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Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Goals of algorithm design
@ Design efficient algorithms to solve problems

© Design more efficient algorithms to solve problems
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Common Paradigms for Algorithm Design

Greedy Algorithms

Divide and Conquer

Dynamic Programming

(]

Greedy algorithms are often for optimization problems.

They often run in polynomial time due to their simplicity.



Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy




Greedy Algorithm

@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable
strategy

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem




Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)




Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Def. A strategy is safe: there is always an optimum solution that
agrees with the decision made according to the strategy.




e Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling
© Offline Caching

@ Data Compression and Huffman Code

@ Summary
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Box Packing
Input: n boxes of capacities ¢y, co, -+ , ¢,
m items of sizes s1, 82, , Sm
Can put at most 1 item in a box
Item j can be put into box ¢ if s5; < ¢;

Output: A way to put as many items as possible in the boxes.




Box Packing
Input: n boxes of capacities ¢y, co, -+ , ¢,
m items of sizes s1, 82, , Sm
Can put at most 1 item in a box
Item j can be put into box ¢ if s5; < ¢;

Output: A way to put as many items as possible in the boxes.

Example:
@ Box capacities: 60, 40, 25, 15, 12
@ ltem sizes: 45, 42, 20, 19, 16

e Can put 3 items in boxes: 45 — 60,20 — 40,19 — 25
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Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing
@ Q: Take box 1. Which item should we put in box 17
@ A: The item of the largest size that can be put into the box.
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A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

@ Intuition: putting the item gives us the easiest residual problem.

e formal proof via exchanging argument:
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Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.
@ Take any optimum solution S. If j is put into Box 1 in S, done.

@ Otherwise, assume this is what happens in S
box 1

S | | | | I [ -ocecoc

55 5 3

item 5/ item j

@ s < s;, and swapping gives another solution .5’

e S is also an optimum solution. In S’, j is put into Box 1.
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@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

@ Trivial: we decided to put Item 5 into Box 1, and the remaining
instance is obtained by removing Item 7 and Box 1.



Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
1. T+{1,2,3,--- ,m}
2: for i < 1 ton do
3: if some item in T can be put into box ¢ then
7 < the largest item in T" that can be put into box i
print(“put item j in box ")
T T\ {j}

e & g2




Exchange argument: Proof of Safety of a Strategy

@ let .S be an arbitrary optimum solution.
e if S is consistent with the greedy choice, done.

@ otherwise, show that it can be modified to another optimum
solution S’ that is consistent with the choice.




Exchange argument: Proof of Safety of a Strategy

@ let .S be an arbitrary optimum solution.
e if S is consistent with the greedy choice, done.

@ otherwise, show that it can be modified to another optimum
solution S’ that is consistent with the choice.

@ The procedure is not a part of the algorithm.



© Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling
© Offline Caching

@ Data Compression and Huffman Code

@ Summary
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Interval Scheduling
Input: n jobs, job ¢ with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A maximum-size subset of mutually compatible jobs
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Interval Scheduling
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Greedy Algorithm for Interval Scheduling
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@ Schedule the job with the smallest size? No!
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Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
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Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time? Yes!
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Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.
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Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.

@ Take an arbitrary optimum solution S

e If it contains 7, done

@ Otherwise, replace the first job in S with j to obtain another
optimum schedule S’.
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Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.

@ Take an arbitrary optimum solution S

e If it contains 7, done

@ Otherwise, replace the first job in S with j to obtain another
optimum schedule S’.

St I | | | | | |
o
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Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

@ What is the remaining task after we decided to schedule 57

@ Is it another instance of interval scheduling problem?
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Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.
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Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

@ What is the remaining task after we decided to schedule ;7

@ Is it another instance of interval scheduling problem? Yes!
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Schedule(s, f,n)

1A+ {1,2,---,n}, 5«0
2: while A # () do

3: ] <— al“g minjleA f]/

4 S+ SU{j}, A« {j/eA:sy>f;}
5. return S
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Schedule(s, f,n)

A« {1,2,--- ,n}, S« 0

2: while A # () do

3: J < argminjcqa fjr

4 S+ SU{jh, A« {jeA:sp > fi}
5
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Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S« 0

2: while A # () do

3: J < argminjcqa fjr

4: S+ SU{j}, A« {j/eA:sy>f;}
5: return S
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Schedule(s, f,n)

A« {1,2,--- ,n}, S+ 0

2: while A # () do

3: j + arg minj/eA fj’

4 S« SU{j},; A«{jeA:sy > f;}
5. return S

Running time of algorithm?
e Naive implementation: O(n?) time

@ Clever implementation: O(nlgn) time
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Scheduling to minimize lateness

Input: n jobs, each job j € [n]| with a processing time p, and
deadline d;

Output: schedule jobs on 1 machine, to minimize the max. lateness

Cj: completion time of j lateness [; := max{C; — d;,0}

@ Example input:

0123 45 6 7 8 910

J lalb|c|d S S
pi|3]3]2]1 solution 1 | a I b [ c 141
d; |5]7|4]|8 solution 2 [ €1 a I D ||

@ solution 1: max lateness = max{0,3 — 5,6 —7,8 —4,9 -8} =4
@ solution 2: max lateness = max{0,2 —4,5—-5,8 - 7,9 -8} =1
@ solution 2 is better



Candidate algorithms
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@ Ascending order of processing times p;
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Candidate algorithms
Schedule the jobs in some natural order. Which order should we

choose?

@ Ascending order of processing times p;
@ Ascending order of slackness d; — p;
@ Ascending order of deadline d;.

Lemma The ascending order of deadlines d; (the Earliest Deadline
First order or the EDF order) is the optimum schedule.
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dj > dj/
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@ maximum lateness = max {O, maxc{C; — dj}}.

dj > dj/

o before: max{t+p; —d;,t+p;+py —dy} =t +p;+py —dy
o after: max{t+ p;, —dj,t+p; +py —d;}

@ py —dy <pj+py —djyand p; +py —d; < pj+py—dy

o max{t +py —dy,t+p;+py —d;} <t+p;j+pyp—dj

@ after swapping, the maximum of the two terms strictly decreases
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Repeated Swapping (for Analysis Only)

1: let S be any schedule (i.e, a permutation of [n])

2: while there are two adjacent jobs j and j' in .S, with j before j
and dj > dj/ do

3: swap j and j'in S

Q: Does the algorithm terminate? J

A: Yes. Number of inversions go down! J

@ (j,j') is an inversion in S if j appears before j' and d; > d;.

@ So the algorithm converges to an EDF order.

Q: What if there are multiple EDF orders, i.e., some jobs have the
same deadline? J

A: All EDF orders have the same maximum lateness. )
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Scheduling to Minimize Weighted Completion Time
Input: A set of n jobs [n] :={1,2,3,--- ,n}
each job j has a weight w; and processing time p;

Output: an ordering of jobs so as to minimize the total weighted
completion time of jobs

pa =1 Pp=2 pc=3

=] [ ] c

wy =2 wy =5 wy =7
wy = 2 wy =5 we =17 wp =5 we =7 wy = 2
[a [ b c . b c [ a [
0 1 2 3 4 5 6 0 1 2 3 4 5 6

cost =2x14+5x3+T7x6=>59 cost =5 x2+Tx5+2x6=57
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@ Ascending order of processing times p;
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Candidate algorithms

Schedule the jobs in some natural order. Which order should we
choose?

@ Ascending order of processing times p;
@ Descending order of slackness w;

© Ascending order of p; — w;

@ Ascending order of p;/w;

Def. The Smith ratio of a job is w;/p;.

Lemma The descending order of Smith ratios (the Smith rule) is
optimum.




@ A schedule S, j is right before j'.



@ A schedule S, j is right before j'.

Q: How does the total weighted completion time change if we swap
j and j? (O e = S R R




@ A schedule S, j is right before j'.

Q: How does the total weighted completion time change if we swap
j and j? (""j’j,""):(”"j/’j"")J

A: wyp;, = w;pj J




@ A schedule S, j is right before j'.

Q: How does the total weighted completion time change if we swap
j and j? (O e = S R R

A: wyp;, = w;pj

@ Therefore, swapping decrease the weighted completion time if
Py P

wj/ wy



@ A schedule S, j is right before j'.

Q: How does the total weighted completion time change if we swap
j and j? oy do gl )= ooy i)

A: wyp;, = w;pj

@ Therefore, swapping decrease the weighted completion time if
by’ Dj
L < =L

wj/ wy

@ Using the same argument as for the maximum lateness problem:
ascending order of p;/w; is optimum.



@ A schedule S, j is right before j'.

Q: How does the total weighted completion time change if we swap
j and j? oy do gl )= ooy i)
A:

Wilty = Wiy )

Therefore, swapping decrease the weighted completion time if
Py P

w]-/ wy

Using the same argument as for the maximum lateness problem:
ascending order of p;/w; is optimum.

Indeed, optimum weighted completion time is

Zijj+ Z min{w;pj, wyp;}.

j€[n] 1<j<y3'<n
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@ Cache that can store k£ pages

@ Sequence of page requests
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@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
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cache
page
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@ Sequence of page requests % LI
@ Cache miss happens if X ]
requested page not in cache. %
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@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

page
sequence !

=] o] [ [=] ] [=] [ [=]

cache

.

x [ L][]
x [ 5][]
% [1][5] [4]
% [1] 2] [4]
X



Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.
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sequence !
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cache
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@ Sequence of page requests % LI
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\r:/quested page not in ca_che. X
e need bring the page into ;
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Offline Caching

cache
page
@ Cache that can store k pages sequence! .

i
IR
(1] [5] [4]
(1] [2] [4]
1] [2] [5]
(1] [2] [3]
1] [2] ]3]
1] [2] 3]

misses = 6

@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

@ Cache hit happens if requested
page already in cache.

X X X X X ¥

@ Goal: minimize the number of
cache misses.

=] o] [ [=] ] (=] [ [=]



A Better Solution for Example

cache cache

sequencel (L] 1 LI
Cx 0 e )
LB % B [s] [
A[s][4] | % (][] [a
2] [a] | % [1][5][2
LI2l[s]) v 5] [2
11[21[3] | % [1][3][2
all2fls] v [z
L] l2] 8] i v [ls]l2.

misses =6 misses = 5

(=] (2] [e2] [] [eo] [~] [ [=]
X X X X X %



Offline Caching Problem

Input: £ : the size of cache

n : number of pages We use [n] for {1,2,3,---,n},

P1, P2, P3,°++ , pr € [n]: sequence of requests

Output: iy,149,143,- -+ ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)
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@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?




@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

A: Use the offline solution as a benchmark to measure the
“competitive ratio” of online algorithms
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Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): always evict the first page in cache

@ LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

o LFU(Least-Frequently-Used): Evict page that was least frequently
requested

@ All the above algorithms are not optimum!

@ Indeed all the algorithms are “online”, i.e, the decisions can be
made without knowing future requests. Online algorithms can not
be optimum.
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Optimum Offline Caching

Furthest-in-Future (FF) |

@ Algorithm: every time, evict the page that is not requested until
furthest in the future, if we need to evict one.

@ The algorithm is not an online algorithm, since the decision at a
step depends on the request sequence in the future.




Furthest-in-Future (FF)
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Greedy Algorithm
@ Build up the solutions in steps
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strategy

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)
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Offline Caching Problem

Input: k : the size of cache
n : number of pages
P1, P2, 03, ,PT € [n] sequence of requests
P1,D2, - Dk € {empty} U [n]: initial set of pages in cache
Output: iy,149,143,- -, € {hit,empty} U [n]
e empty stands for an empty page
o “hit” means evicting no pages
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A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p* is evicted at time 1.
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Proof.

@ If S evicted the page p*, S” will evict the page p’. Then, the
cache status of S and that of S” will be the same. S and S” will
be exactly the same from now on.
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@ We can then guarantee that S’ make at most the same number of
page-misses as S does.
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Proof.
@ We can then guarantee that S’ make at most the same number of
page-misses as S does.

o Idea: if S has a page-hit and S’ has a page-miss, we use the
opportunity to make the status of S’ the same as that of S. O




@ Thus, we have shown how to create another solution S’ with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p* is evicted at time 1.
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@ Thus, we have shown how to create another solution S’ with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. It is safe to evict p* at time 1.

Theorem The furthest-in-future strategy is optimum.




1. fort < 1to T do

2 if p, is in cache then do nothing

3 else if there is an empty page in cache then

4: evict the empty page and load p; in cache

5 else

6 p* < page in cache that is not used furthest in the future
7 evict p* and load p; in cache
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Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'log k).

@ For each page p, use a linked list (or an array with dynamic size)
to store the time steps in which p is requested.

e We can find the next time a page is requested easily.
@ Use a priority queue data structure to hold all the pages in cache,

so that we can easily find the page that is requested furthest in
the future.
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1: for every p < 1 ton do

0

NGO R W

10:
11:
12:

13:

times[p] < array of times in which p is requested, in
increasing order > put oo at the end of array
pointer|[p| « 1
() < empty priority queue
for every t < 1 to T do
pointer|p;] « pointer[p,] + 1
if p, € @ then
Q.increase-key(py, times|p;, pointer|p]]), print “hit”,
continue
if Q.size() < k then
print “load p; to an empty page "
else
p < Q.extract-max(), print “evict p and load p;"

Q.insert(py, times|py, pointer(p]]) > add p; to @ with key
value times|p;, pointer|p|]|
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Encoding Letters Using Bits

@ 8 letters a,b,c,d,e, f,g,h in a language
@ need to encode a message using bits

@ idea: use 3 bits per letter
a | blcldlel|flgl|h

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
deacfg — 011100000010101110

Q: Can we have a better encoding scheme?

@ Seems unlikely: must use 3 bits per letter

Q: What if some letters appear more frequently than the others?

J




Q: If some letters appear more frequently than the others, can we
have a better encoding scheme?

A: Using variable-length encoding scheme might be more efficient. J

Idea

@ using fewer bits for letters that are more frequently used, and
more bits for letters that are less frequently used.




Q: What is the issue with the following encoding scheme?
° a: 0 b: 1 c: 00
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A: Can not guarantee a unique decoding. For example, 00 can be
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Q: What is the issue with the following encoding scheme?
° a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c.

Solution
Use prefix codes to guarantee a unique decoding.




Prefix Codes

Def. A prefix code for a set .S of letters is a function v : S — {0, 1}*
such that for two distinct z,y € S, y(x) is not a prefix of v(y).




Prefix Codes

such that for two distinct z,y € S, y(x) is not a prefix of v(y).

0 1
a b c d / \
001 | 0000 | 0001 | 100 v\ /\®
e o S8
11 | 1010 | 1011 | 01

db db
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Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a b

Cc

d

001 | 0000

0001

100

e | f

9

h

11 | 1010

e 0001001100000001011110100001001

1011

01

2N
AN
AN

§ b &b
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@ Reason: there is only one way to cut the first code.
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@ Reason: there is only one way to cut the first code.

) AN

100 V%@ /\@

a b c
001 | 0000 | 0001
e / g
11 | 1010 | 1011

. 28
FaN Y

e 0001/001,/100000001011110100001001

@ Ca
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@ Reason: there is only one way to cut the first code.
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Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.
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Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.
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Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.
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Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.
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Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a
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Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

) AN

001

0000

0001

e

f

g

100 V%@ /\@

11

1010

1011

. 28
Jo @Y

e 0001,/001,/100/0000/01/01/11/1010/0001 /001

@ cadbhhefc



Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

) SN

001

0000

0001

e

f

g

100 V%@ /%

11

1010

1011

. 28
Jh 3%

e 0001,/001/100/0000/01/01/11/1010/0001/001/
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Properties of Encoding Tree
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1
/ \ @ Rooted binary tree
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Properties of Encoding Tree

1
,% \ @ Rooted binary tree

@ Left edges labelled 0 and right
/ \® / \@ edges labelled 1
@ A leaf corresponds to a code
E@ 5 for some letter
@ If coding scheme is not
! wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message




example

letters a |blc|d]| e
frequencies 1834 /6|10

AN

Lo A @g\@

scheme 1 scheme2 ~ scheme



example

letters a |blc|d] e

frequencies 1834 /6|10
scheme 1 length || 2 |3 |3 |2 ]| 2 | total =89
scheme 2 length || 1 |3 |3 |3 | 3 | total =87
scheme 3 length | 1 |4 4| 3| 2 || total = 84

AN TN 77

\
S

scheme 1 scheme 2 scheme 3



e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)
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e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make? J

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?

@ Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree. |




Which Two Letters Can Be Safely Put Together
As Brothers?

@ Focus on the “structure” of the optimum encoding tree
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Which Two Letters Can Be Safely Put Together
As Brothers?

@ Focus on the “structure” of the optimum encoding tree

@ There are two deepest leaves that are brothers

Q best to put the two least

--frenquent symbols here!

Lemma It is safe to make the two least frequent letters brothers.




Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers. J
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Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers. ‘

@ So we can irrevocably decide to make the two least frequent
letters brothers.
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Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers. ‘

@ So we can irrevocably decide to make the two least frequent
letters brothers.

Q: Is the residual problem another instance of the best prefix codes
problem? ‘

A: Yes, though it is not immediate to see why. ]




@ f,: the frequency of the letter x in the support.
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@ d, the depth of letter x in
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our output encoding tree.

> fuds

€S

= Z fxdm + fml dxl + fmzdﬂm

zeS\{z1,z2}

zeS\{z1,z2}



@ f,: the frequency of the letter x in the support.

@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter x in

O

our output encoding tree.

> fuds

€S

= Z fxdm + fml dxl + fmzdﬂm

zeS\{z1,z2}

zeS\{z1,z2}



@ f,: the frequency of the letter x in the support.

@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter x in

O

()
@) @

Def: fx’ — fml + sz

our output encoding tree.

> fuds

€S

= Z fxdm + fmldxl + fmzdﬂm
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@ f,.: the frequency of the letter x in the support.
@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

Jads
. >
e Z fxdm + fmldxl + fw2d3?2

zeS\{z1,z2}

zeS\{z1,z2}
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@ f,.: the frequency of the letter x in the support.
@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

Jads
. >
e Z fxdm + fmldxl + fw2d3?2

zeS\{z1,z2}

zeS\{z1,z2}

() = Y fedet fulde +1)

zeS\{z1,x2}
@ @ = Z .ffl}d.’lf + fI/
Def: fgg/ — fxl + fmz

zeS\{z1,z2}U{z'}



@ f,.: the frequency of the letter x in the support.
@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

> fuds
O zeS
= Z fxdm + fmldxl + fmzdxg
encoding tree for z€S\{z1,22}

S\ {21, 22} U {2/} = > folat (for + far)da,

z€S\{z1,22}
zeS\{z1,x2}
@ @ = Z .ffl}d.’lf + fI/
Def: fx/ — fml + fmz

zeS\{z1,z2}U{z'}



In order to minimize

> foda,

€S

we need to minimize

> fuda

zeS\{z1,z2}U{z’'}

subject to that d is the depth function for an encoding tree of
S \ {$1, .1'2}.

@ This is exactly the best prefix codes problem, with letters
S\ {z1, 2} U {2’} and frequency vector f!
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Def. The codes given the greedy algorithm is called the Huffman J
codes.




Def. The codes given the greedy algorithm is called the Huffman
codes.

Huffman(S, f)

1: while |S| > 1 do

2 let z1, x5 be the two letters with the smallest f values
3 introduce a new letter 2’ and let fy = fo, + fu,

4: let 1 and 25 be the two children of 2’

5 S+ S\ {x1,z}U{2'}

6:

return the tree constructed




Algorithm using Priority Queue

Huffman(S, f)

1: @ < build-priority-queue(.S)

2: while ().size > 1 do

3 x1 < Q.extract-min()

4 T9 < @Q.extract-min()

5: introduce a new letter 2’ and let f,y = fo, + fu,
6 let z; and 25 be the two children of z’

7 Q.insert (2, fur)

8:

return the tree constructed
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Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy
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Summary for Greedy Algorithms

Greedy Algorithm

Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

@ Interval scheduling problem: schedule the job j* with the earliest
deadline
o Offline Caching: evict the page that is used furthest in the future

Huffman codes: make the two least frequent letters brothers



Summary for Greedy Algorithms

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)




Summary for Greedy Algorithms

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Def. A strategy is “safe” if there is always an optimum solution
that “agrees with” the decision made according to the strategy.
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Proving a Strategy is Safe

@ Take an arbitrary optimum solution S
o If S agrees with the decision made according to the strategy, done
@ So assume S does not agree with decision
@ Change S slightly to another optimum solution S’ that agrees
with the decision
o Interval scheduling problem: exchange j* with the first job in an
optimal solution
o Offline caching: a complicated “copying” algorithm

e Huffman codes: move the two least frequent letters to the deepest
leaves.
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A Common Way to Analyze Greedy Algorithms
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Summary for Greedy Algorithms

A Common Way to Analyze Greedy Algorithms

Prove that the reasonable strategy is “safe” (key)

Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Interval scheduling problem: remove j* and the jobs it conflicts
with
Offline caching: trivial

Huffman codes: merge two letters into one

Two problems that do not fall into the category: lateness,
weighted completion time
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