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@ Prim’s Algorithm



Spanning Tree

Def. Given a connected graph G = (V, E), a spanning tree
T = (V,F) of G is a sub-graph of G that is a tree including all
vertices V.




Lemma Let 7'= (V, F) be a subgraph of G = (V, E). The
following statements are equivalent:

@ T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n — 1 edges;

T is acyclic and has n — 1 edges;

T is minimally connected: removal of any edge disconnects it;
T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.



Minimum Spanning Tree (MST) Problem
Input: Graph G = (V| E) and edge weights w : E — R
Output: the spanning tree T" of GG with the minimum total weight

12



Recall: Steps of Designing A Greedy Algorithm

@ Design a “reasonable” strategy

@ Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
o Kruskal's Algorithm
@ Prim’s Algorithm
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Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).




Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’

Assume the lightest edge e* is not in T’

There is a unique path in T" connecting u and v
Remove any edge e in the path to obtain tree 7’
w(e*) <w(e) = w(T") <w(T): T"is also a MST

lightest edge e*~



Is the Residual Problem Still a MST Problem?

@ Residual problem: find the minimum spanning tree that contains
edge (g, h)
e Contract the edge (g, h)

@ Residual problem: find the minimum spanning tree in the
contracted graph



Contraction of an Edge (u,v)

12

Remove u and v from the graph, and add a new vertex u*
Remove all edges (u,v) from E

For every edge (u,w) € E,w # v, change it to (u*,w)
For every edge (v,w) € F,w # u, change it to (u*,w)

May create parallel edges! E.g. : two edges (i, g*)



Greedy Algorithm

Repeat the following step until G' contains only one vertex:
@ Choose the lightest edge ¢*, add e¢* to the spanning tree
@ Contract e* and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u,v) is removed if and only if there is a path connecting u
and v formed by edges we selected




Greedy Algorithm

MST-Greedy(G, w)

1. F+0

2: sort edges in E in non-decreasing order of weights w

3: for each edge (u,v) in the order do

4: if u and v are not connected by a path of edges in F' then
5 F«+ FU{(u,v)}

6

. return (V, F)




Kruskal's Algorithm: Example

Sets: {a,b,c,i, f,g,h,d, e}



Kruskal's Algorithm: Efficient Implementation of
Greedy Algorithm

MST-Kruskal(G, w)

F+ 0
S+ {{v}:veV}
sort the edges of E' in non-decreasing order of weights w
for each edge (u,v) € E in the order do
S, < the set in S containing u
S, < the set in S containing v
if S, # 95, then
F «+ FU{(u,v)}
S S\{SH\ S} U {5, U S}

return (V, F)

o N R

—
=




Running Time of Kruskal's Algorithm

MST-Kruskal(G, w)

F <«
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in S containing u
S, < the set in § containing v
if S, # S, then
F+— FU{(u,v)}
S S\{S P\ {Su} U{S. U S}

return (V, F)
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Use union-find data structure to support @, @, @, @, O.



MST-Kruskal(G, w)

—
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F«0
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in § containing u
S, < the set in S containing v
if S, # S, then
F+ FU{(u,v)}
S S\{Sup \ {Su} U{SuUS,}

return (V, F)




MST-Kruskal(G, w)

- F <0
. for every v € V do: par[v] + L
sort the edges of E in non-decreasing order of weights w
. for each edge (u,v) € E in the order do
u' < root(u)
v' < root(v)
if «' v then
F+ FU{(u,v)}
merge(u’, v')
return (V, F)

o NT AL HMH
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° 0.0.0.0.0 takes time O(ma(n))
@ Running time = time for @ = O(mlgn).



Assumption Assume all edge weights are different.

Lemma An edge e € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge.

@ (i,g) is not in the MST because of cycle (i, ¢, f, g)
@ (e, f) is in the MST because no such cycle exists
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Two Methods to Build a MST

@ Start from F' < (), and add edges to F' one by one until we obtain
a spanning tree

@ Start from F < FE, and remove edges from F' one by one until we
obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.




Lemma It is safe to exclude the heaviest non-bridge edge: there is a
MST that does not contain the heaviest non-bridge edge.




Reverse Kruskal's Algorithm

MST-Greedy(G, w)
1. F+ F
2: sort E in non-increasing order of weights
3: for every e in this order do
4: if (V,F \ {e}) is connected then
5: F <« F\{e}
6: return (V, F)




Reverse Kruskal's Algorithm: Example
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Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallest weight.

o Greedy strategy for Prim's algorithm: choose the lightest edge
incident to a.



Lemma It is safe to include the lightest edge incident to a.

lightest edge e* incident to a
/

/
/
/

Proof.

Let T be a MST

Consider all components obtained by removing a from T’

Let e* be the lightest edge incident to a and e* connects a to
component C'

Let e be the edge in T' connecting a to C'
T" =T\ {e} U{e*} is a spanning tree with w(7") < w(T)

A
qQ




Prim’s Algorithm: Example




Greedy Algorithm

MST-Greedyl(G, w)

1: S < {s}, where s is arbitrary vertex in V

2: <«

3: while S #V do

4: (u,v) < lightest edge between S and V' \ S,
where u € Sandv e V'\ S

5: S+ Su{v}

6: F+ FU{(u,v)}

7: return (V, F)

@ Running time of naive implementation: O(nm)



Prim's Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V' \ .S maintain
o dv] = minyeg.(upv)er w(u, v):
the weight of the lightest edge between v and S
o m[v] = arg minyes:(uvecr w(u, v):
(m[v],v) is the lightest edge between v and S

(13,¢)




Prim's Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V' \ .S maintain
o djv] = minueS:(u,u)eEw(uv v):

the weight of the lightest edge between v and S
o m[v] = arg minyecg:(uv)cr w(U, v):

(m[v],v) is the lightest edge between v and S

In every iteration
@ Pick u € V'\ S with the smallest d[u] value
e Add (m[u],u) to F
@ Add u to S, update d and 7 values.



Prim’'s Algorithm

MST-Prim(G, w)
s <— arbitrary vertex in G
S+ 0,d(s) «+ 0 and d[v] « oo for every v € V' \ {s}
while S # V do
u < vertex in V'\ .S with the minimum d[u]
S« SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v)
m[v] « u
return {(u, 7[u])|lu € V' \ {s}}
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Example




Prim’'s Algorithm

For every v € V' \ .S maintain
o dv] = minyeg.(uv)er w(u, v):
the weight of the lightest edge between v and S
o 7[v] = arg minyeg:(uv)cr WU, v):
(m[v],v) is the lightest edge between v and S

In every iteration

@ Pick uw € V'\ S with the smallest d[u] value extract_min
e Add (m[u],u) to F
@ Add u to S, update d and 7 values. decrease_key

Use a priority queue to support the operations



Def. A priority queue is an abstract data structure that maintains a

set U of elements, each with an associated key value, and supports

the following operations:

@ insert(v, key_value): insert an element v, whose associated key
value is key_value.

o decrease key(v, new_key value): decrease the key value of an
element v in queue to new_key_value

@ extract_min(): return and remove the element in queue with the
smallest key value




Prim’'s Algorithm

MST-Prim(G, w)

1: s < arbitrary vertex in G
2: S+ 0,d(s) < 0 and d[v] + oo for every v € V' \ {s}
3:

»

while S # V do
u <— vertex in V' \ S with the minimum dJu]
S« SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v)
10: m[v] + u
11: return {(u, w[u))|u € V'\ {s}}

e 0N a




Prim's Algorithm Using Priority Queue

MST-Prim(G, w)
s <— arbitrary vertex in G
S+ 0,d(s) «+ 0 and d[v] « oo for every v € V' \ {s}
. () + empty queue, for each v € V: Q.insert(v, d[v])
while S # V do
u < @.extract_min()
S+ Su{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v), Q.decrease key(v, d[v])
m[v] + u
return {(u, 7[u])|lu € V' \ {s}}
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Running Time of Prim’s Algorithm Using Priority
Queue

O(n)x (time for extract_min) + O(m)x (time for decrease_key)

concrete DS | extract_min | decrease_key overall time
heap O(logn) O(logn) O(mlogn)
Fibonacci heap | O(logn) o(1) O(nlogn +m)




Assumption Assume all edge weights are different. J

Lemma (u,v) is in MST, if and only if there exists a cut (U, V' \ U),
such that (u,v) is the lightest edge between U and V' \ U. ’

(¢, f) is in MST because of cut ({a, b,c,i},V\{a,b,c, @})

(]
@ (i,g) is not in MST because no such cut exists



“Evidence” for e € MST or e ¢ MST

Assumption Assume all edge weights are different.

@ ¢ € MST < there is a cut in which ¢ is the lightest edge
@ ¢ ¢ MST < there is a cycle in which e is the heaviest edge

Exactly one of the following is true:
@ There is a cut in which ¢ is the lightest edge

@ There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.
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algorithm

| graph | weights | SS? | running time

Simple DP | DAG | R | SS | O(ntm)
Dijkstra U/D | R SS | O(nlogn + m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph

@ SS = single source

AP = all pairs

= undirected D = directed



Input: (directed or undirected) graph G = (V, E), s,t € V
w:FE— RZO
Output: shortest path from s to ¢

43/88



Single Source Shortest Paths
Input: directed graph G = (V. E), s€V
w:E = R
Output: shortest paths from s to all other vertices v € V/

Reason for Considering Single Source Shortest Paths

Problem

@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

@ Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with two
anti-parallel edges of the same weight



Input: directed graph G = (V, E), s € V
w: B — Ry
Output: 7[v],v € V'\ s: the parent of v in shortest path tree
d[v],v € V'\ s: the length of shortest path from s to v

45/88



Q: How to compute shortest paths from s when all edges have
weight 17

J

A: Breadth first search (BFS) from source s




Assumption Weights w(u,v) are integers (w.l.0.g).

@ An edge of weight w(u,v) is equivalent to a pah of w(u,v)
unit-weight edges

; | ; b ohohohe

Shortest Path Algorithm by Running BFS

1: replace (u,v) of length w(u,v) with a path of w(u,v)
unit-weight edges, for every (u,v) € E

2: run BFS virtually

3: m[v] < vertex from which v is visited

4: d[v] < index of the level containing v

@ Problem: w(u,v) may be too large!



Shortest Path Algorithm by Running BFS Virtually
1: S < {s},d(s) <0
2: while |S| < n do
3: find a v ¢ S that minimizes  min  {d[u] + w(u,v)}
u€S:(u,v)eEE
S+ Su{v}
dlv] ¢ minyes.(uver{du] + w(u,v)}

OIS




Virtual BFS: Example




Outline

© Single Source Shortest Paths
@ Dijkstra's Algorithm



Dijkstra’s Algorithm

Dijkstra(G, w, s)

1. S« 0,d(s) < 0 and d[v] < oo for every v € V' \ {s}
2. while S+ V do

3: u <— vertex in V'\ .S with the minimum d[u]
4 add u to S

5 for each v € V'\ S such that (u,v) € E do
6 if d[u] + w(u,v) < d[v] then

7: d[v] + d[u] + w(u,v)

8: m[v] « u

9: return (d, )

@ Running time = O(n?)






Improved Running Time using Priority Queue

Dijkstra(G, w, s)

1:

2: S+ 0,d(s) < 0 and d[v] + oo for every v € V' \ {s}
3: () + empty queue, for each v € V: Q.insert(v, d[v])
4: while S #V do

5: u < @.extract_min()

6: S« Su{u}

i for each v € V'\ S such that (u,v) € E do

8: if dju] +w(u,v) < d[v] then

9: d[v] « d[u] + w(u,v), Q.decrease key(v, d[v])
10: m[v] + u

11: return (7, d)




Recall: Prim’s Algorithm for MST

MST-Prim(G, w)
s <— arbitrary vertex in G
S+ 0,d(s) «+ 0 and d[v] « oo for every v € V' \ {s}
. () + empty queue, for each v € V: Q.insert(v, d[v])
while S # V do
u < @.extract_min()
S+ Su{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v), Q.decrease key(v, d[v])
m[v] + u
return {(u, 7[u])|lu € V' \ {s}}

A I T o
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Improved Running Time

Running time:
O(n) x (time for extract_min) + O(m) X (time for decrease_key)

Priority-Queue | extract_min | decrease_key Time
Heap O(logn) O(logn) O(mlogn)
Fibonacci Heap | O(logn) O(1) O(nlogn +m)




@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra's Algorithm

© Shortest Paths in Graphs with Negative Weights
@ All-Pair Shortest Paths and Floyd-Warshall

© Minimum Cost Arborescence
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Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s€ V
assume all vertices are reachable from s
w:FE—>R
Output: shortest paths from s to all other vertices v € V'

@ In transition graphs, negative weights make sense

o If we sell a item: ‘having the item’ — ‘not having the item’,
weight is negative (we gain money)

@ Dijkstra's algorithm does not work any more!



Dijkstra’s Algorithm Fails if We Have Negative
Weights




Q: What is the length of the shortest path from s to d? )

A: — J

Def. A negative cycle is a cycle in which the total weight of edges is
negative. J

Q: What is the length of the shortest simple path from s to d? J

A: 1 )




@ Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.
Dealing with Negative Cycles

@ We need to compute the shortest paths, among both simple and
complex paths.

@ Hardest: output —oo as a distance

o Easier: if negative cycle exists, allow algorithm to report “negative
cycle exists” without computing distances

@ Easiest: assume negative cycles do not exist; all shortest paths are
automatically simple paths

\\\\\\\




algorithm

| graph | weights | SS? | running time

Simple DP | DAG | R | SS | O(ntm)
Dijkstra U/D | Rsg SS | O(nlogn + m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph

@ SS = single source

AP = all pairs

= undirected D = directed



Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s e V
assume all vertices are reachable from s
w:FEF—R
Output: shortest paths from s to all other vertices v € V

o first try: f[v]: length of shortest path from s to v

@ issue: do not know in which order we compute f[v]'s

o f‘[v], £€{0,1,2,3--- ,n—1}, v € V : length of shortest path
from s to v that uses at most ¢ edges



o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

e f2a] =6
o f3a] =2

0 (=0,v=s
00 (=0,v+#s
F )

flvl =

i { Mty er (F1u] + wu, v))

{>0



Dynamic Programming: Example

ength-0 edge

1




dynamic-programming (G, w, s)
1: fOs] - 0 and fO[v] - oo for any v € V'\ {s}
2: for { <~ 1ton—1do
3. copy f&:t— f*
4 for each (u,v) € E do
5: if £ u] + w(u,v) < fv] then
6 Fi) = £ u] + wlu, v)
7

- return (f"7Hv])yey

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n — 1 edges

Proof.

If there is a path containing at least n edges, then it contains a cycle.
Removing the cycle gives a path with the same or smaller length. [




Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for { <~ 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < flv] then

5: flv] < flu] + w(u,v)

6: return f

@ Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration

@ This is OK: it can only “accelerate” the process!

@ After iteration ¢, f[v] is at most the length of the shortest path
from s to v that uses at most ¢ edges
e f[v] is always the length of some path from s to v



Bellman-Ford Algorithm

@ After iteration /¢:

length of shortest s-v path

< flv]

< length of shortest s-v path using at most ¢ edges

@ Assuming there are no negative cycles:

length of shortest s-v path

= length of shortest s-v path using at most n — 1 edges

@ So, assuming there are no negative cycles, after iteration n — 1:

f[v] = length of shortest s-v path



@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices | s a b c

f 0 | 0062 | 07 | 002-2 | co4d

@ end of iteration 1: 0, 2,7, 2, 4
@ end of iteration 2: 0, 2, 7, -2, 4
@ end of iteration 3: 0, 2, 7, -2, 4

@ Algorithm terminates in 3 iterations,
instead of 4.




Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for / <+ 1 ton do
updated < false
for each (u,v) € E do
if flu] +w(u,v) < flv] then
flv] < flu] + w(u,v), 7[v] < u
updated < true
if not updated, then return f

© ©° N s w

output “negative cycle exists”

@ m[v]: the parent of v in the shortest path tree

@ Running time = O(nm)
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All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V, E),
w : E — R (can be negative)
Output: shortest path from v to v for every u,v € V

1: for every starting point s € V do
% run Bellman-Ford(G, w, s)

@ Running time = O(n%m)



Summary of Shortest Path Algorithms we learned

algorithm

| graph | weights | SS? | running time

SimpleDP | DAG| R | SS | O(n+m)
Dijkstra U/D | Rsg SS | O(nlogn + m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)
= undirected D = directed

@ DAG = directed acyclic graph
AP = all pairs

@ SS = single source



Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 i=j
w(i, j) = { weight of edge (i,j) i#j,(i,j) € E
o0 i#34,G,j) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
o First try: f[i, ] is length of shortest path from i to j

@ Issue: do not know in which order we compute f[i, j]'s

e f¥[i,j]: length of shortest path from i to j that only uses vertices

{1,2,3,--- ,k} as intermediate vertices

2
Y7 y?




Example for Definition of f*[i, j]'s

1 4] =00

FH1,4] = o0

fP1,4] =140 (1 —2—4)
1,4 =90 (1—=3—=2—=4)
1,4 =90 (1 —=3—=2-—=4)
1,4 =60 (1 —=3—=5—4)




0 i=j
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices
w(i, ) k=0

Plial=1 #4104 L
m{ Pk g TR



Floyd-Warshall(G, w)

1: fo —w

2: for k< 1tondo
3 copy fFt = fF

4 for i < 1 ton do

5: for j < 1 ton do

6 if fR7Li k] + Rk, 4] < f*i, 4] then
7 FF, 3] = 7, k] 4 fR R, 4]




Floyd-Warshall(G, w)

L f7—w

2: for k< 1tondo

3 copy [ — f

4 for i< 1tondo

5: for j < 1ton do

6 if foOl, k] + f [k, ] < f i, 7] then
7 S ] < Fo0le k) + R g

Lemma Assume there are no negative cycles in GG. After iteration k,
fori,5 € V, fli, j] is exactly the length of shortest path from i to j
that only uses vertices in {1,2,3,--- ,k} as intermediate vertices.

@ Running time = O(n?).



1 2 3 4 5
10 60 1 0 9040 | 30 | 00ld0 | o0
21 10 0 0040 50 00
e e 316020 | 10 0 7060 | 20
4| o0 00 00 0 20
50 20 5 o 00 00 10 0
0ei=11=2,1=3, k=1 k=2,
(4] (5) ~3,j=1,j=2 =3~
 y



Recovering Shortest Paths

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j €V
2: for k<1 ton do
3: for i <+ 1 ton do
for j < 1ton do
if fli, k] + flk,j] < f[i, j] then
Flis g1 < £li, K] + Lk, 31, i, 3]

& & 55

print-path(z, 7)
if 7[i, j] = L then then
if i # j then print(s,")")
else
print-path(i, 7[i, j]), print-path(=[i, j], 7)

Rl A




Detecting Negative Cycles

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j €V
2: for k< 1tondo
for i < 1 ton do
for j < 1ton do
if fli, k| + flk,j] < f[i, ] then
fli ) < fli, k] + flk, g], 7wli gl < &
: for k < 1 ton do
for i < 1 ton do
for j < 1ton do
10: if fli, k] + f[k,j] < f[i, j] then
11: report “negative cycle exists” and exit

© N o0 s w




Summary of Shortest Path Algorithms

algorithm

| graph | weights | SS? | running time

SimpleDP | DAG| R | SS | O(n+m)
Dijkstra U/D | Rsg SS | O(nlogn + m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)
= undirected D = directed

@ DAG = directed acyclic graph
AP = all pairs

@ SS = single source



@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra's Algorithm

© Shortest Paths in Graphs with Negative Weights
@ All-Pair Shortest Paths and Floyd-Warshall

© Minimum Cost Arborescence
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Def. An arborescence is directed rooted tree, where all edges are
directed away from the root. ’

Minimum Cost Arborescence
Problem
Input: a directed graph G = (V, E),
edge weights w : E — R
root r € V

Output: a minimum-cost sub-graph
T = (V,E') of G that is an
arborescence with root r




Assumptions
@ the root r does not have incoming edges.

@ every vertex is reachable from the root 7.

o For every v € V'\ {r}, define [, = min csm w(e).
@ Forevery v € V\ {r} and e € &, define w'(e) = w(e) — I,.

lo = 10
p=1
i=3
c=6

Lemma The instances (G,w,r) and (G,w’,r) have the same
optimum solution.




Lemma The instances (G, w,r) and (G,w’,r) have the same
optimum solution.

Proof.
Given any tree solution T', w(T) — w'(T) is always }_ ci\(y b [

Lemma Let (vg,v1,v9, -+ ,v, = vg) be a cycle C of O-cost edges in
G. Then there is an optimum solution 7', that contains all but one
edges in C.







MCA(G, T, w)
1. F* <«
2: for every v € V' \ {r} do
3: ly < min,cgim w(e)
for every edge e entering v do: w'(e) < w(e) — 1,
choose a 0-cost edge entering v, add it to (V, F™*)

. else
for every cycle C' in F* do: contract C' into a single node
: let G’ = (V', E’) be the obtained graph.
10: T" + MCA(G',r,uw')
11: extend 7" to an aborescence T in GG, by keeping all but one
edges in every cycle C' in F*, and return T

4
5
6: if F™* form an arborescence then return F™*
7
8
9




@ The running time of the algorithm is O(mn)

e [Tarjan (1971)]: O(min(m logn,n?))

@ [Gabow, Galil, Spencer, Tarjan (1986)]: O(nlogn + m)

@ [Mendelson, Tarjan, Thorup, Zwick (2006)]: O(m loglogn)
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