

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

multiply(p, q) = multiply(pH , qH)× xn

+
(
multiply(pH , qL) +multiply(pL, qH)

)
× xn/2

+multiply(pL, qL)

Recurrence: T (n) = 4T (n/2) +O(n)

T (n) = O(n2)
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Reduce Number from 4 to 3

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

pHqL + pLqH = (pH + pL)(qH + qL)− pHqH − pLqL
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Divide-and-Conquer for Polynomial Multiplication

rH = multiply(pH , qH)

rL = multiply(pL, qL)

multiply(p, q) = rH × xn

+
(
multiply(pH + pL, qH + qL)− rH − rL

)
× xn/2

+ rL

Solving Recurrence: T (n) = 3T (n/2) +O(n)

T (n) = O(nlog2 3) = O(n1.585)
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Assumption n is a power of 2. Arrays are 0-indexed.

multiply(A,B, n)

1: if n = 1 then return (A[0]B[0])
2: AL ← A[0 .. n/2− 1], AH ← A[n/2 .. n− 1]
3: BL ← B[0 .. n/2− 1], BH ← B[n/2 .. n− 1]
4: CL ← multiply(AL, BL, n/2)
5: CH ← multiply(AH , BH , n/2)
6: CM ← multiply(AL + AH , BL +BH , n/2)
7: C ← array of (2n− 1) 0’s
8: for i← 0 to n− 2 do
9: C[i]← C[i] + CL[i]

10: C[i+ n]← C[i+ n] + CH [i]
11: C[i+ n/2]← C[i+ n/2] + CM [i]− CL[i]− CH [i]

12: return C
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Example

(3 + 2x + 2x2 + 4x3 + x4 + 2x5 + x6 + 5x7)

×(2 + x− x2 + 2x3 − 2x4 − x5 + 2x6 − 2x7)
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(3 + 2x + 2x2 + 4x3)

×(2 + x− x2 + 2x3)
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×(−2− x + 2x2 − 2x3)

(4 + 4x + 3x2 + 9x3)

×x2
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(5 + 21x + 18x2)− (6 + 7x + 2x2)− (−2 + 8x2) = 1 + 14x + 8x2
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(5 + 21x + 18x2)− (6 + 7x + 2x2)− (−2 + 8x2) = 1 + 14x + 8x2
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= 6 + 7x + 3x2 + 14x3 + 6x4 + 8x6
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(5 + 21x + 18x2)− (6 + 7x + 2x2)− (−2 + 8x2) = 1 + 14x + 8x2

(6 + 7x + 2x2) + (1 + 14x + 8x2)x2 + (−2 + 8x2)x4

0 1 2 3 4

= 6 + 7x + 3x2 + 14x3 + 6x4 + 8x6

5 6
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Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number
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Matrix Multiplication
Input: two n× n matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication(A,B, n)

1: for i← 1 to n do
2: for j ← 1 to n do
3: C[i, j]← 0
4: for k ← 1 to n do
5: C[i, j]← C[i, j] + A[i, k]×B[k, j]

6: return C

running time = O(n3)
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Try to Use Divide-and-Conquer

A11 A12

A21 A22

A =

n/2

n/2 B11 B12

B21 B22

B =

n/2

n/2

C =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

matrix multiplication(A,B) recursively calls
matrix multiplication(A11, B11), matrix multiplication(A12, B21),
· · ·

Recurrence for running time: T (n) = 8T (n/2) +O(n2)

T (n) = O(n3)

Strassen’s Algorithm: T (n) = 7T (n/2) +O(n2)

Solving Recurrence T (n) = O(nlog2 7) = O(n2.808)
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Strassen’s Algorithm

A11 A12

A21 A22

A =

n/2

n/2 B11 B12

B21 B22

B =

n/2

n/2

C =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

M1 ← (A11 + A22)× (B11 +B22)

M2 ← (A21 + A22)×B11

M3 ← A11 × (B12 −B22)

M4 ← A22 × (B21 −B11)

M5 ← (A11 + A12)×B22

M6 ← (A21 − A11)× (B11 +B12)

M7 ← (A12 − A22)× (B21 +B22)

C11 ←M1+M4−M5+M7

C12 ←M3 +M5

C21 ←M2 +M4

C22 ←M1−M2+M3+M6
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Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number
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Interpolation of Polynomials

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

Known: given the value of p(x) for n different values of x, p is
uniquely determined

p(x) = 1− x+ 2x2 : p(0) = 1, p(1) = 2, p(2) = 7.



1 0 0
1 1 1
1 2 4






1
−1
2


 =



1
2
7




Given p(0) = 1, p(1) = 2, p(2) = 7, to recover p:



1 0 0
1 1 1
1 2 4




−1

1
2
7


 =




1 0 0
−3

2
2 −1

2
1
2
−1 1

2





1
2
7


 =




1
−1
2




p(x) = 1− x+ 2x2
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Using Interpolation for Polynomial Multiplication

p(x) = 1− x+ 2x2, q(x) = 3− x2

Interpolation on 5 points {0, 1, 2, 3, 4}:

interpolation for p :




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256







1
−1
2
0
0




=




1
2
7
16
29




interpolation for q :




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256







3
0
−1
0
0




=




3
2
−1
−6
−13



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Interpolation of pq:




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256







c0
c1
c2
c3
c4




=




3
4
−7
−102
−377







c0
c1
c2
c3
c4




=




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256




−1


3
4
−7
−96
−377



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Interpolation of pq:
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


=




3
4
−7
−102
−377







c0
c1
c2
c3
c4




=




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256




−1


3
4
−7
−96
−377



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


c0
c1
c2
c3
c4




=




1 0 0 0 0

−25
12

4 −3 4
3
−1

4
35
24

−13
3

19
4
−7

3
11
24

− 5
12

3
2
−2 7

6
−1

4
1
24

−1
6

1
4
−1

6
1
24







3
4
−7
−96
−377




=




3
−3
5
1
−2




pq = (1− x+ 2x2)(3− x2) = 3− 3x+ 5x2 + x3 − 2x4
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Multiplication of two polynomials of degree n− 1
Choose 2n− 1 distinct values x0, x1, x2, · · · , xm−1 carefully,
m = 2n− 1

Compute the interpolation of p and q:

M :=




1 x0 x2
0 x3

0 · · · xn−1
0

1 x1 x2
1 x3

1 · · · xn−1
1

1 x2 x2
2 x3

2 · · · xn−1
2

...
...

...
...

...
...

1 xm−1 x2
m−1 x3

m · · · xn−1
m−1




M




a0
a1
...

an−1

0




=




y0
y1
y2
...

ym−1




M




b0
b1
...

bn−1

0




=




z0
z1
z2
...

zm−1



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Multiplication of two polynomials of degree n− 1

M




c0
c1
...

cm−1


 =




y0z0
y1z1
y2z2
...

ym−1zm−1







c0
c1
...

cm−1


 = M−1




y0z0
y1z1
y2z2
...

ym−1zm−1




(a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1)

× (b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1)

= (c0 + c1x+ c2x
2 + · · ·+ c2n−2x

2n−2)
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Multiplication of two polynomials of degree n− 1

M
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
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


y0z0
y1z1
y2z2
...

ym−1zm−1



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2 + · · ·+ an−1x

n−1)

× (b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1)

= (c0 + c1x+ c2x
2 + · · ·+ c2n−2x

2n−2)
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Q: How should we set x0, x1, · · · , xn−1 so that we can compute Ma
and M−1y fast (for any a, y ∈ R{0,1,··· ,n−1})?

A: Use the n complex roots of the equation xn = 1

e
2πi·k

n = cos
(

2π·k
n

)
+ i · sin

(
2π·k
n

)
, k ∈

{0, 1, · · · , n− 1}
ω := e

2πi
n , n-th roots are

1, ω, ω2, · · · , ωn−1

1

e
2πi
n

e
2πi·2

n

e−
2πi
n

...
...

..
.

... ...
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Fn :=




1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωn−1

1 ω2 ω4 ω6 · · · ω2(n−1)

...
...

...
...

...
...

1 ω−1 ω−2 ω−3 · · · ω−(n−1)




Interpolation and Inverse-Interpolation:



y0
y1
y2
...

yn−1




= Fn




a0
a1
a2
...

an−1







a0
a1
a2
...

an−1




= F−1
n




y0
y1
y2
...

yn−1




Interpolation: Fast Fourier Transform (FFT)

Invert-Interpolation: Inverse Fast Fourier Transform (iFFT)
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Fast Fourier Transform: Divide and Conquer

Assume n is even.

Breaking polynomial into even and odd parts

peven(x) := a0 + a2x+ a4x
2 + · · ·+ an−2x

n/2−1

pold(x) := a1 + a3x+ a5x
2 + · · ·+ an−1x

n/2−1

p(x) = peven(x
2) + podd(x

2) · x

p(ωk) = peven(ω
2k) + podd(ω

2k) · ωk, k = 0, 1, · · · , n
2
− 1

p(ωn/2+k) = peven(ω
2k)− podd(ω

2k) · ωk, k = 0, 1, · · · , n
2
− 1
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Assume n is an integer power of 2

FFT(n, a0, a1, · · · , an−1)
1: if n = 1 then return (a0)

2: (e0, e1, · · · , en/2−1)← FFT(n/2, a0, a2, · · · , an−2)
3: (o0, o1, · · · , on/2−1)← FFT(n/2, a1, a3, · · · , an−1)
4: for k ← 0, 1, 2, · · ·n/2− 1 do
5: yk ← ek + ok · ωk

6: yn/2+k ← ek − ok · ωk

7: return (y0, y1, · · · , yn−1)

Recurrence for running time: T (n) = 2T (n/2) +O(n)

T (n) = O(n log n)
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Example for one recursion of FFT

(a0, a1, a2, a3, a4, a5, a6, a7) = (3, 2, 1, 2, 5, 6, 1, 4)




e0
e1
e2
e3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







3
1
5
1


 =




10
−2
6
−2







o0
o1
o2
o3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







2
2
6
4


 =




14
−4− 2i

2
−4 + 2i




ω =
√
2
2
+

√
2i
2

y0 = e0 + o0 = 10 + 14 = 24

y1 = e1 + o1ω = −2 + (−4− 2i)
(√

2
2
+

√
2i
2

)
= −2− 2

√
2− 3

√
2i

y6 = e2 − o2ω
2 = 6− 2i

y7 = e3 − o3ω
3
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−4− 2i

2
−4 + 2i




ω =
√
2
2
+

√
2i
2

y0 = e0 + o0 = 10 + 14 = 24

y1 = e1 + o1ω = −2 + (−4− 2i)
(√

2
2
+

√
2i
2

)
= −2− 2

√
2− 3

√
2i

y6 = e2 − o2ω
2 = 6− 2i y7 = e3 − o3ω

3
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p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

q(x) = b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1

multiplying p and q, ▷ assuming n is a power of 2

1: y ← FFT(2n, a0, a1, · · · , an−1, 0, 0, · · · , 0)
2: z ← FFT(2n, b0, b1, · · · , bn−1, 0, 0, · · · , 0)
3: c← iFFT(2n, y0z0, y1z1, · · · , y2n−1z2n−1)
4: return (c0, c1, · · · , c2n−2)

iFFT(n, y0, y1, · · · , yn−1): inverse FFT procedure: multiplying
input vector y by the inverse of Fn, which is

1

n




1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

1 ω−2 ω−4 · · · ω−2(n−1)

...
...

...
...

...
1 ω ω2 · · · ωn−1






77/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number
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Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

Trivial algorithm: O(n2) running time
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Divide-and-Conquer Algorithm for Closest Pair

Divide: Divide the points into two halves via a vertical line

Conquer: Solve two sub-instances recursively

Combine: Check if there is a closer pair between left-half and
right-half
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Divide-and-Conquer Algorithm for Closest Pair

δ

δ
2

δ
2

Each box contains at most one pair
For each point, only need to consider O(1) boxes nearby
Implementation: Sort points inside the stripe according to
y-coordinates
For every point, consider O(1) points around it in the order
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time for combine step = O(n log n)

recurrence: T (n) = 2T (n/2) +O(n log n)

solving recurrence: T (n) = ?

Improve the running time of combine step to O(n)

also sort the points in ascending order of y values at the beginning

pass the sequence to the root recursion

constructing two sub-sequences from the sequence, and pass them
to the two sub-recursions respectively

T (n) = 2T (n/2) +O(n) =⇒ T (n) = O(n log n)
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Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))
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Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number
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Fibonacci Numbers

F0 = 0, F1 = 1

Fn = Fn−1 + Fn−2,∀n ≥ 2

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · ·

n-th Fibonacci Number
Input: integer n > 0

Output: Fn
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Computing Fn : Stupid Divide-and-Conquer

Algorithm

Fib(n)

1: if n = 0 return 0
2: if n = 1 return 1
3: return Fib(n− 1) + Fib(n− 2)

Q: Is the running time of the algorithm polynomial or exponential in
n?

A: Exponential

Running time is at least Ω(Fn)

Fn is exponential in n
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Computing Fn: Reasonable Algorithm

Fib(n)

1: F [0]← 0
2: F [1]← 1
3: for i← 2 to n do
4: F [i]← F [i− 1] + F [i− 2]

5: return F [n]

Dynamic Programming

Running time = ?
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Computing Fn: Reasonable Algorithm

Fib(n)

1: F [0]← 0
2: F [1]← 1
3: for i← 2 to n do
4: F [i]← F [i− 1] + F [i− 2]

5: return F [n]
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Computing Fn: Even Better Algorithm

(
Fn

Fn−1

)
=

(
1 1
1 0

)(
Fn−1

Fn−2

)

(
Fn

Fn−1

)
=

(
1 1
1 0

)2(
Fn−2

Fn−3

)

· · ·
(

Fn

Fn−1

)
=

(
1 1
1 0

)n−1(
F1

F0

)
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power(n)

1: if n = 0 then return

(
1 0
0 1

)

2: R← power(⌊n/2⌋)
3: R← R×R

4: if n is odd then R← R×
(

1 1
1 0

)

5: return R

Fib(n)

1: if n = 0 then return 0
2: M ← power(n− 1)
3: return M [1][1]

Recurrence for running time?

T (n) = T (n/2) +O(1)

T (n) = O(log n)
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Running time = O(log n): We Cheated!

Q: How many bits do we need to represent F (n)?

A: Θ(n)

We can not add (or multiply) two integers of Θ(n) bits in O(1)
time

Even printing F (n) requires time much larger than O(log n)

Fixing the Problem

To compute Fn, we need O(log n) basic arithmetic operations on
integers
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Summary: Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Write down recurrence for running time

Solve recurrence using master theorem
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Summary: Divide-and-Conquer

Merge sort, quicksort, count-inversions, closest pair, FFT, · · · :
T (n) = 2T (n/2) +O(n)⇒ T (n) = O(n log n)

Polynomial Multiplication:
T (n) = 3T (n/2) +O(n)⇒ T (n) = O(nlog2 3)

Matrix Multiplication:
T (n) = 7T (n/2) +O(n2)⇒ T (n) = O(nlog2 7)

To improve running time, design better algorithm for “combine”
step, or reduce number of recursions, ...
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