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@ Graphs

© Connectivity and Graph Traversal
@ Testing Bipartiteness

© Topological Ordering
@ Bridges and 2-Edge-Connected Components
@ O(n + m)-Time Algorithm to Find Bridges

@ Related Concept: Cut Vertices

© Strong Connectivity in Directed Graphs
@ Tarjan's O(n + m)-Time Algorithm for Finding SCCes
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Examples of Graphs
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Figure: Transition Graphs
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(Undirected) Graph G = (V, E)

N N

e V: set of vertices (nodes);
o V'={1,2,3,4,5,6,7,8}
@ [: pairwise relationships among V/;

o (undirected) graphs: relationship is symmetric, E' contains subsets of
size 2

o E={{1,2},{1,3},{2,3},{2,4},{2,5},{3,5},{3,7}, {3, 8},
{4,5},{5,6},{7,8}}
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Directed Graph G = (V, F)

e V: set of vertices (nodes);
o V={1,2,3,4,56,7,8}
e F: pairwise relationships among V;

e directed graphs: relationship is asymmetric, ' contains ordered pairs
° E = {(17 2)7 (17 3)7 (37 2)’ (47 2)7 (27 5)7 (5’ 3)7 (37 7)7 (3? 8)’
(4,5), (5,6),(6,5),(8,7)}



Abuse of Notations

@ For (undirected) graphs, we often use (7, j) to denote the set
{i, 5}

e We call (7, ) an unordered pair; in this case (i, j) = (J,1).



@ Social Network : Undirected

@ Transition Graph : Directed

@ Road Network : Directed or Undirected
@ Internet : Directed or Undirected



Representation of Graphs
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@ Adjacency matrix
e n x n matrix, Alu,v] =1 if (u,v) € E and Alu,v] = 0 otherwise
e A is symmetric if graph is undirected



Representation of Graphs

L [24+3] 6: 5]
2: [+3++41+5] 7 348
30 24+ +718]

4: [24—+5] 8 BT
5. 24++3++{44+6]

@ Adjacency matrix
e n x n matrix, Alu,v] =1 if (u,v) € E and Alu,v] = 0 otherwise
e A is symmetric if graph is undirected
@ Linked lists
o For every vertex v, there is a linked list containing all neighbours of v.



Representation of Graphs

1 6

2 7
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@ Adjacency matrix
e n x n matrix, Alu,v] =1 if (u,v) € E and Alu,v] = 0 otherwise
e A is symmetric if graph is undirected
@ Linked lists
o For every vertex v, there is a linked list containing all neighbours of v.
@ If graph is static: store neighbors of all vertices in a length-2m
array, where the neighbors of any vertex are consecutive.



Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assuming n —1 <m < n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage

time to check (u,v) € E

time to list all neighbours of v




Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assuming n —1 <m < n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?)

time to check (u,v) € E

time to list all neighbours of v




Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assuming n —1 <m < n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E

time to list all neighbours of v




Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assuming n —1 <m < n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1)

time to list all neighbours of v




Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assuming n —1 <m < n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1) O(dy,)

time to list all neighbours of v




Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assuming n —1 <m < n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1) O(dy,)

time to list all neighbours of v | O(n)




Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assuming n —1 <m < n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1) O(dy,)

time to list all neighbours of v | O(n) O(d,)
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© Connectivity and Graph Traversal
@ Testing Bipartiteness



Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s,t € V

Output: whether there is a path connecting s to t in G
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Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s,t € V

Output: whether there is a path connecting s to t in G

@ Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains ¢

o Breadth-First Search (BFS)
o Depth-First Search (DFS)



Breadth-First Search (BFS)

o Build layers Lg, Ly, Lo, L3, - - -

o Lo={s}

@ L;,y contains all nodes that are not in LoU L; U---UL; and
have an edge to a vertex in L;
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Breadth-First Search (BFS)

o Build layers Lg, Ly, Lo, L3, - - -

o Lo={s}

@ L;,y contains all nodes that are not in LoU L; U---UL; and
have an edge to a vertex in L;




Implementing BFS using a Queue

BFS(s)
1. head < 1,tail < 1, queue[l] < s
2: mark s as “visited” and all other vertices as “unvisited”
3: while head < tail do
4: v < queue[head], head < head + 1
for all neighbours u of v do
if v is “unvisited” then
tail < tail + 1, queueltail] = u
mark u as “visited”

o NoO

@ Running time: O(n +m).



Example of BFS via Queue

tail

head



Example of BFS via Queue
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Example of BFS via Queue
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Example of BFS via Queue
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Example of BFS via Queue
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Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex ( “dead-end"), go back
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Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex ( “dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back




Implementing DFS using Recurrsion

DFS(s)
1: mark all vertices as “unvisited”
2: recursive-DFS(s)

recursive-DFS(v)

1: mark v as “visited”
2: for all neighbours u of v do
3: if w is unvisited then recursive-DFS(u)
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© Connectivity and Graph Traversal
@ Testing Bipartiteness



Testing Bipartiteness: Applications of BFS

Def. A graph G = (V, E) is a bipartite
graph if there is a partition of V' into two
sets L and R such that for every edge
(u,v) € E, we have either u € L,v € R
orve LueR.
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o Taking an arbitrary vertex s € V
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Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g
Neighbors of s must be in R

°

°

°

@ Neighbors of neighbors of s must be in L

°

@ Report “not a bipartite graph” if contradiction was found
°

If G contains multiple connected components, repeat above
algorithm for each component



Test Bipartiteness



Test Bipartiteness



Test Bipartiteness



Test Bipartiteness



Test Bipartiteness



Test Bipartiteness



Test Bipartiteness



Test Bipartiteness




Test Bipartiteness




Test Bipartiteness




Test Bipartiteness

bad edges!



Testing Bipartiteness using BFS

BFS(s)

1. head < 1,tail < 1, queue[l] < s

2: mark s as “visited” and all other vertices as “unvisited”
3: while head < tail do

4: v < queue[head], head < head + 1

5 for all neighbours u of v do

6 if u is “unvisited” then

7: tail < tail + 1, queue[tail] = u

8: mark u as “visited”




Testing Bipartiteness using BFS

test-bipartiteness(s)

[y

==
N =

e N R W

-
: £

head <+ 1,tail + 1, queue|[l] + s
mark s as “visited”
color[s] < 0
while head < tail do
v < queuelhead), head < head + 1
for all neighbours u of v do
if w is "“unvisited” then
tail + tail + 1, queue[tail] = u
mark u as “visited”
color|u] <= 1 — color|v]
else if color[u] = color[v] then
print( “G is not bipartite”) and exit




Testing Bipartiteness using BFS

mark all vertices as “unvisited”

. for each vertex v € V do

if v is “unvisited” then
test-bipartiteness(v)

. print(“G is bipartite”)

AN~ A




Testing Bipartiteness using BFS

mark all vertices as “unvisited”

. for each vertex v € V do

if v is “unvisited” then
test-bipartiteness(v)

. print(“G is bipartite”)

AN~ A

Obs. Running time of algorithm = O(n + m)




© Graphs

© Connectivity and Graph Traversal
@ Testing Bipartiteness

© Topological Ordering

@ Bridges and 2-Edge-Connected Components
@ O(n + m)-Time Algorithm to Find Bridges
@ Related Concept: Cut Vertices

© Strong Connectivity in Directed Graphs
@ Tarjan's O(n + m)-Time Algorithm for Finding SCCes
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Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7 : V — {1,2,3--- ,n}, so that
o if (u,v) € E then 7(u) < 7(v)
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Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
@ Use linked-lists of outgoing edges
@ Maintain the in-degree d,, of vertices

@ Maintain a queue (or stack) of vertices v with d, =0



topological-sort(G)
1: letd, < 0 foreveryv e V
2: for every v € V do
3: for every u such that (v,u) € E do
dy <+ d,+1
: S+ {v:d,=0},i<0
while S # () do
v < arbitrary vertex in S, S < S\ {v}
i< i+1, m(v) 1
for every u such that (v,u) € E do
10: dy <+ d, —1
11: if d, =0 then add uto S
12: if ¢ < n then output “not a DAG"

© o N g ks

@ S can be represented using a queue or a stack
@ Running time = O(n + m)



S as a Queue or a Stack

DS Queue Stack
Initialization | head < 1, tail < 0 | top + 0
Non-Empty? | head < tail top >0

Add(v) tail «+ tail + 1 top < top+1
Sltail] < v Sltop] < v
Retrieve v | v <= S[head] v < Sltop]

head + head + 1

top < top — 1
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queve: [a [pefalf] [ |
}
head
[alblela]e|s]
degree‘ ‘ ‘0‘0‘1‘0‘
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@ Bridges and 2-Edge-Connected Components
@ O(n + m)-Time Algorithm to Find Bridges
@ Related Concept: Cut Vertices
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@ Bridges and 2-Edge-Connected Components
@ O(n + m)-Time Algorithm to Find Bridges
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Vertical and Horizontal Edges

e G = (V, E): connected graph

e T = (V, Er): rooted spanning tree of G

° (u,v) e E\ Eris
e vertical if one of w and v is an ancestor of the other in T,
e horizontal otherwise.

<------=--"T0O0t

tree edges
R - horizontal edges

N\ ---vertical edges
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e G = (V, E): connected graph T: a DFS tree for G

Q: Can there be a
horizontal edges
(u,v) wrt T?

A: Nol
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@ (u,v) is not a bridge <= 3 vertical edge connecting an
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vertical edge .
. ___not a bridge

e G = (V,E): connected graph
@ T a DFS tree for G

bridge

@ (G contains only tree and
vertical edges

@ vertical edges: not bridges

Lemma

o (u,v) €T, uis parent

@ (u,v) is not a bridge <= 3 vertical edge connecting an
(inclusive) descendant of v and an (inclusive) ancestor of u
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@ v.l: the level of vertex v
in DFS tree
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r values

levels 0

@ v.l: the level of vertex v 0
in DFS tree

@ T, subtree rooted at v

@ v.r: the smallest level
that can be reached by a
vertical edge from T,

o (parent(u),u) is a
bridge if and only if
w.r > u.l.




recursive-DFS(v)

1: mark v as ‘“visited”
2: V.r &= 00

3: for all neighbours u of v do

4 if u is unvisited then > w is a child of v
5: u.l —v.l+1

6 recursive-DFS(u)

7 if w.r > w.l then claim (v,u) is a bridge

8 if u.r <v.r then v.r < u.r

9

else if u.l <wv.l —1 then > u is ancestor but not parent
10: if u.l <v.r then v.r < u.l




finding-bridges
1: mark all vertices as “unvisited”
2: for every v € V do

3: if v is unvisited then
4: v.l 0
5 recursive-DFS(v)

@ Running time: O(n + m)
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@ Bridges and 2-Edge-Connected Components

@ Related Concept: Cut Vertices
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Cut vertices

Def. A vertex is a cut vertex of
G = (V, E) if its removal will
increase the number of connected
components of G.

Def. A graph G = (V,E) is
2-(vertex-)connected (or
biconnected) if for every u,v € V,
there are 2 internally-disjoint
paths between u and v.

Lemma A graph G = (V, E)
with |V| > 3 does not contain a
cut vertex, if and only if it is
biconnected.




Q: How can we find the cut vertices? )
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Q: How can we find the cut vertices? J

A: With a small modification to the algorithm for finding bridges. )




Outline

© Strong Connectivity in Directed Graphs
@ Tarjan's O(n + m)-Time Algorithm for Finding SCCes
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@ directed graph G = (V, E).
@ it may happen: there is a u — v path, but no v — wu path.

Def. A directed graph G = (V, E) is strongly connected if for every
u,v € V, there is a path from u to v in G. ’

Def. A strongly connected component (SCC) of a directed graph G
is @ maximal strongly connected subgraph of G. ’

@ Define equivalence relation: u
and v are related if they are
reachable from each other

@ equivalence class = SCC

e After contracting each SCC, GG

becomes a directed-acyclic
(multi-)graph (DAG).
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Q: How can we check if a directed graph G = (V, E) is
strongly-connected?

A:

@ Run a traversal algorithm (either BFS or DFS) from s twice, one
on (G, one on G with all directions of edges reversed

@ If we reached all vertices in both algorithms, then G is
strongly-connected

@ Otherwise, it is not.

Q: How can we find all strongly-connected components (SCCes) of
a directed graph G?

A: A much harder problem. Tarjan's O(n + m)-time algorithm.
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© Strong Connectivity in Directed Graphs
@ Tarjan's O(n + m)-Time Algorithm for Finding SCCes
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Type of Edges w.r.t a Directed DFS Tree

e directed graph, G = (V, E), a DFS-tree T,

@ assuming every vertex is reachable from the root of T’

type of edges in G w.r.t T
@ tree edges: edges in T’

@ upwards (vertical) edges

e downwards (vertical) edges

@ leftwards horizontal edges

Q: Can there be rightwards horizontal edges?

A: No!
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Lemma Suppose u and v are in the
same SCC, and w is the lowest common
ancestor (LCA) of w and v in T". Then w
is the same SCC as u and v.

Proof.

@ Idea: using leftward, upwards and tree
edges, u can not reach v without
touching w or its ancestors. O

v

u

Lemma The vertices in every SCC of G induce a sub-tree in T'.







An Intermediate Algorithm to Keep in Mind

1:

build the DFS tree T'

2: while T is not empty do

find the first vertex v in the posterior-order-traversal of T’
satisfying the following property: there are no edges from T, to

outside T,
claim vertices in T, as a SCC, remove them from T and all

edges incident to them from 7" and GG
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An Intermediate Algorithm to Keep in Mind |

1: build the DFS tree T’

2: while T is not empty do

3: find the first vertex v in the posterior-order-traversal of T’
satisfying the following property: there are no edges from T, to

outside T,
4: claim vertices in T, as a SCC, remove them from T and all

edges incident to them from 7" and G

Lemma Let T be the DFS tree; assume it is non-empty. Let v be
the vertex found according to the rule of the algorithm. Then T}, is a

SCCin G.
Proof.

e from v, we can reach any vertex in T, (using tree edges, easy)
e from any vertex in T, we can reach v (harder)

@ no edges go out of T, (by our choice, easy) O
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@ visited: vertices that are visited by the DFS procedure

e alive: not in any SCC yet
e departed: already in some SCC, and removed

@ unvisited: not yet visited by the DFS procedure



Tarjan's O(n + m)-Time Algorithm

@ visited: vertices that are visited by the DFS procedure

e alive: not in any SCC yet
e departed: already in some SCC, and removed

@ unvisited: not yet visited by the DFS procedure

@ stack: store alive vertices, in visiting order
e onstack[v]: whether v is in the stack (i.e, alive)
@ v.i: the rank of v using the pre-traversal order

@ v.r, for an alive v: the minimum of w.i, over all vertices u that
can be reached from v, using alive edges



lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




lllustration of Tarjan’s Algorithm




finding strongly connected components

1: statck < empty stack, ¢ < 0
: for every v € V do: v.i < L, onstack]i] < false

2
3: for every v € V do
4 if v.i = L then recursive-DFS(v)

recursive-DFS(v)
i1+ 1,00 t,0r <1
stack.push(v), onstack[v] < true
. for every outgoing edge (v, u) of v do
if u.i = L then recursive-DFS(u)
if onstack[u] and u.r < v.r then v.r < w.r

if v.r =v.7 then
pop all vertices in stack after v, including v itself
set onstack of these vertices to be false
declare that these vertices form an SCC

© oo N O kL




Running time of the algorithm is O(n + m).
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