
算法设计与分析(2026年春季学期)

Dynamic Programming

授课老师: 栗师

南京大学计算机学院



2/92

Paradigms for Designing Algorithms

Greedy algorithm
Make a greedy choice

Prove that the greedy choice is safe

Reduce the problem to a sub-problem and solve it iteratively

Usually for optimization problems

Divide-and-conquer
Break a problem into many independent sub-problems

Solve each sub-problem separately

Combine solutions for sub-problems to form a solution for the
original one

Usually used to design more efficient algorithms



3/92

Paradigms for Designing Algorithms

Dynamic Programming
Break up a problem into many overlapping sub-problems

Build solutions for larger and larger sub-problems

Use a table to store solutions for sub-problems for reuse



4/92

Recall: Computing the n-th Fibonacci Number

F0 = 0, F1 = 1

Fn = Fn−1 + Fn−2,∀n ≥ 2

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · ·

Fib(n)

1: F [0]← 0
2: F [1]← 1
3: for i← 2 to n do
4: F [i]← F [i− 1] + F [i− 2]

5: return F [n]

Store each F [i] for future use.



4/92

Recall: Computing the n-th Fibonacci Number

F0 = 0, F1 = 1

Fn = Fn−1 + Fn−2,∀n ≥ 2

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · ·

Fib(n)

1: F [0]← 0
2: F [1]← 1
3: for i← 2 to n do
4: F [i]← F [i− 1] + F [i− 2]

5: return F [n]

Store each F [i] for future use.



5/92

Outline

1 Weighted Interval Scheduling

2 Segmented Least Squares

3 Subset Sum Problem
Related Problem: Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

9 Exercise Problems



6/92

Recall: Interval Schduling
Input: n jobs, job i with start time si and finish time fi

each job has a weight (or value) vi > 0

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: a maximum-size subset of mutually compatible jobs

0 1 2 3 4 5 6 7 8 9

Optimum value = 220



6/92

Recall: Interval Schduling
Input: n jobs, job i with start time si and finish time fi

each job has a weight (or value) vi > 0

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: a maximum-size subset of mutually compatible jobs

0 1 2 3 4 5 6 7 8 9

Optimum value = 220



6/92

Weighted Interval Scheduling
Input: n jobs, job i with start time si and finish time fi

each job has a weight (or value) vi > 0

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: a maximum-weight subset of mutually compatible jobs

Optimum value = 220



6/92

Weighted Interval Scheduling
Input: n jobs, job i with start time si and finish time fi

each job has a weight (or value) vi > 0

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: a maximum-weight subset of mutually compatible jobs

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

Optimum value = 220



6/92

Weighted Interval Scheduling
Input: n jobs, job i with start time si and finish time fi

each job has a weight (or value) vi > 0

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: a maximum-weight subset of mutually compatible jobs

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

Optimum value = 220



7/92

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

Job with the earliest finish time?

No, we are ignoring weights

Job with the largest weight?

No, we are ignoring times

Job with the largest
weight

length
?

No, when weights are equal, this is the shortest job
0 1 2 3 4 5 6 7 8 9



7/92

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

Job with the earliest finish time?

No, we are ignoring weights

Job with the largest weight?

No, we are ignoring times

Job with the largest
weight

length
?

No, when weights are equal, this is the shortest job
0 1 2 3 4 5 6 7 8 9



7/92

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

Job with the earliest finish time? No, we are ignoring weights

Job with the largest weight?

No, we are ignoring times

Job with the largest
weight

length
?

No, when weights are equal, this is the shortest job
0 1 2 3 4 5 6 7 8 9



7/92

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

Job with the earliest finish time? No, we are ignoring weights

Job with the largest weight?

No, we are ignoring times

Job with the largest
weight

length
?

No, when weights are equal, this is the shortest job
0 1 2 3 4 5 6 7 8 9



7/92

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

Job with the earliest finish time? No, we are ignoring weights

Job with the largest weight? No, we are ignoring times

Job with the largest
weight

length
?

No, when weights are equal, this is the shortest job
0 1 2 3 4 5 6 7 8 9



7/92

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

Job with the earliest finish time? No, we are ignoring weights

Job with the largest weight? No, we are ignoring times

Job with the largest
weight

length
?

No, when weights are equal, this is the shortest job
0 1 2 3 4 5 6 7 8 9



7/92

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

Job with the earliest finish time? No, we are ignoring weights

Job with the largest weight? No, we are ignoring times

Job with the largest
weight

length
?

No, when weights are equal, this is the shortest job

0 1 2 3 4 5 6 7 8 9



7/92

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

Job with the earliest finish time? No, we are ignoring weights

Job with the largest weight? No, we are ignoring times

Job with the largest
weight

length
?

No, when weights are equal, this is the shortest job
0 1 2 3 4 5 6 7 8 9



8/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Sort jobs according to non-decreasing order
of finish times

opt[i]: optimal value for instance only
containing jobs {1, 2, · · · , i}

i opt[i]
0

0

1

80

2

100

3

100

4

105

5

150

6

170

7

185

8

220

9

220



8/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Sort jobs according to non-decreasing order
of finish times

opt[i]: optimal value for instance only
containing jobs {1, 2, · · · , i}

i opt[i]
0

0

1

80

2

100

3

100

4

105

5

150

6

170

7

185

8

220

9

220



8/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Sort jobs according to non-decreasing order
of finish times

opt[i]: optimal value for instance only
containing jobs {1, 2, · · · , i}

i opt[i]
0

0

1

80

2

100

3

100

4

105

5

150

6

170

7

185

8

220

9

220



8/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Sort jobs according to non-decreasing order
of finish times

opt[i]: optimal value for instance only
containing jobs {1, 2, · · · , i}

i opt[i]
0

0

1

80

2

100

3

100

4

105

5

150

6

170

7

185

8

220

9

220



8/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Sort jobs according to non-decreasing order
of finish times

opt[i]: optimal value for instance only
containing jobs {1, 2, · · · , i}

i opt[i]
0 0
1

80

2

100

3

100

4

105

5

150

6

170

7

185

8

220

9

220



8/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Sort jobs according to non-decreasing order
of finish times

opt[i]: optimal value for instance only
containing jobs {1, 2, · · · , i}

i opt[i]
0 0
1 80
2

100

3

100

4

105

5

150

6

170

7

185

8

220

9

220



8/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Sort jobs according to non-decreasing order
of finish times

opt[i]: optimal value for instance only
containing jobs {1, 2, · · · , i}

i opt[i]
0 0
1 80
2 100
3

100

4

105

5

150

6

170

7

185

8

220

9

220



8/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Sort jobs according to non-decreasing order
of finish times

opt[i]: optimal value for instance only
containing jobs {1, 2, · · · , i}

i opt[i]
0 0
1 80
2 100
3 100
4

105

5

150

6

170

7

185

8

220

9

220



8/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Sort jobs according to non-decreasing order
of finish times

opt[i]: optimal value for instance only
containing jobs {1, 2, · · · , i}

i opt[i]
0 0
1 80
2 100
3 100
4 105
5 150
6 170
7 185
8 220
9 220



9/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Focus on instance
{1, 2, 3, · · · , i},
opt[i]: optimal value for the
instance

assume we have computed
opt[0], opt[1], · · · , opt[i− 1]

Q: The value of optimal solution that does not contain i?

A: opt[i− 1]

Q: The value of optimal solution that contains job i?

A: vi + opt[pi], pi = the largest j such that fj ≤ si



9/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Focus on instance
{1, 2, 3, · · · , i},
opt[i]: optimal value for the
instance

assume we have computed
opt[0], opt[1], · · · , opt[i− 1]

Q: The value of optimal solution that does not contain i?

A: opt[i− 1]

Q: The value of optimal solution that contains job i?

A: vi + opt[pi], pi = the largest j such that fj ≤ si



9/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Focus on instance
{1, 2, 3, · · · , i},
opt[i]: optimal value for the
instance

assume we have computed
opt[0], opt[1], · · · , opt[i− 1]

Q: The value of optimal solution that does not contain i?

A: opt[i− 1]

Q: The value of optimal solution that contains job i?

A: vi + opt[pi], pi = the largest j such that fj ≤ si



9/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Focus on instance
{1, 2, 3, · · · , i},
opt[i]: optimal value for the
instance

assume we have computed
opt[0], opt[1], · · · , opt[i− 1]

Q: The value of optimal solution that does not contain i?

A: opt[i− 1]

Q: The value of optimal solution that contains job i?

A: vi + opt[pi], pi = the largest j such that fj ≤ si



9/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Focus on instance
{1, 2, 3, · · · , i},
opt[i]: optimal value for the
instance

assume we have computed
opt[0], opt[1], · · · , opt[i− 1]

Q: The value of optimal solution that does not contain i?

A: opt[i− 1]

Q: The value of optimal solution that contains job i?

A: vi + opt[pi], pi = the largest j such that fj ≤ si



9/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Focus on instance
{1, 2, 3, · · · , i},
opt[i]: optimal value for the
instance

assume we have computed
opt[0], opt[1], · · · , opt[i− 1]

Q: The value of optimal solution that does not contain i?

A: opt[i− 1]

Q: The value of optimal solution that contains job i?

A: vi + opt[pi], pi = the largest j such that fj ≤ si



9/92

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Focus on instance
{1, 2, 3, · · · , i},
opt[i]: optimal value for the
instance

assume we have computed
opt[0], opt[1], · · · , opt[i− 1]

Q: The value of optimal solution that does not contain i?

A: opt[i− 1]

Q: The value of optimal solution that contains job i?

A: vi + opt[pi], pi = the largest j such that fj ≤ si



10/92

Designing a Dynamic Programming Algorithm

Q: The value of optimal solution that does not contain i?

A: opt[i− 1]

Q: The value of optimal solution that contains job i?

A: vi + opt[pi], pi = the largest j such that fj ≤ si

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}



10/92

Designing a Dynamic Programming Algorithm

Q: The value of optimal solution that does not contain i?

A: opt[i− 1]

Q: The value of optimal solution that contains job i?

A: vi + opt[pi], pi = the largest j such that fj ≤ si

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}



11/92

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0

opt[1] = max{opt[0], 80 + opt[0]} = 80

opt[2] =

max{opt[1], 100 + opt[0]} = 100

opt[3] =

max{opt[2], 90 + opt[0]} = 100

opt[4] =

max{opt[3], 25 + opt[1]} = 105

opt[5] =

max{opt[4], 50 + opt[3]} = 150



11/92

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0

opt[1] = max{opt[0], 80 + opt[0]} = 80

opt[2] =

max{opt[1], 100 + opt[0]} = 100

opt[3] =

max{opt[2], 90 + opt[0]} = 100

opt[4] =

max{opt[3], 25 + opt[1]} = 105

opt[5] =

max{opt[4], 50 + opt[3]} = 150



11/92

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0

opt[1] = max{opt[0], 80 + opt[0]} = 80

opt[2] = max{opt[1], 100 + opt[0]}

= 100

opt[3] =

max{opt[2], 90 + opt[0]} = 100

opt[4] =

max{opt[3], 25 + opt[1]} = 105

opt[5] =

max{opt[4], 50 + opt[3]} = 150



11/92

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0

opt[1] = max{opt[0], 80 + opt[0]} = 80

opt[2] = max{opt[1], 100 + opt[0]} = 100

opt[3] =

max{opt[2], 90 + opt[0]} = 100

opt[4] =

max{opt[3], 25 + opt[1]} = 105

opt[5] =

max{opt[4], 50 + opt[3]} = 150



11/92

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0

opt[1] = max{opt[0], 80 + opt[0]} = 80

opt[2] = max{opt[1], 100 + opt[0]} = 100

opt[3] = max{opt[2], 90 + opt[0]}

= 100

opt[4] =

max{opt[3], 25 + opt[1]} = 105

opt[5] =

max{opt[4], 50 + opt[3]} = 150



11/92

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0

opt[1] = max{opt[0], 80 + opt[0]} = 80

opt[2] = max{opt[1], 100 + opt[0]} = 100

opt[3] = max{opt[2], 90 + opt[0]} = 100

opt[4] =

max{opt[3], 25 + opt[1]} = 105

opt[5] =

max{opt[4], 50 + opt[3]} = 150



11/92

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0

opt[1] = max{opt[0], 80 + opt[0]} = 80

opt[2] = max{opt[1], 100 + opt[0]} = 100

opt[3] = max{opt[2], 90 + opt[0]} = 100

opt[4] = max{opt[3], 25 + opt[1]}

= 105

opt[5] =

max{opt[4], 50 + opt[3]} = 150



11/92

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0

opt[1] = max{opt[0], 80 + opt[0]} = 80

opt[2] = max{opt[1], 100 + opt[0]} = 100

opt[3] = max{opt[2], 90 + opt[0]} = 100

opt[4] = max{opt[3], 25 + opt[1]} = 105

opt[5] =

max{opt[4], 50 + opt[3]} = 150



11/92

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0

opt[1] = max{opt[0], 80 + opt[0]} = 80

opt[2] = max{opt[1], 100 + opt[0]} = 100

opt[3] = max{opt[2], 90 + opt[0]} = 100

opt[4] = max{opt[3], 25 + opt[1]} = 105

opt[5] = max{opt[4], 50 + opt[3]}

= 150



11/92

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0

opt[1] = max{opt[0], 80 + opt[0]} = 80

opt[2] = max{opt[1], 100 + opt[0]} = 100

opt[3] = max{opt[2], 90 + opt[0]} = 100

opt[4] = max{opt[3], 25 + opt[1]} = 105

opt[5] = max{opt[4], 50 + opt[3]} = 150



12/92

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0, opt[1] = 80, opt[2] = 100

opt[3] = 100, opt[4] = 105, opt[5] = 150

opt[6] = max{opt[5], 70 + opt[3]} = 170

opt[7] = max{opt[6], 80 + opt[4]} = 185

opt[8] = max{opt[7], 50 + opt[6]} = 220

opt[9] = max{opt[8], 30 + opt[7]} = 220



12/92

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0, opt[1] = 80, opt[2] = 100

opt[3] = 100, opt[4] = 105, opt[5] = 150

opt[6] = max{opt[5], 70 + opt[3]} = 170

opt[7] = max{opt[6], 80 + opt[4]} = 185

opt[8] = max{opt[7], 50 + opt[6]} = 220

opt[9] = max{opt[8], 30 + opt[7]} = 220



13/92

Dynamic Programming

1: sort jobs by non-decreasing order of finishing times
2: compute p1, p2, · · · , pn
3: opt[0]← 0
4: for i← 1 to n do
5: opt[i]← max{opt[i− 1], vi + opt[pi]}

Running time sorting: O(n lg n)

Running time for computing p: O(n lg n) via binary search

Running time for computing opt[n]: O(n)



13/92

Dynamic Programming

1: sort jobs by non-decreasing order of finishing times
2: compute p1, p2, · · · , pn
3: opt[0]← 0
4: for i← 1 to n do
5: opt[i]← max{opt[i− 1], vi + opt[pi]}

Running time sorting: O(n lg n)

Running time for computing p: O(n lg n) via binary search

Running time for computing opt[n]: O(n)



14/92

How Can We Recover the Optimum Schedule?

1: sort jobs by non-decreasing order of
finishing times

2: compute p1, p2, · · · , pn
3: opt[0]← 0
4: for i← 1 to n do
5: if opt[i− 1] ≥ vi + opt[pi] then
6: opt[i]← opt[i− 1]
7:

b[i]← N

8: else
9: opt[i]← vi + opt[pi]
10:

b[i]← Y

1: i← n, S ← ∅
2: while i ̸= 0 do
3: if b[i] = N then
4: i← i− 1
5: else
6: S ← S ∪ {i}
7: i← pi

8: return S



14/92

How Can We Recover the Optimum Schedule?

1: sort jobs by non-decreasing order of
finishing times

2: compute p1, p2, · · · , pn
3: opt[0]← 0
4: for i← 1 to n do
5: if opt[i− 1] ≥ vi + opt[pi] then
6: opt[i]← opt[i− 1]
7: b[i]← N
8: else
9: opt[i]← vi + opt[pi]
10: b[i]← Y

1: i← n, S ← ∅
2: while i ̸= 0 do
3: if b[i] = N then
4: i← i− 1
5: else
6: S ← S ∪ {i}
7: i← pi

8: return S



14/92

How Can We Recover the Optimum Schedule?

1: sort jobs by non-decreasing order of
finishing times

2: compute p1, p2, · · · , pn
3: opt[0]← 0
4: for i← 1 to n do
5: if opt[i− 1] ≥ vi + opt[pi] then
6: opt[i]← opt[i− 1]
7: b[i]← N
8: else
9: opt[i]← vi + opt[pi]
10: b[i]← Y

1: i← n, S ← ∅
2: while i ̸= 0 do
3: if b[i] = N then
4: i← i− 1
5: else
6: S ← S ∪ {i}
7: i← pi

8: return S



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80

Y

2 100

Y

3 100

N

4 105

Y

5 150

Y

6 170

Y

7 185

Y

8 220

Y

9 220

N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100

Y

3 100

N

4 105

Y

5 150

Y

6 170

Y

7 185

Y

8 220

Y

9 220

N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100

N

4 105

Y

5 150

Y

6 170

Y

7 185

Y

8 220

Y

9 220

N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105

Y

5 150

Y

6 170

Y

7 185

Y

8 220

Y

9 220

N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105 Y
5 150

Y

6 170

Y

7 185

Y

8 220

Y

9 220

N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105 Y
5 150 Y
6 170

Y

7 185

Y

8 220

Y

9 220

N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105 Y
5 150 Y
6 170 Y
7 185

Y

8 220

Y

9 220

N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105 Y
5 150 Y
6 170 Y
7 185 Y
8 220

Y

9 220

N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105 Y
5 150 Y
6 170 Y
7 185 Y
8 220 Y
9 220

N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105 Y
5 150 Y
6 170 Y
7 185 Y
8 220 Y
9 220 N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105 Y
5 150 Y
6 170 Y
7 185 Y
8 220 Y
9 220 N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9 i



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105 Y
5 150 Y
6 170 Y
7 185 Y
8 220 Y
9 220 N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

i



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105 Y
5 150 Y
6 170 Y
7 185 Y
8 220 Y
9 220 N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

i



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105 Y
5 150 Y
6 170 Y
7 185 Y
8 220 Y
9 220 N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

i



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105 Y
5 150 Y
6 170 Y
7 185 Y
8 220 Y
9 220 N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

i



15/92

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105 Y
5 150 Y
6 170 Y
7 185 Y
8 220 Y
9 220 N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

i



16/92

Dynamic Programming

Break up a problem into many overlapping sub-problems

Build solutions for larger and larger sub-problems

Use a table to store solutions for sub-problems for reuse



17/92

Outline

1 Weighted Interval Scheduling

2 Segmented Least Squares

3 Subset Sum Problem
Related Problem: Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

9 Exercise Problems



18/92

Linear Regression

P = {(x1, y1), (x2, y2), · · · , (xn, yn)}, x1 < x2 < · · · < xn

L : y = ax+ b

Error(L, P ) =
n∑

i=1

(yi − axi − b)2

x

y

Linear Regression

find L, minimize Error(L, P )

a :=
n
∑

i xiyi − (
∑

i xi)(
∑

i yi)

n
∑

i x
2
i − (

∑
i xi)2

b :=

∑
i yi − a

∑
i xi

n



18/92

Linear Regression

P = {(x1, y1), (x2, y2), · · · , (xn, yn)}, x1 < x2 < · · · < xn

L : y = ax+ b

Error(L, P ) =
n∑

i=1

(yi − axi − b)2

x

y

Linear Regression

find L, minimize Error(L, P )

a :=
n
∑

i xiyi − (
∑

i xi)(
∑

i yi)

n
∑

i x
2
i − (

∑
i xi)2

b :=

∑
i yi − a

∑
i xi

n



18/92

Linear Regression

P = {(x1, y1), (x2, y2), · · · , (xn, yn)}, x1 < x2 < · · · < xn

L : y = ax+ b

Error(L, P ) =
n∑

i=1

(yi − axi − b)2

x

y Linear Regression

find L, minimize Error(L, P )

a :=
n
∑

i xiyi − (
∑

i xi)(
∑

i yi)

n
∑

i x
2
i − (

∑
i xi)2

b :=

∑
i yi − a

∑
i xi

n



18/92

Linear Regression

P = {(x1, y1), (x2, y2), · · · , (xn, yn)}, x1 < x2 < · · · < xn

L : y = ax+ b

Error(L, P ) =
n∑

i=1

(yi − axi − b)2

x

y Linear Regression

find L, minimize Error(L, P )

a :=
n
∑

i xiyi − (
∑

i xi)(
∑

i yi)

n
∑

i x
2
i − (

∑
i xi)2

b :=

∑
i yi − a

∑
i xi

n



19/92

x

y

Data may come from multiple line-segments. One line may have a
large error.

Solution: using segments



19/92

x

y

Data may come from multiple line-segments. One line may have a
large error.

Solution: using segments



19/92

x

y

Data may come from multiple line-segments. One line may have a
large error.

Solution: using segments



20/92

Segmented Least Squares

Input: (x1, y1), (x2, y2), · · · , (xn, yn), x1 < x2 < · · · < xn

penalty parameter C > 0

Output: partition into k ≥ 1 (k unknown) segments,

minimize cost := error + penalty

error: sum of squared error over all the k segments

penalty: kC

x

y

L1

L2

L3

P1

P2

P3 cost = error(L1, P1)
+error(L2, P2)

+error(L3, P3)

+3C



20/92

Segmented Least Squares

Input: (x1, y1), (x2, y2), · · · , (xn, yn), x1 < x2 < · · · < xn

penalty parameter C > 0

Output: partition into k ≥ 1 (k unknown) segments,

minimize cost := error + penalty

error: sum of squared error over all the k segments

penalty: kC

x

y

L1

L2

L3

P1

P2

P3 cost = error(L1, P1)
+error(L2, P2)

+error(L3, P3)

+3C



20/92

Segmented Least Squares

Input: (x1, y1), (x2, y2), · · · , (xn, yn), x1 < x2 < · · · < xn

penalty parameter C > 0

Output: partition into k ≥ 1 (k unknown) segments,

minimize cost := error + penalty

error: sum of squared error over all the k segments

penalty: kC

x

y

L1

L2

L3

P1

P2

P3 cost = error(L1, P1)
+error(L2, P2)

+error(L3, P3)

+3C



21/92

Dynamic Programming

eji, 1 ≤ j ≤ i ≤ n: minimum error for (xj, yj), · · · , (xi, yi) using 1
line

opt[i]: minimum cost for the instance with first i points

opt[i] =

{
0 if i = 0

minj:1≤j≤i(opt[j − 1] + eji) + C if i ≥ 1

i

x

y

running time = O(n2).



21/92

Dynamic Programming

eji, 1 ≤ j ≤ i ≤ n: minimum error for (xj, yj), · · · , (xi, yi) using 1
line

opt[i]: minimum cost for the instance with first i points

opt[i] =

{
0 if i = 0

minj:1≤j≤i(opt[j − 1] + eji) + C if i ≥ 1

i

x

y

running time = O(n2).



21/92

Dynamic Programming

eji, 1 ≤ j ≤ i ≤ n: minimum error for (xj, yj), · · · , (xi, yi) using 1
line

opt[i]: minimum cost for the instance with first i points

opt[i] =

{
0 if i = 0

minj:1≤j≤i(opt[j − 1] + eji) + C if i ≥ 1

i

x

y

running time = O(n2).



21/92

Dynamic Programming

eji, 1 ≤ j ≤ i ≤ n: minimum error for (xj, yj), · · · , (xi, yi) using 1
line

opt[i]: minimum cost for the instance with first i points

opt[i] =

{
0 if i = 0

minj:1≤j≤i(opt[j − 1] + eji) + C if i ≥ 1

i

x

y

running time = O(n2).



21/92

Dynamic Programming

eji, 1 ≤ j ≤ i ≤ n: minimum error for (xj, yj), · · · , (xi, yi) using 1
line

opt[i]: minimum cost for the instance with first i points

opt[i] =

{
0 if i = 0

minj:1≤j≤i(opt[j − 1] + eji) + C if i ≥ 1

i

x

y

j

eji + C

opt(j − 1)

running time = O(n2).



21/92

Dynamic Programming

eji, 1 ≤ j ≤ i ≤ n: minimum error for (xj, yj), · · · , (xi, yi) using 1
line

opt[i]: minimum cost for the instance with first i points

opt[i] =

{
0 if i = 0

minj:1≤j≤i(opt[j − 1] + eji) + C if i ≥ 1

i

x

y

j

eji + C

opt(j − 1)

running time = O(n2).



22/92

Outline

1 Weighted Interval Scheduling

2 Segmented Least Squares

3 Subset Sum Problem
Related Problem: Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

9 Exercise Problems



23/92

Subset Sum Problem
Input: an integer bound W > 0

a set of n items, each with an integer weight wi > 0

Output: a subset S of items that

maximizes
∑
i∈S

wi s.t.
∑
i∈S

wi ≤ W.

Motivation: you have budget W , and want to buy a subset of
items, so as to spend as much money as possible.

Example:

W = 35, n = 5, w = (14, 9, 17, 10, 13)

Optimum: S = {1, 2, 4} and 14 + 9 + 10 = 33



23/92

Subset Sum Problem
Input: an integer bound W > 0

a set of n items, each with an integer weight wi > 0

Output: a subset S of items that

maximizes
∑
i∈S

wi s.t.
∑
i∈S

wi ≤ W.

Motivation: you have budget W , and want to buy a subset of
items, so as to spend as much money as possible.

Example:

W = 35, n = 5, w = (14, 9, 17, 10, 13)

Optimum: S = {1, 2, 4} and 14 + 9 + 10 = 33



23/92

Subset Sum Problem
Input: an integer bound W > 0

a set of n items, each with an integer weight wi > 0

Output: a subset S of items that

maximizes
∑
i∈S

wi s.t.
∑
i∈S

wi ≤ W.

Motivation: you have budget W , and want to buy a subset of
items, so as to spend as much money as possible.

Example:

W = 35, n = 5, w = (14, 9, 17, 10, 13)

Optimum: S = {1, 2, 4} and 14 + 9 + 10 = 33



23/92

Subset Sum Problem
Input: an integer bound W > 0

a set of n items, each with an integer weight wi > 0

Output: a subset S of items that

maximizes
∑
i∈S

wi s.t.
∑
i∈S

wi ≤ W.

Motivation: you have budget W , and want to buy a subset of
items, so as to spend as much money as possible.

Example:

W = 35, n = 5, w = (14, 9, 17, 10, 13)

Optimum: S = {1, 2, 4} and 14 + 9 + 10 = 33



24/92

Greedy Algorithms for Subset Sum

Candidate Algorithm:
Sort according to non-increasing order of weights

Select items in the order as long as the total weight remains below
W

Q: Does candidate algorithm always produce optimal solutions?

A: No. W = 100, n = 3, w = (51, 50, 50).

Q: What if we change “non-increasing” to “non-decreasing”?

A: No. W = 100, n = 3, w = (1, 50, 50)



24/92

Greedy Algorithms for Subset Sum

Candidate Algorithm:
Sort according to non-increasing order of weights

Select items in the order as long as the total weight remains below
W

Q: Does candidate algorithm always produce optimal solutions?

A: No. W = 100, n = 3, w = (51, 50, 50).

Q: What if we change “non-increasing” to “non-decreasing”?

A: No. W = 100, n = 3, w = (1, 50, 50)



24/92

Greedy Algorithms for Subset Sum

Candidate Algorithm:
Sort according to non-increasing order of weights

Select items in the order as long as the total weight remains below
W

Q: Does candidate algorithm always produce optimal solutions?

A: No. W = 100, n = 3, w = (51, 50, 50).

Q: What if we change “non-increasing” to “non-decreasing”?

A: No. W = 100, n = 3, w = (1, 50, 50)



24/92

Greedy Algorithms for Subset Sum

Candidate Algorithm:
Sort according to non-increasing order of weights

Select items in the order as long as the total weight remains below
W

Q: Does candidate algorithm always produce optimal solutions?

A: No. W = 100, n = 3, w = (51, 50, 50).

Q: What if we change “non-increasing” to “non-decreasing”?

A: No. W = 100, n = 3, w = (1, 50, 50)



24/92

Greedy Algorithms for Subset Sum

Candidate Algorithm:
Sort according to non-increasing order of weights

Select items in the order as long as the total weight remains below
W

Q: Does candidate algorithm always produce optimal solutions?

A: No. W = 100, n = 3, w = (51, 50, 50).

Q: What if we change “non-increasing” to “non-decreasing”?

A: No. W = 100, n = 3, w = (1, 50, 50)



25/92

Design a Dynamic Programming Algorithm

Consider the instance: i,W ′, (w1, w2, · · · , wi);

opt[i,W ′]: the optimum value of the instance

Q: The value of the optimum solution that does not contain i?

A: opt[i− 1,W ′]

Q: The value of the optimum solution that contains i?

A: opt[i− 1,W ′ − wi] + wi



25/92

Design a Dynamic Programming Algorithm

Consider the instance: i,W ′, (w1, w2, · · · , wi);

opt[i,W ′]: the optimum value of the instance

Q: The value of the optimum solution that does not contain i?

A: opt[i− 1,W ′]

Q: The value of the optimum solution that contains i?

A: opt[i− 1,W ′ − wi] + wi



25/92

Design a Dynamic Programming Algorithm

Consider the instance: i,W ′, (w1, w2, · · · , wi);

opt[i,W ′]: the optimum value of the instance

Q: The value of the optimum solution that does not contain i?

A: opt[i− 1,W ′]

Q: The value of the optimum solution that contains i?

A: opt[i− 1,W ′ − wi] + wi



25/92

Design a Dynamic Programming Algorithm

Consider the instance: i,W ′, (w1, w2, · · · , wi);

opt[i,W ′]: the optimum value of the instance

Q: The value of the optimum solution that does not contain i?

A: opt[i− 1,W ′]

Q: The value of the optimum solution that contains i?

A: opt[i− 1,W ′ − wi] + wi



26/92

Dynamic Programming

Consider the instance: i,W ′, (w1, w2, · · · , wi);

opt[i,W ′]: the optimum value of the instance

opt[i,W ′] =



0

i = 0

opt[i− 1,W ′]

i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + wi

}

i > 0, wi ≤ W ′



26/92

Dynamic Programming

Consider the instance: i,W ′, (w1, w2, · · · , wi);

opt[i,W ′]: the optimum value of the instance

opt[i,W ′] =


0 i = 0

opt[i− 1,W ′]

i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + wi

}

i > 0, wi ≤ W ′



26/92

Dynamic Programming

Consider the instance: i,W ′, (w1, w2, · · · , wi);

opt[i,W ′]: the optimum value of the instance

opt[i,W ′] =


0 i = 0

opt[i− 1,W ′] i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + wi

}

i > 0, wi ≤ W ′



26/92

Dynamic Programming

Consider the instance: i,W ′, (w1, w2, · · · , wi);

opt[i,W ′]: the optimum value of the instance

opt[i,W ′] =


0 i = 0

opt[i− 1,W ′] i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + wi

}
i > 0, wi ≤ W ′



27/92

Dynamic Programming

1: for W ′ ← 0 to W do
2: opt[0,W ′]← 0

3: for i← 1 to n do
4: for W ′ ← 0 to W do
5: opt[i,W ′]← opt[i− 1,W ′]
6: if wi ≤ W ′ and opt[i−1,W ′−wi]+wi ≥ opt[i,W ′] then
7: opt[i,W ′]← opt[i− 1,W ′ − wi] + wi

8: return opt[n,W ]



28/92

Recover the Optimum Set

1: for W ′ ← 0 to W do
2: opt[0,W ′]← 0

3: for i← 1 to n do
4: for W ′ ← 0 to W do
5: opt[i,W ′]← opt[i− 1,W ′]
6: b[i,W ′]← N
7: if wi ≤ W ′ and opt[i− 1,W ′ − wi] + wi ≥ opt[i,W ′]

then
8: opt[i,W ′]← opt[i− 1,W ′ − wi] + wi

9: b[i,W ′]← Y

10: return opt[n,W ]



29/92

Recover the Optimum Set

1: i← n,W ′ ← W,S ← ∅
2: while i > 0 do
3: if b[i,W ′] = Y then
4: W ′ ← W ′ − wi

5: S ← S ∪ {i}
6: i← i− 1

7: return S



30/92

Running Time of Algorithm

1: for W ′ ← 0 to W do
2: opt[0,W ′]← 0

3: for i← 1 to n do
4: for W ′ ← 0 to W do
5: opt[i,W ′]← opt[i− 1,W ′]
6: if wi ≤ W ′ and opt[i−1,W ′−wi]+wi ≥ opt[i,W ′] then
7: opt[i,W ′]← opt[i− 1,W ′ − wi] + wi

8: return opt[n,W ]

Running time is O(nW )

Running time is pseudo-polynomial because it depends on value of
the input integers.



30/92

Running Time of Algorithm

1: for W ′ ← 0 to W do
2: opt[0,W ′]← 0

3: for i← 1 to n do
4: for W ′ ← 0 to W do
5: opt[i,W ′]← opt[i− 1,W ′]
6: if wi ≤ W ′ and opt[i−1,W ′−wi]+wi ≥ opt[i,W ′] then
7: opt[i,W ′]← opt[i− 1,W ′ − wi] + wi

8: return opt[n,W ]

Running time is O(nW )

Running time is pseudo-polynomial because it depends on value of
the input integers.



30/92

Running Time of Algorithm

1: for W ′ ← 0 to W do
2: opt[0,W ′]← 0

3: for i← 1 to n do
4: for W ′ ← 0 to W do
5: opt[i,W ′]← opt[i− 1,W ′]
6: if wi ≤ W ′ and opt[i−1,W ′−wi]+wi ≥ opt[i,W ′] then
7: opt[i,W ′]← opt[i− 1,W ′ − wi] + wi

8: return opt[n,W ]

Running time is O(nW )

Running time is pseudo-polynomial because it depends on value of
the input integers.



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1

0 0 2 2 2 2 2 2 2 2 2 2 2 2 2

2

0 0 2 3 3 5 5 5 5 5 5 5 5 5 5

3

0 0 2 3 3 5 5 5 5 9 9 11 12 12 14

4

0 0 2 3 3 5 5 5 8 9 10 11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0

2 2 2 2 2 2 2 2 2 2 2 2 2

2

0 0 2 3 3 5 5 5 5 5 5 5 5 5 5

3

0 0 2 3 3 5 5 5 5 9 9 11 12 12 14

4

0 0 2 3 3 5 5 5 8 9 10 11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2

0 0 2 3 3 5 5 5 5 5 5 5 5 5 5

3

0 0 2 3 3 5 5 5 5 9 9 11 12 12 14

4

0 0 2 3 3 5 5 5 8 9 10 11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0

2 3 3 5 5 5 5 5 5 5 5 5 5

3

0 0 2 3 3 5 5 5 5 9 9 11 12 12 14

4

0 0 2 3 3 5 5 5 8 9 10 11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2

3 3 5 5 5 5 5 5 5 5 5 5

3

0 0 2 3 3 5 5 5 5 9 9 11 12 12 14

4

0 0 2 3 3 5 5 5 8 9 10 11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 3 3

5 5 5 5 5 5 5 5 5 5

3

0 0 2 3 3 5 5 5 5 9 9 11 12 12 14

4

0 0 2 3 3 5 5 5 8 9 10 11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 3 3 5 5 5 5 5 5 5 5 5 5
3

0 0 2 3 3 5 5 5 5 9 9 11 12 12 14

4

0 0 2 3 3 5 5 5 8 9 10 11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 3 3 5 5 5 5 5 5 5 5 5 5
3 0 0 2 3 3 5 5 5 5

9 9 11 12 12 14

4

0 0 2 3 3 5 5 5 8 9 10 11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 3 3 5 5 5 5 5 5 5 5 5 5
3 0 0 2 3 3 5 5 5 5 9 9

11 12 12 14

4

0 0 2 3 3 5 5 5 8 9 10 11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 3 3 5 5 5 5 5 5 5 5 5 5
3 0 0 2 3 3 5 5 5 5 9 9 11 12 12 14
4

0 0 2 3 3 5 5 5 8 9 10 11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 3 3 5 5 5 5 5 5 5 5 5 5
3 0 0 2 3 3 5 5 5 5 9 9 11 12 12 14
4 0 0 2 3 3 5 5 5

8 9 10 11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 3 3 5 5 5 5 5 5 5 5 5 5
3 0 0 2 3 3 5 5 5 5 9 9 11 12 12 14
4 0 0 2 3 3 5 5 5 8

9 10 11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 3 3 5 5 5 5 5 5 5 5 5 5
3 0 0 2 3 3 5 5 5 5 9 9 11 12 12 14
4 0 0 2 3 3 5 5 5 8 9

10 11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 3 3 5 5 5 5 5 5 5 5 5 5
3 0 0 2 3 3 5 5 5 5 9 9 11 12 12 14
4 0 0 2 3 3 5 5 5 8 9 10

11 12 13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 3 3 5 5 5 5 5 5 5 5 5 5
3 0 0 2 3 3 5 5 5 5 9 9 11 12 12 14
4 0 0 2 3 3 5 5 5 8 9 10 11 12

13 14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 3 3 5 5 5 5 5 5 5 5 5 5
3 0 0 2 3 3 5 5 5 5 9 9 11 12 12 14
4 0 0 2 3 3 5 5 5 8 9 10 11 12 13

14



31/92

Example

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 3 3 5 5 5 5 5 5 5 5 5 5
3 0 0 2 3 3 5 5 5 5 9 9 11 12 12 14
4 0 0 2 3 3 5 5 5 8 9 10 11 12 13 14



32/92

Avoiding Unncessary Computation and Memory

Using Memoized Algorithm and Hash Map

compute-opt(i,W ′)

1: if opt[i,W ′] ̸= ⊥ then return opt[i,W ′]

2: if i = 0 then r ← 0
3: else
4: r ← compute-opt(i− 1,W ′)
5: if wi ≤ W ′ then
6: r′ ← compute-opt(i− 1,W ′ − wi) + wi

7: if r′ > r then r ← r′

8: opt[i,W ′]← r
9: return r

Use hash map for opt



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0 0 0 0 0 0

1

2 2 2 2

2

5 5

3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0 0 0 0 0 0

1

2 2 2 2

2

5 5

3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0 0 0 0 0

0
1

2 2 2 2

2

5 5

3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0 0 0 0 0

0
1

2 2 2 2

2

5 5

3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0 0 0 0

0 0
1

2 2 2 2

2

5 5

3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0 0 0 0

0 0
1

2 2 2

2
2

5 5

3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0 0 0 0

0 0
1

2 2 2

2
2

5 5

3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0 0 0

0 0 0
1

2 2 2

2
2

5 5

3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0 0 0

0 0 0
1

2 2 2

2
2

5 5

3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0 0

0 0 0 0
1

2 2 2

2
2

5 5

3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0 0

0 0 0 0
1

2 2

2 2
2

5 5

3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0 0

0 0 0 0
1

2 2

2 2
2

5

5
3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0 0

0 0 0 0
1

2 2

2 2
2

5

5
3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)

(2, 5)

(1, 5)

(0, 5)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0

0 0 0 0 0
1

2 2

2 2
2

5

5
3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)

(2, 5)

(1, 5)

(0, 5)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0 0

0 0 0 0 0
1

2 2

2 2
2

5

5
3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)

(2, 5)

(1, 5)

(0, 5) (0, 3)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0

0 0 0 0 0 0
1

2 2

2 2
2

5

5
3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)

(2, 5)

(1, 5)

(0, 5) (0, 3)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0

0 0 0 0 0 0
1

2

2 2 2
2

5

5
3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)

(2, 5)

(1, 5)

(0, 5) (0, 3)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0 0

0 0 0 0 0 0
1

2

2 2 2
2

5

5
3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)

(2, 5)

(1, 5)

(0, 5) (0, 3)

(1, 2)

(0, 2)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0

0 0 0 0 0 0 0
1

2

2 2 2
2

5

5
3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)

(2, 5)

(1, 5)

(0, 5) (0, 3)

(1, 2)

(0, 2)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0

0 0 0 0 0 0 0
1

2

2 2 2
2

5

5
3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)

(2, 5)

(1, 5)

(0, 5) (0, 3)

(1, 2)

(0, 2) (0, 0)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0
1

2

2 2 2
2

5

5
3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)

(2, 5)

(1, 5)

(0, 5) (0, 3)

(1, 2)

(0, 2) (0, 0)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0
1 2 2 2 2
2

5

5
3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)

(2, 5)

(1, 5)

(0, 5) (0, 3)

(1, 2)

(0, 2) (0, 0)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0
1 2 2 2 2
2 5 5
3

14

4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)

(2, 5)

(1, 5)

(0, 5) (0, 3)

(1, 2)

(0, 2) (0, 0)



33/92

Example Using Memoized Rounding

n = 4, w = (2, 3, 9, 8), W = 14

i,W ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0
1 2 2 2 2
2 5 5
3 14
4

(4, 14)

(3, 14)

(2, 14)

(1, 14)

(0, 14) (0, 12)

(1, 11)

(0, 11) (0, 9)

(2, 5)

(1, 5)

(0, 5) (0, 3)

(1, 2)

(0, 2) (0, 0)



34/92

Outline

1 Weighted Interval Scheduling

2 Segmented Least Squares

3 Subset Sum Problem
Related Problem: Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

9 Exercise Problems



35/92

Knapsack Problem
Input: an integer bound W > 0

a set of n items, each with an integer weight wi > 0

a value vi > 0 for each item i

Output: a subset S of items that

maximizes
∑
i∈S

vi s.t.
∑
i∈S

wi ≤ W.

Motivation: you have budget W , and want to buy a subset of
items of maximum total value



35/92

Knapsack Problem
Input: an integer bound W > 0

a set of n items, each with an integer weight wi > 0

a value vi > 0 for each item i

Output: a subset S of items that

maximizes
∑
i∈S

vi s.t.
∑
i∈S

wi ≤ W.

Motivation: you have budget W , and want to buy a subset of
items of maximum total value



36/92

DP for Knapsack Problem

opt[i,W ′]: the optimum value when budget is W ′ and items are
{1, 2, 3, · · · , i}.
If i = 0, opt[i,W ′] = 0 for every W ′ = 0, 1, 2, · · · ,W .

opt[i,W ′] =



0

i = 0

opt[i− 1,W ′]

i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + vi

}

i > 0, wi ≤ W ′



36/92

DP for Knapsack Problem

opt[i,W ′]: the optimum value when budget is W ′ and items are
{1, 2, 3, · · · , i}.
If i = 0, opt[i,W ′] = 0 for every W ′ = 0, 1, 2, · · · ,W .

opt[i,W ′] =


0 i = 0

opt[i− 1,W ′]

i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + vi

}

i > 0, wi ≤ W ′



36/92

DP for Knapsack Problem

opt[i,W ′]: the optimum value when budget is W ′ and items are
{1, 2, 3, · · · , i}.
If i = 0, opt[i,W ′] = 0 for every W ′ = 0, 1, 2, · · · ,W .

opt[i,W ′] =


0 i = 0

opt[i− 1,W ′] i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + vi

}

i > 0, wi ≤ W ′



36/92

DP for Knapsack Problem

opt[i,W ′]: the optimum value when budget is W ′ and items are
{1, 2, 3, · · · , i}.
If i = 0, opt[i,W ′] = 0 for every W ′ = 0, 1, 2, · · · ,W .

opt[i,W ′] =


0 i = 0

opt[i− 1,W ′] i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + vi

}
i > 0, wi ≤ W ′



37/92

Exercise: Items with 3 Parameters

Input: integer bounds W > 0, Z > 0,

a set of n items, each with an integer weight wi > 0

a size zi > 0 for each item i

a value vi > 0 for each item i

Output: a subset S of items that

maximizes
∑
i∈S

vi s.t.∑
i∈S

wi ≤ W and
∑
i∈S

zi ≤ Z



38/92

Outline

1 Weighted Interval Scheduling

2 Segmented Least Squares

3 Subset Sum Problem
Related Problem: Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

9 Exercise Problems



39/92

Subsequence

A = bacdca

C = adca

C is a subsequence of A

Def. Given two sequences A[1 .. n] and C[1 .. t] of letters, C is
called a subsequence of A if there exists integers
1 ≤ i1 < i2 < i3 < . . . < it ≤ n such that A[ij] = C[j] for every
j = 1, 2, 3, · · · , t.

Exercise: how to check if sequence C is a subsequence of A?



39/92

Subsequence

A = bacdca

C = adca

C is a subsequence of A

Def. Given two sequences A[1 .. n] and C[1 .. t] of letters, C is
called a subsequence of A if there exists integers
1 ≤ i1 < i2 < i3 < . . . < it ≤ n such that A[ij] = C[j] for every
j = 1, 2, 3, · · · , t.

Exercise: how to check if sequence C is a subsequence of A?



39/92

Subsequence

A = bacdca

C = adca

C is a subsequence of A

Def. Given two sequences A[1 .. n] and C[1 .. t] of letters, C is
called a subsequence of A if there exists integers
1 ≤ i1 < i2 < i3 < . . . < it ≤ n such that A[ij] = C[j] for every
j = 1, 2, 3, · · · , t.

Exercise: how to check if sequence C is a subsequence of A?



39/92

Subsequence

A = bacdca

C = adca

C is a subsequence of A

Def. Given two sequences A[1 .. n] and C[1 .. t] of letters, C is
called a subsequence of A if there exists integers
1 ≤ i1 < i2 < i3 < . . . < it ≤ n such that A[ij] = C[j] for every
j = 1, 2, 3, · · · , t.

Exercise: how to check if sequence C is a subsequence of A?



40/92

Longest Common Subsequence

Input: A[1 .. n] and B[1 .. m]

Output: the longest common subsequence of A and B

Example:
A = ‘bacdca′

B = ‘adbcda′

LCS(A,B) = ‘adca′

Applications: edit distance (diff), similarity of DNAs



40/92

Longest Common Subsequence

Input: A[1 .. n] and B[1 .. m]

Output: the longest common subsequence of A and B

Example:
A = ‘bacdca′

B = ‘adbcda′

LCS(A,B) = ‘adca′

Applications: edit distance (diff), similarity of DNAs



40/92

Longest Common Subsequence

Input: A[1 .. n] and B[1 .. m]

Output: the longest common subsequence of A and B

Example:
A = ‘bacdca′

B = ‘adbcda′

LCS(A,B) = ‘adca′

Applications: edit distance (diff), similarity of DNAs



41/92

Matching View of LCS

b a c d c a

a d b c d a

Goal of LCS: find a maximum-size non-crossing matching between
letters in A and letters in B.



42/92

Reduce to Subproblems

A = ‘bacdca′

B = ‘adbcda′

either the last letter of A is not matched:

need to compute LCS(‘bacd′, ‘adbcd′)

or the last letter of B is not matched:

need to compute LCS(‘bacdc′, ‘adbc′)



42/92

Reduce to Subproblems

A = ‘bacdca′

B = ‘adbcda′

either the last letter of A is not matched:

need to compute LCS(‘bacd′, ‘adbcd′)

or the last letter of B is not matched:

need to compute LCS(‘bacdc′, ‘adbc′)



42/92

Reduce to Subproblems

A = ‘bacdc′

B = ‘adbcd′

either the last letter of A is not matched:

need to compute LCS(‘bacd′, ‘adbcd′)

or the last letter of B is not matched:

need to compute LCS(‘bacdc′, ‘adbc′)



42/92

Reduce to Subproblems

A = ‘bacdc′

B = ‘adbcd′

either the last letter of A is not matched:

need to compute LCS(‘bacd′, ‘adbcd′)

or the last letter of B is not matched:

need to compute LCS(‘bacdc′, ‘adbc′)



42/92

Reduce to Subproblems

A = ‘bacdc′

B = ‘adbcd′

either the last letter of A is not matched:

need to compute LCS(‘bacd′, ‘adbcd′)

or the last letter of B is not matched:

need to compute LCS(‘bacdc′, ‘adbc′)



42/92

Reduce to Subproblems

A = ‘bacdc′

B = ‘adbcd′

either the last letter of A is not matched:

need to compute LCS(‘bacd′, ‘adbcd′)

or the last letter of B is not matched:

need to compute LCS(‘bacdc′, ‘adbc′)



43/92

Dynamic Programming for LCS

opt[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m: length of longest common
sub-sequence of A[1 .. i] and B[1 .. j].

if i = 0 or j = 0, then opt[i, j] = 0.

if i > 0, j > 0, then

opt[i, j] =



opt[i− 1, j − 1] + 1

if A[i] = B[j]

max

{
opt[i− 1, j]

opt[i, j − 1]

if A[i] ̸= B[j]



43/92

Dynamic Programming for LCS

opt[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m: length of longest common
sub-sequence of A[1 .. i] and B[1 .. j].

if i = 0 or j = 0, then opt[i, j] = 0.

if i > 0, j > 0, then

opt[i, j] =



opt[i− 1, j − 1] + 1

if A[i] = B[j]

max

{
opt[i− 1, j]

opt[i, j − 1]

if A[i] ̸= B[j]



43/92

Dynamic Programming for LCS

opt[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m: length of longest common
sub-sequence of A[1 .. i] and B[1 .. j].

if i = 0 or j = 0, then opt[i, j] = 0.

if i > 0, j > 0, then

opt[i, j] =



opt[i− 1, j − 1] + 1

if A[i] = B[j]

max

{
opt[i− 1, j]

opt[i, j − 1]

if A[i] ̸= B[j]



43/92

Dynamic Programming for LCS

opt[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m: length of longest common
sub-sequence of A[1 .. i] and B[1 .. j].

if i = 0 or j = 0, then opt[i, j] = 0.

if i > 0, j > 0, then

opt[i, j] =


opt[i− 1, j − 1] + 1 if A[i] = B[j]

max

{
opt[i− 1, j]

opt[i, j − 1]

if A[i] ̸= B[j]



43/92

Dynamic Programming for LCS

opt[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m: length of longest common
sub-sequence of A[1 .. i] and B[1 .. j].

if i = 0 or j = 0, then opt[i, j] = 0.

if i > 0, j > 0, then

opt[i, j] =


opt[i− 1, j − 1] + 1 if A[i] = B[j]

max

{
opt[i− 1, j]

opt[i, j − 1]
if A[i] ̸= B[j]



44/92

Dynamic Programming for LCS

1: for j ← 0 to m do
2: opt[0, j]← 0

3: for i← 1 to n do
4: opt[i, 0]← 0
5: for j ← 1 to m do
6: if A[i] = B[j] then
7: opt[i, j]← opt[i− 1, j − 1] + 1

, π[i, j]← “↖”

8: else if opt[i, j − 1] ≥ opt[i− 1, j] then
9: opt[i, j]← opt[i, j − 1]

, π[i, j]←“←”

10: else
11: opt[i, j]← opt[i− 1, j]

, π[i, j]← “↑”



44/92

Dynamic Programming for LCS

1: for j ← 0 to m do
2: opt[0, j]← 0

3: for i← 1 to n do
4: opt[i, 0]← 0
5: for j ← 1 to m do
6: if A[i] = B[j] then
7: opt[i, j]← opt[i− 1, j − 1] + 1, π[i, j]← “↖”
8: else if opt[i, j − 1] ≥ opt[i− 1, j] then
9: opt[i, j]← opt[i, j − 1], π[i, j]←“←”

10: else
11: opt[i, j]← opt[i− 1, j], π[i, j]← “↑”



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥

0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←

2 0 ⊥

1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖

3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ←

0 ← 1 ↖ 1 ← 1 ← 1 ←

2 0 ⊥

1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖

3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ←

1 ↖ 1 ← 1 ← 1 ←

2 0 ⊥

1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖

3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖

1 ← 1 ← 1 ←

2 0 ⊥

1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖

3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ←

1 ← 1 ←

2 0 ⊥

1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖

3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ←

1 ←

2 0 ⊥

1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖

3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥

1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖

3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥

1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖

3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖

1 ← 1 ← 1 ← 1 ← 2 ↖

3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ←

1 ← 1 ← 1 ← 2 ↖

3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ←

1 ← 1 ← 2 ↖

3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ←

1 ← 2 ↖

3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ←

2 ↖

3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥

1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑

1 ← 1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ←

1 ← 2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ←

2 ↖ 2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖

2 ← 2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ←

2 ←

4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥

1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑

2 ↖ 2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖

2 ← 2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ←

2 ← 3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ←

3 ↖ 3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖

3 ←

5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥

1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑

2 ↑ 2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑

2 ← 3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ←

3 ↖ 3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖

3 ← 3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ←

3 ←

6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥

1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖

2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑

2 ← 3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ←

3 ↑ 3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑

3 ← 4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ←

4 ↖



45/92

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



46/92

Example: Find Common Subsequence

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



46/92

Example: Find Common Subsequence

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



46/92

Example: Find Common Subsequence

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



46/92

Example: Find Common Subsequence

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



46/92

Example: Find Common Subsequence

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



46/92

Example: Find Common Subsequence

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



46/92

Example: Find Common Subsequence

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



46/92

Example: Find Common Subsequence

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



46/92

Example: Find Common Subsequence

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



46/92

Example: Find Common Subsequence

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



47/92

Find Common Subsequence

1: i← n, j ← m,S ← ()
2: while i > 0 and j > 0 do
3: if π[i, j] =“↖” then
4: add A[i] to beginning of S, i← i− 1, j ← j − 1
5: else if π[i, j] =“↑” then
6: i← i− 1
7: else
8: j ← j − 1

9: return S



48/92

Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions) we
need to change A to B?

Example:
A = ocurrance, B = occurrence

3 operations: insert ’c’, remove ’a’ and insert ’e’

Obs. #OPs = length(A) + length(B) - 2 · length(LCS(A, B))



48/92

Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions) we
need to change A to B?

Example:
A = ocurrance, B = occurrence

3 operations: insert ’c’, remove ’a’ and insert ’e’

Obs. #OPs = length(A) + length(B) - 2 · length(LCS(A, B))



48/92

Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions) we
need to change A to B?

Example:
A = ocurrance, B = occurrence

3 operations: insert ’c’, remove ’a’ and insert ’e’

Obs. #OPs = length(A) + length(B) - 2 · length(LCS(A, B))



49/92

Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A,

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Example:
A = ocurrance, B = occurrence.

2 operations: insert ’c’, change ’a’ to ’e’

Not related to LCS any more



49/92

Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A,

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Example:
A = ocurrance, B = occurrence.

2 operations: insert ’c’, change ’a’ to ’e’

Not related to LCS any more



49/92

Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A,

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Example:
A = ocurrance, B = occurrence.

2 operations: insert ’c’, change ’a’ to ’e’

Not related to LCS any more



50/92

Edit Distance with Replacing: Reduction to a

Variant of LCS

Need to match letters in A and B, every letter is matched at most
once and there should be no crosses.

However, we can match two different letters: Matching a same
letter gives score 2, matching two different letters gives score 1.

Need to maximize the score.

DP recursion for the case i > 0 and j > 0:

opt[i, j] =


opt[i− 1, j − 1] + 2 if A[i] = B[j]

max


opt[i− 1, j]

opt[i, j − 1]

opt[i− 1, j − 1] + 1

if A[i] ̸= B[j]

Relation : #OPs = length(A) + length(B) - max score



51/92

Edit Distance (with Replacing): using DP directly

opt[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m: edit distance between A[1 .. i]
and B[1 .. j].

if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.

if i > 0, j > 0, then

opt[i, j] =



opt[i− 1, j − 1]

if A[i] = B[j]

min


opt[i− 1, j] + 1

opt[i, j − 1] + 1

opt[i− 1, j − 1] + 1

if A[i] ̸= B[j]



51/92

Edit Distance (with Replacing): using DP directly

opt[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m: edit distance between A[1 .. i]
and B[1 .. j].

if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.

if i > 0, j > 0, then

opt[i, j] =



opt[i− 1, j − 1]

if A[i] = B[j]

min


opt[i− 1, j] + 1

opt[i, j − 1] + 1

opt[i− 1, j − 1] + 1

if A[i] ̸= B[j]



51/92

Edit Distance (with Replacing): using DP directly

opt[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m: edit distance between A[1 .. i]
and B[1 .. j].

if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.

if i > 0, j > 0, then

opt[i, j] =



opt[i− 1, j − 1]

if A[i] = B[j]

min


opt[i− 1, j] + 1

opt[i, j − 1] + 1

opt[i− 1, j − 1] + 1

if A[i] ̸= B[j]



51/92

Edit Distance (with Replacing): using DP directly

opt[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m: edit distance between A[1 .. i]
and B[1 .. j].

if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.

if i > 0, j > 0, then

opt[i, j] =


opt[i− 1, j − 1] if A[i] = B[j]

min


opt[i− 1, j] + 1

opt[i, j − 1] + 1

opt[i− 1, j − 1] + 1

if A[i] ̸= B[j]



51/92

Edit Distance (with Replacing): using DP directly

opt[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m: edit distance between A[1 .. i]
and B[1 .. j].

if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.

if i > 0, j > 0, then

opt[i, j] =


opt[i− 1, j − 1] if A[i] = B[j]

min


opt[i− 1, j] + 1

opt[i, j − 1] + 1

opt[i− 1, j − 1] + 1

if A[i] ̸= B[j]



52/92

Exercise: Longest Palindrome

Def. A palindrome is a string which reads the same backward or
forward.

example: “racecar”, “wasitacaroracatisaw”, ”putitup”

Longest Palindrome Subsequence
Input: a sequence A

Output: the longest subsequence C of A that is a palindrome.

Example:
Input: acbcedeacab

Output: acedeca



52/92

Exercise: Longest Palindrome

Def. A palindrome is a string which reads the same backward or
forward.

example: “racecar”, “wasitacaroracatisaw”, ”putitup”

Longest Palindrome Subsequence
Input: a sequence A

Output: the longest subsequence C of A that is a palindrome.

Example:
Input: acbcedeacab

Output: acedeca



52/92

Exercise: Longest Palindrome

Def. A palindrome is a string which reads the same backward or
forward.

example: “racecar”, “wasitacaroracatisaw”, ”putitup”

Longest Palindrome Subsequence
Input: a sequence A

Output: the longest subsequence C of A that is a palindrome.

Example:
Input: acbcedeacab

Output: acedeca



52/92

Exercise: Longest Palindrome

Def. A palindrome is a string which reads the same backward or
forward.

example: “racecar”, “wasitacaroracatisaw”, ”putitup”

Longest Palindrome Subsequence
Input: a sequence A

Output: the longest subsequence C of A that is a palindrome.

Example:
Input: acbcedeacab

Output: acedeca



52/92

Exercise: Longest Palindrome

Def. A palindrome is a string which reads the same backward or
forward.

example: “racecar”, “wasitacaroracatisaw”, ”putitup”

Longest Palindrome Subsequence
Input: a sequence A

Output: the longest subsequence C of A that is a palindrome.

Example:
Input: acbcedeacab

Output: acedeca



53/92

Outline

1 Weighted Interval Scheduling

2 Segmented Least Squares

3 Subset Sum Problem
Related Problem: Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

9 Exercise Problems



54/92

Computing the Length of LCS

1: for j ← 0 to m do
2: opt[0, j]← 0

3: for i← 1 to n do
4: opt[i, 0]← 0
5: for j ← 1 to m do
6: if A[i] = B[j] then
7: opt[i, j]← opt[i− 1, j − 1] + 1
8: else if opt[i, j − 1] ≥ opt[i− 1, j] then
9: opt[i, j]← opt[i, j − 1]

10: else
11: opt[i, j]← opt[i− 1, j]

Obs. The i-th row of table only depends on (i− 1)-th row.



55/92

Reducing Space to O(n +m)

Obs. The i-th row of table only depends on (i− 1)-th row.

Q: How to use this observation to reduce space?

A: We only keep two rows: the (i− 1)-th row and the i-th row.



55/92

Reducing Space to O(n +m)

Obs. The i-th row of table only depends on (i− 1)-th row.

Q: How to use this observation to reduce space?

A: We only keep two rows: the (i− 1)-th row and the i-th row.



56/92

Linear Space Algorithm to Compute Length of LCS

1: for j ← 0 to m do
2: opt[0, j]← 0

3: for i← 1 to n do
4: opt[i mod 2, 0]← 0
5: for j ← 1 to m do
6: if A[i] = B[j] then
7: opt[i mod 2, j]← opt[i− 1 mod 2, j − 1] + 1
8: else if opt[i mod 2, j − 1] ≥ opt[i− 1 mod 2, j] then
9: opt[i mod 2, j]← opt[i mod 2, j − 1]
10: else
11: opt[i mod 2, j]← opt[i− 1 mod 2, j]

12: return opt[n mod 2,m]



57/92

How to Recover LCS Using Linear Space?

Only keep the last two rows: only know how to match A[n]

Can recover the LCS using n rounds: time = O(n2m)

Using Divide and Conquer + Dynamic Programming:

Space: O(m+ n)
Time: O(nm)



57/92

How to Recover LCS Using Linear Space?

Only keep the last two rows: only know how to match A[n]

Can recover the LCS using n rounds: time = O(n2m)

Using Divide and Conquer + Dynamic Programming:

Space: O(m+ n)
Time: O(nm)



57/92

How to Recover LCS Using Linear Space?

Only keep the last two rows: only know how to match A[n]

Can recover the LCS using n rounds: time = O(n2m)

Using Divide and Conquer + Dynamic Programming:

Space: O(m+ n)
Time: O(nm)



57/92

How to Recover LCS Using Linear Space?

Only keep the last two rows: only know how to match A[n]

Can recover the LCS using n rounds: time = O(n2m)

Using Divide and Conquer + Dynamic Programming:

Space: O(m+ n)

Time: O(nm)



57/92

How to Recover LCS Using Linear Space?

Only keep the last two rows: only know how to match A[n]

Can recover the LCS using n rounds: time = O(n2m)

Using Divide and Conquer + Dynamic Programming:

Space: O(m+ n)
Time: O(nm)



58/92

Outline

1 Weighted Interval Scheduling

2 Segmented Least Squares

3 Subset Sum Problem
Related Problem: Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

9 Exercise Problems



59/92

Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without
(directed) cycles.

s a

b

c

d

not a DAG

31

2

4

6

5

7

8

a DAG

Lemma A directed graph is a DAG if and only its vertices can be
topologically sorted.



59/92

Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without
(directed) cycles.

s a

b

c

d

not a DAG

31

2

4

6

5

7

8

a DAG

Lemma A directed graph is a DAG if and only its vertices can be
topologically sorted.



60/92

Shortest Paths in DAG
Input: directed acyclic graph G = (V,E) and w : E → R.

Assume V = {1, 2, 3 · · · , n} is topologically sorted: if
(i, j) ∈ E, then i < j

Output: the shortest path from 1 to i, for every i ∈ V

31

2

4

6

5

7

8

3

5

1
9

8
6

1

9

5

2

2

8

1



60/92

Shortest Paths in DAG
Input: directed acyclic graph G = (V,E) and w : E → R.

Assume V = {1, 2, 3 · · · , n} is topologically sorted: if
(i, j) ∈ E, then i < j

Output: the shortest path from 1 to i, for every i ∈ V

31

2

4

6

5

7

8

3

5

1
9

8
6

1

9

5

2

2

8

1



61/92

Shortest Paths in DAG

f [i]: length of the shortest path from 1 to i

f [i] =

{

0

i = 1

minj:(j,i)∈E {f(j) + w(j, i)}

i = 2, 3, · · · , n



61/92

Shortest Paths in DAG

f [i]: length of the shortest path from 1 to i

f [i] =

{
0 i = 1

minj:(j,i)∈E {f(j) + w(j, i)}

i = 2, 3, · · · , n



61/92

Shortest Paths in DAG

f [i]: length of the shortest path from 1 to i

f [i] =

{
0 i = 1

minj:(j,i)∈E {f(j) + w(j, i)} i = 2, 3, · · · , n



62/92

Shortest Paths in DAG

Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG
1: f [1]← 0
2: for i← 2 to n do
3: f [i]←∞
4: for each incoming edge (j, i) of i do
5: if f [j] + w(j, i) < f [i] then
6: f [i]← f [j] + w(j, i)

print-path(t)

1: if t = 1 then
2: print(1)
3: return
4: print-path(π(t))
5: print(“,”, t)



62/92

Shortest Paths in DAG

Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG
1: f [1]← 0
2: for i← 2 to n do
3: f [i]←∞
4: for each incoming edge (j, i) of i do
5: if f [j] + w(j, i) < f [i] then
6: f [i]← f [j] + w(j, i)
7: π(i)← j

print-path(t)

1: if t = 1 then
2: print(1)
3: return
4: print-path(π(t))
5: print(“,”, t)



62/92

Shortest Paths in DAG

Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG
1: f [1]← 0
2: for i← 2 to n do
3: f [i]←∞
4: for each incoming edge (j, i) of i do
5: if f [j] + w(j, i) < f [i] then
6: f [i]← f [j] + w(j, i)
7: π(i)← j

print-path(t)

1: if t = 1 then
2: print(1)
3: return
4: print-path(π(t))
5: print(“,”, t)



63/92

Example

31

2

4

6

5

7

8

3

5

1
9

8
6

1

9

5

2

2

8

1



63/92

Example

31

2

4

6

5

7

8

0
3

5

1
9

8
6

1

9

5

2

2

8

1



63/92

Example

31

2

4

6

5

7

8

0

1

3

5

1
9

8
6

1

9

5

2

2

8

1



63/92

Example

31

2

4

6

5

7

8

0

1

2
3

5

1
9

8
6

1

9

5

2

2

8

1



63/92

Example

31

2

4

6

5

7

8

0

1

2

8

3

5

1
9

8
6

1

9

5

2

2

8

1



63/92

Example

31

2

4

6

5

7

8

0

1

2

8

10

3

5

1
9

8
6

1

9

5

2

2

8

1



63/92

Example

31

2

4

6

5

7

8

0

1

2

8

10

7
3

5

1
9

8
6

1

9

5

2

2

8

1



63/92

Example

31

2

4

6

5

7

8

0

1

2

8

10

7

9

3

5

1
9

8
6

1

9

5

2

2

8

1



63/92

Example

31

2

4

6

5

7

8

0

1

2

8

10

7

9

11
3

5

1
9

8
6

1

9

5

2

2

8

1



64/92

Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph

Input: directed acyclic graph G = (V,E) and w : E → R.
Assume V = {1, 2, 3 · · · , n} is topologically sorted: if
(i, j) ∈ E, then i < j

Output: the path with the largest weight (the heaviest path) from
1 to n.

f [i]: weight of the heaviest path from 1 to i

f [i] =

{

0

i = 1

maxj:(j,i)∈E {f(j) + w(j, i)}

i = 2, 3, · · · , n



64/92

Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph

Input: directed acyclic graph G = (V,E) and w : E → R.
Assume V = {1, 2, 3 · · · , n} is topologically sorted: if
(i, j) ∈ E, then i < j

Output: the path with the largest weight (the heaviest path) from
1 to n.

f [i]: weight of the heaviest path from 1 to i

f [i] =

{
0 i = 1

maxj:(j,i)∈E {f(j) + w(j, i)}

i = 2, 3, · · · , n



64/92

Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph

Input: directed acyclic graph G = (V,E) and w : E → R.
Assume V = {1, 2, 3 · · · , n} is topologically sorted: if
(i, j) ∈ E, then i < j

Output: the path with the largest weight (the heaviest path) from
1 to n.

f [i]: weight of the heaviest path from 1 to i

f [i] =

{
0 i = 1

maxj:(j,i)∈E {f(j) + w(j, i)} i = 2, 3, · · · , n



65/92

Outline

1 Weighted Interval Scheduling

2 Segmented Least Squares

3 Subset Sum Problem
Related Problem: Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

9 Exercise Problems



66/92

Matrix Chain Multiplication

Matrix Chain Multiplication
Input: n matrices A1, A2, · · · , An of sizes

r1 × c1, r2 × c2, · · · , rn × cn, such that ci = ri+1 for every
i = 1, 2, · · · , n− 1.

Output: the order of computing A1A2 · · ·An with the minimum
number of multiplications

Fact Multiplying two matrices of size r × k and k × c takes
r × k × c multiplications.



67/92

Example:
A1 : 10× 100, A2 : 100× 5, A3 : 5× 50

10× 100 100× 5 5× 50

10× 5
10 · 100 · 5
= 5000

10× 50
10 · 5 · 50
= 2500

cost = 5000 + 2500 = 7500

10× 100 100× 5 5× 50

100× 50
100 · 5 · 50
= 25000

10× 50
10 · 100 · 50
= 50000

cost = 25000 + 50000 = 75000

(A1A2)A3: 10× 100× 5 + 10× 5× 50 = 7500

A1(A2A3): 100× 5× 50 + 10× 100× 50 = 75000



67/92

Example:
A1 : 10× 100, A2 : 100× 5, A3 : 5× 50

10× 100 100× 5 5× 50

10× 5
10 · 100 · 5
= 5000

10× 50
10 · 5 · 50
= 2500

cost = 5000 + 2500 = 7500

10× 100 100× 5 5× 50

100× 50
100 · 5 · 50
= 25000

10× 50
10 · 100 · 50
= 50000

cost = 25000 + 50000 = 75000

(A1A2)A3: 10× 100× 5 + 10× 5× 50 = 7500

A1(A2A3): 100× 5× 50 + 10× 100× 50 = 75000



68/92

Matrix Chain Multiplication: Design DP

Assume the last step is (A1A2 · · ·Ai)(Ai+1Ai+2 · · ·An)

Cost of last step: r1 × ci × cn

Optimality for sub-instances: we need to compute A1A2 · · ·Ai

and Ai+1Ai+2 · · ·An optimally

opt[i, j] : the minimum cost of computing AiAi+1 · · ·Aj

opt[i, j] =

{
0 i = j

mink:i≤k<j (opt[i, k] + opt[k + 1, j] + rickcj) i < j



68/92

Matrix Chain Multiplication: Design DP

Assume the last step is (A1A2 · · ·Ai)(Ai+1Ai+2 · · ·An)

Cost of last step: r1 × ci × cn

Optimality for sub-instances: we need to compute A1A2 · · ·Ai

and Ai+1Ai+2 · · ·An optimally

opt[i, j] : the minimum cost of computing AiAi+1 · · ·Aj

opt[i, j] =

{
0 i = j

mink:i≤k<j (opt[i, k] + opt[k + 1, j] + rickcj) i < j



68/92

Matrix Chain Multiplication: Design DP

Assume the last step is (A1A2 · · ·Ai)(Ai+1Ai+2 · · ·An)

Cost of last step: r1 × ci × cn

Optimality for sub-instances: we need to compute A1A2 · · ·Ai

and Ai+1Ai+2 · · ·An optimally

opt[i, j] : the minimum cost of computing AiAi+1 · · ·Aj

opt[i, j] =

{
0 i = j

mink:i≤k<j (opt[i, k] + opt[k + 1, j] + rickcj) i < j



68/92

Matrix Chain Multiplication: Design DP

Assume the last step is (A1A2 · · ·Ai)(Ai+1Ai+2 · · ·An)

Cost of last step: r1 × ci × cn

Optimality for sub-instances: we need to compute A1A2 · · ·Ai

and Ai+1Ai+2 · · ·An optimally

opt[i, j] : the minimum cost of computing AiAi+1 · · ·Aj

opt[i, j] =

{
0 i = j

mink:i≤k<j (opt[i, k] + opt[k + 1, j] + rickcj) i < j



68/92

Matrix Chain Multiplication: Design DP

Assume the last step is (A1A2 · · ·Ai)(Ai+1Ai+2 · · ·An)

Cost of last step: r1 × ci × cn

Optimality for sub-instances: we need to compute A1A2 · · ·Ai

and Ai+1Ai+2 · · ·An optimally

opt[i, j] : the minimum cost of computing AiAi+1 · · ·Aj

opt[i, j] =

{
0 i = j

mink:i≤k<j (opt[i, k] + opt[k + 1, j] + rickcj) i < j



68/92

Matrix Chain Multiplication: Design DP

Assume the last step is (A1A2 · · ·Ai)(Ai+1Ai+2 · · ·An)

Cost of last step: r1 × ci × cn

Optimality for sub-instances: we need to compute A1A2 · · ·Ai

and Ai+1Ai+2 · · ·An optimally

opt[i, j] : the minimum cost of computing AiAi+1 · · ·Aj

opt[i, j] =

{
0 i = j

mink:i≤k<j (opt[i, k] + opt[k + 1, j] + rickcj) i < j



69/92

Matrix Chain Multiplication: Design DP

matrix-chain-multiplication(n, r[1..n], c[1..n])

1: let opt[i, i]← 0 for every i = 1, 2, · · · , n
2: for ℓ← 2 to n do
3: for i← 1 to n− ℓ+ 1 do
4: j ← i+ ℓ− 1
5: opt[i, j]←∞
6: for k ← i to j − 1 do
7: if opt[i, k] + opt[k + 1, j] + rickcj < opt[i, j] then
8: opt[i, j]← opt[i, k] + opt[k + 1, j] + rickcj

9: return opt[1, n]



69/92

Recover the Optimum Way of Multiplication

matrix-chain-multiplication(n, r[1..n], c[1..n])

1: let opt[i, i]← 0 for every i = 1, 2, · · · , n
2: for ℓ← 2 to n do
3: for i← 1 to n− ℓ+ 1 do
4: j ← i+ ℓ− 1
5: opt[i, j]←∞
6: for k ← i to j − 1 do
7: if opt[i, k] + opt[k + 1, j] + rickcj < opt[i, j] then
8: opt[i, j]← opt[i, k] + opt[k + 1, j] + rickcj
9: π[i, j]← k

10: return opt[1, n]



70/92

Constructing Optimal Solution

Print-Optimal-Order(i, j)

1: if i = j then
2: print(“A”i)
3: else
4: print(“(”)
5: Print-Optimal-Order(i, π[i, j])
6: Print-Optimal-Order(π[i, j] + 1, j)
7: print(“)”)



71/92

matrix A1 A2 A3 A4 A5

size 3× 5 5× 2 2× 6 6× 9 9× 4

opt[1, 2] = opt[1, 1] + opt[2, 2] + 3× 5× 2 = 30, π[1, 2] = 1

opt[2, 3] = opt[2, 2] + opt[3, 3] + 5× 2× 6 = 60, π[2, 3] = 2

opt[3, 4] = opt[3, 3] + opt[4, 4] + 2× 6× 9 = 108, π[3, 4] = 3

opt[4, 5] = opt[4, 4] + opt[5, 5] + 6× 9× 4 = 216, π[4, 5] = 4

opt[1, 3] = min{opt[1, 1] + opt[2, 3] + 3× 5× 6,

opt[1, 2] + opt[3, 3] + 3× 2× 6}
= min{0 + 60 + 90, 30 + 0 + 36} = 66, π[1, 3] = 2

opt[2, 4] = min{opt[2, 2] + opt[3, 4] + 5× 2× 9,

opt[2, 3] + opt[4, 4] + 5× 6× 9}
= min{0 + 108 + 90, 60 + 0 + 270} = 198, π[2, 4] = 2,



72/92

matrix A1 A2 A3 A4 A5

size 3× 5 5× 2 2× 6 6× 9 9× 4

opt[3, 5] = min{opt[3, 3] + opt[4, 5] + 2× 6× 4,

opt[3, 4] + opt[5, 5] + 2× 9× 4}
= min{0 + 216 + 48, 108 + 0 + 72} = 180,

π[3, 5] = 4,

opt[1, 4] = min{opt[1, 1] + opt[2, 4] + 3× 5× 9,

opt[1, 2] + opt[3, 4] + 3× 2× 9,

opt[1, 3] + opt[4, 4] + 3× 6× 9}
= min{0 + 198 + 135, 30 + 108 + 54, 66 + 0 + 162} = 192,

π[1, 4] = 2,



73/92

matrix A1 A2 A3 A4 A5

size 3× 5 5× 2 2× 6 6× 9 9× 4

opt[2, 5] = min{opt[2, 2] + opt[3, 5] + 5× 2× 4,

opt[2, 3] + opt[4, 5] + 5× 6× 4,

opt[2, 4] + opt[5, 5] + 5× 9× 4}
= min{0 + 180 + 40, 60 + 216 + 120, 198 + 0 + 180} = 220, π[2, 5] = 2,

opt[1, 5] = min{opt[1, 1] + opt[2, 5] + 3× 5× 4,

opt[1, 2] + opt[3, 5] + 3× 2× 4,

opt[1, 3] + opt[4, 5] + 3× 6× 4,

opt[1, 4] + opt[5, 5] + 3× 9× 4}
= min{0 + 220 + 60, 30 + 180 + 24,

66 + 216 + 72, 192 + 0 + 108}
= 234,

π[1, 5] = 2.



74/92

matrix A1 A2 A3 A4 A5

size 3× 5 5× 2 2× 6 6× 9 9× 4

opt, π j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 0, / 30, 1 66, 2 192, 2 234, 2
i = 2 0, / 60, 2 198, 2 220, 2
i = 3 0, / 108, 3 180, 4
i = 4 0, / 216, 4
i = 5 0, /



75/92

opt, π j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 0, / 30, 1 66, 2 192, 2 234, 2
i = 2 0, / 60, 2 198, 2 220, 2
i = 3 0, / 108, 3 180, 4
i = 4 0, / 216, 4
i = 5 0, /

Print-Optimal-Order(1,5)
Print-Optimal-Order(1, 2)

Print-Optimal-Order(1, 1)
Print-Optimal-Order(2, 2)

Print-Optimal-Order(3, 5)
Print-Optimal-Order(3, 4)

Print-Optimal-Order(3, 3)
Print-Optimal-Order(4, 4)

Print-Optimal-Order(5, 5)
Optimum way for multiplication: ((A1A2)((A3A4)A5))



76/92

Outline

1 Weighted Interval Scheduling

2 Segmented Least Squares

3 Subset Sum Problem
Related Problem: Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

9 Exercise Problems



77/92

Optimum Binary Search Tree

n elements e1 < e2 < e3 < · · · < en

ei has frequency fi

goal: build a binary search tree for {e1, e2, · · · , en} with the
minimum accessing cost:

n∑
i=1

fi × (depth of ei in the tree)

motivation: the time to access ei in the tree is linear in the depth
of ei



77/92

Optimum Binary Search Tree

n elements e1 < e2 < e3 < · · · < en

ei has frequency fi

goal: build a binary search tree for {e1, e2, · · · , en} with the
minimum accessing cost:

n∑
i=1

fi × (depth of ei in the tree)

motivation: the time to access ei in the tree is linear in the depth
of ei



78/92

Optimum Binary Search Tree

Example: f1 = 10, f2 = 5, f3 = 3
e1

e2

e3

e2

e1 e3 e2

e1

e3

10× 1 + 5× 2 + 3× 3 = 29

10× 2 + 5× 1 + 3× 2 = 31

10× 3 + 5× 2 + 3× 1 = 43



78/92

Optimum Binary Search Tree

Example: f1 = 10, f2 = 5, f3 = 3
e1

e2

e3

e2

e1 e3 e2

e1

e3

10× 1 + 5× 2 + 3× 3 = 29

10× 2 + 5× 1 + 3× 2 = 31

10× 3 + 5× 2 + 3× 1 = 43



78/92

Optimum Binary Search Tree

Example: f1 = 10, f2 = 5, f3 = 3
e1

e2

e3

e2

e1 e3 e2

e1

e3e1

e2

e3

10× 1 + 5× 2 + 3× 3 = 29

10× 2 + 5× 1 + 3× 2 = 31

10× 3 + 5× 2 + 3× 1 = 43



79/92

suppose we decided to let ek be the root

e1, e2, · · · , ek−1 are on left sub-tree

ek+1, ek+2, · · · , en are on right sub-tree

dj: depth of ej in our tree

C,CL, CR: cost of tree, left sub-tree and right sub-tree

e5

e1

e2

e3

e4 e7

e6

e8

e9

d1 = 3, d2 = 2, d3 = 3, d4 = 4, d5 = 1,

d6 = 2, d7 = 4, d8 = 3, d9 = 4,

C = 3f1 + 2f2 + 3f3 + 4f4 + f5 +
2f6 + 4f7 + 3f8 + 4f9

CL = 2f1 + f2 + 2f3 + 3f4

CR = f6 + 3f7 + 2f8 + 3f9

C = CL + CR +
∑9

j=1 fj



80/92

ek

e1 · · · ek−1 ek+1 · · · en

CL: cost of left tree CR: cost of left tree

C: cost of left tree

C =
n∑

ℓ=1

fℓdℓ =
n∑

ℓ=1

fℓ(dℓ − 1) +
n∑

ℓ=1

fℓ

=
k−1∑
ℓ=1

fℓ(dℓ − 1) +
n∑

ℓ=k+1

fℓ(dℓ − 1) +
n∑

ℓ=1

fℓ

= CL + CR +
n∑

ℓ=1

fℓ



81/92

C = CL + CR +
n∑

ℓ=1

fℓ

In order to minimize C, need to minimize CL and CR respectively

opt[i, j]: the optimum cost for the instance (fi, fi+1, · · · , fj)

opt[1, n] =

min
k:1≤k≤n

(opt[1, k − 1] + opt[k + 1, n]) +
n∑

ℓ=1

fℓ

In general, opt[i, j] ={
0 if i = j + 1

mink:i≤k≤j

(
opt[i, k − 1] + opt[k + 1, j]

)
+
∑j

ℓ=i fℓ if i ≤ j



81/92

C = CL + CR +
n∑

ℓ=1

fℓ

In order to minimize C, need to minimize CL and CR respectively

opt[i, j]: the optimum cost for the instance (fi, fi+1, · · · , fj)

opt[1, n] =

min
k:1≤k≤n

(opt[1, k − 1] + opt[k + 1, n]) +
n∑

ℓ=1

fℓ

In general, opt[i, j] ={
0 if i = j + 1

mink:i≤k≤j

(
opt[i, k − 1] + opt[k + 1, j]

)
+
∑j

ℓ=i fℓ if i ≤ j



81/92

C = CL + CR +
n∑

ℓ=1

fℓ

In order to minimize C, need to minimize CL and CR respectively

opt[i, j]: the optimum cost for the instance (fi, fi+1, · · · , fj)

opt[1, n] =

min
k:1≤k≤n

(opt[1, k − 1] + opt[k + 1, n]) +
n∑

ℓ=1

fℓ

In general, opt[i, j] ={
0 if i = j + 1

mink:i≤k≤j

(
opt[i, k − 1] + opt[k + 1, j]

)
+
∑j

ℓ=i fℓ if i ≤ j



81/92

C = CL + CR +
n∑

ℓ=1

fℓ

In order to minimize C, need to minimize CL and CR respectively

opt[i, j]: the optimum cost for the instance (fi, fi+1, · · · , fj)

opt[1, n] = min
k:1≤k≤n

(opt[1, k − 1] + opt[k + 1, n]) +
n∑

ℓ=1

fℓ

In general, opt[i, j] ={
0 if i = j + 1

mink:i≤k≤j

(
opt[i, k − 1] + opt[k + 1, j]

)
+
∑j

ℓ=i fℓ if i ≤ j



81/92

C = CL + CR +
n∑

ℓ=1

fℓ

In order to minimize C, need to minimize CL and CR respectively

opt[i, j]: the optimum cost for the instance (fi, fi+1, · · · , fj)

opt[1, n] = min
k:1≤k≤n

(opt[1, k − 1] + opt[k + 1, n]) +
n∑

ℓ=1

fℓ

In general, opt[i, j] ={
0 if i = j + 1

mink:i≤k≤j

(
opt[i, k − 1] + opt[k + 1, j]

)
+
∑j

ℓ=i fℓ if i ≤ j



82/92

Optimum Binary Search Tree

1: fsum[0]← 0
2: for i← 1 to n do fsum[i]← fsum[i− 1] + fi

▷ fsum[i] =
∑i

j=1 fj
3: for i← 0 to n do opt[i+ 1, i]← 0

4: for ℓ← 1 to n do
5: for i← 1 to n− ℓ+ 1 do
6: j ← i+ ℓ− 1, opt[i, j]←∞
7: for k ← i to j do
8: if opt[i, k − 1] + opt[k + 1, j] < opt[i, j] then
9: opt[i, j]← opt[i, k − 1] + opt[k + 1, j]

10: π[i, j]← k

11: opt[i, j]← opt[i, j] + fsum[j]− fsum[i− 1]



83/92

Printing the Tree

Print-Tree(i, j)

1: if i > j then
2: return
3: else
4: print(’(’)
5: Print-Tree(i, π[i, j]− 1)
6: print(π[i, j])
7: Print-Tree(π[i, j] + 1, j)
8: print(’)’)



84/92

Outline

1 Weighted Interval Scheduling

2 Segmented Least Squares

3 Subset Sum Problem
Related Problem: Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

9 Exercise Problems



85/92

Dynamic Programming
Break up a problem into many overlapping sub-problems

Build solutions for larger and larger sub-problems

Use a table to store solutions for sub-problems for reuse



86/92

Comparison with greedy algorithms
Greedy algorithm: each step is making a small progress towards
constructing the solution

Dynamic programming: the whole solution is constructed in the
last step

Comparison with divide and conquer
Divide and conquer: an instance is broken into many independent
sub-instances, which are solved separately.

Dynamic programming: the sub-instances we constructed are
overlapping.



87/92

Definition of Cells for Problems We Learnt

Weighted interval scheduling: opt[i] = value of instance defined
by jobs {1, 2, · · · , i}
Segmented Least Square: opt[i] = cost of instance defined by first
i points.

Subset sum, knapsack: opt[i,W ′] = value of instance with items
{1, 2, · · · , i} and budget W ′

Longest common subsequence: opt[i, j] = value of instance
defined by A[1..i] and B[1..j]

Shortest paths in DAG: f [v] = length of shortest path from s to v

Matrix chain multiplication, optimum binary search tree:
opt[i, j] = value of instances defined by matrices i to j



88/92

Outline

1 Weighted Interval Scheduling

2 Segmented Least Squares

3 Subset Sum Problem
Related Problem: Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

9 Exercise Problems



89/92

Longest Increasing Subsequence

Given a sequence A = (a1, a2, · · · , an) of n numbers, we need to find
the maximum-length increasing subsequence of A. That is, we want
to find a maximum-length sequence (i1, i2, · · · , it) of integers such
that 1 ≤ i1 < i2 < i3 < · · · < it ≤ n and ai1 < ai2 < ai3 < · · · < ait .
Design an O(n2)-time algorithm for the problem.



90/92

Counting number of inverted 10-tuples

Given an array A of n numbers, we say that a 10-tuple
(i1, i2, · · · , i10) of integers is inverted if
1 ≤ i1 < i2 < i3 < · · · < i10 ≤ n and
A[i1] > A[i2] > A[i3] > · · · > A[i10].

1 Give an O(n2)-time algorithm to count the number of inverted
10-tuples w.r.t A.

2 Give an O(n lg n)-time algorithm to count the number of inverted
10-tuples w.r.t A. (Hard Problem.)



91/92

Exercise: Counting Number of Domino Coverings
Input: n

Output: number of ways to cover a n× 2 grid using domino tiles

Figure: When n is 4, there are 5 ways to cover the grid.



92/92

Maximum weight independent set on trees

Given a tree with node weights, find the independent set of the tree
with the maximum total weight.

15

8 16 18

3 5

4

5 7 2 9

Figure: The maximum-weight independent set of the tree has weight 47.
The red vertices give the independent set.

Design an O(n)-time algorithm for the problem, where n is the
number of vertices in the tree.


	Weighted Interval Scheduling
	Segmented Least Squares
	Subset Sum Problem
	Related Problem: Knapsack Problem

	Longest Common Subsequence
	Longest Common Subsequence in Linear Space

	Shortest Paths in Directed Acyclic Graphs
	Matrix Chain Multiplication
	Optimum Binary Search Tree
	Summary
	Exercise Problems

