
算法设计与分析(2026年春季学期)

Divide-and-Conquer

授课老师: 栗师

南京大学计算机学院



2/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number



3/91

Greedy Algorithm
mainly for combinatorial optimization problems

trivial algorithm runs in exponential time

greedy algorithm gives an efficient algorithm

main focus of analysis: correctness of algorithm

Divide-and-Conquer
not necessarily for combinatorial optimization problems

trivial algorithm already runs in polynomial time

divide-and-conquer gives a more efficient algorithm

main focus of analysis: running time



3/91

Greedy Algorithm
mainly for combinatorial optimization problems

trivial algorithm runs in exponential time

greedy algorithm gives an efficient algorithm

main focus of analysis: correctness of algorithm

Divide-and-Conquer
not necessarily for combinatorial optimization problems

trivial algorithm already runs in polynomial time

divide-and-conquer gives a more efficient algorithm

main focus of analysis: running time



4/91

Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance



5/91

merge-sort(A, n)

1: if n = 1 then
2: return A
3: else
4: B ← merge-sort

(
A
[
1..⌊n/2⌋

]
, ⌊n/2⌋

)

5: C ← merge-sort
(
A
[
⌊n/2⌋+ 1..n

]
, ⌈n/2⌉

)

6: return merge(B,C, ⌊n/2⌋, ⌈n/2⌉)

Divide: trivial

Conquer: 4, 5

Combine: 6



5/91

merge-sort(A, n)

1: if n = 1 then
2: return A
3: else
4: B ← merge-sort

(
A
[
1..⌊n/2⌋

]
, ⌊n/2⌋

)

5: C ← merge-sort
(
A
[
⌊n/2⌋+ 1..n

]
, ⌈n/2⌉

)

6: return merge(B,C, ⌊n/2⌋, ⌈n/2⌉)

Divide: trivial

Conquer: 4, 5

Combine: 6



6/91

Running Time for Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)

Better than insertion sort



7/91

Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

{
O(1) if n = 1

T (⌊n/2⌋) + T (⌈n/2⌉) +O(n) if n ≥ 2

With some tolerance of informality:

T (n) =

{
O(1) if n = 1

2T (n/2) +O(n) if n ≥ 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n log n) (we shall
show how later)



7/91

Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

{
O(1) if n = 1

T (⌊n/2⌋) + T (⌈n/2⌉) +O(n) if n ≥ 2

With some tolerance of informality:

T (n) =

{
O(1) if n = 1

2T (n/2) +O(n) if n ≥ 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n log n) (we shall
show how later)



7/91

Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

{
O(1) if n = 1

T (⌊n/2⌋) + T (⌈n/2⌉) +O(n) if n ≥ 2

With some tolerance of informality:

T (n) =

{
O(1) if n = 1

2T (n/2) +O(n) if n ≥ 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n log n) (we shall
show how later)



7/91

Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

{
O(1) if n = 1

T (⌊n/2⌋) + T (⌈n/2⌉) +O(n) if n ≥ 2

With some tolerance of informality:

T (n) =

{
O(1) if n = 1

2T (n/2) +O(n) if n ≥ 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n log n) (we shall
show how later)



8/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number



9/91

Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: an sequence A of n numbers

Output: number of inversions in A

Example:

10 8 15 9 12

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)



9/91

Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: an sequence A of n numbers

Output: number of inversions in A

Example:

10 8 15 9 12

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)



9/91

Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: an sequence A of n numbers

Output: number of inversions in A

Example:

10 8 15 9 12

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)



9/91

Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: an sequence A of n numbers

Output: number of inversions in A

Example:

10 8 15 9 12

8 9 10 12 15

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)



9/91

Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: an sequence A of n numbers

Output: number of inversions in A

Example:

10 8 15 9 12

8 9 10 12 15

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)



9/91

Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: an sequence A of n numbers

Output: number of inversions in A

Example:

10 8 15 9 12

8 9 10 12 15
4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)



10/91

Naive Algorithm for Counting Inversions

count-inversions(A, n)
1: c← 0
2: for every i← 1 to n− 1 do
3: for every j ← i+ 1 to n do
4: if A[i] > A[j] then c← c+ 1

5: return c



11/91

Divide-and-Conquer

B CA:

p

p = ⌊n/2⌋, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
∣∣{(i, j) : B[i] > C[j]

}∣∣

Q: How fast can we compute m, via trivial algorithm?

A: O(n2)

Can not improve the O(n2) time for counting inversions.



12/91

Divide-and-Conquer

B CA:

p

p = ⌊n/2⌋, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
∣∣{(i, j) : B[i] > C[j]

}∣∣

Lemma If both B and C are sorted, then we can compute m in
O(n) time!



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

total= 0B:

C:



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

total= 0B:

C:



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3

total= 0B:

C:

+0



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3

total= 0B:

C:

+0



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5

total= 0B:

C:

+0



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5

total= 0B:

C:

+0



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7

total= 0B:

C:

+0



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7

total= 0B:

C:

+0



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8

2total= 02B:

C:

+0 +2



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8

2total= 02B:

C:

+0 +2



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 02B:

C:

+0 +2



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 02B:

C:

+0 +2



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12

25B:

C:

+0 +2 +3



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12

25B:

C:

+0 +2 +3



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20

258B:

C:

+0 +2 +3 +3



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20

258B:

C:

+0 +2 +3 +3



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 25

258B:

C:

+0 +2 +3 +3



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 25

258B:

C:

+0 +2 +3 +3



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 2925

258B:

C:

+0 +2 +3 +3



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 2925

258B:

C:

+0 +2 +3 +3



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 2925 32

25813B:

C:

+0 +2 +3 +3 +5



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 2925 32

25813B:

C:

+0 +2 +3 +3 +5



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 2925 32 48

2581318B:

C:

+0 +2 +3 +3 +5 +5



13/91

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 2925 32 48

2581318B:

C:

+0 +2 +3 +3 +5 +5



14/91

Count Inversions between B and C

Procedure that merges B and C and counts inversions between B
and C at the same time

merge-and-count(B,C, n1, n2)
1: count← 0;
2: A← array of size n1 + n2; i← 1; j ← 1
3: while i ≤ n1 or j ≤ n2 do
4: if j > n2 or (i ≤ n1 and B[i] ≤ C[j]) then
5: A[i+ j − 1]← B[i]; i← i+ 1
6: count← count+ (j − 1)
7: else
8: A[i+ j − 1]← C[j]; j ← j + 1

9: return (A, count)



15/91

Sort and Count Inversions in A

A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n)

1: if n = 1 then
2: return (A, 0)
3: else
4: (B,m1)← sort-and-count

(
A
[
1..⌊n/2⌋

]
, ⌊n/2⌋

)

5: (C,m2)← sort-and-count
(
A
[
⌊n/2⌋+ 1..n

]
, ⌈n/2⌉

)

6: (A,m3)← merge-and-count(B,C, ⌊n/2⌋, ⌈n/2⌉)
7: return (A,m1 +m2 +m3)

Divide: trivial

Conquer: 4, 5

Combine: 6, 7



15/91

Sort and Count Inversions in A

A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n)

1: if n = 1 then
2: return (A, 0)
3: else
4: (B,m1)← sort-and-count

(
A
[
1..⌊n/2⌋

]
, ⌊n/2⌋

)

5: (C,m2)← sort-and-count
(
A
[
⌊n/2⌋+ 1..n

]
, ⌈n/2⌉

)

6: (A,m3)← merge-and-count(B,C, ⌊n/2⌋, ⌈n/2⌉)
7: return (A,m1 +m2 +m3)

Divide: trivial

Conquer: 4, 5

Combine: 6, 7



16/91

sort-and-count(A, n)

1: if n = 1 then
2: return (A, 0)
3: else
4: (B,m1)← sort-and-count

(
A
[
1..⌊n/2⌋

]
, ⌊n/2⌋

)

5: (C,m2)← sort-and-count
(
A
[
⌊n/2⌋+ 1..n

]
, ⌈n/2⌉

)

6: (A,m3)← merge-and-count(B,C, ⌊n/2⌋, ⌈n/2⌉)
7: return (A,m1 +m2 +m3)

Recurrence for the running time: T (n) = 2T (n/2) +O(n)

Running time = O(n log n)



16/91

sort-and-count(A, n)

1: if n = 1 then
2: return (A, 0)
3: else
4: (B,m1)← sort-and-count

(
A
[
1..⌊n/2⌋

]
, ⌊n/2⌋

)

5: (C,m2)← sort-and-count
(
A
[
⌊n/2⌋+ 1..n

]
, ⌈n/2⌉

)

6: (A,m3)← merge-and-count(B,C, ⌊n/2⌋, ⌈n/2⌉)
7: return (A,m1 +m2 +m3)

Recurrence for the running time: T (n) = 2T (n/2) +O(n)

Running time = O(n log n)



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

1



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

(25, 47)
1



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

(25, 47)
1

(25, 47)

0



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

(25, 47)
1

(25, 47)

0

(8, 25, 39, 47)
1 + 0 + 1 = 2



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

(25, 47)
1

(25, 47)

0

(8, 25, 39, 47)
1 + 0 + 1 = 2

(12, 18, 41, 7)



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

(25, 47)
1

(25, 47)

0

(8, 25, 39, 47)
1 + 0 + 1 = 2

(12, 18, 41, 7)

(39, 8)



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

(25, 47)
1

(25, 47)

0

(8, 25, 39, 47)
1 + 0 + 1 = 2

(12, 18, 41, 7)

(39, 8)

(12, 18)

0



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

(25, 47)
1

(25, 47)

0

(8, 25, 39, 47)
1 + 0 + 1 = 2

(12, 18, 41, 7)

(39, 8)

(12, 18)

0

(41, 7)



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

(25, 47)
1

(25, 47)

0

(8, 25, 39, 47)
1 + 0 + 1 = 2

(12, 18, 41, 7)

(39, 8)

(12, 18)

0

(41, 7)

(7, 41)

1



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

(25, 47)
1

(25, 47)

0

(8, 25, 39, 47)
1 + 0 + 1 = 2

(12, 18, 41, 7)

(39, 8)

(12, 18)

0

(41, 7)

(7, 41)

1

(7, 12, 18, 41)

0 + 1 + 2 = 3



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

(25, 47)
1

(25, 47)

0

(8, 25, 39, 47)
1 + 0 + 1 = 2

(12, 18, 41, 7)

(39, 8)

(12, 18)

0

(41, 7)

(7, 41)

1

(7, 12, 18, 41)

0 + 1 + 2 = 3

(7, 8, 12, 18, 25, 39, 41, 47)
2 + 3 + 11 = 16



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

(25, 47)
1

(25, 47)

0

(8, 25, 39, 47)
1 + 0 + 1 = 2

(12, 18, 41, 7)

(39, 8)

(12, 18)

0

(41, 7)

(7, 41)

1

(7, 12, 18, 41)

0 + 1 + 2 = 3

(7, 8, 12, 18, 25, 39, 41, 47)
2 + 3 + 11 = 16

sort-and-count(33, 29, 14, 20, 6, 42, 30, 9)



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

(25, 47)
1

(25, 47)

0

(8, 25, 39, 47)
1 + 0 + 1 = 2

(12, 18, 41, 7)

(39, 8)

(12, 18)

0

(41, 7)

(7, 41)

1

(7, 12, 18, 41)

0 + 1 + 2 = 3

(7, 8, 12, 18, 25, 39, 41, 47)
2 + 3 + 11 = 16

sort-and-count(33, 29, 14, 20, 6, 42, 30, 9)

(6, 9, 14, 20, 29, 30, 33, 42)
17



17/91

Example

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7, 33, 29, 14, 20, 6, 42, 30, 9)

sort-and-count(39, 8, 25, 47, 12, 18, 41, 7)

(39, 8, 25, 47)

(39, 8)

(8, 39)

(25, 47)
1

(25, 47)

0

(8, 25, 39, 47)
1 + 0 + 1 = 2

(12, 18, 41, 7)

(39, 8)

(12, 18)

0

(41, 7)

(7, 41)

1

(7, 12, 18, 41)

0 + 1 + 2 = 3

(7, 8, 12, 18, 25, 39, 41, 47)
2 + 3 + 11 = 16

sort-and-count(33, 29, 14, 20, 6, 42, 30, 9)

(6, 9, 14, 20, 29, 30, 33, 42)
17

(6, 7, 8, 9, 12, 14, 18, 20, 25, 29, 30, 33, 39, 41, 42, 47)

16 + 17 + 33 = 66



18/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number



19/91

Methods for Solving Recurrences

The recursion-tree method

The master theorem



20/91

Recursion-Tree Method

T (n) = 2T (n/2) +O(n)

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)



20/91

Recursion-Tree Method

T (n) = 2T (n/2) +O(n)

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)



20/91

Recursion-Tree Method

T (n) = 2T (n/2) +O(n)

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)



20/91

Recursion-Tree Method

T (n) = 2T (n/2) +O(n)

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)



20/91

Recursion-Tree Method

T (n) = 2T (n/2) +O(n)

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)



21/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n)

n

Total running time at level i?

n
2i
× 3i =

(
3
2

)i
n

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

2

)i

n = O

(
n

(
3

2

)log2 n
)

= O(3log2 n) = O(nlog2 3).



21/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n)

n

Total running time at level i?

n
2i
× 3i =

(
3
2

)i
n

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

2

)i

n = O

(
n

(
3

2

)log2 n
)

= O(3log2 n) = O(nlog2 3).



21/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n)

n

n/2 n/2 n/2

Total running time at level i?

n
2i
× 3i =

(
3
2

)i
n

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

2

)i

n = O

(
n

(
3

2

)log2 n
)

= O(3log2 n) = O(nlog2 3).



21/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n)

n

n/2 n/2 n/2

n/4 n/4 n/4 n/4 n/4 n/4n/4 n/4 n/4

Total running time at level i?

n
2i
× 3i =

(
3
2

)i
n

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

2

)i

n = O

(
n

(
3

2

)log2 n
)

= O(3log2 n) = O(nlog2 3).



21/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n)

n

n/2 n/2 n/2

n/4 n/4 n/4 n/4 n/4 n/4

· · · · · ·· · ·n
8

n
8

n
8

n
8

n
8

n
8

n/4 n/4 n/4

· · · · · ·· · ·

Total running time at level i?

n
2i
× 3i =

(
3
2

)i
n

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

2

)i

n = O

(
n

(
3

2

)log2 n
)

= O(3log2 n) = O(nlog2 3).



21/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n)

n

n/2 n/2 n/2

n/4 n/4 n/4 n/4 n/4 n/4

· · · · · ·· · ·n
8

n
8

n
8

n
8

n
8

n
8

n/4 n/4 n/4

· · · · · ·· · ·

Total running time at level i?

n
2i
× 3i =

(
3
2

)i
n

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

2

)i

n = O

(
n

(
3

2

)log2 n
)

= O(3log2 n) = O(nlog2 3).



21/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n)

n

n/2 n/2 n/2

n/4 n/4 n/4 n/4 n/4 n/4

· · · · · ·· · ·n
8

n
8

n
8

n
8

n
8

n
8

n/4 n/4 n/4

· · · · · ·· · ·

Total running time at level i? n
2i
× 3i =

(
3
2

)i
n

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

2

)i

n = O

(
n

(
3

2

)log2 n
)

= O(3log2 n) = O(nlog2 3).



21/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n)

n

n/2 n/2 n/2

n/4 n/4 n/4 n/4 n/4 n/4

· · · · · ·· · ·n
8

n
8

n
8

n
8

n
8

n
8

n/4 n/4 n/4

· · · · · ·· · ·

Total running time at level i? n
2i
× 3i =

(
3
2

)i
n

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

2

)i

n = O

(
n

(
3

2

)log2 n
)

= O(3log2 n) = O(nlog2 3).



21/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n)

n

n/2 n/2 n/2

n/4 n/4 n/4 n/4 n/4 n/4

· · · · · ·· · ·n
8

n
8

n
8

n
8

n
8

n
8

n/4 n/4 n/4

· · · · · ·· · ·

Total running time at level i? n
2i
× 3i =

(
3
2

)i
n

Index of last level? log2 n

Total running time?

log2 n∑

i=0

(
3

2

)i

n = O

(
n

(
3

2

)log2 n
)

= O(3log2 n) = O(nlog2 3).



21/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n)

n

n/2 n/2 n/2

n/4 n/4 n/4 n/4 n/4 n/4

· · · · · ·· · ·n
8

n
8

n
8

n
8

n
8

n
8

n/4 n/4 n/4

· · · · · ·· · ·

Total running time at level i? n
2i
× 3i =

(
3
2

)i
n

Index of last level? log2 n

Total running time?

log2 n∑

i=0

(
3

2

)i

n = O

(
n

(
3

2

)log2 n
)

= O(3log2 n) = O(nlog2 3).



21/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n)

n

n/2 n/2 n/2

n/4 n/4 n/4 n/4 n/4 n/4

· · · · · ·· · ·n
8

n
8

n
8

n
8

n
8

n
8

n/4 n/4 n/4

· · · · · ·· · ·

Total running time at level i? n
2i
× 3i =

(
3
2

)i
n

Index of last level? log2 n

Total running time?

log2 n∑

i=0

(
3

2

)i

n = O

(
n

(
3

2

)log2 n
)

= O(3log2 n) = O(nlog2 3).



22/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n2)

n2

Total running time at level i?

(
n
2i

)2 × 3i =
(
3
4

)i
n2

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

4

)i

n2 =

O(n2).



22/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n2)

n2

Total running time at level i?

(
n
2i

)2 × 3i =
(
3
4

)i
n2

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

4

)i

n2 =

O(n2).



22/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n2)

n2

(n/2)2 (n/2)2 (n/2)2

Total running time at level i?

(
n
2i

)2 × 3i =
(
3
4

)i
n2

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

4

)i

n2 =

O(n2).



22/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n2)

n2

(n/2)2 (n/2)2 (n/2)2

(n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2

Total running time at level i?

(
n
2i

)2 × 3i =
(
3
4

)i
n2

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

4

)i

n2 =

O(n2).



22/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n2)

n2

(n/2)2 (n/2)2 (n/2)2

(n4)
2

· · · · · ·· · ·(n
8
)2 · · · · · ·· · ·

(n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2

(n
8
)2 (n

8
)2 (n

8
)2 (n

8
)2 (n

8
)2(n

8
)2

Total running time at level i?

(
n
2i

)2 × 3i =
(
3
4

)i
n2

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

4

)i

n2 =

O(n2).



22/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n2)

n2

(n/2)2 (n/2)2 (n/2)2

(n4)
2

· · · · · ·· · ·(n
8
)2 · · · · · ·· · ·

(n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2

(n
8
)2 (n

8
)2 (n

8
)2 (n

8
)2 (n

8
)2(n

8
)2

Total running time at level i?

(
n
2i

)2 × 3i =
(
3
4

)i
n2

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

4

)i

n2 =

O(n2).



22/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n2)

n2

(n/2)2 (n/2)2 (n/2)2

(n4)
2

· · · · · ·· · ·(n
8
)2 · · · · · ·· · ·

(n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2

(n
8
)2 (n

8
)2 (n

8
)2 (n

8
)2 (n

8
)2(n

8
)2

Total running time at level i?
(
n
2i

)2 × 3i =
(
3
4

)i
n2

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

4

)i

n2 =

O(n2).



22/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n2)

n2

(n/2)2 (n/2)2 (n/2)2

(n4)
2

· · · · · ·· · ·(n
8
)2 · · · · · ·· · ·

(n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2

(n
8
)2 (n

8
)2 (n

8
)2 (n

8
)2 (n

8
)2(n

8
)2

Total running time at level i?
(
n
2i

)2 × 3i =
(
3
4

)i
n2

Index of last level?

log2 n

Total running time?

log2 n∑

i=0

(
3

4

)i

n2 =

O(n2).



22/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n2)

n2

(n/2)2 (n/2)2 (n/2)2

(n4)
2

· · · · · ·· · ·(n
8
)2 · · · · · ·· · ·

(n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2

(n
8
)2 (n

8
)2 (n

8
)2 (n

8
)2 (n

8
)2(n

8
)2

Total running time at level i?
(
n
2i

)2 × 3i =
(
3
4

)i
n2

Index of last level? log2 n

Total running time?

log2 n∑

i=0

(
3

4

)i

n2 =

O(n2).



22/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n2)

n2

(n/2)2 (n/2)2 (n/2)2

(n4)
2

· · · · · ·· · ·(n
8
)2 · · · · · ·· · ·

(n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2

(n
8
)2 (n

8
)2 (n

8
)2 (n

8
)2 (n

8
)2(n

8
)2

Total running time at level i?
(
n
2i

)2 × 3i =
(
3
4

)i
n2

Index of last level? log2 n

Total running time?

log2 n∑

i=0

(
3

4

)i

n2 =

O(n2).



22/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n2)

n2

(n/2)2 (n/2)2 (n/2)2

(n4)
2

· · · · · ·· · ·(n
8
)2 · · · · · ·· · ·

(n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2

(n
8
)2 (n

8
)2 (n

8
)2 (n

8
)2 (n

8
)2(n

8
)2

Total running time at level i?
(
n
2i

)2 × 3i =
(
3
4

)i
n2

Index of last level? log2 n

Total running time?

log2 n∑

i=0

(
3

4

)i

n2 =

O(n2).



22/91

Recursion-Tree Method

T (n) = 3T (n/2) +O(n2)

n2

(n/2)2 (n/2)2 (n/2)2

(n4)
2

· · · · · ·· · ·(n
8
)2 · · · · · ·· · ·

(n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2

(n
8
)2 (n

8
)2 (n

8
)2 (n

8
)2 (n

8
)2(n

8
)2

Total running time at level i?
(
n
2i

)2 × 3i =
(
3
4

)i
n2

Index of last level? log2 n

Total running time?

log2 n∑

i=0

(
3

4

)i

n2 = O(n2).



23/91

Master Theorem

Recurrences a b c time
T (n) = 2T (n/2) +O(n)

2 2 1

O(n log n)
T (n) = 3T (n/2) +O(n)

3 2 1

O(nlog2 3)
T (n) = 3T (n/2) +O(n2)

3 2 2

O(n2)

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





??

if c < logb a

??

if c = logb a

??

if c > logb a



23/91

Master Theorem

Recurrences a b c time
T (n) = 2T (n/2) +O(n) 2 2 1 O(n log n)
T (n) = 3T (n/2) +O(n)

3 2 1

O(nlog2 3)
T (n) = 3T (n/2) +O(n2)

3 2 2

O(n2)

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





??

if c < logb a

??

if c = logb a

??

if c > logb a



23/91

Master Theorem

Recurrences a b c time
T (n) = 2T (n/2) +O(n) 2 2 1 O(n log n)
T (n) = 3T (n/2) +O(n) 3 2 1 O(nlog2 3)
T (n) = 3T (n/2) +O(n2)

3 2 2

O(n2)

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





??

if c < logb a

??

if c = logb a

??

if c > logb a



23/91

Master Theorem

Recurrences a b c time
T (n) = 2T (n/2) +O(n) 2 2 1 O(n log n)
T (n) = 3T (n/2) +O(n) 3 2 1 O(nlog2 3)
T (n) = 3T (n/2) +O(n2) 3 2 2 O(n2)

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





??

if c < logb a

??

if c = logb a

??

if c > logb a



23/91

Master Theorem

Recurrences a b c time
T (n) = 2T (n/2) +O(n) 2 2 1 O(n log n)
T (n) = 3T (n/2) +O(n) 3 2 1 O(nlog2 3)
T (n) = 3T (n/2) +O(n2) 3 2 2 O(n2)

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





??

if c < logb a

??

if c = logb a

??

if c > logb a



23/91

Master Theorem

Recurrences a b c time
T (n) = 2T (n/2) +O(n) 2 2 1 O(n log n)
T (n) = 3T (n/2) +O(n) 3 2 1 O(nlog2 3)
T (n) = 3T (n/2) +O(n2) 3 2 2 O(n2)

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





?? if c < logb a

??

if c = logb a

??

if c > logb a



23/91

Master Theorem

Recurrences a b c time
T (n) = 2T (n/2) +O(n) 2 2 1 O(n log n)
T (n) = 3T (n/2) +O(n) 3 2 1 O(nlog2 3)
T (n) = 3T (n/2) +O(n2) 3 2 2 O(n2)

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

??

if c = logb a

??

if c > logb a



23/91

Master Theorem

Recurrences a b c time
T (n) = 2T (n/2) +O(n) 2 2 1 O(n log n)
T (n) = 3T (n/2) +O(n) 3 2 1 O(nlog2 3)
T (n) = 3T (n/2) +O(n2) 3 2 2 O(n2)

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

??

if c = logb a

?? if c > logb a



23/91

Master Theorem

Recurrences a b c time
T (n) = 2T (n/2) +O(n) 2 2 1 O(n log n)
T (n) = 3T (n/2) +O(n) 3 2 1 O(nlog2 3)
T (n) = 3T (n/2) +O(n2) 3 2 2 O(n2)

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

??

if c = logb a

O(nc) if c > logb a



23/91

Master Theorem

Recurrences a b c time
T (n) = 2T (n/2) +O(n) 2 2 1 O(n log n)
T (n) = 3T (n/2) +O(n) 3 2 1 O(nlog2 3)
T (n) = 3T (n/2) +O(n2) 3 2 2 O(n2)

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

?? if c = logb a

O(nc) if c > logb a



23/91

Master Theorem

Recurrences a b c time
T (n) = 2T (n/2) +O(n) 2 2 1 O(n log n)
T (n) = 3T (n/2) +O(n) 3 2 1 O(nlog2 3)
T (n) = 3T (n/2) +O(n2) 3 2 2 O(n2)

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

O(nc log n) if c = logb a

O(nc) if c > logb a



24/91

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

O(nc log n) if c = logb a

O(nc) if c > logb a

Ex: T (n) = 4T (n/2) +O(n2). Which Case?

T (n) = O(n2 log n)

Ex: T (n) = 3T (n/2) +O(n). Which Case?

T (n) = O(nlog2 3)

Ex: T (n) = T (n/2) +O(1). Which Case?

T (n) = O(log n)

Ex: T (n) = 2T (n/2) +O(n2). Which Case?

T (n) = O(n2)



24/91

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

O(nc log n) if c = logb a

O(nc) if c > logb a

Ex: T (n) = 4T (n/2) +O(n2). Case 2.

T (n) = O(n2 log n)

Ex: T (n) = 3T (n/2) +O(n). Which Case?

T (n) = O(nlog2 3)

Ex: T (n) = T (n/2) +O(1). Which Case?

T (n) = O(log n)

Ex: T (n) = 2T (n/2) +O(n2). Which Case?

T (n) = O(n2)



24/91

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

O(nc log n) if c = logb a

O(nc) if c > logb a

Ex: T (n) = 4T (n/2) +O(n2). Case 2. T (n) = O(n2 log n)

Ex: T (n) = 3T (n/2) +O(n). Which Case?

T (n) = O(nlog2 3)

Ex: T (n) = T (n/2) +O(1). Which Case?

T (n) = O(log n)

Ex: T (n) = 2T (n/2) +O(n2). Which Case?

T (n) = O(n2)



24/91

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

O(nc log n) if c = logb a

O(nc) if c > logb a

Ex: T (n) = 4T (n/2) +O(n2). Case 2. T (n) = O(n2 log n)

Ex: T (n) = 3T (n/2) +O(n). Which Case?

T (n) = O(nlog2 3)

Ex: T (n) = T (n/2) +O(1). Which Case?

T (n) = O(log n)

Ex: T (n) = 2T (n/2) +O(n2). Which Case?

T (n) = O(n2)



24/91

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

O(nc log n) if c = logb a

O(nc) if c > logb a

Ex: T (n) = 4T (n/2) +O(n2). Case 2. T (n) = O(n2 log n)

Ex: T (n) = 3T (n/2) +O(n). Case 1.

T (n) = O(nlog2 3)

Ex: T (n) = T (n/2) +O(1). Which Case?

T (n) = O(log n)

Ex: T (n) = 2T (n/2) +O(n2). Which Case?

T (n) = O(n2)



24/91

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

O(nc log n) if c = logb a

O(nc) if c > logb a

Ex: T (n) = 4T (n/2) +O(n2). Case 2. T (n) = O(n2 log n)

Ex: T (n) = 3T (n/2) +O(n). Case 1. T (n) = O(nlog2 3)

Ex: T (n) = T (n/2) +O(1). Which Case?

T (n) = O(log n)

Ex: T (n) = 2T (n/2) +O(n2). Which Case?

T (n) = O(n2)



24/91

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

O(nc log n) if c = logb a

O(nc) if c > logb a

Ex: T (n) = 4T (n/2) +O(n2). Case 2. T (n) = O(n2 log n)

Ex: T (n) = 3T (n/2) +O(n). Case 1. T (n) = O(nlog2 3)

Ex: T (n) = T (n/2) +O(1). Which Case?

T (n) = O(log n)

Ex: T (n) = 2T (n/2) +O(n2). Which Case?

T (n) = O(n2)



24/91

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

O(nc log n) if c = logb a

O(nc) if c > logb a

Ex: T (n) = 4T (n/2) +O(n2). Case 2. T (n) = O(n2 log n)

Ex: T (n) = 3T (n/2) +O(n). Case 1. T (n) = O(nlog2 3)

Ex: T (n) = T (n/2) +O(1). Case 2.

T (n) = O(log n)

Ex: T (n) = 2T (n/2) +O(n2). Which Case?

T (n) = O(n2)



24/91

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

O(nc log n) if c = logb a

O(nc) if c > logb a

Ex: T (n) = 4T (n/2) +O(n2). Case 2. T (n) = O(n2 log n)

Ex: T (n) = 3T (n/2) +O(n). Case 1. T (n) = O(nlog2 3)

Ex: T (n) = T (n/2) +O(1). Case 2. T (n) = O(log n)

Ex: T (n) = 2T (n/2) +O(n2). Which Case?

T (n) = O(n2)



24/91

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

O(nc log n) if c = logb a

O(nc) if c > logb a

Ex: T (n) = 4T (n/2) +O(n2). Case 2. T (n) = O(n2 log n)

Ex: T (n) = 3T (n/2) +O(n). Case 1. T (n) = O(nlog2 3)

Ex: T (n) = T (n/2) +O(1). Case 2. T (n) = O(log n)

Ex: T (n) = 2T (n/2) +O(n2). Which Case?

T (n) = O(n2)



24/91

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

O(nc log n) if c = logb a

O(nc) if c > logb a

Ex: T (n) = 4T (n/2) +O(n2). Case 2. T (n) = O(n2 log n)

Ex: T (n) = 3T (n/2) +O(n). Case 1. T (n) = O(nlog2 3)

Ex: T (n) = T (n/2) +O(1). Case 2. T (n) = O(log n)

Ex: T (n) = 2T (n/2) +O(n2). Case 3.

T (n) = O(n2)



24/91

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlogb a) if c < logb a

O(nc log n) if c = logb a

O(nc) if c > logb a

Ex: T (n) = 4T (n/2) +O(n2). Case 2. T (n) = O(n2 log n)

Ex: T (n) = 3T (n/2) +O(n). Case 1. T (n) = O(nlog2 3)

Ex: T (n) = T (n/2) +O(1). Case 2. T (n) = O(log n)

Ex: T (n) = 2T (n/2) +O(n2). Case 3. T (n) = O(n2)



25/91

Proof of Master Theorem Using Recursion Tree

T (n) = aT (n/b) +O(nc)

nc

(n/b)c (n/b)c

(n/b2)c (n/b2)c (n/b2)c (n/b2)c

(
n
b3

)c

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

(
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c

1 node

a nodes

a2 nodes

a3 nodes

c < logb a : bottom-level dominates:
(

a
bc

)logb n nc = nlogb a

c = logb a : all levels have same time: nc logb n = O(nc log n)

c > logb a : top-level dominates: O(nc)



25/91

Proof of Master Theorem Using Recursion Tree

T (n) = aT (n/b) +O(nc)

nc

(n/b)c (n/b)c

(n/b2)c (n/b2)c (n/b2)c (n/b2)c

(
n
b3

)c

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

(
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c

1 node

a nodes

a2 nodes

a3 nodes

nc

a
bcn

c

(
a
bc

)2
nc

(
a
bc

)3
nc

c < logb a : bottom-level dominates:
(

a
bc

)logb n nc = nlogb a

c = logb a : all levels have same time: nc logb n = O(nc log n)

c > logb a : top-level dominates: O(nc)



25/91

Proof of Master Theorem Using Recursion Tree

T (n) = aT (n/b) +O(nc)

nc

(n/b)c (n/b)c

(n/b2)c (n/b2)c (n/b2)c (n/b2)c

(
n
b3

)c

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

(
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c

1 node

a nodes

a2 nodes

a3 nodes

nc

a
bcn

c

(
a
bc

)2
nc

(
a
bc

)3
nc

c < logb a : bottom-level dominates:
(

a
bc

)logb n nc = nlogb a

c = logb a : all levels have same time: nc logb n = O(nc log n)

c > logb a : top-level dominates: O(nc)



25/91

Proof of Master Theorem Using Recursion Tree

T (n) = aT (n/b) +O(nc)

nc

(n/b)c (n/b)c

(n/b2)c (n/b2)c (n/b2)c (n/b2)c

(
n
b3

)c

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

(
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c

1 node

a nodes

a2 nodes

a3 nodes

nc

a
bcn

c

(
a
bc

)2
nc

(
a
bc

)3
nc

c < logb a : bottom-level dominates:
(

a
bc

)logb n nc = nlogb a

c = logb a : all levels have same time: nc logb n = O(nc log n)

c > logb a : top-level dominates: O(nc)



25/91

Proof of Master Theorem Using Recursion Tree

T (n) = aT (n/b) +O(nc)

nc

(n/b)c (n/b)c

(n/b2)c (n/b2)c (n/b2)c (n/b2)c

(
n
b3

)c

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

(
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c

1 node

a nodes

a2 nodes

a3 nodes

nc

a
bcn

c

(
a
bc

)2
nc

(
a
bc

)3
nc

c < logb a : bottom-level dominates:
(

a
bc

)logb n nc = nlogb a

c = logb a : all levels have same time: nc logb n = O(nc log n)

c > logb a : top-level dominates: O(nc)



26/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number



27/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number



28/91

Quicksort vs Merge-Sort

Merge Sort Quicksort
Divide Trivial Separate small and big numbers
Conquer Recurse Recurse
Combine Merge 2 sorted arrays Trivial



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 85

quicksort(A, 1, 15)

A:



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 8564

quicksort(A, 1, 15)

A:



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

15 82 75 6938 17 9425 7629 923745 8564

quicksort(A, 1, 15)

A:



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

15 82 75 6938 17 9425 7629 923745 8564

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

15 82 75 6938 17 9425 7629 923745 856429

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

15 82 75 693817 9425 76923745 856429

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

15 82 75 693817 9425 76923745 856429

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)

quicksort(A, 1, 3)



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)

quicksort(A, 1, 3)

15 82 75 693817 9425 76923745 856429 6429



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)

quicksort(A, 1, 3)

15 82 75 693817 9425 76923745 856429 6429

quicksort(A, 5, 7)



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)

quicksort(A, 1, 3) quicksort(A, 5, 7)

15 82 75 693817 9425 769237 45 856429



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)

quicksort(A, 1, 3) quicksort(A, 5, 7)

15 82 75 693817 9425 769237 45 856429

quicksort(A, 9, 15)



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)

quicksort(A, 1, 3) quicksort(A, 5, 7)

15 82 75 693817 9425 769237 45 856429

quicksort(A, 9, 15)

82



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)

quicksort(A, 1, 3) quicksort(A, 5, 7)

quicksort(A, 9, 15)

15 75 693817 9425 76 9237 45 856429 82



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)

quicksort(A, 1, 3) quicksort(A, 5, 7)

quicksort(A, 9, 15)

15 75 693817 9425 76 9237 45 856429 82

quicksort(A, 9, 11)



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)

quicksort(A, 1, 3) quicksort(A, 5, 7)

quicksort(A, 9, 15)

quicksort(A, 9, 11)

15 75693817 9425 76 9237 45 856429 82



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)

quicksort(A, 1, 3) quicksort(A, 5, 7)

quicksort(A, 9, 15)

quicksort(A, 9, 11)

15 75693817 9425 76 9237 45 856429 82

quicksort(A, 13, 15)



29/91

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

quicksort(A, 1, 15)

A:

quicksort(A, 1, 7)

quicksort(A, 1, 3) quicksort(A, 5, 7)

quicksort(A, 9, 15)

quicksort(A, 9, 11) quicksort(A, 13, 15)

15 75693817 9425 76 9237 45 856429 82



30/91

Quicksort

quicksort(A, n)

1: if n ≤ 1 then return A

2: x← lower median of A
3: AL ← array of elements in A that are less than x \\ Divide
4: AR ← array of elements in A that are greater than x \\ Divide
5: BL ← quicksort(AL, length of AL) \\ Conquer
6: BR ← quicksort(AR, length of AR) \\ Conquer
7: t← number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Recurrence T (n) ≤ 2T (n/2) +O(n)

Running time = O(n log n)



30/91

Quicksort

quicksort(A, n)

1: if n ≤ 1 then return A

2: x← lower median of A
3: AL ← array of elements in A that are less than x \\ Divide
4: AR ← array of elements in A that are greater than x \\ Divide
5: BL ← quicksort(AL, length of AL) \\ Conquer
6: BR ← quicksort(AR, length of AR) \\ Conquer
7: t← number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Recurrence T (n) ≤ 2T (n/2) +O(n)

Running time = O(n log n)



30/91

Quicksort

quicksort(A, n)

1: if n ≤ 1 then return A

2: x← lower median of A
3: AL ← array of elements in A that are less than x \\ Divide
4: AR ← array of elements in A that are greater than x \\ Divide
5: BL ← quicksort(AL, length of AL) \\ Conquer
6: BR ← quicksort(AR, length of AR) \\ Conquer
7: t← number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Recurrence T (n) ≤ 2T (n/2) +O(n)

Running time = O(n log n)



31/91

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)



31/91

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)



31/91

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)



32/91

Quicksort Using A Random Pivot

quicksort(A, n)

1: if n ≤ 1 then return A

2: x← a random element of A (x is called a pivot)
3: AL ← array of elements in A that are less than x \\ Divide
4: AR ← array of elements in A that are greater than x \\ Divide
5: BL ← quicksort(AL, length of AL) \\ Conquer
6: BR ← quicksort(AR, length of AR) \\ Conquer
7: t← number of times x appear A
8: return concatenation of BL, t copies of x, and BR



33/91

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.



33/91

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.



33/91

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.



33/91

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.



34/91

Quicksort Using A Random Pivot

quicksort(A, n)

1: if n ≤ 1 then return A

2: x← a random element of A (x is called a pivot)
3: AL ← array of elements in A that are less than x \\ Divide
4: AR ← array of elements in A that are greater than x \\ Divide
5: BL ← quicksort(AL, length of AL) \\ Conquer
6: BR ← quicksort(AR, length of AR) \\ Conquer
7: t← number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Lemma The expected running time of the algorithm is O(n log n).



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 856429 17

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 856429 17

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 29 17

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 29

i j

17

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 29

i j

17

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 29

i j

17 1764

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764

i j

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764

i j

8264

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 17648264

i j

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 17648264

i j

37 64

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64

i j

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64

i j

7564

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 647564

ji

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 647564

ji

15 64

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64

i j

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64

i j

9464

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 649464

i j

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 649464

i j

25 64

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 64

i j

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 64

i j

64 69

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 6464 69

ji

To partition the array into two parts, we only need O(1) extra
space.



35/91

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 6464 69

ji

To partition the array into two parts, we only need O(1) extra
space.



36/91

partition(A, ℓ, r)

1: p← random integer between ℓ and r, swap A[p] and A[ℓ]
2: i← ℓ, j ← r
3: while true do
4: while i < j and A[i] < A[j] do j ← j − 1
5: if i = j then break

6: swap A[i] and A[j]; i← i+ 1
7: while i < j and A[i] < A[j] do i← i+ 1

8: if i = j then break

9: swap A[i] and A[j]; j ← j − 1

10: return i



37/91

In-Place Implementation of Quick-Sort

quicksort(A, ℓ, r)

1: if ℓ ≥ r then return
2: m← patition(A, ℓ, r)
3: quicksort(A, ℓ,m− 1)
4: quicksort(A,m+ 1, r)

To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.



38/91

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29



38/91

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29



38/91

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29



38/91

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3



38/91

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3



38/91

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5



38/91

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5



38/91

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7



38/91

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7



38/91

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8



38/91

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8



38/91

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20 25 29



38/91

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20 25 29 32 48



39/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number



40/91

Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
To sort, we are only allowed to compare two elements

We can not use “internal structures” of the elements



40/91

Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
To sort, we are only allowed to compare two elements

We can not use “internal structures” of the elements



40/91

Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
To sort, we are only allowed to compare two elements

We can not use “internal structures” of the elements



41/91

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Ω(n log n).

Bob has one number x in his hand, x ∈ {1, 2, 3, · · · , N}.
You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: ⌈log2N⌉.

x = 1?

x ≤ 2?

x = 3?

1 2 3 4



41/91

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Ω(n log n).

Bob has one number x in his hand, x ∈ {1, 2, 3, · · · , N}.

You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: ⌈log2N⌉.

x = 1?

x ≤ 2?

x = 3?

1 2 3 4



41/91

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Ω(n log n).

Bob has one number x in his hand, x ∈ {1, 2, 3, · · · , N}.
You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: ⌈log2N⌉.

x = 1?

x ≤ 2?

x = 3?

1 2 3 4



41/91

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Ω(n log n).

Bob has one number x in his hand, x ∈ {1, 2, 3, · · · , N}.
You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: ⌈log2N⌉.

x = 1?

x ≤ 2?

x = 3?

1 2 3 4



41/91

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Ω(n log n).

Bob has one number x in his hand, x ∈ {1, 2, 3, · · · , N}.
You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: ⌈log2N⌉.

x = 1?

x ≤ 2?

x = 3?

1 2 3 4



41/91

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Ω(n log n).

Bob has one number x in his hand, x ∈ {1, 2, 3, · · · , N}.
You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: ⌈log2N⌉.

x = 1?

x ≤ 2?

x = 3?

1 2 3 4



42/91

Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over {1, 2, 3, · · · , n} in his hand.

You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the
permutation π?

A: log2 n! = Θ(n log n)



42/91

Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over {1, 2, 3, · · · , n} in his hand.

You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the
permutation π?

A: log2 n! = Θ(n log n)



42/91

Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over {1, 2, 3, · · · , n} in his hand.

You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the
permutation π?

A: log2 n! = Θ(n log n)



43/91

Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over {1, 2, 3, · · · , n} in his hand.

You can ask Bob questions of the form “does i appear before j in
π?”

Q: How many questions do you need to ask in order to get the
permutation π?

A: At least log2 n! = Θ(n log n)



43/91

Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over {1, 2, 3, · · · , n} in his hand.

You can ask Bob questions of the form “does i appear before j in
π?”

Q: How many questions do you need to ask in order to get the
permutation π?

A: At least log2 n! = Θ(n log n)



43/91

Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over {1, 2, 3, · · · , n} in his hand.

You can ask Bob questions of the form “does i appear before j in
π?”

Q: How many questions do you need to ask in order to get the
permutation π?

A: At least log2 n! = Θ(n log n)



44/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number



45/91

Selection Problem
Input: a set A of n numbers, and 1 ≤ i ≤ n

Output: the i-th smallest number in A

Sorting solves the problem in time O(n log n).

Our goal: O(n) running time



45/91

Selection Problem
Input: a set A of n numbers, and 1 ≤ i ≤ n

Output: the i-th smallest number in A

Sorting solves the problem in time O(n log n).

Our goal: O(n) running time



45/91

Selection Problem
Input: a set A of n numbers, and 1 ≤ i ≤ n

Output: the i-th smallest number in A

Sorting solves the problem in time O(n log n).

Our goal: O(n) running time



46/91

Recall: Quicksort with Median Finder

quicksort(A, n)

1: if n ≤ 1 then return A

2: x← lower median of A
3: AL ← elements in A that are less than x ▷ Divide
4: AR ← elements in A that are greater than x ▷ Divide
5: BL ← quicksort(AL, AL.size) ▷ Conquer
6: BR ← quicksort(AR, AR.size) ▷ Conquer
7: t← number of times x appear A
8: return the array obtained by concatenating BL, the array

containing t copies of x, and BR



47/91

Selection Algorithm with Median Finder

selection(A, n, i)

1: if n = 1 then return A
2: x← lower median of A
3: AL ← elements in A that are less than x ▷ Divide
4: AR ← elements in A that are greater than x ▷ Divide
5: if i ≤ AL.size then
6: return selection(AL, AL.size, i) ▷ Conquer
7: else if i > n− AR.size then
8: return selection(AR, AR.size, i− (n− AR.size)) ▷ Conquer
9: else

10: return x

Recurrence for selection: T (n) = T (n/2) +O(n)

Solving recurrence: T (n) = O(n)



47/91

Selection Algorithm with Median Finder

selection(A, n, i)

1: if n = 1 then return A
2: x← lower median of A
3: AL ← elements in A that are less than x ▷ Divide
4: AR ← elements in A that are greater than x ▷ Divide
5: if i ≤ AL.size then
6: return selection(AL, AL.size, i) ▷ Conquer
7: else if i > n− AR.size then
8: return selection(AR, AR.size, i− (n− AR.size)) ▷ Conquer
9: else

10: return x

Recurrence for selection: T (n) = T (n/2) +O(n)

Solving recurrence: T (n) = O(n)



47/91

Selection Algorithm with Median Finder

selection(A, n, i)

1: if n = 1 then return A
2: x← lower median of A
3: AL ← elements in A that are less than x ▷ Divide
4: AR ← elements in A that are greater than x ▷ Divide
5: if i ≤ AL.size then
6: return selection(AL, AL.size, i) ▷ Conquer
7: else if i > n− AR.size then
8: return selection(AR, AR.size, i− (n− AR.size)) ▷ Conquer
9: else

10: return x

Recurrence for selection: T (n) = T (n/2) +O(n)

Solving recurrence: T (n) = O(n)



48/91

Randomized Selection Algorithm

selection(A, n, i)

1: if n = 1 thenreturn A
2: x← random element of A (called pivot)
3: AL ← elements in A that are less than x ▷ Divide
4: AR ← elements in A that are greater than x ▷ Divide
5: if i ≤ AL.size then
6: return selection(AL, AL.size, i) ▷ Conquer
7: else if i > n− AR.size then
8: return selection(AR, AR.size, i− (n− AR.size)) ▷ Conquer
9: else

10: return x

expected running time = O(n)



48/91

Randomized Selection Algorithm

selection(A, n, i)

1: if n = 1 thenreturn A
2: x← random element of A (called pivot)
3: AL ← elements in A that are less than x ▷ Divide
4: AR ← elements in A that are greater than x ▷ Divide
5: if i ≤ AL.size then
6: return selection(AL, AL.size, i) ▷ Conquer
7: else if i > n− AR.size then
8: return selection(AR, AR.size, i− (n− AR.size)) ▷ Conquer
9: else

10: return x

expected running time = O(n)



49/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number



50/91

Polynomial Multiplication
Input: two polynomials of degree n− 1

Output: product of two polynomials

Example:

(3x3 + 2x2 − 5x+ 4)× (2x3 − 3x2 + 6x− 5)

= 6x6 − 9x5 + 18x4 − 15x3

+ 4x5 − 6x4 + 12x3 − 10x2

− 10x4 + 15x3 − 30x2 + 25x

+ 8x3 − 12x2 + 24x− 20

= 6x6 − 5x5 + 2x4 + 20x3 − 52x2 + 49x− 20

Input: (4,−5, 2, 3), (−5, 6,−3, 2)
Output: (−20, 49,−52, 20, 2,−5, 6)



50/91

Polynomial Multiplication
Input: two polynomials of degree n− 1

Output: product of two polynomials

Example:

(3x3 + 2x2 − 5x+ 4)× (2x3 − 3x2 + 6x− 5)

= 6x6 − 9x5 + 18x4 − 15x3

+ 4x5 − 6x4 + 12x3 − 10x2

− 10x4 + 15x3 − 30x2 + 25x

+ 8x3 − 12x2 + 24x− 20

= 6x6 − 5x5 + 2x4 + 20x3 − 52x2 + 49x− 20

Input: (4,−5, 2, 3), (−5, 6,−3, 2)
Output: (−20, 49,−52, 20, 2,−5, 6)



50/91

Polynomial Multiplication
Input: two polynomials of degree n− 1

Output: product of two polynomials

Example:

(3x3 + 2x2 − 5x+ 4)× (2x3 − 3x2 + 6x− 5)

= 6x6 − 9x5 + 18x4 − 15x3

+ 4x5 − 6x4 + 12x3 − 10x2

− 10x4 + 15x3 − 30x2 + 25x

+ 8x3 − 12x2 + 24x− 20

= 6x6 − 5x5 + 2x4 + 20x3 − 52x2 + 49x− 20

Input: (4,−5, 2, 3), (−5, 6,−3, 2)
Output: (−20, 49,−52, 20, 2,−5, 6)



50/91

Polynomial Multiplication
Input: two polynomials of degree n− 1

Output: product of two polynomials

Example:

(3x3 + 2x2 − 5x+ 4)× (2x3 − 3x2 + 6x− 5)

= 6x6 − 9x5 + 18x4 − 15x3

+ 4x5 − 6x4 + 12x3 − 10x2

− 10x4 + 15x3 − 30x2 + 25x

+ 8x3 − 12x2 + 24x− 20

= 6x6 − 5x5 + 2x4 + 20x3 − 52x2 + 49x− 20

Input: (4,−5, 2, 3), (−5, 6,−3, 2)
Output: (−20, 49,−52, 20, 2,−5, 6)



51/91

Discrete Convolution on Finite Domain
f : {0, 1, · · · , n− 1} → R, g : {0, 1, · · · ,m− 1} → R
the convolution of f and g, denoted as h := f × g, is defined as

h(k) :=
∑

i,j:i+j=k

f(i)g(j) ∀k ∈ {0, 1, 2, · · · ,m+ n− 2}

0 1 2 3 4 5 6
f 4 -5 2 3
g -5 6 -3 2

f × g -20 49 -52 20 2 -5 6

Applications of Convolutions
Polynomial and integer multiplication

Signal and Image Processing

Probability theory: Sum of two distributions

Convolutional neural network

...



51/91

Discrete Convolution on Finite Domain
f : {0, 1, · · · , n− 1} → R, g : {0, 1, · · · ,m− 1} → R
the convolution of f and g, denoted as h := f × g, is defined as

h(k) :=
∑

i,j:i+j=k

f(i)g(j) ∀k ∈ {0, 1, 2, · · · ,m+ n− 2}

0 1 2 3 4 5 6
f 4 -5 2 3
g -5 6 -3 2

f × g -20 49 -52 20 2 -5 6

Applications of Convolutions
Polynomial and integer multiplication

Signal and Image Processing

Probability theory: Sum of two distributions

Convolutional neural network

...



51/91

Discrete Convolution on Finite Domain
f : {0, 1, · · · , n− 1} → R, g : {0, 1, · · · ,m− 1} → R
the convolution of f and g, denoted as h := f × g, is defined as

h(k) :=
∑

i,j:i+j=k

f(i)g(j) ∀k ∈ {0, 1, 2, · · · ,m+ n− 2}

0 1 2 3 4 5 6
f 4 -5 2 3
g -5 6 -3 2

f × g -20 49 -52 20 2 -5 6

Applications of Convolutions
Polynomial and integer multiplication

Signal and Image Processing

Probability theory: Sum of two distributions

Convolutional neural network

...



52/91

Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication

16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6832955927852073223



52/91

Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6832955927852073223



52/91

Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6832955927852073223



52/91

Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6832955927852073223



52/91

Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6784, 48744, 211707, 220729, 123045, 28223

6832955927852073223



52/91

Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6784, 48744, 211707, 220729, 123073, 223

6832955927852073223



52/91

Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6784, 48744, 211707, 220852, 073, 223

6832955927852073223



52/91

Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6784, 48744, 211927, 852, 073, 223

6832955927852073223



52/91

Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6784, 48955, 927, 852, 073, 223

6832955927852073223



52/91

Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6832, 955, 927, 852, 073, 223

6832955927852073223



52/91

Polynomial multiplication ⇔ Convolution

We shall focus on multiplication.

Big Integer Multiplication Using Polynomial Multiplication
16103416169× 424317167

(16x3 + 103x2 + 416x+ 169)× (424x2 + 317x+ 167)

6784x5 + 48744x4 + 211707x3 + 220729x2 + 123045x+ 28223

6832, 955, 927, 852, 073, 223

6832955927852073223



53/91

Näıve Algorithm

polynomial-multiplication(A,B, n)

1: let C[k]← 0 for every k = 0, 1, 2, · · · , 2n− 2
2: for i← 0 to n− 1 do
3: for j ← 0 to n− 1 do
4: C[i+ j]← C[i+ j] + A[i]×B[j]

5: return C

Running time: O(n2)



53/91

Näıve Algorithm

polynomial-multiplication(A,B, n)

1: let C[k]← 0 for every k = 0, 1, 2, · · · , 2n− 2
2: for i← 0 to n− 1 do
3: for j ← 0 to n− 1 do
4: C[i+ j]← C[i+ j] + A[i]×B[j]

5: return C

Running time: O(n2)



54/91

Divide-and-Conquer for Polynomial Multiplication

p(x) = 3x3 + 2x2 − 5x+ 4 = (3x+ 2)x2 + (−5x+ 4)

q(x) = 2x3 − 3x2 + 6x− 5 = (2x− 3)x2 + (6x− 5)

p(x): degree of n− 1 (assume n is even)

p(x) = pH(x)x
n/2 + pL(x),

pH(x), pL(x): polynomials of degree n/2− 1.

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL



54/91

Divide-and-Conquer for Polynomial Multiplication

p(x) = 3x3 + 2x2 − 5x+ 4 = (3x+ 2)x2 + (−5x+ 4)

q(x) = 2x3 − 3x2 + 6x− 5 = (2x− 3)x2 + (6x− 5)

p(x): degree of n− 1 (assume n is even)

p(x) = pH(x)x
n/2 + pL(x),

pH(x), pL(x): polynomials of degree n/2− 1.

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL



54/91

Divide-and-Conquer for Polynomial Multiplication

p(x) = 3x3 + 2x2 − 5x+ 4 = (3x+ 2)x2 + (−5x+ 4)

q(x) = 2x3 − 3x2 + 6x− 5 = (2x− 3)x2 + (6x− 5)

p(x): degree of n− 1 (assume n is even)

p(x) = pH(x)x
n/2 + pL(x),

pH(x), pL(x): polynomials of degree n/2− 1.

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL



54/91

Divide-and-Conquer for Polynomial Multiplication

p(x) = 3x3 + 2x2 − 5x+ 4 = (3x+ 2)x2 + (−5x+ 4)

q(x) = 2x3 − 3x2 + 6x− 5 = (2x− 3)x2 + (6x− 5)

p(x): degree of n− 1 (assume n is even)

p(x) = pH(x)x
n/2 + pL(x),

pH(x), pL(x): polynomials of degree n/2− 1.

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL



55/91

Divide-and-Conquer for Polynomial Multiplication

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

multiply(p, q) = multiply(pH , qH)× xn

+
(
multiply(pH , qL) +multiply(pL, qH)

)
× xn/2

+multiply(pL, qL)

Recurrence: T (n) = 4T (n/2) +O(n)

T (n) = O(n2)



55/91

Divide-and-Conquer for Polynomial Multiplication

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

multiply(p, q) = multiply(pH , qH)× xn

+
(
multiply(pH , qL) +multiply(pL, qH)

)
× xn/2

+multiply(pL, qL)

Recurrence: T (n) = 4T (n/2) +O(n)

T (n) = O(n2)



55/91

Divide-and-Conquer for Polynomial Multiplication

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

multiply(p, q) = multiply(pH , qH)× xn

+
(
multiply(pH , qL) +multiply(pL, qH)

)
× xn/2

+multiply(pL, qL)

Recurrence: T (n) = 4T (n/2) +O(n)

T (n) = O(n2)



55/91

Divide-and-Conquer for Polynomial Multiplication

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

multiply(p, q) = multiply(pH , qH)× xn

+
(
multiply(pH , qL) +multiply(pL, qH)

)
× xn/2

+multiply(pL, qL)

Recurrence: T (n) = 4T (n/2) +O(n)

T (n) = O(n2)



56/91

Reduce Number from 4 to 3

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

pHqL + pLqH = (pH + pL)(qH + qL)− pHqH − pLqL



56/91

Reduce Number from 4 to 3

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

pHqL + pLqH = (pH + pL)(qH + qL)− pHqH − pLqL



56/91

Reduce Number from 4 to 3

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

pHqL + pLqH = (pH + pL)(qH + qL)− pHqH − pLqL



57/91

Divide-and-Conquer for Polynomial Multiplication

rH = multiply(pH , qH)

rL = multiply(pL, qL)

multiply(p, q) = rH × xn

+
(
multiply(pH + pL, qH + qL)− rH − rL

)
× xn/2

+ rL

Solving Recurrence: T (n) = 3T (n/2) +O(n)

T (n) = O(nlog2 3) = O(n1.585)



57/91

Divide-and-Conquer for Polynomial Multiplication

rH = multiply(pH , qH)

rL = multiply(pL, qL)

multiply(p, q) = rH × xn

+
(
multiply(pH + pL, qH + qL)− rH − rL

)
× xn/2

+ rL

Solving Recurrence: T (n) = 3T (n/2) +O(n)

T (n) = O(nlog2 3) = O(n1.585)



57/91

Divide-and-Conquer for Polynomial Multiplication

rH = multiply(pH , qH)

rL = multiply(pL, qL)

multiply(p, q) = rH × xn

+
(
multiply(pH + pL, qH + qL)− rH − rL

)
× xn/2

+ rL

Solving Recurrence: T (n) = 3T (n/2) +O(n)

T (n) = O(nlog2 3) = O(n1.585)



57/91

Divide-and-Conquer for Polynomial Multiplication

rH = multiply(pH , qH)

rL = multiply(pL, qL)

multiply(p, q) = rH × xn

+
(
multiply(pH + pL, qH + qL)− rH − rL

)
× xn/2

+ rL

Solving Recurrence: T (n) = 3T (n/2) +O(n)

T (n) = O(nlog2 3) = O(n1.585)



57/91

Divide-and-Conquer for Polynomial Multiplication

rH = multiply(pH , qH)

rL = multiply(pL, qL)

multiply(p, q) = rH × xn

+
(
multiply(pH + pL, qH + qL)− rH − rL

)
× xn/2

+ rL

Solving Recurrence: T (n) = 3T (n/2) +O(n)

T (n) = O(nlog2 3) = O(n1.585)



58/91

Assumption n is a power of 2. Arrays are 0-indexed.

multiply(A,B, n)

1: if n = 1 then return (A[0]B[0])
2: AL ← A[0 .. n/2− 1], AH ← A[n/2 .. n− 1]
3: BL ← B[0 .. n/2− 1], BH ← B[n/2 .. n− 1]
4: CL ← multiply(AL, BL, n/2)
5: CH ← multiply(AH , BH , n/2)
6: CM ← multiply(AL + AH , BL +BH , n/2)
7: C ← array of (2n− 1) 0’s
8: for i← 0 to n− 2 do
9: C[i]← C[i] + CL[i]

10: C[i+ n]← C[i+ n] + CH [i]
11: C[i+ n/2]← C[i+ n/2] + CM [i]− CL[i]− CH [i]

12: return C



59/91

Example

(3 + 2x + 2x2 + 4x3 + x4 + 2x5 + x6 + 5x7)

×(2 + x− x2 + 2x3 − 2x4 − x5 + 2x6 − 2x7)



59/91

Example

(3 + 2x + 2x2 + 4x3 + x4 + 2x5 + x6 + 5x7)

×(2 + x− x2 + 2x3 − 2x4 − x5 + 2x6 − 2x7)

(3 + 2x + 2x2 + 4x3)

×(2 + x− x2 + 2x3)

(1 + 2x + x2 + 5x3)

×(−2− x + 2x2 − 2x3)

(4 + 4x + 3x2 + 9x3)

×x2



59/91

Example

(3 + 2x + 2x2 + 4x3 + x4 + 2x5 + x6 + 5x7)

×(2 + x− x2 + 2x3 − 2x4 − x5 + 2x6 − 2x7)

(3 + 2x + 2x2 + 4x3)

×(2 + x− x2 + 2x3)

(1 + 2x + x2 + 5x3)

×(−2− x + 2x2 − 2x3)

(4 + 4x + 3x2 + 9x3)

×x2

(3 + 2x)

×(2 + x)

(2 + 4x)

×(−1 + 2x)

(5 + 6x)

×(1 + 3x)



59/91

Example

(3 + 2x + 2x2 + 4x3 + x4 + 2x5 + x6 + 5x7)

×(2 + x− x2 + 2x3 − 2x4 − x5 + 2x6 − 2x7)

(3 + 2x + 2x2 + 4x3)

×(2 + x− x2 + 2x3)

(1 + 2x + x2 + 5x3)

×(−2− x + 2x2 − 2x3)

(4 + 4x + 3x2 + 9x3)

×x2

(3 + 2x)

×(2 + x)

(2 + 4x)

×(−1 + 2x)

(5 + 6x)

×(1 + 3x)

6 + 7x + 2x2 −2 + 8x2 5 + 21x + 18x2



59/91

Example

(3 + 2x + 2x2 + 4x3 + x4 + 2x5 + x6 + 5x7)

×(2 + x− x2 + 2x3 − 2x4 − x5 + 2x6 − 2x7)

(3 + 2x + 2x2 + 4x3)

×(2 + x− x2 + 2x3)

(1 + 2x + x2 + 5x3)

×(−2− x + 2x2 − 2x3)

(4 + 4x + 3x2 + 9x3)

×x2

(3 + 2x)

×(2 + x)

(2 + 4x)

×(−1 + 2x)

(5 + 6x)

×(1 + 3x)

6 + 7x + 2x2 −2 + 8x2 5 + 21x + 18x2

(5 + 21x + 18x2)− (6 + 7x + 2x2)− (−2 + 8x2) = 1 + 14x + 8x2



59/91

Example

(3 + 2x + 2x2 + 4x3 + x4 + 2x5 + x6 + 5x7)

×(2 + x− x2 + 2x3 − 2x4 − x5 + 2x6 − 2x7)

(3 + 2x + 2x2 + 4x3)

×(2 + x− x2 + 2x3)

(1 + 2x + x2 + 5x3)

×(−2− x + 2x2 − 2x3)

(4 + 4x + 3x2 + 9x3)

×x2

(3 + 2x)

×(2 + x)

(2 + 4x)

×(−1 + 2x)

(5 + 6x)

×(1 + 3x)

6 + 7x + 2x2 −2 + 8x2 5 + 21x + 18x2

(5 + 21x + 18x2)− (6 + 7x + 2x2)− (−2 + 8x2) = 1 + 14x + 8x2

(6 + 7x + 2x2) + (1 + 14x + 8x2)x2 + (−2 + 8x2)x4

= 6 + 7x + 3x2 + 14x3 + 6x4 + 8x6



59/91

Example

(3 + 2x + 2x2 + 4x3 + x4 + 2x5 + x6 + 5x7)

×(2 + x− x2 + 2x3 − 2x4 − x5 + 2x6 − 2x7)

(3 + 2x + 2x2 + 4x3)

×(2 + x− x2 + 2x3)

(1 + 2x + x2 + 5x3)

×(−2− x + 2x2 − 2x3)

(4 + 4x + 3x2 + 9x3)

×x2

(3 + 2x)

×(2 + x)

(2 + 4x)

×(−1 + 2x)

(5 + 6x)

×(1 + 3x)

6 + 7x + 2x2 −2 + 8x2 5 + 21x + 18x2

(5 + 21x + 18x2)− (6 + 7x + 2x2)− (−2 + 8x2) = 1 + 14x + 8x2

(6 + 7x + 2x2) + (1 + 14x + 8x2)x2 + (−2 + 8x2)x4

0 1 2 3 4

= 6 + 7x + 3x2 + 14x3 + 6x4 + 8x6

5 6



59/91

Example

(3 + 2x + 2x2 + 4x3 + x4 + 2x5 + x6 + 5x7)

×(2 + x− x2 + 2x3 − 2x4 − x5 + 2x6 − 2x7)

(3 + 2x + 2x2 + 4x3)

×(2 + x− x2 + 2x3)

(1 + 2x + x2 + 5x3)

×(−2− x + 2x2 − 2x3)

(4 + 4x + 3x2 + 9x3)

×x2

(3 + 2x)

×(2 + x)

(2 + 4x)

×(−1 + 2x)

(5 + 6x)

×(1 + 3x)

6 + 7x + 2x2 −2 + 8x2 5 + 21x + 18x2

(5 + 21x + 18x2)− (6 + 7x + 2x2)− (−2 + 8x2) = 1 + 14x + 8x2

(6 + 7x + 2x2) + (1 + 14x + 8x2)x2 + (−2 + 8x2)x4

0 1 2 3 4

= 6 + 7x + 3x2 + 14x3 + 6x4 + 8x6

5 6

6 7 2



59/91

Example

(3 + 2x + 2x2 + 4x3 + x4 + 2x5 + x6 + 5x7)

×(2 + x− x2 + 2x3 − 2x4 − x5 + 2x6 − 2x7)

(3 + 2x + 2x2 + 4x3)

×(2 + x− x2 + 2x3)

(1 + 2x + x2 + 5x3)

×(−2− x + 2x2 − 2x3)

(4 + 4x + 3x2 + 9x3)

×x2

(3 + 2x)

×(2 + x)

(2 + 4x)

×(−1 + 2x)

(5 + 6x)

×(1 + 3x)

6 + 7x + 2x2 −2 + 8x2 5 + 21x + 18x2

(5 + 21x + 18x2)− (6 + 7x + 2x2)− (−2 + 8x2) = 1 + 14x + 8x2

(6 + 7x + 2x2) + (1 + 14x + 8x2)x2 + (−2 + 8x2)x4

0 1 2 3 4

= 6 + 7x + 3x2 + 14x3 + 6x4 + 8x6

5 6

6 7 2 −2 0 8



59/91

Example

(3 + 2x + 2x2 + 4x3 + x4 + 2x5 + x6 + 5x7)

×(2 + x− x2 + 2x3 − 2x4 − x5 + 2x6 − 2x7)

(3 + 2x + 2x2 + 4x3)

×(2 + x− x2 + 2x3)

(1 + 2x + x2 + 5x3)

×(−2− x + 2x2 − 2x3)

(4 + 4x + 3x2 + 9x3)

×x2

(3 + 2x)

×(2 + x)

(2 + 4x)

×(−1 + 2x)

(5 + 6x)

×(1 + 3x)

6 + 7x + 2x2 −2 + 8x2 5 + 21x + 18x2

(5 + 21x + 18x2)− (6 + 7x + 2x2)− (−2 + 8x2) = 1 + 14x + 8x2

(6 + 7x + 2x2) + (1 + 14x + 8x2)x2 + (−2 + 8x2)x4

0 1 2 3 4

= 6 + 7x + 3x2 + 14x3 + 6x4 + 8x6

5 6

6 7 2 −2 0 8

1 14 8



59/91

Example

(3 + 2x + 2x2 + 4x3 + x4 + 2x5 + x6 + 5x7)

×(2 + x− x2 + 2x3 − 2x4 − x5 + 2x6 − 2x7)

(3 + 2x + 2x2 + 4x3)

×(2 + x− x2 + 2x3)

(1 + 2x + x2 + 5x3)

×(−2− x + 2x2 − 2x3)

(4 + 4x + 3x2 + 9x3)

×x2

(3 + 2x)

×(2 + x)

(2 + 4x)

×(−1 + 2x)

(5 + 6x)

×(1 + 3x)

6 + 7x + 2x2 −2 + 8x2 5 + 21x + 18x2

(5 + 21x + 18x2)− (6 + 7x + 2x2)− (−2 + 8x2) = 1 + 14x + 8x2

(6 + 7x + 2x2) + (1 + 14x + 8x2)x2 + (−2 + 8x2)x4

0 1 2 3 4

= 6 + 7x + 3x2 + 14x3 + 6x4 + 8x6

5 6

6 7 2 −2 0 8

1 14 8

6 7 3 14 6 0 8



59/91

Example

(3 + 2x + 2x2 + 4x3 + x4 + 2x5 + x6 + 5x7)

×(2 + x− x2 + 2x3 − 2x4 − x5 + 2x6 − 2x7)

(3 + 2x + 2x2 + 4x3)

×(2 + x− x2 + 2x3)

(1 + 2x + x2 + 5x3)

×(−2− x + 2x2 − 2x3)

(4 + 4x + 3x2 + 9x3)

×x2

(3 + 2x)

×(2 + x)

(2 + 4x)

×(−1 + 2x)

(5 + 6x)

×(1 + 3x)

6 + 7x + 2x2 −2 + 8x2 5 + 21x + 18x2

(5 + 21x + 18x2)− (6 + 7x + 2x2)− (−2 + 8x2) = 1 + 14x + 8x2

(6 + 7x + 2x2) + (1 + 14x + 8x2)x2 + (−2 + 8x2)x4

0 1 2 3 4

= 6 + 7x + 3x2 + 14x3 + 6x4 + 8x6

5 6

6 7 2 −2 0 8

1 14 8

6 7 3 14 6 0 8

6 + 7x + 3x2 + 14x3 + 6x4 + 8x6



60/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number



61/91

Matrix Multiplication
Input: two n× n matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication(A,B, n)

1: for i← 1 to n do
2: for j ← 1 to n do
3: C[i, j]← 0
4: for k ← 1 to n do
5: C[i, j]← C[i, j] + A[i, k]×B[k, j]

6: return C

running time = O(n3)



61/91

Matrix Multiplication
Input: two n× n matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication(A,B, n)

1: for i← 1 to n do
2: for j ← 1 to n do
3: C[i, j]← 0
4: for k ← 1 to n do
5: C[i, j]← C[i, j] + A[i, k]×B[k, j]

6: return C

running time = O(n3)



61/91

Matrix Multiplication
Input: two n× n matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication(A,B, n)

1: for i← 1 to n do
2: for j ← 1 to n do
3: C[i, j]← 0
4: for k ← 1 to n do
5: C[i, j]← C[i, j] + A[i, k]×B[k, j]

6: return C

running time = O(n3)



62/91

Try to Use Divide-and-Conquer

A11 A12

A21 A22

A =

n/2

n/2 B11 B12

B21 B22

B =

n/2

n/2

C =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

matrix multiplication(A,B) recursively calls
matrix multiplication(A11, B11), matrix multiplication(A12, B21),
· · ·

Recurrence for running time: T (n) = 8T (n/2) +O(n2)

T (n) = O(n3)

Strassen’s Algorithm: T (n) = 7T (n/2) +O(n2)

Solving Recurrence T (n) = O(nlog2 7) = O(n2.808)



62/91

Try to Use Divide-and-Conquer

A11 A12

A21 A22

A =

n/2

n/2 B11 B12

B21 B22

B =

n/2

n/2

C =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

matrix multiplication(A,B) recursively calls
matrix multiplication(A11, B11), matrix multiplication(A12, B21),
· · ·
Recurrence for running time: T (n) = 8T (n/2) +O(n2)

T (n) = O(n3)

Strassen’s Algorithm: T (n) = 7T (n/2) +O(n2)

Solving Recurrence T (n) = O(nlog2 7) = O(n2.808)



62/91

Try to Use Divide-and-Conquer

A11 A12

A21 A22

A =

n/2

n/2 B11 B12

B21 B22

B =

n/2

n/2

C =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

matrix multiplication(A,B) recursively calls
matrix multiplication(A11, B11), matrix multiplication(A12, B21),
· · ·
Recurrence for running time: T (n) = 8T (n/2) +O(n2)

T (n) = O(n3)

Strassen’s Algorithm: T (n) = 7T (n/2) +O(n2)

Solving Recurrence T (n) = O(nlog2 7) = O(n2.808)



62/91

Try to Use Divide-and-Conquer

A11 A12

A21 A22

A =

n/2

n/2 B11 B12

B21 B22

B =

n/2

n/2

C =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

matrix multiplication(A,B) recursively calls
matrix multiplication(A11, B11), matrix multiplication(A12, B21),
· · ·
Recurrence for running time: T (n) = 8T (n/2) +O(n2)

T (n) = O(n3)

Strassen’s Algorithm: T (n) = 7T (n/2) +O(n2)

Solving Recurrence T (n) = O(nlog2 7) = O(n2.808)



63/91

Strassen’s Algorithm

A11 A12

A21 A22

A =

n/2

n/2 B11 B12

B21 B22

B =

n/2

n/2

C =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

M1 ← (A11 + A22)× (B11 +B22)

M2 ← (A21 + A22)×B11

M3 ← A11 × (B12 −B22)

M4 ← A22 × (B21 −B11)

M5 ← (A11 + A12)×B22

M6 ← (A21 − A11)× (B11 +B12)

M7 ← (A12 − A22)× (B21 +B22)

C11 ←M1+M4−M5+M7

C12 ←M3 +M5

C21 ←M2 +M4

C22 ←M1−M2+M3+M6



63/91

Strassen’s Algorithm

A11 A12

A21 A22

A =

n/2

n/2 B11 B12

B21 B22

B =

n/2

n/2

C =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

M1 ← (A11 + A22)× (B11 +B22)

M2 ← (A21 + A22)×B11

M3 ← A11 × (B12 −B22)

M4 ← A22 × (B21 −B11)

M5 ← (A11 + A12)×B22

M6 ← (A21 − A11)× (B11 +B12)

M7 ← (A12 − A22)× (B21 +B22)

C11 ←M1+M4−M5+M7

C12 ←M3 +M5

C21 ←M2 +M4

C22 ←M1−M2+M3+M6



64/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number



65/91

Interpolation of Polynomials

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

Known: given the value of p(x) for n different values of x, p is
uniquely determined

p(x) = 1− x+ 2x2 : p(0) = 1, p(1) = 2, p(2) = 7.



1 0 0
1 1 1
1 2 4






1
−1
2


 =



1
2
7




Given p(0) = 1, p(1) = 2, p(2) = 7, to recover p:



1 0 0
1 1 1
1 2 4




−1

1
2
7


 =




1 0 0
−3

2
2 −1

2
1
2
−1 1

2





1
2
7


 =




1
−1
2




p(x) = 1− x+ 2x2



65/91

Interpolation of Polynomials

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

Known: given the value of p(x) for n different values of x, p is
uniquely determined

p(x) = 1− x+ 2x2 : p(0) = 1, p(1) = 2, p(2) = 7.



1 0 0
1 1 1
1 2 4






1
−1
2


 =



1
2
7




Given p(0) = 1, p(1) = 2, p(2) = 7, to recover p:



1 0 0
1 1 1
1 2 4




−1

1
2
7


 =




1 0 0
−3

2
2 −1

2
1
2
−1 1

2





1
2
7


 =




1
−1
2




p(x) = 1− x+ 2x2



65/91

Interpolation of Polynomials

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

Known: given the value of p(x) for n different values of x, p is
uniquely determined

p(x) = 1− x+ 2x2 : p(0) = 1, p(1) = 2, p(2) = 7.



1 0 0
1 1 1
1 2 4






1
−1
2


 =



1
2
7




Given p(0) = 1, p(1) = 2, p(2) = 7, to recover p:



1 0 0
1 1 1
1 2 4




−1

1
2
7


 =




1 0 0
−3

2
2 −1

2
1
2
−1 1

2





1
2
7


 =




1
−1
2




p(x) = 1− x+ 2x2



65/91

Interpolation of Polynomials

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

Known: given the value of p(x) for n different values of x, p is
uniquely determined

p(x) = 1− x+ 2x2 : p(0) = 1, p(1) = 2, p(2) = 7.



1 0 0
1 1 1
1 2 4






1
−1
2


 =



1
2
7




Given p(0) = 1, p(1) = 2, p(2) = 7, to recover p:



1 0 0
1 1 1
1 2 4




−1

1
2
7


 =




1 0 0
−3

2
2 −1

2
1
2
−1 1

2





1
2
7


 =




1
−1
2




p(x) = 1− x+ 2x2



65/91

Interpolation of Polynomials

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

Known: given the value of p(x) for n different values of x, p is
uniquely determined

p(x) = 1− x+ 2x2 : p(0) = 1, p(1) = 2, p(2) = 7.



1 0 0
1 1 1
1 2 4






1
−1
2


 =



1
2
7




Given p(0) = 1, p(1) = 2, p(2) = 7, to recover p:



1 0 0
1 1 1
1 2 4




−1

1
2
7


 =




1 0 0
−3

2
2 −1

2
1
2
−1 1

2





1
2
7


 =




1
−1
2




p(x) = 1− x+ 2x2



66/91

Using Interpolation for Polynomial Multiplication

p(x) = 1− x+ 2x2, q(x) = 3− x2

Interpolation on 5 points {0, 1, 2, 3, 4}:

interpolation for p :




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256







1
−1
2
0
0




=




1
2
7
16
29




interpolation for q :




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256







3
0
−1
0
0




=




3
2
−1
−6
−13






66/91

Using Interpolation for Polynomial Multiplication

p(x) = 1− x+ 2x2, q(x) = 3− x2

Interpolation on 5 points {0, 1, 2, 3, 4}:

interpolation for p :




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256







1
−1
2
0
0




=




1
2
7
16
29




interpolation for q :




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256







3
0
−1
0
0




=




3
2
−1
−6
−13






66/91

Using Interpolation for Polynomial Multiplication

p(x) = 1− x+ 2x2, q(x) = 3− x2

Interpolation on 5 points {0, 1, 2, 3, 4}:

interpolation for p :




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256







1
−1
2
0
0




=




1
2
7
16
29




interpolation for q :




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256







3
0
−1
0
0




=




3
2
−1
−6
−13






67/91

Interpolation of pq:




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256







c0
c1
c2
c3
c4




=




3
4
−7
−102
−377







c0
c1
c2
c3
c4




=




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256




−1


3
4
−7
−96
−377






67/91

Interpolation of pq:




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256







c0
c1
c2
c3
c4




=




3
4
−7
−102
−377







c0
c1
c2
c3
c4




=




1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256




−1


3
4
−7
−96
−377






68/91




c0
c1
c2
c3
c4




=




1 0 0 0 0

−25
12

4 −3 4
3
−1

4
35
24

−13
3

19
4
−7

3
11
24

− 5
12

3
2
−2 7

6
−1

4
1
24

−1
6

1
4
−1

6
1
24







3
4
−7
−96
−377




=




3
−3
5
1
−2




pq = (1− x+ 2x2)(3− x2) = 3− 3x+ 5x2 + x3 − 2x4



68/91




c0
c1
c2
c3
c4




=




1 0 0 0 0

−25
12

4 −3 4
3
−1

4
35
24

−13
3

19
4
−7

3
11
24

− 5
12

3
2
−2 7

6
−1

4
1
24

−1
6

1
4
−1

6
1
24







3
4
−7
−96
−377




=




3
−3
5
1
−2




pq = (1− x+ 2x2)(3− x2) = 3− 3x+ 5x2 + x3 − 2x4



69/91

Multiplication of two polynomials of degree n− 1
Choose 2n− 1 distinct values x0, x1, x2, · · · , xm−1 carefully,
m = 2n− 1

Compute the interpolation of p and q:

M :=




1 x0 x2
0 x3

0 · · · xn−1
0

1 x1 x2
1 x3

1 · · · xn−1
1

1 x2 x2
2 x3

2 · · · xn−1
2

...
...

...
...

...
...

1 xm−1 x2
m−1 x3

m · · · xn−1
m−1




M




a0
a1
...

an−1

0




=




y0
y1
y2
...

ym−1




M




b0
b1
...

bn−1

0




=




z0
z1
z2
...

zm−1






70/91

Multiplication of two polynomials of degree n− 1

M




c0
c1
...

cm−1


 =




y0z0
y1z1
y2z2
...

ym−1zm−1







c0
c1
...

cm−1


 = M−1




y0z0
y1z1
y2z2
...

ym−1zm−1




(a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1)

× (b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1)

= (c0 + c1x+ c2x
2 + · · ·+ c2n−2x

2n−2)



70/91

Multiplication of two polynomials of degree n− 1

M




c0
c1
...

cm−1


 =




y0z0
y1z1
y2z2
...

ym−1zm−1







c0
c1
...

cm−1


 = M−1




y0z0
y1z1
y2z2
...

ym−1zm−1




(a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1)

× (b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1)

= (c0 + c1x+ c2x
2 + · · ·+ c2n−2x

2n−2)



71/91

Q: How should we set x0, x1, · · · , xn−1 so that we can compute Ma
and M−1y fast (for any a, y ∈ R{0,1,··· ,n−1})?

A: Use the n complex roots of the equation xn = 1

e
2πi·k

n = cos
(

2π·k
n

)
+ i · sin

(
2π·k
n

)
, k ∈

{0, 1, · · · , n− 1}
ω := e

2πi
n , n-th roots are

1, ω, ω2, · · · , ωn−1

1

e
2πi
n

e
2πi·2

n

e−
2πi
n

...
...

..
.

... ...



71/91

Q: How should we set x0, x1, · · · , xn−1 so that we can compute Ma
and M−1y fast (for any a, y ∈ R{0,1,··· ,n−1})?

A: Use the n complex roots of the equation xn = 1

e
2πi·k

n = cos
(

2π·k
n

)
+ i · sin

(
2π·k
n

)
, k ∈

{0, 1, · · · , n− 1}
ω := e

2πi
n , n-th roots are

1, ω, ω2, · · · , ωn−1

1

e
2πi
n

e
2πi·2

n

e−
2πi
n

...
...

..
.

... ...



71/91

Q: How should we set x0, x1, · · · , xn−1 so that we can compute Ma
and M−1y fast (for any a, y ∈ R{0,1,··· ,n−1})?

A: Use the n complex roots of the equation xn = 1

e
2πi·k

n = cos
(

2π·k
n

)
+ i · sin

(
2π·k
n

)
, k ∈

{0, 1, · · · , n− 1}
ω := e

2πi
n , n-th roots are

1, ω, ω2, · · · , ωn−1

1

e
2πi
n

e
2πi·2

n

e−
2πi
n

...
...

..
.

... ...



72/91

Fn :=




1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωn−1

1 ω2 ω4 ω6 · · · ω2(n−1)

...
...

...
...

...
...

1 ω−1 ω−2 ω−3 · · · ω−(n−1)




Interpolation and Inverse-Interpolation:



y0
y1
y2
...

yn−1




= Fn




a0
a1
a2
...

an−1







a0
a1
a2
...

an−1




= F−1
n




y0
y1
y2
...

yn−1




Interpolation: Fast Fourier Transform (FFT)

Invert-Interpolation: Inverse Fast Fourier Transform (iFFT)



72/91

Fn :=




1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωn−1

1 ω2 ω4 ω6 · · · ω2(n−1)

...
...

...
...

...
...

1 ω−1 ω−2 ω−3 · · · ω−(n−1)




Interpolation and Inverse-Interpolation:



y0
y1
y2
...

yn−1




= Fn




a0
a1
a2
...

an−1







a0
a1
a2
...

an−1




= F−1
n




y0
y1
y2
...

yn−1




Interpolation: Fast Fourier Transform (FFT)

Invert-Interpolation: Inverse Fast Fourier Transform (iFFT)



73/91

Fast Fourier Transform: Divide and Conquer

Assume n is even.

Breaking polynomial into even and odd parts

peven(x) := a0 + a2x+ a4x
2 + · · ·+ an−2x

n/2−1

pold(x) := a1 + a3x+ a5x
2 + · · ·+ an−1x

n/2−1

p(x) = peven(x
2) + podd(x

2) · x

p(ωk) = peven(ω
2k) + podd(ω

2k) · ωk, k = 0, 1, · · · , n
2
− 1

p(ωn/2+k) = peven(ω
2k)− podd(ω

2k) · ωk, k = 0, 1, · · · , n
2
− 1



73/91

Fast Fourier Transform: Divide and Conquer

Assume n is even.

Breaking polynomial into even and odd parts

peven(x) := a0 + a2x+ a4x
2 + · · ·+ an−2x

n/2−1

pold(x) := a1 + a3x+ a5x
2 + · · ·+ an−1x

n/2−1

p(x) = peven(x
2) + podd(x

2) · x

p(ωk) = peven(ω
2k) + podd(ω

2k) · ωk, k = 0, 1, · · · , n
2
− 1

p(ωn/2+k) = peven(ω
2k)− podd(ω

2k) · ωk, k = 0, 1, · · · , n
2
− 1



74/91

Assume n is an integer power of 2

FFT(n, a0, a1, · · · , an−1)
1: if n = 1 then return (a0)

2: (e0, e1, · · · , en/2−1)← FFT(n/2, a0, a2, · · · , an−2)
3: (o0, o1, · · · , on/2−1)← FFT(n/2, a1, a3, · · · , an−1)
4: for k ← 0, 1, 2, · · ·n/2− 1 do
5: yk ← ek + ok · ωk

6: yn/2+k ← ek − ok · ωk

7: return (y0, y1, · · · , yn−1)

Recurrence for running time: T (n) = 2T (n/2) +O(n)

T (n) = O(n log n)



74/91

Assume n is an integer power of 2

FFT(n, a0, a1, · · · , an−1)
1: if n = 1 then return (a0)

2: (e0, e1, · · · , en/2−1)← FFT(n/2, a0, a2, · · · , an−2)
3: (o0, o1, · · · , on/2−1)← FFT(n/2, a1, a3, · · · , an−1)
4: for k ← 0, 1, 2, · · ·n/2− 1 do
5: yk ← ek + ok · ωk

6: yn/2+k ← ek − ok · ωk

7: return (y0, y1, · · · , yn−1)

Recurrence for running time: T (n) = 2T (n/2) +O(n)

T (n) = O(n log n)



75/91

Example for one recursion of FFT

(a0, a1, a2, a3, a4, a5, a6, a7) = (3, 2, 1, 2, 5, 6, 1, 4)




e0
e1
e2
e3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







3
1
5
1


 =




10
−2
6
−2







o0
o1
o2
o3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







2
2
6
4


 =




14
−4− 2i

2
−4 + 2i




ω =
√
2
2
+

√
2i
2

y0 = e0 + o0 = 10 + 14 = 24

y1 = e1 + o1ω = −2 + (−4− 2i)
(√

2
2
+

√
2i
2

)
= −2− 2

√
2− 3

√
2i

y6 = e2 − o2ω
2 = 6− 2i

y7 = e3 − o3ω
3



75/91

Example for one recursion of FFT

(a0, a1, a2, a3, a4, a5, a6, a7) = (3, 2, 1, 2, 5, 6, 1, 4)




e0
e1
e2
e3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







3
1
5
1


 =




10
−2
6
−2







o0
o1
o2
o3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







2
2
6
4


 =




14
−4− 2i

2
−4 + 2i




ω =
√
2
2
+

√
2i
2

y0 = e0 + o0 = 10 + 14 = 24

y1 = e1 + o1ω = −2 + (−4− 2i)
(√

2
2
+

√
2i
2

)
= −2− 2

√
2− 3

√
2i

y6 = e2 − o2ω
2 = 6− 2i

y7 = e3 − o3ω
3



75/91

Example for one recursion of FFT

(a0, a1, a2, a3, a4, a5, a6, a7) = (3, 2, 1, 2, 5, 6, 1, 4)




e0
e1
e2
e3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







3
1
5
1


 =




10
−2
6
−2







o0
o1
o2
o3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







2
2
6
4


 =




14
−4− 2i

2
−4 + 2i




ω =
√
2
2
+

√
2i
2

y0 = e0 + o0 = 10 + 14 = 24

y1 = e1 + o1ω = −2 + (−4− 2i)
(√

2
2
+

√
2i
2

)
= −2− 2

√
2− 3

√
2i

y6 = e2 − o2ω
2 = 6− 2i

y7 = e3 − o3ω
3



75/91

Example for one recursion of FFT

(a0, a1, a2, a3, a4, a5, a6, a7) = (3, 2, 1, 2, 5, 6, 1, 4)




e0
e1
e2
e3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







3
1
5
1


 =




10
−2
6
−2







o0
o1
o2
o3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







2
2
6
4


 =




14
−4− 2i

2
−4 + 2i




ω =
√
2
2
+

√
2i
2

y0 = e0 + o0 = 10 + 14 = 24

y1 = e1 + o1ω = −2 + (−4− 2i)
(√

2
2
+

√
2i
2

)
= −2− 2

√
2− 3

√
2i

y6 = e2 − o2ω
2 = 6− 2i

y7 = e3 − o3ω
3



75/91

Example for one recursion of FFT

(a0, a1, a2, a3, a4, a5, a6, a7) = (3, 2, 1, 2, 5, 6, 1, 4)




e0
e1
e2
e3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







3
1
5
1


 =




10
−2
6
−2







o0
o1
o2
o3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







2
2
6
4


 =




14
−4− 2i

2
−4 + 2i




ω =
√
2
2
+

√
2i
2

y0 = e0 + o0 = 10 + 14 = 24

y1 = e1 + o1ω = −2 + (−4− 2i)
(√

2
2
+

√
2i
2

)
= −2− 2

√
2− 3

√
2i

y6 = e2 − o2ω
2 = 6− 2i

y7 = e3 − o3ω
3



75/91

Example for one recursion of FFT

(a0, a1, a2, a3, a4, a5, a6, a7) = (3, 2, 1, 2, 5, 6, 1, 4)




e0
e1
e2
e3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







3
1
5
1


 =




10
−2
6
−2







o0
o1
o2
o3


 =




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







2
2
6
4


 =




14
−4− 2i

2
−4 + 2i




ω =
√
2
2
+

√
2i
2

y0 = e0 + o0 = 10 + 14 = 24

y1 = e1 + o1ω = −2 + (−4− 2i)
(√

2
2
+

√
2i
2

)
= −2− 2

√
2− 3

√
2i

y6 = e2 − o2ω
2 = 6− 2i y7 = e3 − o3ω

3



76/91

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

q(x) = b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1

multiplying p and q, ▷ assuming n is a power of 2

1: y ← FFT(2n, a0, a1, · · · , an−1, 0, 0, · · · , 0)
2: z ← FFT(2n, b0, b1, · · · , bn−1, 0, 0, · · · , 0)
3: c← iFFT(2n, y0z0, y1z1, · · · , y2n−1z2n−1)
4: return (c0, c1, · · · , c2n−2)

iFFT(n, y0, y1, · · · , yn−1): inverse FFT procedure: multiplying
input vector y by the inverse of Fn, which is

1

n




1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

1 ω−2 ω−4 · · · ω−2(n−1)

...
...

...
...

...
1 ω ω2 · · · ωn−1






77/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number



78/91

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

Trivial algorithm: O(n2) running time



78/91

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

Trivial algorithm: O(n2) running time



78/91

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

Trivial algorithm: O(n2) running time



79/91

Divide-and-Conquer Algorithm for Closest Pair

Divide: Divide the points into two halves via a vertical line

Conquer: Solve two sub-instances recursively

Combine: Check if there is a closer pair between left-half and
right-half



79/91

Divide-and-Conquer Algorithm for Closest Pair

Divide: Divide the points into two halves via a vertical line

Conquer: Solve two sub-instances recursively

Combine: Check if there is a closer pair between left-half and
right-half

δ



79/91

Divide-and-Conquer Algorithm for Closest Pair

Divide: Divide the points into two halves via a vertical line

Conquer: Solve two sub-instances recursively

Combine: Check if there is a closer pair between left-half and
right-half

δ

δ
2

δ
2



80/91

Divide-and-Conquer Algorithm for Closest Pair

δ

δ
2

δ
2

Each box contains at most one pair
For each point, only need to consider O(1) boxes nearby
Implementation: Sort points inside the stripe according to
y-coordinates
For every point, consider O(1) points around it in the order



80/91

Divide-and-Conquer Algorithm for Closest Pair

δ

δ
2

δ
2

Each box contains at most one pair

For each point, only need to consider O(1) boxes nearby
Implementation: Sort points inside the stripe according to
y-coordinates
For every point, consider O(1) points around it in the order



80/91

Divide-and-Conquer Algorithm for Closest Pair

δ

δ
2

δ
2

Each box contains at most one pair
For each point, only need to consider O(1) boxes nearby

Implementation: Sort points inside the stripe according to
y-coordinates
For every point, consider O(1) points around it in the order



80/91

Divide-and-Conquer Algorithm for Closest Pair

δ

δ
2

δ
2

Each box contains at most one pair
For each point, only need to consider O(1) boxes nearby
Implementation: Sort points inside the stripe according to
y-coordinates

For every point, consider O(1) points around it in the order



80/91

Divide-and-Conquer Algorithm for Closest Pair

δ

δ
2

δ
2

Each box contains at most one pair
For each point, only need to consider O(1) boxes nearby
Implementation: Sort points inside the stripe according to
y-coordinates
For every point, consider O(1) points around it in the order



81/91

time for combine step = O(n log n)

recurrence: T (n) = 2T (n/2) +O(n log n)

solving recurrence: T (n) = ?

Improve the running time of combine step to O(n)

also sort the points in ascending order of y values at the beginning

pass the sequence to the root recursion

constructing two sub-sequences from the sequence, and pass them
to the two sub-recursions respectively

T (n) = 2T (n/2) +O(n) =⇒ T (n) = O(n log n)



81/91

time for combine step = O(n log n)

recurrence: T (n) = 2T (n/2) +O(n log n)

solving recurrence: T (n) = ?

Improve the running time of combine step to O(n)

also sort the points in ascending order of y values at the beginning

pass the sequence to the root recursion

constructing two sub-sequences from the sequence, and pass them
to the two sub-recursions respectively

T (n) = 2T (n/2) +O(n) =⇒ T (n) = O(n log n)



81/91

time for combine step = O(n log n)

recurrence: T (n) = 2T (n/2) +O(n log n)

solving recurrence: T (n) = O(n log2 n)

Improve the running time of combine step to O(n)

also sort the points in ascending order of y values at the beginning

pass the sequence to the root recursion

constructing two sub-sequences from the sequence, and pass them
to the two sub-recursions respectively

T (n) = 2T (n/2) +O(n) =⇒ T (n) = O(n log n)



81/91

time for combine step = O(n log n)

recurrence: T (n) = 2T (n/2) +O(n log n)

solving recurrence: T (n) = O(n log2 n)

Improve the running time of combine step to O(n)

also sort the points in ascending order of y values at the beginning

pass the sequence to the root recursion

constructing two sub-sequences from the sequence, and pass them
to the two sub-recursions respectively

T (n) = 2T (n/2) +O(n) =⇒ T (n) = O(n log n)



81/91

time for combine step = O(n log n)

recurrence: T (n) = 2T (n/2) +O(n log n)

solving recurrence: T (n) = O(n log2 n)

Improve the running time of combine step to O(n)

also sort the points in ascending order of y values at the beginning

pass the sequence to the root recursion

constructing two sub-sequences from the sequence, and pass them
to the two sub-recursions respectively

T (n) = 2T (n/2) +O(n) =⇒ T (n) = O(n log n)



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



82/91

Example for Closest Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

CP(1, 16, (5, 16, 9, 15, 7, 14, 1, 12, 3, 4, 8, 13, 10, 11, 2, 6))

CP(1, 8, (5, 7, 1, 3, 4, 8, 2, 6))

CP(1, 4, (1, 3, 4, 2))

CP(5, 8, (5, 7, 8, 6))

CP(9, 16, (16, 9, 15, 14, 12, 13, 10, 11))



83/91

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Solving Recurrences

4 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

5 Polynomial Multiplication

6 Strassen’s Algorithm for Matrix Multiplication

7 FFT(Fast Fourier Transform): Polynomial Multiplication in
O(n log n) Time

8 Finding Closest Pair of Points in 2D Euclidean Space

9 Computing n-th Fibonacci Number



84/91

Fibonacci Numbers

F0 = 0, F1 = 1

Fn = Fn−1 + Fn−2,∀n ≥ 2

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · ·

n-th Fibonacci Number
Input: integer n > 0

Output: Fn



85/91

Computing Fn : Stupid Divide-and-Conquer

Algorithm

Fib(n)

1: if n = 0 return 0
2: if n = 1 return 1
3: return Fib(n− 1) + Fib(n− 2)

Q: Is the running time of the algorithm polynomial or exponential in
n?

A: Exponential

Running time is at least Ω(Fn)

Fn is exponential in n



85/91

Computing Fn : Stupid Divide-and-Conquer

Algorithm

Fib(n)

1: if n = 0 return 0
2: if n = 1 return 1
3: return Fib(n− 1) + Fib(n− 2)

Q: Is the running time of the algorithm polynomial or exponential in
n?

A: Exponential

Running time is at least Ω(Fn)

Fn is exponential in n



85/91

Computing Fn : Stupid Divide-and-Conquer

Algorithm

Fib(n)

1: if n = 0 return 0
2: if n = 1 return 1
3: return Fib(n− 1) + Fib(n− 2)

Q: Is the running time of the algorithm polynomial or exponential in
n?

A: Exponential

Running time is at least Ω(Fn)

Fn is exponential in n



85/91

Computing Fn : Stupid Divide-and-Conquer

Algorithm

Fib(n)

1: if n = 0 return 0
2: if n = 1 return 1
3: return Fib(n− 1) + Fib(n− 2)

Q: Is the running time of the algorithm polynomial or exponential in
n?

A: Exponential

Running time is at least Ω(Fn)

Fn is exponential in n



86/91

Computing Fn: Reasonable Algorithm

Fib(n)

1: F [0]← 0
2: F [1]← 1
3: for i← 2 to n do
4: F [i]← F [i− 1] + F [i− 2]

5: return F [n]

Dynamic Programming

Running time = ?



86/91

Computing Fn: Reasonable Algorithm

Fib(n)

1: F [0]← 0
2: F [1]← 1
3: for i← 2 to n do
4: F [i]← F [i− 1] + F [i− 2]

5: return F [n]

Dynamic Programming

Running time = ?



86/91

Computing Fn: Reasonable Algorithm

Fib(n)

1: F [0]← 0
2: F [1]← 1
3: for i← 2 to n do
4: F [i]← F [i− 1] + F [i− 2]

5: return F [n]

Dynamic Programming

Running time = O(n)



87/91

Computing Fn: Even Better Algorithm

(
Fn

Fn−1

)
=

(
1 1
1 0

)(
Fn−1

Fn−2

)

(
Fn

Fn−1

)
=

(
1 1
1 0

)2(
Fn−2

Fn−3

)

· · ·
(

Fn

Fn−1

)
=

(
1 1
1 0

)n−1(
F1

F0

)



88/91

power(n)

1: if n = 0 then return

(
1 0
0 1

)

2: R← power(⌊n/2⌋)
3: R← R×R

4: if n is odd then R← R×
(

1 1
1 0

)

5: return R

Fib(n)

1: if n = 0 then return 0
2: M ← power(n− 1)
3: return M [1][1]

Recurrence for running time?

T (n) = T (n/2) +O(1)

T (n) = O(log n)



88/91

power(n)

1: if n = 0 then return

(
1 0
0 1

)

2: R← power(⌊n/2⌋)
3: R← R×R

4: if n is odd then R← R×
(

1 1
1 0

)

5: return R

Fib(n)

1: if n = 0 then return 0
2: M ← power(n− 1)
3: return M [1][1]

Recurrence for running time?

T (n) = T (n/2) +O(1)

T (n) = O(log n)



88/91

power(n)

1: if n = 0 then return

(
1 0
0 1

)

2: R← power(⌊n/2⌋)
3: R← R×R

4: if n is odd then R← R×
(

1 1
1 0

)

5: return R

Fib(n)

1: if n = 0 then return 0
2: M ← power(n− 1)
3: return M [1][1]

Recurrence for running time? T (n) = T (n/2) +O(1)

T (n) = O(log n)



88/91

power(n)

1: if n = 0 then return

(
1 0
0 1

)

2: R← power(⌊n/2⌋)
3: R← R×R

4: if n is odd then R← R×
(

1 1
1 0

)

5: return R

Fib(n)

1: if n = 0 then return 0
2: M ← power(n− 1)
3: return M [1][1]

Recurrence for running time? T (n) = T (n/2) +O(1)

T (n) = O(log n)



89/91

Running time = O(log n): We Cheated!

Q: How many bits do we need to represent F (n)?

A: Θ(n)

We can not add (or multiply) two integers of Θ(n) bits in O(1)
time

Even printing F (n) requires time much larger than O(log n)

Fixing the Problem

To compute Fn, we need O(log n) basic arithmetic operations on
integers



89/91

Running time = O(log n): We Cheated!

Q: How many bits do we need to represent F (n)?

A: Θ(n)

We can not add (or multiply) two integers of Θ(n) bits in O(1)
time

Even printing F (n) requires time much larger than O(log n)

Fixing the Problem

To compute Fn, we need O(log n) basic arithmetic operations on
integers



89/91

Running time = O(log n): We Cheated!

Q: How many bits do we need to represent F (n)?

A: Θ(n)

We can not add (or multiply) two integers of Θ(n) bits in O(1)
time

Even printing F (n) requires time much larger than O(log n)

Fixing the Problem

To compute Fn, we need O(log n) basic arithmetic operations on
integers



89/91

Running time = O(log n): We Cheated!

Q: How many bits do we need to represent F (n)?

A: Θ(n)

We can not add (or multiply) two integers of Θ(n) bits in O(1)
time

Even printing F (n) requires time much larger than O(log n)

Fixing the Problem

To compute Fn, we need O(log n) basic arithmetic operations on
integers



89/91

Running time = O(log n): We Cheated!

Q: How many bits do we need to represent F (n)?

A: Θ(n)

We can not add (or multiply) two integers of Θ(n) bits in O(1)
time

Even printing F (n) requires time much larger than O(log n)

Fixing the Problem

To compute Fn, we need O(log n) basic arithmetic operations on
integers



89/91

Running time = O(log n): We Cheated!

Q: How many bits do we need to represent F (n)?

A: Θ(n)

We can not add (or multiply) two integers of Θ(n) bits in O(1)
time

Even printing F (n) requires time much larger than O(log n)

Fixing the Problem

To compute Fn, we need O(log n) basic arithmetic operations on
integers



90/91

Summary: Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Write down recurrence for running time

Solve recurrence using master theorem



90/91

Summary: Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Write down recurrence for running time

Solve recurrence using master theorem



91/91

Summary: Divide-and-Conquer

Merge sort, quicksort, count-inversions, closest pair, FFT, · · · :
T (n) = 2T (n/2) +O(n)⇒ T (n) = O(n log n)

Polynomial Multiplication:
T (n) = 3T (n/2) +O(n)⇒ T (n) = O(nlog2 3)

Matrix Multiplication:
T (n) = 7T (n/2) +O(n2)⇒ T (n) = O(nlog2 7)

To improve running time, design better algorithm for “combine”
step, or reduce number of recursions, ...



91/91

Summary: Divide-and-Conquer

Merge sort, quicksort, count-inversions, closest pair, FFT, · · · :
T (n) = 2T (n/2) +O(n)⇒ T (n) = O(n log n)

Polynomial Multiplication:
T (n) = 3T (n/2) +O(n)⇒ T (n) = O(nlog2 3)

Matrix Multiplication:
T (n) = 7T (n/2) +O(n2)⇒ T (n) = O(nlog2 7)

To improve running time, design better algorithm for “combine”
step, or reduce number of recursions, ...



91/91

Summary: Divide-and-Conquer

Merge sort, quicksort, count-inversions, closest pair, FFT, · · · :
T (n) = 2T (n/2) +O(n)⇒ T (n) = O(n log n)

Polynomial Multiplication:
T (n) = 3T (n/2) +O(n)⇒ T (n) = O(nlog2 3)

Matrix Multiplication:
T (n) = 7T (n/2) +O(n2)⇒ T (n) = O(nlog2 7)

To improve running time, design better algorithm for “combine”
step, or reduce number of recursions, ...



91/91

Summary: Divide-and-Conquer

Merge sort, quicksort, count-inversions, closest pair, FFT, · · · :
T (n) = 2T (n/2) +O(n)⇒ T (n) = O(n log n)

Polynomial Multiplication:
T (n) = 3T (n/2) +O(n)⇒ T (n) = O(nlog2 3)

Matrix Multiplication:
T (n) = 7T (n/2) +O(n2)⇒ T (n) = O(nlog2 7)

To improve running time, design better algorithm for “combine”
step, or reduce number of recursions, ...


	Divide-and-Conquer
	Counting Inversions
	Solving Recurrences
	Quicksort and Selection
	Quicksort
	Lower Bound for Comparison-Based Sorting Algorithms
	Selection Problem

	Polynomial Multiplication
	Strassen's Algorithm for Matrix Multiplication
	FFT(Fast Fourier Transform): Polynomial Multiplication in O(nn) Time
	Finding Closest Pair of Points in 2D Euclidean Space
	Computing n-th Fibonacci Number

