BRI 5 01T (2026 5F 5 F 24 1)
Dynamic Programming

B2 SR
MR EL B




Paradigms for Designing Algorithms

Greedy algorithm

o Make a greedy choice

@ Prove that the greedy choice is safe

@ Reduce the problem to a sub-problem and solve it iteratively
°

Usually for optimization problems

Divide-and-conquer
@ Break a problem into many independent sub-problems
@ Solve each sub-problem separately

@ Combine solutions for sub-problems to form a solution for the
original one

@ Usually used to design more efficient algorithms



Paradigms for Designing Algorithms

Dynamic Programming

@ Break up a problem into many overlapping sub-problems
@ Build solutions for larger and larger sub-problems

@ Use a table to store solutions for sub-problems for reuse




Recall: Computing the n-th Fibonacci Number

(] F() = 0, F1 =1
(] Fn = Fn,1 -+ Fn,Q,Vn Z 2
e Fibonacci sequence: 0,1,1,2,3,5,8,13,21, 34,55,89, - --

1: Fl0] <0

2: F[l] — 1

3: for i < 2 ton do

4 F[i] «+ F[i — 1]+ F[i — 2]
5: return F'[n]

@ Store each Fi] for future use.



@ Weighted Interval Scheduling
© Segmented Least Squares

© Subset Sum Problem
@ Related Problem: Knapsack Problem

@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space

© Shortest Paths in Directed Acyclic Graphs
@ Matrix Chain Multiplication
@ Optimum Binary Search Tree

© Summary

Q Exercise Problems
5/92



Recall: Interval Schduling
Input: n jobs, job 7 with start time s; and finish time f;
each job has a weight (or value) v; > 0
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: a maximum-size subset of mutually compatible jobs

w1 5] | [
=
. oo s
i ‘80‘ i - ‘70‘ - i i

Optimum value = 220



Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

@ Job with the earliest finish time? No, we are ignoring weights

@ Job with the largest weight? No, we are ignoring times

ight
@ Job with the largest \lxve|g ?

ength
No, when weights are equal, this is the shortest job




Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9 i | optl]
i2 : 1(;0 : i5 51) | 19 30: 0 0
T == = i
- i I i? - I : 2| 100
— : I i6 - I : 3] 100
oo 4| 105
5| 150
@ Sort jobs according to non-decreasing order 6| 170
of finish times 7] 185
@ optli]: optimal value for instance only 8| 220
containing jobs {1,2,--- i} 9| 220




Designing a Dynamic Programming Algorithm

@ Focus on instance
{172737"' 7i}v

01 2 3 405 6 78 0

T —

D o/ e @ optli]: optimal value for the

| e s ) Instance

o O (s s S A @ assume we have computed

B optl0], opt[1] - opti — 1]
Q: The value of optimal solution that does not contain i? J
A: opt[i — 1] |
Q: The value of optimal solution that contains job ¢7? J

A: v; + opt[p;], p; = the largest j such that f; <'s; l




Designing a Dynamic Programming Algorithm

Q: The value of optimal solution that does not contain 47 J
A: opt[i — 1] |
Q: The value of optimal solution that contains job 77 J
A: v; + optpi], p; = the largest j such that f; <, ]

Recursion for opt|i]:
opt|i] = max {opt[i — 1], v; + opt[p;]}




Designing a Dynamic Programming Algorithm

Recursion for opt][i]:
opt[i]| = max {opt[i — 1], v; + opt[p;]}

e opt[0] =0

o opt[1] = max{opt[0], 80 + opt[0]} = 80

e opt[2] = max{opt[1],100 + opt[0]} = 100
e opt[3] = max{opt[2],90 + opt[0]} = 100
o opt[4] = max{opt[3],25 + opt[1]} = 105
° 0pt[5] = max{opt[4] 50 + 0pt[3]} = 150



Designing a Dynamic Programming Algorithm

Recursion for opt][i]:

opt[i] = max {opt[i — 1], v; + opt[p;]}

80 | \6 70

opt[0) = 0, opt[l] =" 80, opt[ ] = 100
opt[3] = 100, opt[4] =105, opt[5] = 150
opt[6] = max{opt[5], 70 + opt[3]} = 170
opt[7] = max{opt|6],80 + opt[4]} = 185
opt[8] = max{opt[7], 50 + opt[6]} = 220
opt[9] = max{opt[8], 30 + opt[7]} = 220



Dynamic Programming

sort jobs by non-decreasing order of finishing times
ComPUte P1,P2, " yPn
opt[0] - 0

for i < 1 ton do
opt|i] <— max{opt[i — 1], v; + opt[p;]}

g kR en

@ Running time sorting: O(nlgn)
@ Running time for computing p: O(nlgn) via binary search
@ Running time for computing opt[n]: O(n)



How Can We Recover the Optimum Schedule?

=
=

0N RN

sort jobs by non-decreasing order of
finishing times
compute pi, P2, - -, Pn
opt[0] < 0
for i < 1 ton do
if optli — 1] > v; + opt[p;] then
optli] < opt[i — 1]
bli] < N
else
opt[i] < v; + opt[p;]
bli] + Y

1 i+n, S0
2: while i # 0 do

3: if bi] = N then
4: 14—1—1
5 else

6: S« Su{i}
7 14 p;

8: return S




Recovering Optimum Schedule: Example

S+
.

opt|i]
0
80

100
100
105
150
170
185
220
220

OO N OB W N Of =

Z| <[ <KL Z|<|<|+




Dynamic Programming

@ Break up a problem into many overlapping sub-problems
@ Build solutions for larger and larger sub-problems

@ Use a table to store solutions for sub-problems for reuse



@ Weighted Interval Scheduling
© Segmented Least Squares

© Subset Sum Problem
@ Related Problem: Knapsack Problem

@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space

© Shortest Paths in Directed Acyclic Graphs
@ Matrix Chain Multiplication
@ Optimum Binary Search Tree

© Summary

© Exercise Problems
17/92



Linear Regression

o P= {<$17y1)7(x27y2)7"' 7(xn,yn)},l'1 <Ly < - <
o L:y=ar+b

n

Error(L, P) = z:(yZ —az; — b)?

=1

Linear Regression
e find L, minimize Error(L, P)

_ oy miyi — (i) (2 i)

bo— DuYi—a) ;T

n




e

e

\J
S

e Data may come from multiple line-segments. One line may have a
large error.

@ Solution: using segments



Segmented Least Squares
Input: (z1,11), (T2, y2), + , (Tn, Yn), T1 < T2 < -+ - < Ty,
penalty parameter C' > 0
Output: partition into £ > 1 (k unknown) segments,
minimize cost := error + penalty
error: sum of squared error over all the k segments

penalty: kC
Y
Dyiiyw
Ps cost = error(Lq, P)
I +error(Leg, Ps)
2P +error(Ls, Ps)
L +3C
[e]
Py




Dynamic Programming

@ ¢;;,1 <j <i<mn: minimum error for (z;,y;), -, (z;,y;) using 1
line

@ opt[i]: minimum cost for the instance with first i points

4] 0 ifi=0
opt|t| =
& minjzlgjgi(opt[j - 1] = eji) iy C it > 1

@ running time = O(n?).




Outline

© Subset Sum Problem
@ Related Problem: Knapsack Problem



Subset Sum Problem
Input: an integer bound 1 > 0
a set of n items, each with an integer weight w; > 0
Output: a subset S of items that

maximizes Zwi s.t. Zwi < W.

€S €S

e Motivation: you have budget W, and want to buy a subset of
items, so as to spend as much money as possible.

Example:
o W =235mn=>5w=(14,9,17,10,13)
@ Optimum: S ={1,2,4} and 144+ 9 + 10 = 33




Greedy Algorithms for Subset Sum

Candidate Algorithm: |
@ Sort according to non-increasing order of weights

@ Select items in the order as long as the total weight remains below
w

Q: Does candidate algorithm always produce optimal solutions?
A: No. W =100,n = 3,w = (51, 50, 50).
Q: What if we change “non-increasing” to “non-decreasing”?

A: No. W =100,n = 3,w = (1,50, 50)



Design a Dynamic Programming Algorithm

e Consider the instance: ¢, W', (wy,wy, - ,w;);

e optli, W']: the optimum value of the instance

Q: The value of the optimum solution that does not contain ¢?

A: optli — 1, W'

Q: The value of the optimum solution that contains 7

A: optli — 1, W' — w;] +w;




Dynamic Programming

o Consider the instance: i, W', (wy,wy, - ,w;);

e optli, W']: the optimum value of the instance

0 1=20
optli — 1, W] i >0,w; > W
optli — 1, W]

opt[i, W' =
max .
{ optli — L, W' — w;] + w;

} Z>0,@UZ§W/



Dynamic Programming

1. for W < 0to W do

2 opt[0, W'] < 0

3: for i < 1 ton do

4 for W/ < 0 to W do

5: opt[i, W'] < opt[i — 1, W']
6: if w; < W' and opt[i — 1, W' —w;| +w; > opt[i, W'] then
7 opt[i, W'] < optli — 1, W' —w;] + w;

8: return opt[n, W]




Recover the Optimum Set

for W'« 0to W do
opt[0, W'] « 0
for i + 1 ton do
for W'« 0to W do
opt[i, W'] <= opt[i — 1, W']
bli, W'] <~ N
if w; <W’and opt[i — 1, W' —w;] + w; > opti, W]
then

Noa ke e

o0

opt[i, W'] < opt[i — 1, W' — w;] + w;
9: bli, W]« Y
10: return opt[n, W|




Recover the Optimum Set

Li<nW WS+
2: while i > 0 do

3: if b[i, W'] =Y then
4: W'+ W' —w;
5: S(—SU{i}
6 141 —1
7: return S




Running Time of Algorithm

1: for W' <0 to W do

2 opt[0, W'] - 0

3: for i <~ 1 ton do

4 for W/ <~ 0 to W do

5 opt[i, W'] <= opt[i — 1, W']
6: if w; < W’ and opt[i — 1, W' —w;|+w; > opt[i, W] then
i opt[i, W'] < optli — 1L, W' —w;] + w;

8: return opt[n, W]

@ Running time is O(nW)
@ Running time is pseudo-polynomial because it depends on value of
the input integers.



Example

on=4 w=(23928), W =14

LW/ lo|1]2]3]4]5]6]|7[8|9|10]|11]12]13]|14

0 0jojo0jo0;0j0j0j0|0j0jO0Oj0Oj0O]O0]O0
1 0j0|22|12]2|2(2|2]|2|2|2]|2]|2]2
2 0/(0(2|3|3|5|/5|5|5|5|5 |5 |5 |5]|5
3 0(0(2[3[|3|5|5(5|5]|9|9 |11|12]12|14
4 0(0(2|3|3|5|5(5(8|9|10|11|12|13 |14




Avoiding Unncessary Computation and Memory
Using Memoized Algorithm and Hash Map

compute-opt(i, W’)

1: if opt[i, W'] # L then return opt[i, V']

2: if t=0thenr <+ 0

3: else

4: 7 < compute-opt(i — 1, W)

5: if w; < W’ then

6: 7’ < compute-opt(i — 1, W' — w;) + w;
7: if 7' > r thenr < 1/

8: optli, W'| < r

9: return r

@ Use hash map for opt



Example Using Memoized Rounding

en=4w=(23938), W=14

W' |o]1]2]3[4]5|6[7[8|9]10]11][12]13]14

,5) 0,3)  (0,2) (0,0)

0 0 0|0 0 0 0|0 0
1 2 2 2 2
2 5 5
3 14
4
(4,14)
/
(1‘1)/()\5>
(1,14) (1,11) (1./\2)
A A AN A



Outline

© Subset Sum Problem
@ Related Problem: Knapsack Problem



Knapsack Problem
Input: an integer bound W > 0
a set of n items, each with an integer weight w; > 0
a value v; > 0 for each item 7
Output: a subset S of items that

maximizes Zvi s.t. Zwi <W.

i€S €S

@ Motivation: you have budget W, and want to buy a subset of
items of maximum total value



DP for Knapsack Problem

e optli, W']: the optimum value when budget is W’ and items are
{1,2,3,--- ,i}.
o If i =0, opt[i, W'| =0 for every W =0,1,2,--- | W.

0 i=0
optli — 1, W] i>0,w; > W
optli — 1, W]

opt[i, W'] =
max
{ Opt[@ — 1, W/ — ’U)Z] + V;

} z>0,w,§W’



Exercise: ltems with 3 Parameters

Input: integer bounds W > 0, 7 > 0,
a set of n items, each with an integer weight w; > 0
a size z; > 0 for each item i
a value v; > 0 for each item 1
Output: a subset S of items that

maximizes E V; s.t.

ZwiSWand ZZ,SZ

€S €S




Outline

@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space



Subsequence

e A = bacdca
o C =adca
e (' is a subsequence of A

Def. Given two sequences A[l .. n| and C[1 .. t] of letters, C'is
called a subsequence of A if there exists integers
1 <14y <iy <i3<...<i <nsuch that Afi;] = C[j] for every

j:172737"' 7t'

@ Exercise: how to check if sequence C' is a subsequence of A?



Longest Common Subsequence
Input: A[l .. n| and B[1 .. m]

Output: the longest common subsequence of A and B

Example:

o A = ‘bacdca

e B = ‘adbcdd’

e LCS(A, B) = ‘adcd

@ Applications: edit distance (diff), similarity of DNAs



Matching View of LCS

a/ i~ b c/ d
@ Goal of LCS: find a maximum-size non-crossing matching between
letters in A and letters in B.

a



Reduce to Subproblems

o A = ‘bacdc’
e B = ‘adbcd’
@ either the last letter of A is not matched:

° need to compute LCS(‘bacd’, ‘adbced’)

or the last letter of B is not matched:
° need to compute LCS(‘bacdc’, ‘adbc’)



Dynamic Programming for LCS

@ optli,j],0 <i<n,0<j<m: length of longest common
sub-sequence of Al .. i| and BJ[1 .. j].

e if i =0 or j =0, then opt[i, j] = 0.
e ifi > 0,7 >0, then

optli — 1,7 — 1]+ 1 if A[i] = B[j]

optli, j] = optli — 1, j] o Ars .
max{ optlisj — 1] if Ali] # B[j]



Dynamic Programming for LCS

1: for j <+ 0 to m do

2 opt|0, j] < 0

3: for 1 < 1 ton do

4 optli, 0] < 0

5; for j < 1 to m do
6 if Ali] = B[j] then

7 optli,jl < optli — 1,5 — 1] + 1, w[i, j| + "\
8 else if optli,j — 1] > opt[i — 1, 7] then

0: optli, j] < optli,j — 1], w[i, j] < "<"

10: else
11: optli, j] < optli — 1, 7], w[i, j] < 1"




Example

12345

Alblalc|d|c

Bla|d|b d
0 1 2 3 4 5 6
ocjoLjoLjoLjoLjoL]OL  OL
1/0L |0+ |0+ |1 |1+ |1« |1«
210 L [IN |1+ |1+ |1 |1+ |2
3I0L | 11 |1+ |1« |2N |2 |2«
410L | 11 |2\ |2+ |2+ |3\ | 3+«
500L | 11| 21T |2+ |3N |3« |3«
6|0 L |1 |27 |2+ |31 |3« |4




Example:

Find Common Subsequence

112|345

Alblalc|d]|c

Bla|d|b d
0 1 2 3 4 5 6
ojoLjoLjoLjoL|joL}joL|oL
110L [0+ |0« 1IN |1+ |1« |1«
210 L |1 |1+ |1+ |1+ |1« |2
310L [ 17T |1+ |1+ |2 |2« |2«
410 L] 11 |22« |2« |3 | 3+«
5/0L 111|271 |2« |3 |3« |3«
60 L |1 | 27T |2« | 37T |3« |4~




Find Common Subsequence

Li+n,j+mS<+ ()

2: while 7 > 0 and 7 > 0 do
if 7[i,7] ="\" then
4 add A[i] to beginning of S, i« i— 1,7« j—1
5 else if 7[i, j] ="1" then

6: 141—1
7

8

9:

else
Jjg—1
return S




Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions) we
need to change A to B?

Example:
e A= ocurrance, B = occurrence

@ 3 operations: insert 'c’, remove 'a’ and insert ‘e’

Obs. #OPs = length(A) + length(B) - 2 - length(LCS(A, B))




Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A,

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Example:
o A= ocurrance, B = occurrence.

@ 2 operations: insert 'c’, change 'a’ to e’

@ Not related to LCS any more



Edit Distance with Replacing: Reduction to a
Variant of LCS

@ Need to match letters in A and B, every letter is matched at most
once and there should be no crosses.

@ However, we can match two different letters: Matching a same
letter gives score 2, matching two different letters gives score 1.

@ Need to maximize the score.
@ DP recursion for the case i > 0 and 5 > O:
opt[i — 1,5 — 1] +2 if Afi] = BJ[j]
optli, j] = optli — 1, 7]
PP IT= 1 max opt[i, j — 1] if A[i] # Blj]

optli — 1,5 — 1]+ 1

Relation : #O0Ps = length(A) + length(B) - max_score



Edit Distance (with Replacing): using DP directly

@ optli,j],0 <i<n,0<j<m: edit distance between A[l .. ]
and BJ[1 .. j].

e if i = 0 then opt[i, j] = j; if 7 = 0 then opt[i, j| = i.

e if i > 0,7 >0, then

optli — 1,7 — 1] if A[i] = B[j]
optli. ] = optli — 1,j]+1
’ min optli,j — 1]+ 1 if A[i] # B[j]

optli— 1,7 —1] +1



Exercise: Longest Palindrome

Def. A palindrome is a string which reads the same backward or
forward.

@ example: “racecar”, “wasitacaroracatisaw”, " putitup”
Longest Palindrome Subsequence

Input: a sequence A

Output: the longest subsequence C' of A that is a palindrome.

Example:

@ Input: acbcedeacab

@ Output: acedeca




Outline

@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space



Computing the Length of LCS

1: for j <+ 0 to m do

2 opt[0, j] < 0

3: for i < 1tondo

4 opt|i, 0] < 0

5: for j < 1 to m do
6 if Afi] = B[j] then

7 optli,jl < optli — 1,5 — 1]+ 1

8 else if opt[i,j — 1] > opt[i — 1, 7] then
0: optli, j] < optli, 7 — 1]

10: else
11: optli, j] < optli — 1, j]

Obs. The i-th row of table only depends on (i — 1)-th row.




Reducing Space to O(n + m)

Obs. The i-th row of table only depends on (i — 1)-th row. |

Q: How to use this observation to reduce space? ]

A: We only keep two rows: the (¢ — 1)-th row and the i-th row. ]




Linear Space Algorithm to Compute Length of LCS

1. for j <~ 0 tom do

2 opt|0, j] < 0

3: for 1 < 1 ton do

4 opt[i mod 2,0] < 0

5; for j < 1 to m do

6 if Ali] = B[j] then

7 opt[i mod 2, j] < opt[i —1 mod 2,5 — 1] + 1

8 else if opt[i mod 2,5 — 1] > opt[i — 1 mod 2, j] then
0: optli mod 2, j] < opt[i mod 2, j — 1]

10: else
11: optli mod 2, j] « opt[i — 1 mod 2, j]
12: return opt[n mod 2, m)|




How to Recover LCS Using Linear Space?

@ Only keep the last two rows: only know how to match A[n]

@ Can recover the LCS using n rounds: time = O(n*m)

@ Using Divide and Conquer 4+ Dynamic Programming:
e Space: O(m +n)
e Time: O(nm)



@ Weighted Interval Scheduling
© Segmented Least Squares

© Subset Sum Problem
@ Related Problem: Knapsack Problem

@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space

© Shortest Paths in Directed Acyclic Graphs
@ Matrix Chain Multiplication
@ Optimum Binary Search Tree

© Summary

Q Exercise Problems
58,92



Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without
(directed) cycles.

not a DAG

Lemma A directed graph is a DAG if and only its vertices can be
topologically sorted.




Shortest Paths in DAG
Input: directed acyclic graph G = (V, FE) and w : E — R.
Assume V = {1,2,3--- n} is topologically sorted: if
(i,j) € E, then i < j
Output: the shortest path from 1 to i, for every 1 € V'

@2@53 >

1



Shortest Paths in DAG

e f[i]: length of the shortest path from 1 to i

o
= { ming,;nep {f(J) +w(j, i)}

=23,



Shortest Paths in DAG

@ Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG

1 f[1] 0 'Print-Path(t)

2: for i < 2 ton do 1: if £t =1 then
3: fli] ¢ o0 2 print(1)

4: for each incoming edge (j,7) of ¢ do 3: return

5: if flj] +w(j,i) < f[i] then 4: print-path(m(t))
6: fli] < flj] +w(y, 1) 5. print(")”, t)

7: (i) < J J




Example




Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph
Input: directed acyclic graph G = (V, E) and w : E — R.
Assume V = {1,2,3--- n} is topologically sorted: if
(i,7) € E, then i < j
Output: the path with the largest weight (the heaviest path) from
1 to n.

o f[i]: weight of the heaviest path from 1 to ¢

=1 '
maxs:(j,i)eE {f(J) + w(j7 Z)} L= 27 37 N




@ Weighted Interval Scheduling
© Segmented Least Squares

© Subset Sum Problem
@ Related Problem: Knapsack Problem

@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space

© Shortest Paths in Directed Acyclic Graphs
@ Matrix Chain Multiplication
@ Optimum Binary Search Tree

© Summary

Q Exercise Problems
65,92



Matrix Chain Multiplication

Matrix Chain Multiplication

Input: n matrices Ay, Ay, -+, A, of sizes
r1 X C1,T9 X Coy- -+ Ty X Cp, such that ¢; = r;,; for every
i=1,2,--,n—1.
Output: the order of computing A; As - -- A, with the minimum
number of multiplications

Fact Multiplying two matrices of size r x k and k x ¢ takes
r X k X ¢ multiplications.




Example:

e A;:10 x 100, As:100 x 5,

[10x100| [100x5 ]| [ 5x50 |

10-100 - 5

cost = 5000 + 2500 = 7500

A325X50

cost = 25000 + 50000 = 75000

o (A1A3)As: 10 x 100 x 5+ 10 x 5 x 50 = 7500
o Aj(A3As): 100 x 5 x 50 + 10 x 100 x 50 = 75000




Matrix Chain Multiplication: Design DP

@ Assume the last step is (A1 Ay - A;)(Ain1Aie -+ Ay)
@ Cost of last step: 71 X ¢; X ¢,

@ Optimality for sub-instances: we need to compute A A, --- A;
and A/L'JrlAZ'JrQ tee An optlmally

@ opt[i, j] : the minimum cost of computing A; A1 -+ A;

opt[i, j] = Y
’ ming.;<p<; (optli, k| + opt[k + 1, j| + rickej) @ < j



Matrix Chain Multiplication: Design DP

matrix-chain-multiplication(n, r[1..n], ¢[1..n])

1: let opt[i,i] < 0 forevery i =1,2,--- ,n

2: for { <+ 2 ton do

3: fori<1ton—/(+1do

ji+l—-1

optli, j] < oo

for k< itoj—1do

if opt[i, k| + opt[k + 1, j] + ricke; < opt[i, 7] then

opt[i, j] < optli, k| + opt[k + 1, j] + rickc;
(i, j] < k

N

©

10: return opt[1,n]




Constructing Optimal Solution

Print-Optimal-Order(i, 7)

if 7 = 7 then
print(“A";)

else
print(“(")
Print-Optimal-Order (i, 7[i, j])
Print-Optimal-Order(7[é, j] + 1, 7)
print(")")

NN




matrix ‘ Al ‘ A2 ‘ A3 ‘ A4 ‘ A5

size [3x5[5x2[2x6[6x9][9x4

[1,1] + opt[2,2] + 3 x 5 x 2 = 30, T
— opt[2,2] + opt[3,3] + 5 x 2 x 6 =60,
opt[3,3] + opt[4,4] +2x 6 x 9 =108,
= opt[4,4] + opt[5,5] +6 x 9 x 4 =216, 7
= min{opt[1, 1] 4+ opt[2,3] + 3 x 5 X 6,
opt[1,2] + opt[3,3] + 3 x 2 x 6}
— min{0 + 60 + 90,30 + 0 + 36} = 66,
opt[2,4] = min{opt[2, 2] + opt[3,4] +5 x 2 x 9,
opt[2,3] 4+ opt[4,4] + 5 x 6 x 9}
= min{0 + 108 4+ 90,60 4+ 0 + 270} = 198,

Y

) Y



matrix‘ Al ‘ A2 ‘ A3 ‘ A4 ‘ A5
size [3x5[5x2[2x6[6x9][9x4

opt[3,5] = min{opt(3, 3] + opt[4,5] + 2 x 6 x 4,
opt[3,4] + opt[5,5] +2 x 9 x 4}
= min{0 + 216 + 48,108 + 0 + 72} = 180,
7[3,5] = 4,
opt[1,4] = min{opt[1, 1] 4+ opt[2,4] +3 x 5 x 9,
opt[1,2] + opt[3,4] + 3 x 2 x 9,
opt[1, 3] + opt[4,4] + 3 x 6 x 9}
= min{0 + 198 + 135,30 + 108 + 54,66 + 0 + 162} = 192,
7[l1,4] = 2,



matrix‘ Al ‘ AQ ‘ Ag ‘ A4 ‘ A5
size [3x5[5x2|2x6[6x9[9x4

opt[2,5] = min{opt[2,2] + opt[3,5] + 5 x 2 x 4,
opt[2, 3] + opt[4,5] +5 x 6 x 4,
opt[2,4] + opt[5,5] +5 x 9 x 4}
= min{0 + 180 + 40,60 + 216 + 120, 198 + 0 + 180} = 220,
opt[1,5] = min{opt[1, 1] + opt[2,5] + 3 x 5 x 4,
opt[1,2] 4+ opt[3,5] + 3 x 2 x 4,
opt[1,3] + opt[4,5] +3 X 6 x 4,
opt[1,4] + opt[5,5] + 3 x 9 x 4}
= min{0 + 220 + 60, 30 + 180 + 24,
66 + 216 + 72,192 + 0 + 108}
— 234,
m[1,5] = 2.



matrix ‘ Al ‘ A2 ‘ Ag ‘ A4 ‘ A5

size [3x5[5x2|2x6[6x9[9x4

opt. m | j=1|j=2]j=3|j=4|]=
i=11]0/1301]66 2192 22342
i=2 0,/ | 60,2198, 2220, 2
i=3 0,/ | 108, 3180, 4
i=4 0,/ |216,4
i=5 0,/




opt,m|j=1]j=2|j=3|j=4];=
i=1] 0,/ | 30,166 2192 2] 2342
i=2 0,/ | 60,2 | 198, 2 | 220, 2
i=3 0,/ | 108, 3180, 4
i=4 0,/ |216,4
i=5 0, /

Print-Optimal-Order(1,5)

Print-Optimal-Order(1, 2)
Print-Optimal-Order(1, 1)
Print-Optimal-Order(2, 2)

Print-Optimal-Order(3, 5)
Print-Optimal-Order(3, 4)

Print-Optimal-Order(3, 3)
Print-Optimal-Order(4, 4)
Print-Optimal-Order(5, 5)
Optimum way for multiplication: ((A;A42)((AsA4)As5))



@ Weighted Interval Scheduling
© Segmented Least Squares

© Subset Sum Problem
@ Related Problem: Knapsack Problem

@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space

© Shortest Paths in Directed Acyclic Graphs
@ Matrix Chain Multiplication
@ Optimum Binary Search Tree

© Summary

Q Exercise Problems
76,92



Optimum Binary Search Tree

n elements e; < €3 < e3 < -+ < €,
e; has frequency f;
goal: build a binary search tree for {e1, €9, - ,e,} with the

minimum accessing cost:
n
Z fi x (depth of e; in the tree)
i=1

motivation: the time to access ¢; in the tree is linear in the depth
of €;



Optimum Binary Search Tree

Example: f; =10, fo =5, f3 =3
© ©
) ONNC
©

10x1+5x24+3x3=29
10x24+5x1+3x2=31
10x3+5x2+3x1=43



suppose we decided to let e, be the root

e1,€s, - ,ep_1 are on left sub-tree

€ki1, ki, - ,€n are on right sub-tree

d;: depth of e; in our tree

C,Cp, Cg: cost of tree, left sub-tree and right sub-tree

di =3,dy =2,d3 =3,dy, = 4,d5 = 1,
e de =2,d7 = 4,dg = 3,dy = 4,
C=3fi+2fa+3fs+4fs+ f5+
() () 2f6 +4f7 +3fs +4fo
e e @ Cr=2fi+ fat+2f3+3f4
e e e Cr=fe+3fr+2fs+3fo

CZCL+CR+Z?:1JC]‘



C: cost of left tree
/

/
Cp: cost of left tree ,” . Cr: cost of left tree
N / .

C= Zfzde:Zfe(de— 1)+Zfz
=1 —1 —
k-1
ZZfe(de—l Zfzdz—l
=1

:CL+CR+ZfE

(=1



C=CL+Cr+> fi
(=1

@ In order to minimize C, need to minimize C', and C'y respectively

@ opt[i, j]: the optimum cost for the instance (fi, fit1, -+, fj)

opt[l,n] = min (opt[l,k — 1] + optlk + 1,n]) + Z fe

k:1<k<n
(=1

e In general, opt[i, j| =

0 ifi=j+1
miny;<i<; (optli,k — 1] + opt[k + 1, j]) + S fe ifi<y



Optimum Binary Search Tree

1 fsuml[0] - 0
2: for i <~ 1 to n do fsuml[i] < fsum[i — 1] + f;

Dfsum[] Z] lfJ
3: for i <~ 0 ton do opt[i +1,i] < 0

4: for / < 1ton do
5: fori+1lton—/¢-+1do

6: j1+L0—1, optli,j] + o0

7: for k < i to j do

8: if opt[i, k — 1] + opt[k + 1, j] < opt[i, j] then
9: optli, j] < optli, k — 1] + opt[k + 1, j]

10: wli, j] < k

11: optli, j| < optli, j] + fsumlj] — fsum[i — 1]




Printing the Tree

Print-Tree(i, )

1. if ¢ > j then

2 return

3: else

4: print('(")

5 Print-Tree(i, w[i, j] — 1)
6 print(7[i, j])
7 Print-Tree(n (i, j] + 1, 7)
8 print(')")




@ Weighted Interval Scheduling
© Segmented Least Squares

© Subset Sum Problem
@ Related Problem: Knapsack Problem

@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space

© Shortest Paths in Directed Acyclic Graphs
@ Matrix Chain Multiplication
@ Optimum Binary Search Tree

© Summary

© Exercise Problems
84/92



Dynamic Programming

@ Break up a problem into many overlapping sub-problems
@ Build solutions for larger and larger sub-problems

@ Use a table to store solutions for sub-problems for reuse




Comparison with greedy algorithms

@ Greedy algorithm: each step is making a small progress towards
constructing the solution

@ Dynamic programming: the whole solution is constructed in the
last step

Comparison with divide and conquer

@ Divide and conquer: an instance is broken into many independent
sub-instances, which are solved separately.

@ Dynamic programming: the sub-instances we constructed are
overlapping.




Definition of Cells for Problems We Learnt

@ Weighted interval scheduling: opt|[i] = value of instance defined
by jobs {1,2,--- ,i}

@ Segmented Least Square: opt[i| = cost of instance defined by first
1 points.

@ Subset sum, knapsack: opt[i, W'] = value of instance with items
{1,2,--- ,i} and budget W’

@ Longest common subsequence: optli, j| = value of instance
defined by A[l..i] and BJ1..j]

@ Shortest paths in DAG: f[v] = length of shortest path from s to v

@ Matrix chain multiplication, optimum binary search tree:
optli, j] = value of instances defined by matrices i to j



@ Weighted Interval Scheduling
© Segmented Least Squares

© Subset Sum Problem
@ Related Problem: Knapsack Problem

@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space

© Shortest Paths in Directed Acyclic Graphs
@ Matrix Chain Multiplication
@ Optimum Binary Search Tree

© Summary

© Exercise Problems
88/92



Longest Increasing Subsequence

Given a sequence A = (aq,as, - ,a,) of n numbers, we need to find
the maximum-length increasing subsequence of A. That is, we want
to find a maximum-length sequence (i1, s, - ,;) of integers such

that1§i1<i2<i3<---<it§nandai1 <Ay < Qg < 00 < Ay,
Design an O(n?)-time algorithm for the problem.



Counting number of inverted 10-tuples

Given an array A of n numbers, we say that a 10-tuple

(41,19, - ,110) of integers is inverted if

1§i1<i2<i3<---<i10§nand

Aliy] > Alig] > Alis] > -+ > Aliiol.

@ Give an O(n?)-time algorithm to count the number of inverted
10-tuples w.r.t A.

@ Give an O(nlgn)-time algorithm to count the number of inverted
10-tuples w.r.t A. (Hard Problem.)



Exercise: Counting Number of Domino Coverings
Input: n

Output: number of ways to cover a n x 2 grid using domino tiles

Figure: When n is 4, there are 5 ways to cover the grid.



Maximum weight independent set on trees

Given a tree with node weights, find the independent set of the tree
with the maximum total weight.

r/ B ‘\\ Y /7‘\\
(16 ) (18 )
N N
’//7‘ ) ’// ‘\\ ’ /7‘\\ gD é E)
(3) (5) (5)
\_/ o/ \_/

Figure: The maximum-weight independent set of the tree has weight 47.
The red vertices give the independent set.

Design an O(n)-time algorithm for the problem, where n is the
number of vertices in the tree.



	Weighted Interval Scheduling
	Segmented Least Squares
	Subset Sum Problem
	Related Problem: Knapsack Problem

	Longest Common Subsequence
	Longest Common Subsequence in Linear Space

	Shortest Paths in Directed Acyclic Graphs
	Matrix Chain Multiplication
	Optimum Binary Search Tree
	Summary
	Exercise Problems

