BERTH 5 M7 (2026 F F 2=)
Graph Basics

B2 SR
MR EL B

@ Graphs

© Connectivity and Graph Traversal
@ Testing Bipartiteness

© Topological Ordering
@ Bridges and 2-Edge-Connected Components
@ O(n + m)-Time Algorithm to Find Bridges

@ Related Concept: Cut Vertices

© Strong Connectivity in Directed Graphs
@ Tarjan's O(n + m)-Time Algorithm for Finding SCCes

2/53

Examples of Graphs

Figure: Road Networks

AR
't
vy *f,/

Figure: Social Networks

Figure: Internet

st @ White's checkmate @Blackwins
turn

stalomate

black white
moves move. Draw

stalemate.

. o
Blt?ﬁ'h N .@hne wins

checkmate

Figure: Transition Graphs

(Undirected) Graph G = (V, E)

e V: set of vertices (nodes);
o V'={1,2,3,4,5,6,7,8}
@ [: pairwise relationships among V/;

o (undirected) graphs: relationship is symmetric, E' contains subsets of
size 2

o E={{1,2},{1,3},{2,3},{2,4},{2,5},{3,5},{3,7}, {3, 8},
{4,5},{5,6},{7,8}}

Abuse of Notations

@ For (undirected) graphs, we often use (7, j) to denote the set
{i, 5}

e We call (7,) an unordered pair; in this case (i, j) = (J,1).

@ Social Network : Undirected

@ Transition Graph : Directed

@ Road Network : Directed or Undirected
@ Internet : Directed or Undirected

Representation of Graphs

1 6

2 7
3 [(12]5]7]8] 5
"

5 d:(2,4,5,2,4,1,2,2)

@ Adjacency matrix
e n x n matrix, Alu,v] =1 if (u,v) € E and Alu,v] = 0 otherwise
e A is symmetric if graph is undirected
@ Linked lists
o For every vertex v, there is a linked list containing all neighbours of v.
@ If graph is static: store neighbors of all vertices in a length-2m
array, where the neighbors of any vertex are consecutive.

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assuming n —1 <m < n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1) O(dy,)

time to list all neighbours of v | O(n) O(d,)

Outline

© Connectivity and Graph Traversal
@ Testing Bipartiteness

Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s,t € V

Output: whether there is a path connecting s to t in G

@ Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains ¢

o Breadth-First Search (BFS)
o Depth-First Search (DFS)

Breadth-First Search (BFS)

o Build layers Lg, Ly, Lo, L3, - - -

o Lo={s}

@ L;,y contains all nodes that are not in LoU L; U---UL; and
have an edge to a vertex in L;

Implementing BFS using a Queue

BFS(s)
1. head < 1,tail < 1, queue[l] < s
2: mark s as “visited” and all other vertices as “unvisited”
3: while head < tail do
4: v < queue[head], head < head + 1
for all neighbours u of v do
if v is “unvisited” then
tail < tail + 1, queueltail] = u
mark u as “visited”

o NoO

@ Running time: O(n +m).

Example of BFS via Queue

Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

Implementing DFS using Recurrsion

DFS(s)
1: mark all vertices as “unvisited”
2: recursive-DFS(s)

recursive-DFS(v)

1: mark v as “visited”
2: for all neighbours u of v do
3: if w is unvisited then recursive-DFS(u)

Outline

© Connectivity and Graph Traversal
@ Testing Bipartiteness

Testing Bipartiteness: Applications of BFS

Def. A graph G = (V, E) is a bipartite
graph if there is a partition of V' into two
sets L and R such that for every edge
(u,v) € E, we have either u € L,v € R
orve LueR.

Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g
Neighbors of s must be in R

°

°

°

@ Neighbors of neighbors of s must be in L

°

@ Report “not a bipartite graph” if contradiction was found
°

If G contains multiple connected components, repeat above
algorithm for each component

Test Bipartiteness

bad edges!

Testing Bipartiteness using BFS

BFS(s)
1. head < 1,tail < 1, queue[l] < s
2: mark s as “visited”
3: color[s] < 0
4: while head < tail do
5: v < queue[head], head < head + 1
6: for all neighbours u of v do
7: if v is “unvisited” then
8: tail < tail + 1, queue[tail] = u
9: mark u as “visited”
10: color|u] <= 1 — color|v]
11: else if color[u] = color[v] then
12: print(“G is not bipartite”) and exit

Testing Bipartiteness using BFS

mark all vertices as “unvisited”

. for each vertex v € V do

if v is “unvisited” then
test-bipartiteness(v)

. print(“G is bipartite”)

AN~ A

Obs. Running time of algorithm = O(n + m)

© Graphs

© Connectivity and Graph Traversal
@ Testing Bipartiteness

© Topological Ordering

@ Bridges and 2-Edge-Connected Components
@ O(n + m)-Time Algorithm to Find Bridges
@ Related Concept: Cut Vertices

© Strong Connectivity in Directed Graphs
@ Tarjan's O(n + m)-Time Algorithm for Finding SCCes

22/53

Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7 : V — {1,2,3--- ,n}, so that
o if (u,v) € E then 7(u) < 7(v)

AN

%%

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

AN

%%

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
@ Use linked-lists of outgoing edges
@ Maintain the in-degree d,, of vertices

@ Maintain a queue (or stack) of vertices v with d, =0

topological-sort(G)
1: letd, < 0 foreveryv e V
2: for every v € V do
3: for every u such that (v,u) € E do
dy <+ d,+1
: S+ {v:d,=0},i<0
while S # () do
v < arbitrary vertex in S, S < S\ {v}
i< i+1, m(v) 1
for every u such that (v,u) € E do
10: dy <+ d, —1
11: if d, =0 then add uto S
12: if ¢ < n then output “not a DAG"

© o N g ks

@ S can be represented using a queue or a stack
@ Running time = O(n + m)

S as a Queue or a Stack

DS Queue Stack
Initialization | head < 1, tail < 0 | top + 0
Non-Empty? | head < tail top >0

Add(v) tail «+ tail + 1 top < top+1
Sltail] < v Sltop] < v
Retrieve v | v <= S[head] v < Sltop]

head + head + 1

top < top — 1

Example

Outline

@ Bridges and 2-Edge-Connected Components
@ O(n + m)-Time Algorithm to Find Bridges
@ Related Concept: Cut Vertices

Def. Given G = (V, E),

e € F is called a bridge if the
removal of ¢ from G will
increase its number of
connected components.

@ When G is connected,
e € E is a bridge iff its
removal will disconnect G.

Def. A graph G = (V, E) is 2-edge-connected if for every two
u,v € V', there are two edge disjoint paths connecting v and v.

Lemma Let B be the set of bridges in a graph G = (V, E). Then,
every connected component in (V, E'\ B) is 2-edge-connected. Every
such component is called a 2-edge-connected component of G.

Outline

@ Bridges and 2-Edge-Connected Components
@ O(n + m)-Time Algorithm to Find Bridges

Vertical and Horizontal Edges

e G = (V, E): connected graph

e T = (V, Er): rooted spanning tree of G

° (u,v) e E\ Eris
e vertical if one of w and v is an ancestor of the other in T,
e horizontal otherwise.

<------=--"T0O0t

tree edges
R - horizontal edges

N\ ---vertical edges

e G = (V, E): connected graph T: a DFS tree for G

Q: Can there be a
horizontal edges
(u,v) wrt T?

A: Nol

because of this

vertical edge .
. ___not a bridge

e G = (V,E): connected graph
@ T a DFS tree for G

bridge

@ (G contains only tree and
vertical edges

@ vertical edges: not bridges

Lemma

o (u,v) €T, uis parent

@ (u,v) is not a bridge <= 3 vertical edge connecting an
(inclusive) descendant of v and an (inclusive) ancestor of u

r values

levels 0

@ v.l: the level of vertex v 0
in DFS tree

@ T, subtree rooted at v

@ v.r: the smallest level
that can be reached by a
vertical edge from T,

o (parent(u),u) is a
bridge if and only if
w.r > u.l.

recursive-DFS(v)

1: mark v as ‘“visited”
2: V.r &= 00

3: for all neighbours u of v do

4 if u is unvisited then > w is a child of v
5: u.l —v.l+1

6 recursive-DFS(u)

7 if w.r > w.l then claim (v,u) is a bridge

8 if u.r <v.r then v.r < u.r

9

else if u.l <wv.l —1 then > u is ancestor but not parent
10: if u.l <v.r then v.r < u.l

finding-bridges
1: mark all vertices as “unvisited”
2: for every v € V do

3: if v is unvisited then
4: v.l 0
5 recursive-DFS(v)

@ Running time: O(n + m)

Outline

@ Bridges and 2-Edge-Connected Components

@ Related Concept: Cut Vertices

Cut vertices

Def. A vertex is a cut vertex of
G = (V, E) if its removal will
increase the number of connected
components of G.

Def. A graph G = (V,E) is
2-(vertex-)connected (or
biconnected) if for every u,v € V,
there are 2 internally-disjoint
paths between u and v.

Lemma A graph G = (V, E)
with |V| > 3 does not contain a
cut vertex, if and only if it is
biconnected.

Q: How can we find the cut vertices? J

A: With a small modification to the algorithm for finding bridges.)

Outline

© Strong Connectivity in Directed Graphs
@ Tarjan's O(n + m)-Time Algorithm for Finding SCCes

@ directed graph G = (V, E).
@ it may happen: there is a u — v path, but no v — wu path.

Def. A directed graph G = (V, E) is strongly connected if for every
u,v € V, there is a path from u to v in G. ’

Def. A strongly connected component (SCC) of a directed graph G
is @ maximal strongly connected subgraph of G. ’

@ Define equivalence relation: u
and v are related if they are
reachable from each other

@ equivalence class = SCC

e After contracting each SCC, GG

becomes a directed-acyclic
(multi-)graph (DAG).

Q: How can we check if a directed graph G = (V, E) is
strongly-connected?

A:

@ Run a traversal algorithm (either BFS or DFS) from s twice, one
on (G, one on G with all directions of edges reversed

@ If we reached all vertices in both algorithms, then G is
strongly-connected

@ Otherwise, it is not.

Q: How can we find all strongly-connected components (SCCes) of
a directed graph G?

A: A much harder problem. Tarjan's O(n + m)-time algorithm.

Outline

© Strong Connectivity in Directed Graphs
@ Tarjan's O(n + m)-Time Algorithm for Finding SCCes

Type of Edges w.r.t a Directed DFS Tree

e directed graph, G = (V, E), a DFS-tree T,

@ assuming every vertex is reachable from the root of T’

type of edges in G w.r.t T
@ tree edges: edges in T’

@ upwards (vertical) edges

e downwards (vertical) edges

@ leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

A: No!

Lemma Suppose u and v are in the
same SCC, and w is the lowest common
ancestor (LCA) of w and v in T". Then w
is the same SCC as u and v.

Proof.

@ Idea: using leftward, upwards and tree
edges, u can not reach v without
touching w or its ancestors. O

v

u

Lemma The vertices in every SCC of G induce a sub-tree in T'.

An Intermediate Algorithm to Keep in Mind |

1: build the DFS tree T’

2: while T is not empty do

3: find the first vertex v in the posterior-order-traversal of T’
satisfying the following property: there are no edges from T, to

outside T,
4: claim vertices in T, as a SCC, remove them from T and all

edges incident to them from 7" and G

Lemma Let T be the DFS tree; assume it is non-empty. Let v be
the vertex found according to the rule of the algorithm. Then T}, is a

SCCin G.
Proof.

e from v, we can reach any vertex in T, (using tree edges, easy)
e from any vertex in T, we can reach v (harder)

@ no edges go out of T, (by our choice, easy) O

lllustration of Intermediate Algorithm

Tarjan's O(n + m)-Time Algorithm

@ visited: vertices that are visited by the DFS procedure

e alive: not in any SCC yet
e departed: already in some SCC, and removed

@ unvisited: not yet visited by the DFS procedure

@ stack: store alive vertices, in visiting order
e onstack[v]: whether v is in the stack (i.e, alive)
@ v.i: the rank of v using the pre-traversal order

@ v.r, for an alive v: the minimum of w.i, over all vertices u that
can be reached from v, using alive edges

lllustration of Tarjan’s Algorithm

finding strongly connected components

1: statck < empty stack, ¢ < 0
: for every v € V do: v.i < L, onstack]i] < false

2
3: for every v € V do
4 if v.i = L then recursive-DFS(v)

recursive-DFS(v)
i1+ 1,00 t,0r <1
stack.push(v), onstack[v] < true
. for every outgoing edge (v, u) of v do
if u.i = L then recursive-DFS(u)
if onstack[u] and u.r < v.r then v.r < w.r

if v.r =v.7 then
pop all vertices in stack after v, including v itself
set onstack of these vertices to be false
declare that these vertices form an SCC

© oo N O kL

Running time of the algorithm is O(n + m).

	Graphs
	Connectivity and Graph Traversal
	Testing Bipartiteness

	Topological Ordering
	Bridges and 2-Edge-Connected Components
	O(n + m)-Time Algorithm to Find Bridges
	Related Concept: Cut Vertices

	Strong Connectivity in Directed Graphs
	Tarjan's O(n + m)-Time Algorithm for Finding SCCes

