BRSO 5 21T (20265EF 224 1)
Greedy Algorithms

ZIRZ - R
R R B AR

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Goals of algorithm design
@ Design efficient algorithms to solve problems

© Design more efficient algorithms to solve problems

Common Paradigms for Algorithm Design

o Greedy Algorithms
@ Divide and Conquer

@ Dynamic Programming

Common Paradigms for Algorithm Design

Greedy Algorithms

Divide and Conquer

Dynamic Programming

(]

Greedy algorithms are often for optimization problems.

They often run in polynomial time due to their simplicity.

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Greedy Algorithm

@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable
strategy

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Def. A strategy is safe: there is always an optimum solution that
agrees with the decision made according to the strategy.

e Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling
© Offline Caching

@ Data Compression and Huffman Code

@ Summary

5/75

Box Packing
Input: n boxes of capacities ¢y, co, -+ , ¢,
m items of sizes s1, 82, , Sm
Can put at most 1 item in a box
Item j can be put into box ¢ if s5; < ¢;

Output: A way to put as many items as possible in the boxes.

Box Packing
Input: n boxes of capacities ¢y, co, -+ , ¢,
m items of sizes s1, 82, , Sm
Can put at most 1 item in a box
Item j can be put into box ¢ if s5; < ¢;

Output: A way to put as many items as possible in the boxes.

Example:
@ Box capacities: 60, 40, 25, 15, 12
@ ltem sizes: 45, 42, 20, 19, 16

e Can put 3 items in boxes: 45 — 60,20 — 40,19 — 25

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing
@ Q: Take box 1. Which item should we put in box 17

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing
@ Q: Take box 1. Which item should we put in box 17
@ A: The item of the largest size that can be put into the box.

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

v,

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

@ Intuition: putting the item gives us the easiest residual problem.

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

@ Intuition: putting the item gives us the easiest residual problem.

e formal proof via exchanging argument:

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold. J

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.

@ Take any optimum solution S. If j is put into Box 1 in S, done.

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.
@ Take any optimum solution S. If j is put into Box 1 in S, done.

@ Otherwise, assume this is what happens in S:
box 1

S:

O O O O

item 7

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.
@ Take any optimum solution S. If j is put into Box 1 in S, done.

@ Otherwise, assume this is what happens in S:
box 1

S | | | | I [-ocecoc

5o & &

item 5/ item j

@ s < s;, and swapping gives another solution .5’

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.
@ Take any optimum solution S. If j is put into Box 1 in S, done.

@ Otherwise, assume this is what happens in S
box 1

S | | | | I [-ocecoc

55 5 3

item 5/ item j

@ s < s;, and swapping gives another solution .5’

e S is also an optimum solution. In S’, j is put into Box 1.

@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

@ Trivial: we decided to put Item 5 into Box 1, and the remaining
instance is obtained by removing Item 7 and Box 1.

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
1. T+{1,2,3,--- ,m}
2: for i < 1 ton do
3: if some item in T can be put into box ¢ then
7 < the largest item in T" that can be put into box i
print(“put item j in box ")
T T\ {j}

e & g2

Exchange argument: Proof of Safety of a Strategy

@ let .S be an arbitrary optimum solution.
e if S is consistent with the greedy choice, done.

@ otherwise, show that it can be modified to another optimum
solution S’ that is consistent with the choice.

Exchange argument: Proof of Safety of a Strategy

@ let .S be an arbitrary optimum solution.
e if S is consistent with the greedy choice, done.

@ otherwise, show that it can be modified to another optimum
solution S’ that is consistent with the choice.

@ The procedure is not a part of the algorithm.

© Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling
© Offline Caching

@ Data Compression and Huffman Code

@ Summary

13/75

Interval Scheduling
Input: n jobs, job ¢ with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A maximum-size subset of mutually compatible jobs

»
»

-1

—_
A\
-
T~
- ot

67 8 9

14/75

Interval Scheduling
Input: n jobs, job ¢ with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A maximum-size subset of mutually compatible jobs

8 9

[

[]

»
»

e
D
. b

01 2 3
T

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

@ Schedule the job with the smallest size?

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

0 1 2 38 4 5 6 7 8
1 [

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

0 1 2 38 4 5 6 7 8
1 [

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

»

T 1 T

01 2 3 456 789
1 [

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

0 1 2 5 4 5 6 7 8 9 ,
|
. o
. .
.
B__Ean__ 1
=

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

0 1 2 5 4 5 6 7 8 9 ,
|
. o
. .
.
B__Ean__ 1
=

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

H

c 1 2 3 4 5 6 7 8 9 ,
. =
-] ==
e
e
. . .

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

H

c 1 2 3 4 5 6 7 8 9 ,
- Emm
-] ==
e
e
. . .

:

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time?

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time? Yes!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time? Yes!
o 1 2 3 4 5 6 7T 8§ 9

»

e
—
| o e
N

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time? Yes!
o 1 2 3 4 5 6 7T 8§ 9

»

e
—
| o e
N

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.

@ Take an arbitrary optimum solution S

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.

@ Take an arbitrary optimum solution S

e If it contains 7, done

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.

@ Take an arbitrary optimum solution S

e If it contains 7, done

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.

@ Take an arbitrary optimum solution S

e If it contains 7, done

@ Otherwise, replace the first job in S with j to obtain another
optimum schedule S’.

S: I | | | | |]
;o

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.

@ Take an arbitrary optimum solution S

e If it contains 7, done

@ Otherwise, replace the first job in S with j to obtain another
optimum schedule S’.

St I | | | | | |
o
S | | | | | |

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

@ What is the remaining task after we decided to schedule 57

@ Is it another instance of interval scheduling problem?

0 1 2 3 4 5 6 7 8 9
| B -
I

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

@ What is the remaining task after we decided to schedule 57

@ Is it another instance of interval scheduling problem? Yes!

0 1 2 3 4 5 6 7 8 9
| B -
I

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

@ What is the remaining task after we decided to schedule 57

@ Is it another instance of interval scheduling problem? Yes!

0 1
AN

B [- N

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

@ What is the remaining task after we decided to schedule ;7

@ Is it another instance of interval scheduling problem? Yes!

01

i NG

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

LA+ {1,2,--- ,n}, S0
2: while A # () do

3: J < argmingca fj

5. return S

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

1A+ {1,2,---,n}, 5«0
2: while A # () do

3:] <— al“g minjleA f]/

4 S+ SU{j}, A« {j/eA:sy>f;}
5. return S

e o R
SN N [S R
e

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S« 0

2: while A # () do

3: J < argminjcqa fjr

4 S+ SU{jh, A« {jeA:sp > fi}
5

. return S
01 2 3 45 6 7 89,
——

[——
R WO T N

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S« 0

2: while A # () do

3: J < argminjcqa fjr

4 S+ SU{jh, A« {jeA:sp > fi}
5

. return S
01 2 3 45 6 7 89,
——

[——
R WO T N

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S« 0

2: while A # () do

3: J < argminjcqa fjr

4: S+ SU{j}, A« {j/eA:sy>f;}
5: return S

0 1 2 3 4 5 6 7 8 9

S T :l
| -

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S« 0

2: while A # () do

3: J < argminjcqa fjr

4: S+ SU{j}, A« {j/eA:sy>f;}
5: return S

0 1 2 3 4 5 6 7 8 9

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S+ 0

2: while A # () do

3: j + arg Hlil’lj/eA fj’

4 S« SU{j},; A«{jeA:sy > f;}
5. return S

Running time of algorithm?

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S+ 0

2: while A # () do

3: j + arg Hlil’lj/eA fj’

4 S« SU{j},; A«{jeA:sy > f;}
5. return S

Running time of algorithm?

e Naive implementation: O(n?) time

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S+ 0

2: while A # () do

3: j + arg minj/eA fj’

4 S« SU{j},; A«{jeA:sy > f;}
5. return S

Running time of algorithm?
e Naive implementation: O(n?) time

@ Clever implementation: O(nlgn) time

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

10,9510

. for every j € [n] according to non-decreasing order of f; do

if s; >t then
S+ Su{j}
bt fj

N gk oen

o —

return S

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2:t+0, 5«0

3: for every j € [n] according to non-decreasing order of f; do
4: if s; >t then

5: S« Sufil |

6: %= Jfg l

7: return S 0 1 2 3 4 5 6 7 8

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2:t+0, 5«0

3: for every j € [n] according to non-decreasing order of f; do
4: if s; >t then

5: S« Sufil |

6: %= Jfg l

7: return S 0 1 2 3 4 5 6 7 8

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

221+ 0,S«0

3: for every j € [n] according to non-decreasing order of f; do
4: if s; >t then

5: S« SU{j} !

6: 1+ fj l

7: return S 0 1 2 3 4 5 6 7 8

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2:t+0, 5«0

3: for every j € [n] according to non-decreasing order of f; do
4: if s; >t then

5. S « Su{j} t

6: %= Jfg l

7: return S 0O 1 2 3 4 5 6 7 8

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2:t+0, 5«0

3: for every j € [n] according to non-decreasing order of f; do
4: if s; >t then

5. S « Su{j} t

6: %= Jfg l

7: return S 0O 1 2 3 4 5 6 7 8

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2:t+0, 5«0

3: for every j € [n] according to non-decreasing order of f; do
4: if s; >t then

5. S « Su{j} t

6: %= Jfg l

7: return S 0O 1 2 3 4 5 6 7 8

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2:t+0, 5«0

3: for every j € [n] according to non-decreasing order of f; do
4: if s; >t then

5. S « Su{j} t

6: %= Jfg l

7: return S 0O 1 2 3 4 5 6 7 8

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
10,9510
. for every j € [n] according to non-decreasing order of f; do
if s; >t then
S« SU{j} t
t fj 1
5

N gk oen

return S U

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
10,9510
. for every j € [n] according to non-decreasing order of f; do
if s; >t then
S« SU{j} t
t fj 1
5

N gk oen

return S U

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
10,9510
. for every j € [n] according to non-decreasing order of f; do
if s; >t then
S« SU{j} t
t fj 1
5

N gk oen

return S U

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
10,9510
. for every j € [n] according to non-decreasing order of f; do
if s; >t then
S« SU{j} t
t fj 1
5

N gk oen

return S U

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
10,9510
. for every j € [n] according to non-decreasing order of f; do
if s; >t then
S« SU{j} t
t fj 1
5

N gk oen

return S U

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1:

N gk oen

sort jobs according to f values
10,9510

if s; >t then
S+ Su{j}
bt fj

. for every j € [n] according to non-decreasing order of f; do

return S

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1:

N gk oen

sort jobs according to f values
10,9510

if s; >t then
S+ Su{j}
bt fj

. for every j € [n] according to non-decreasing order of f; do

return S

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1:

N gk oen

sort jobs according to f values
10,9510

if s; >t then
S+ Su{j}
bt fj

. for every j € [n] according to non-decreasing order of f; do

return S

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1:

N gk oen

sort jobs according to f values
10,9510

if s; >t then
S+ Su{j}
bt fj

. for every j € [n] according to non-decreasing order of f; do

return S

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2:t+0, 5«0

3: for every j € [n] according to non-decreasing order of f; do
4: if s; >t then

5: S+ SU {j}

6: %= Jfg

7: return S 0O 1 2 3 4 5 6 7 8

© Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling
© Offline Caching

@ Data Compression and Huffman Code

@ Summary

23/75

Scheduling to minimize lateness

Input: n jobs, each job j € [n]| with a processing time p, and
deadline d;

Output: schedule jobs on 1 machine, to minimize the max. lateness

Cj: completion time of j lateness [; := max{C; — d;,0}

@ Example input:

0123 45 6 7 8 910

J lalb|c|d S S
pi|3]3]2]1 solution 1 | a I b [c 141
d; |5]7|4]|8 solution 2 [€1 a I D ||

@ solution 1: max lateness = max{0,3 — 5,6 —7,8 —4,9 -8} =4
@ solution 2: max lateness = max{0,2 —4,5—-5,8 - 7,9 -8} =1
@ solution 2 is better

Candidate algorithms
Schedule the jobs in some natural order. Which order should we

choose?

@ Ascending order of processing times p;
@ Ascending order of slackness d; — p;
© Ascending order of deadline d;.

Candidate algorithms
Schedule the jobs in some natural order. Which order should we

choose?

@ Ascending order of processing times p;
@ Ascending order of slackness d; — p;
@ Ascending order of deadline d;.

Candidate algorithms
Schedule the jobs in some natural order. Which order should we

choose?

@ Ascending order of processing times p;
@ Ascending order of slackness d; — p;
@ Ascending order of deadline d;.

Lemma The ascending order of deadlines d; (the Earliest Deadline
First order or the EDF order) is the optimum schedule.

@ maximum lateness = max {O, maxc{C; — dj}}.

@ maximum lateness = max {O, maxc{C; — dj}}.

dj > Clj/

@ maximum lateness = max {O, maxc{C; — dj}}.

dj > Clj/

@ maximum lateness = max {O, maxc{C; — dj}}.

dj > Clj/

o before: max{t+p; —d;,t+p;+py —dy} =t +p;+py —dy

@ maximum lateness = max {O, maxc{C; — dj}}.

dj > Clj/

o before: max{t +p; — d;,t +p; +pyr —dyr} =t +p; +pj — dy
o after: max{t+ p;, —dj,t+p; +py —d;}

@ maximum lateness = max {O, maxc{C; — dj}}.

dj > Clj/

o before: max{t +p; — d;,t +p; +pyr —dyr} =t +p; +pj — dy
o after: max{t+ p;, —dj,t+p; +py —d;}
@ pjr —dj/ < p; + pj —dj/ and P+ Dy —dj < p;+pj —dj/

@ maximum lateness = max {O, maxc{C; — dj}}.

dj > dj/

o before: max{t+p; —d;,t+p;+py —dy} =t +p;+py —dy
o after: max{t+ p;, —dj,t+p; +py —d;}

® py —dy <pj+py—dyand p; +py —d; <p;j+py—dy

o max{t+py —dy,t+p;+py —d;} <t-+p;+py—dj

@ maximum lateness = max {O, maxc{C; — dj}}.

dj > dj/

o before: max{t+p; —d;,t+p;+py —dy} =t +p;+py —dy
o after: max{t+ p;, —dj,t+p; +py —d;}

@ py —dy <pj+py —djyand p; +py —d; < pj+py—dy

o max{t +py —dy,t+p;+py —d;} <t+p;j+pyp—dj

@ after swapping, the maximum of the two terms strictly decreases

Repeated Swapping (for Analysis Only)

1: let S be any schedule (i.e, a permutation of [n])

2: while there are two adjacent jobs j and j’ in S, with j before j’
and dj > dj/ do

3: swap j and j'in S

Repeated Swapping (for Analysis Only)

1: let S be any schedule (i.e, a permutation of [n])

2: while there are two adjacent jobs j and j’ in S, with j before j’
and dj > dj/ do

3: swap j and j'in S

Q: Does the algorithm terminate?

Repeated Swapping (for Analysis Only)

1: let S be any schedule (i.e, a permutation of [n])

2: while there are two adjacent jobs j and j' in .S, with j before j
and dj > dj/ do

3: swap j and j'in S

Q: Does the algorithm terminate? J

A: Yes. Number of inversions go down! J

@ (j,j') is an inversion in S if j appears before j' and d; > d;.

Repeated Swapping (for Analysis Only)
1: let S be any schedule (i.e, a permutation of [n])
2: while there are two adjacent jobs j and j' in .S, with j before j
and dj > dj/ do
3: swap j and j'in S

Q: Does the algorithm terminate?

A: Yes. Number of inversions go down!

@ (j,j') is an inversion in S if j appears before j' and d; > d;.

@ So the algorithm converges to an EDF order.

Repeated Swapping (for Analysis Only)

1: let S be any schedule (i.e, a permutation of [n])

2: while there are two adjacent jobs j and j' in .S, with j before j
and dj > dj/ do

3: swap j and j'in S

Q: Does the algorithm terminate? J

A: Yes. Number of inversions go down! J

@ (j,j') is an inversion in S if j appears before j' and d; > d;.

@ So the algorithm converges to an EDF order.

Q: What if there are multiple EDF orders, i.e., some jobs have the
same deadline? J

Repeated Swapping (for Analysis Only)

1: let S be any schedule (i.e, a permutation of [n])

2: while there are two adjacent jobs j and j' in .S, with j before j
and dj > dj/ do

3: swap j and j'in S

Q: Does the algorithm terminate? J

A: Yes. Number of inversions go down! J

@ (j,j') is an inversion in S if j appears before j' and d; > d;.

@ So the algorithm converges to an EDF order.

Q: What if there are multiple EDF orders, i.e., some jobs have the
same deadline? J

A: All EDF orders have the same maximum lateness.)

© Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling
© Offline Caching

@ Data Compression and Huffman Code

@ Summary

28/75

Scheduling to Minimize Weighted Completion Time
Input: A set of n jobs [n] :={1,2,3,--- ,n}
each job j has a weight w; and processing time p;

Output: an ordering of jobs so as to minimize the total weighted
completion time of jobs

pa =1 Pp=2 pc=3

=] [] c

wy =2 wy =5 wy =7
wy = 2 wy =5 we =17 wp =5 we =7 wy = 2
[a [b c . b c [a [
0 1 2 3 4 5 6 0 1 2 3 4 5 6

cost =2x14+5x3+T7x6=>59 cost =5 x2+Tx5+2x6=57

Candidate algorithms
Schedule the jobs in some natural order. Which order should we

choose?

@ Ascending order of processing times p;
@ Descending order of slackness w;

© Ascending order of p; — w;

@ Ascending order of p;/w;

Candidate algorithms
Schedule the jobs in some natural order. Which order should we

choose?

@ Ascending order of processing times p;
@ Descending order of slackness w;

© Ascending order of p; — w;

@ Ascending order of p;/w;

Candidate algorithms

Schedule the jobs in some natural order. Which order should we
choose?

@ Ascending order of processing times p;
@ Descending order of slackness w;

© Ascending order of p; — w;

@ Ascending order of p;/w;

Def. The Smith ratio of a job is w;/p;.

Lemma The descending order of Smith ratios (the Smith rule) is
optimum.

@ A schedule S, j is right before j'.

@ A schedule S, j is right before j'.

Q: How does the total weighted completion time change if we swap
j and j? (O e = S R R

@ A schedule S, j is right before j'.

Q: How does the total weighted completion time change if we swap
j and j? (""j’j,""):(”"j/’j"")J

A: wyp;, = w;pj J

@ A schedule S, j is right before j'.

Q: How does the total weighted completion time change if we swap
j and j? (O e = S R R

A: wyp;, = w;pj

@ Therefore, swapping decrease the weighted completion time if
Py P

wj/ wy

@ A schedule S, j is right before j'.

Q: How does the total weighted completion time change if we swap
j and j? oy do gl)= ooy i)

A: wyp;, = w;pj

@ Therefore, swapping decrease the weighted completion time if
by’ Dj
L < =L

wj/ wy

@ Using the same argument as for the maximum lateness problem:
ascending order of p;/w; is optimum.

@ A schedule S, j is right before j'.

Q: How does the total weighted completion time change if we swap
j and j? oy do gl)= ooy i)
A:

Wilty = Wiy)

Therefore, swapping decrease the weighted completion time if
Py P

w]-/ wy

Using the same argument as for the maximum lateness problem:
ascending order of p;/w; is optimum.

Indeed, optimum weighted completion time is

Zijj+ Z min{w;pj, wyp;}.

j€[n] 1<j<y3'<n

© Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling
© Offline Caching

@ Data Compression and Huffman Code

@ Summary

32/75

Offline Caching

@ Cache that can store k£ pages

@ Sequence of page requests

Offline Caching

cache
page
@ Cache that can store k pages sequence .

@ Sequence of page requests

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence .
@ Sequence of page requests |

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! .
X

@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] [=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence .

x [0

@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] [=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! .
@ Sequence of page requests X L]

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

X

=] o] [[=]] [=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence | D D D
@ Sequence of page requests % LI
x [5][]

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing

page if necessary.

=] o] (=] [=] [] [=] [=]

Offline Caching

cache
page
@ Cache that can store k pages sequence .

x [
x [5][]
X

@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] [=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence | D D D
@ Sequence of page requests % LI
@ Cache miss happens if X]
requested page not in cache. %

We need bring the page into
cache, and evict some existing

page if necessary.

=] o] [=2] [=] [o] [=]

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

page
sequence !

=] o] [[=]] [=] [[=]

cache

.

x [L][]
x [5][]
% [1][5] [4]
X

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

page
sequence !

=] o] [[=]] [=] [[=]

cache

.

x [L][]
x [5][]
% [1][5] [4]
% [1] 2] [4]

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

page
sequence !

=] o] [[=]] [=] [[=]

cache

.

x [L][]
x [5][]
% [1][5] [4]
% [1] 2] [4]
X

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

page
sequence !

=] o] [[=]] [=] [[=]

cache

.

x [L][]
x [5][]
% [1][5] [4]
% [1] 2] [4]
% [1] 2] [5]

Offline Caching

cache

page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests % LI
@ Cache miss happens if X]
\r:/quested page not in ca_che. X

e need bring the page into ;
cache, and evict some existing x
page if necessary. X

X
‘

Offline Caching

cache

page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests % LI
@ Cache miss happens if X]
requested page not in cache. 1 =112
We need bring the page into x
cache, and evict some existing x
page if necessary. X
X

‘

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests % LI
@ Cache miss happens if X]
requested page not in ca_che. X
We need bring the page into ;
cache, and evict some existing x
page if necessary. X
@ Cache hit happens if requested %
page already in cache. 3

Offline Caching

cache
page |
@ Cache that can store k pages sequence | D D D
@ Sequence of page requests % L]
@ Cache miss happens. if X]
\r:/quested page not in ca_che. X
e need bring the page into ;
cache, and evict some existing x
page if necessary. X
@ Cache hit happens if requested X
page already in cache. 3

Offline Caching

cache
page |
@ Cache that can store k pages sequence | D D D
@ Sequence of page requests % L]
@ Cache miss happens. if X]
\r:/quested page not in ca_che. X
e need bring the page into ;
cache, and evict some existing x
page if necessary. X
@ Cache hit happens if requested X
page already in cache. 3

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests % LI
@ Cache miss happens if X]
\r:/quested page not in ca_che. X
e need bring the page into ;
cache, and evict some existing x
page if necessary. X
@ Cache hit happens if requested X
page already in cache. ;

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests % LI
@ Cache miss happens if X]
\r:/quested page not in ca_che. X
e need bring the page into ;
cache, and evict some existing x
page if necessary. X
@ Cache hit happens if requested X
page already in cache. ;

misses = 6

Offline Caching

cache
page
@ Cache that can store k pages sequence! .

i
IR
(1] [5] [4]
(1] [2] [4]
1] [2] [5]
(1] [2] [3]
1] [2]]3]
1] [2] 3]

misses = 6

@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

@ Cache hit happens if requested
page already in cache.

X X X X X ¥

@ Goal: minimize the number of
cache misses.

=] o] [[=]] (=] [[=]

A Better Solution for Example

cache cache

sequencel (L] 1 LI
Cx 0 e)
LB % B [s] [
A[s][4] | % (][] [a
2] [a] | % [1][5][2
LI2l[s]) v 5] [2
11[21[3] | % [1][3][2
all2fls] v [z
L] l2] 8] i v [ls]l2.

misses =6 misses = 5

(=] (2] [e2] [] [eo] [~] [[=]
X X X X X %

Offline Caching Problem

Input: £ : the size of cache

n : number of pages We use [n] for {1,2,3,---,n},

P1, P2, P3,°++ , pr € [n]: sequence of requests

Output: iy,149,143,- -+ ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

Offline Caching Problem

Input: £ : the size of cache

e e T We use [n] for {1,2,3,--- ,n}.

P1, P2, P3,°++ , pr € [n]: sequence of requests

Output: iy,i9,143,- -+ ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Offline Caching Problem

Input: £ : the size of cache

e e T We use [n] for {1,2,3,--- ,n}.

P1, P2, P3,°++ , pr € [n]: sequence of requests

Output: iy,i9,143,- -+ ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

Offline Caching Problem

Input: £ : the size of cache
We use [n] for {1,2,3,--- ,n}.

n : number of pages
P1, P2, P3,°++ , pr € [n]: sequence of requests

Output: iy,i9,143,- -+ ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

A: Use the offline solution as a benchmark to measure the
“competitive ratio” of online algorithms

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): always evict the first page in cache

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): always evict the first page in cache

@ LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): always evict the first page in cache

@ LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

o LFU(Least-Frequently-Used): Evict page that was least frequently
requested

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): always evict the first page in cache

@ LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

o LFU(Least-Frequently-Used): Evict page that was least frequently
requested

@ All the above algorithms are not optimum!

@ Indeed all the algorithms are “online”, i.e, the decisions can be
made without knowing future requests. Online algorithms can not
be optimum.

FIFO is not optimum

FIFO

NN

—
)

o)
c
D
N
—+
N

=]] Lo [=]

FIFO is not optimum

FIFO

- OOo-
X

—
)

o)
c
D
N
—+
n

=]] Lo [=]

FIFO is not optimum

FIFO

- O
s [[][]

—
)

o)
c
D
N
—+
N

=]] Lo [=]

FIFO is not optimum

FIFO

- U
x 1] 11
X

—
)

o)
c
D
N
—+
n

=]] Lo [=]

FIFO is not optimum

FIFO

g
x 1] 11
x [1][2][]

—
)

o)
c
D
N
—+
n

=]] Lo [=]

FIFO is not optimum

FIFO

I
x 1] 11
x [1][2][]
X

—
)

o)
c
D
N
—+
n

=]] Lo [=]

FIFO is not optimum

FIFO

- U
x 1] 11
x [1][2][]
x [1][2][3]

—
)

o)
c
D
N
—+
n

=]] Lo [=]

FIFO is not optimum

—
)

o)
o
D
N
—+
n

=]] Lo [=]

FIFO

NN

x 1] 11
x [1][2][]
x [1][2][3]
X

FIFO is not optimum

—
)

o)
c
D
N
—+
n

=]] Lo [=]

FIFO

NN

% [][]
x [1][2][]
x [1][2][3]
x [4][2][3]

FIFO is not optimum

—
)

o)
o
D
N
—+
n

=]] Lo [=]

FIFO

NN

% [][]
x [1][2][]
x [1][2][3]
x [4][2][3]
X

FIFO is not optimum

—
)

o)
o
D
N
—+
n

=]] Lo [=]

FIFO

NN

% [][]
x [1][2][]
x [1][2][3]
x [4][2][3]
x [4][1][3]

FIFO is not optimum

—
)

o)
o
D
N
—+
n

=]] Lo [=]

FIFO

NN

% [][]
x [1][2][]
x [1][2][3]
x [4][2][3]
x [4][1][3]

misses = H

FIFO is not optimum

—
)

o)
o
D
N
—+
n

=] B Lo [=]

FIFO

NN

% [][]
x [1][2][]
x [1][2][3]
x [4][2] 3]
x [4][1][3]

misses = H

Furthest-in-Future

N

x (U1
x [1[2][]
x [1][2][3]
x [1][4] [3]

misses = 4

Optimum Offline Caching

Furthest-in-Future (FF) |

@ Algorithm: every time, evict the page that is not requested until
furthest in the future, if we need to evict one.

@ The algorithm is not an online algorithm, since the decision at a
step depends on the request sequence in the future.

Furthest-in-Future (FF)

requests

=]] [eo] [ro] [=]

X X X X

FIFO
N
I
1) [2] [

x4 [[3]

misses = 5

Furthest-in-Future

LI

Cx [0
ox [2] []
o x [1][2][3]
- x [1][4] [3]

misses = 4

Example

requests

,,, >

Example

requests

G WEHEEDEEDEE
X x X

mEniingn

006

000

Example

requests

U 0RO OB QOE B
X X X

]

RN

EREEE

Example

requests

|
&
]

,,, >

IRETRETE
=] [2] %

Example

requests

0

=

1)][4 [2 [5) [3] [2] [4] [3) [a) [5) [3]

|
[Rl)

X X X X
IR TUF]

(o] [+
(o] [~]
o]]
i
L] O

Example

requests

0

=

1)][4 [2 [5) [3] [2] [4] [3) [a) [5) [3]

|
[Rl)

X X X X
) O]) 2ol
L] O] [5) [5] [8]

L O L0 [e 4

e}

[io]

Example

requests

2 =4

4

1]] [2] [5 3] (@ @) B B @) B

¥e

8]

-

X X X X
) O]) 2ol
L] O] [5) [5] [8]

L O L0 [e 4

[io]

[io]

Example

requests

2 =4

4

1]] [2] [5 3] (@ @) B B @) B

¥e

8]

-

X

I FU U Pl NF]
L0] [s) [s] [s] [3]

X X X X
L O O [[e 4] [4]

Example

requests

0

=

1)][4 [2 [5) [3] [2] [4] [3) [a) [5) [3]

|
[Rl)

X

X X X X
I FU U Pl NF]
L0] [s) [s] [s] [3]

L O O [[e 4] [4]

Example

requests

0

=

1)][4 [2 [5) [3] [2] [4] [3) [a) [5) [3]

|
[Rl)

X

X X X X
L) O)) O 2 o[2) [2]

=

L L)] [s) [s] [s] [8] [3]
L) O O [[a] [4] [a) [4

Example

requests

0

=

1)][4 [2 [5) [3] [2] [4] [3) [a) [5) [3]

|
[Rl)

X

X X X X
L) O]) B 2 [2) B2 of2) 2

=

L O] [s) [s]) [s] [8] [8] [8]
L O L0 [[a] [4] [a) [4) [4]

Example

requests

0

=

1)][4 [2 [5) [3] [2] [4] [3) [a) [5) [3]

|
[Rl)

X

X X X X
L) 0]) O)R]) [2]

=

L) O] [5) [s) (8] [8) [3] [8] [3]
L L) O L) [a) [4) [a] [4] [a] [4]

Example

requests

=

=

-- >

|
[Rl)

1])[4 [2) [5) [3] [2] [4] [3) Lo 5] (3)

X

X X X X
L) 0]) O)R]) [2]

=

L) O] [5) [s) (8] [8) [3] [8] [3]
L L) O L) [a) [4) [a] [4] [a] [4]

Example

requests

=

=

-- >

|
[Rl)

1])[4 [2) [5) [3] [2] [4] [3) Lo 5] (3)

X

X X X X
L) O]) [2] [2) B2 f2) [2) [2) [

=

L] L[] [5) [s] [s] [3) [3] [3] [8) [3]
L) O L0 [4) [a] [4] [a) [4) [a] [4) [4]

Example

requests

=

=

-- >

|
[Rl)

1])[4 [2) [5) [3] [2] [4] [3) Lo 5] (3)

X X

X

X X X X

=

O] B O 2 [2)) 2] R [2) [[

=

L) 0] [s) [s] [s] [3) [3] [3] [8) [3] [3]
L)L) O L) [a) 4] [a] [4] (4] [4) [a] 4

Example

requests

=

=

e

|
[Rl)

1])[4 [2) [5) [3] [2] [4] [3) Lo 5] (3)

X X

X

X X X X
L) O]) O) =) [2] [f2) [(5] [5]

5

=

L 00] [s) [s] [s] [3) (3] [8] [8) [3] [3] [3]
L O L L) [a) [4] o [4f [a) [4) [a) [4] [4]

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Offline Caching Problem
Input: k : the size of cache
n : number of pages
P1, P2, P3,°*+ , pr € [n]: sequence of requests
Output: iy,i9,143, - ,i; € {hit,empty} U [n]
e empty stands for an empty page
o “hit" means evicting no pages

Offline Caching Problem

Input: k : the size of cache
n : number of pages
P1, P2, 03, ,PT € [n] sequence of requests
P1,D2, - Dk € {empty} U [n]: initial set of pages in cache
Output: iy,149,143,- -, € {hit,empty} U [n]
e empty stands for an empty page
o “hit” means evicting no pages

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. It is safe to evict p* at time 1.

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p* is evicted at time 1.

,,,,,,

Proof.

@ S: any optimum solution
@ p*: page in cache not requested until furthest in the future.
o In the example, p* = 3.

IR EI N E AR 10 KN T —

Proof.
Q@ S: any optimum solution
@ p*: page in cache not requested until furthest in the future.

o In the example, p* = 3.
© Assume S evicts some p’ # p* at time 1; otherwise done.

o In the example, p’ = 2.

Proof.
Q@ S: any optimum solution
@ p*: page in cache not requested until furthest in the future.

o In the example, p* = 3.
© Assume S evicts some p’ # p* at time 1; otherwise done.

o In the example, p’ = 2.

[~ 1[~[+]]

[~ |
|

46/75

eSS

1]
Slzl
El

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

46/75

S

1]
S/:l
El

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

46/75

[e[=[-Io

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

[e[=[-Io

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

© From now on, S" will “copy” S.

[e[=[-Io

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

© From now on, S" will “copy” S.

1]
S: 2]
3
X
(1)1
S 124
3] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

© From now on, S" will “copy” S.

,,,,,,
X X
B
s: [2] [4][4
3 [3] [3]
X X
[5]
s': 2] [4][4
3] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

© From now on, S" will “copy” S.

,,,,,,
X X
B
s: [2] [4][4
3 [3] [3]
X X
[5]
s': 2] [4][4
3] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

© From now on, S" will “copy” S.

,,,,,, [alls][a]l o] [3] .
X X
1) 1) 5] 5]
S:l2) 4] 4]]4
EIREIREIRE)
X X
1)1 5]
§':2] 4l l4
13 [2][2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

© From now on, S" will “copy” S.

,,,,,,
X X v
[5] [5]
s: 2] [4] [4] [4]
3 [3] [3] [3]
X X v
[[5] [5]
s':[2] [4] [4] [4]
31 [2] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

© From now on, S" will “copy” S.

,,,,,, (4l [s][4]6] [2] [8] .
X X v

[5] [5]
s: 2] [4] [4] [4]

3 [3] [3] [3]

X X v

[[5] [5]
s':[2] [4] [4] [4]

31 [2] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

© From now on, S" will “copy” S.

,,,,,, (4] [5][4]f6] o] 8] .
X Xv X
1] (1] [5] [5] [5]
S: 2] [4] 4] 4] 4
3] [3] [3] [3] [6]
X X v
1] [1][5][5]
s [2] [4] 4] 4]
3] [2] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

© From now on, S" will “copy” S.

,,,,,, (4l [s][4][6] o] [8] .

X Xv X

1] (1] [5] [5] [5]
S:|2]]4)]4] 4] 4

3] [3] [3] [3] [6]

X Xv X

1] 5] 5])5
§':|2] 4] 4] 4] 14

31 (2] [2] [2] [6]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

© From now on, S" will “copy” S.

|
|
|
|
|
.
|
,
|
|
.
|
|

[o8[2] =[] =[]
ENEREINEEIR
o[8[+ [] [=[]
== [=[] S[=[=[~]

- =lele]i 2]
, ,

0 ™n

47/75

,,,,,, (4l [s][4][e] [2] [8] .
X X v X

[5] [5] [

s: [2] [4] [4] [4] [4]

31 [3] [3] [3] [o]

X X v X

[[5] [5] [
s': 2] [4] [4] [4] [4

131 [2] [2] [2] [6]

Proof.

@ If S evicted the page p*, S” will evict the page p’. Then, the
cache status of S and that of S” will be the same. S and S” will
be exactly the same from now on.

,,,,,,
X X v
[5] [5]
s: 2] [4] [4] [4]
3 [3] [3] [3]
X X v
[[5] [5]
s':[2] [4] [4] [4]
31 [2] [2] [2]

Proof.

@ If S evicted the page p*, S” will evict the page p’. Then, the
cache status of S and that of S” will be the same. S and S” will
be exactly the same from now on.

@ Assume S did not evict p*(=3) before we see p'(=2).

,,,,,,
X Xv
[5] [5] - [o]
s: 2] [4|[4)[4] [8
33 (3] [3] - [3]
X Xv
1] [5] [5] -+ [e]
s':[2] [4|[4) [4] [8]
31[2] 2] 2] - [2]

Proof.

@ If S evicted the page p*, S” will evict the page p’. Then, the
cache status of S and that of S” will be the same. S and S” will
be exactly the same from now on.

@ Assume S did not evict p*(=3) before we see p'(=2).

E Eﬂﬂ

l«i «i
8T SEET
B EEEEm

=[] [
,

0 ™n

48/75

[

E Eﬂﬂ

l«i «i
8T SEET
B EEEEm

=[] [
,

0 ™n

48/75

[

le Sl
JEEIgCES

l«i «i
8T SEET
B EEEEm

=[] [
,

0 ™n

48/75

[

lxﬁ Sl
JEEIgCES

l«i «i
%A= K[
=% =1=[7] %[

[=]=]
,

(=[]

0 ™n

Proof.

2), then S won't be optimum. Assume

3) for p/(=

Q If S evicts p*(

otherwise.

EMNERERREIR
219802 =[] 4a[+[ev]
IR [=]=] R[]

- =lele]i 2]
, ,

0 ™n

Proof.

t be optimum. Assume

2), then S won’

3) for p/(=

Q If S evicts p*(

otherwise.

EMNERERREIR
219802 =[] 4a[+[ev]
IR [=]=] R[]

- =lele]i 2]
, ,

0 ™n

Proof.

2), then S won't be optimum. Assume

3) for p/(=

Q If S evicts p*(

otherwise.

[

le Sl
JEEIgCES

l«i «i
(oI (=[]
= R=[=]=] R =[=]=]

[=]=]
,

(=[]

0 ™n

Proof.

2), then S won't be optimum. Assume

3) for p/(=

Q If S evicts p*(

otherwise.

,,,,,,
X Xv X
[[5] [5] - [o] [2]

s: 2] [4|[4)[4] [8][s]
BIBIBIBEFIE
XX v
[[5] [5] - [6] [6]

s':[2] [+ [4] [+ [8][8]
B1[2] 2] 2] - 2] 2]

Proof.

Q If S evicts p*(=3) for p'(=2), then S won't be optimum. Assume
otherwise.

@ So far, S’ has 1 less page-miss than S does.

,,,,,, [alf[slfal - o] [8] .
X Xv X
L[] 5] 5] 6]]2
S:|2| 44| 4] [8]8
ENRENEIREIRSREIRE]
X Xv
1 [a] 5] [5] - 6] [6]
§':|2] 4] 4] 4] [8]]8
31 12] [2] [2] - [2] |2

Proof.

Q If S evicts p*(=3) for p'(=2), then S won't be optimum. Assume
otherwise.

@ So far, S’ has 1 less page-miss than S does.
@ The status of S’ and that of S only differ by 1 page.

[

lx_z_s_s_ S]]
E E

l«i «i
8T SEET
B EEEEm

=[] [
,

0 ™n

49/75

,,,,,, [4][5] [4] -
X X v
1)1 [s] 8] -
St |2|]4) /4] 4]
EIREIREINEIRE
X X v
B E R
]2 4] 4]]4)
13 [2] [2] [2] -

Proof.

@ We can then guarantee that S’ make at most the same number of
page-misses as S does.

e]=]=Jo6 [~
o] [rfo [eo] [9]

H
4
2|

Proof.
@ We can then guarantee that S’ make at most the same number of
page-misses as S does.

o Idea: if S has a page-hit and S’ has a page-miss, we use the
opportunity to make the status of S’ the same as that of S. O

@ Thus, we have shown how to create another solution S’ with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p* is evicted at time 1.

@ Thus, we have shown how to create another solution S’ with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. It is safe to evict p* at time 1.

@ Thus, we have shown how to create another solution S’ with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. It is safe to evict p* at time 1.

Theorem The furthest-in-future strategy is optimum.

1. fort < 1to T do

2 if p, is in cache then do nothing

3 else if there is an empty page in cache then

4: evict the empty page and load p; in cache

5 else

6 p* < page in cache that is not used furthest in the future
7 evict p* and load p; in cache

Q: How can we make the algorithm as fast as possible?

A:

Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'log k).

Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'log k).

@ For each page p, use a linked list (or an array with dynamic size)
to store the time steps in which p is requested.

Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'log k).

@ For each page p, use a linked list (or an array with dynamic size)
to store the time steps in which p is requested.

e We can find the next time a page is requested easily.

Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'log k).

@ For each page p, use a linked list (or an array with dynamic size)
to store the time steps in which p is requested.

e We can find the next time a page is requested easily.
@ Use a priority queue data structure to hold all the pages in cache,

so that we can easily find the page that is requested furthest in
the future.

time | 0 | 1 2\3\4\5\6\7\8\9\10\11\12\

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

p1- |1]10 priority queue

po. [4]7 pages priority
' values

P3: | 6]9 |12

P4: | 3|8

P5: | 2]5 |11

time | 0 | 1 2\3\4\5\6\7\8\9\10\11\12\

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

p1- |1 110 priority queue

po. [217 pages priority
' values

P3: |69 |12

P4: | 318

P5: | 25|11

time | 0 | 1 2\3\4\5\6\7\8\9\10\11\12\

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

p1- |1 110 priority queue

po. [217 pages priority
' values

P3: |69 |12

P4: | 318

P5: | 25|11

time012\3\4\5\6\7\8\9\10\11\12\

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X

p1- |1 [10 priority queue

e [ol G

P3: | 6|9 12 Pl 10

P4: | 3|8

p5: [2511

v

time012\3\4\5\6\7\8\9\10\11\12\

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X

p1- |1 [10 priority queue

e [ol G

P3: | 6|9 12 Pl 10

P4: | 3|8

p5: [2511

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1- |1 [10 priority queue
e [ol G
P3: | 6|9 12 Pl 10
P5 5
P4: | 3|8
P5: | 25|11

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1- |1 [10 priority queue
e [ol G
P3: | 6|9 12 Pl 10
P5 5
P4: | 3|8
P5: | 25|11

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1- |1 [10 priority queue
e [ol G
P3: | 6|9 12 Pl 10
P5 5
P4: | 3|8 P4 8
P5: | 25|11

v

time |0 |1|2]3 ‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1- |1 [10 priority queue
ok ol G
P3: | 6|9 12 Pl 10
P5 5
P4: | 3|8 P4 8
P5: | 2|5 |11

v

time |0 |1|2]3 ‘4‘5‘6‘7‘8‘9‘10‘11‘12‘

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

p1- |1 [10 priority queue
. aoes | Priority
P2 [4]7 pag values
P3: |69 |12
P5)

P5: | 2|5 |11

v

time |0 |1|2]3 ‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1- |1 [10 priority queue
o G2 ol G
P3: | 6|9 12 P2 7
P5 5
P4: | 3|8 P4 8
P5: | 2|5 |11

time |0 |1|2]3 ‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1- |1 [10 priority queue
o G2 ol G
P3: | 6|9 12 P2 7
P5 5
P4: | 3|8 P4 8
P5: | 2|5 |11

time |0|1|23 |4 ‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1- |1 [10 priority queue
o G2 ol G
P3: | 6|9 12 P2 7
P5 11
P4: | 3|8 P4 8
P5: | 2|5 |11

time |0|1|23 |4 ‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1- |1 [10 priority queue
o G2 ol G
P3: | 6|9 12 P2 7
P5 11
P4: | 3|8 P4 8
P5: | 2|5 |11

time |0|1|23 |4 ‘5‘6‘7‘8‘9‘10‘11‘12‘

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X

P1: | 1110 priority queue

o G2 ol G

P3: | 6|9 12 P2 7

P4: | 3|8 P4 8

P5: | 2|5 |11

time |0|1|23 |4 ‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
P1: | 1110 priority queue
o G2 ol G
P3: | 6|9 |12 P2 7
P3 9
P4: | 3|8 P4 8
P5: | 2|5 |11

v

time |0|1|23 |4 ‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
P1: | 1110 priority queue
o G2 ol G
P3: | 6|9 |12 P2 7
P3 9
P4: | 3|8 P4 8
P5: | 2|5 |11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
p1- |1 [10 priority queue
o [a]7 ol G
P3: | 6|9 |12 P2 o0
P3 9
P4: | 3|8 P4 8
P5: | 25|11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
p1- |1 [10 priority queue
o [a]7 ol G
P3: | 6|9 |12 P2 o0
P3 9
P4: | 3|8 P4 8
P5: | 25|11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
P1: | 1110 priority queue
o [a]7 ol G
P3: | 6|9 |12 P2 >0
P3 9
P4: | 3|8 P4 00
P5: | 25|11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
P1: | 1110 priority queue
o [a]7 ol G
P3: | 6|9 |12 P2 >0
P3 9
P4: | 3|8 P4 00
P5: | 25|11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
P1: | 1110 priority queue
o [a]7 ol G
P3: | 69|12 P2 >0
P3 12
P4: | 3|8 P4 00
P5: | 25|11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
P1: | 1110 priority queue
o [a]7 ol G
P3: | 69|12 P2 >0
P3 12
P4: | 3|8 P4 00
P5: | 25|11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
P1: | 1110 priority queue
o [a]7 ol G
P3: | 69|12
P3 12
P4: | 3|8 P4 00
P5: | 25|11

time

v

3\4\5\6\7\8\9\10\11\12\

pages

P1:

P2:

P3:

P4:

P5:

P1

10

12

11

P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXV XVVVK
priority queue
pages priority

values
P1 o0
P3 12
P4 o0

time

v

3\4\5\6\7\8\9\10\11\12\

pages

P1:

P2:

P3:

P4:

P5:

P1

10

12

11

P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXV XVVVK
priority queue
pages priority

values
P1 o0
P3 12
P4 o0

time

v

3\4\5\6\7\8\9\10\11\12\

pages

P1:

P2:

P3:

P4:

P5:

P1

10

12

11

P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXV XVVVK
priority queue
pages priority

values
P3 12
P4 o0

time

v

3\4\5\6\7\8\9\10\11\12\

pages

P1:

P2:

P3:

P4:

P5:

P1

P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXV XVVV XX
10 priority queue
priority

7 Pages values

9 |12 P5 0
P3 12

8 P4 0

511

time

v

3\4\5\6\7\8\9\10\11\12\

pages

P1:

P2:

P3:

P4:

P5:

P1

P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXV XVVV XX
10 priority queue
priority

7 Pages values

9 |12 P5 0
P3 12

8 P4 0

511

v

time | 0] 112 3\4\5\6\7\8\9\10\11\12\

pages | |P1|P5 P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXV XV VYV KKV

P1: | 1110 priority queue
. ages | priority
P2 [4]7 pag values
P3: | 69|12 P5 o0
P3 o0

P5: | 2]5 |11

1: for every p < 1 ton do

0

NGO R W

10:
11:
12:

13:

times[p] < array of times in which p is requested, in
increasing order > put oo at the end of array
pointer|[p| « 1
() < empty priority queue
for every t < 1 to T do
pointer|p;] « pointer[p,] + 1
if p, € @ then
Q.increase-key(py, times|p;, pointer|p]]), print “hit”,
continue
if Q.size() < k then
print “load p; to an empty page "
else
p < Q.extract-max(), print “evict p and load p;"

Q.insert(py, times|py, pointer(p]]) > add p; to @ with key
value times|p;, pointer|p|]|

© Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling
© Offline Caching

@ Data Compression and Huffman Code

@ Summary

55,/75

Encoding Letters Using Bits

@ 8 letters a,b,c,d,e, f,g,h in a language
@ need to encode a message using bits

@ idea: use 3 bits per letter
a | blcldlel|flgl|h

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
deacfg — 011100000010101110

Q: Can we have a better encoding scheme?

@ Seems unlikely: must use 3 bits per letter

Q: What if some letters appear more frequently than the others?

J

Q: If some letters appear more frequently than the others, can we
have a better encoding scheme?

A: Using variable-length encoding scheme might be more efficient. J

Idea

@ using fewer bits for letters that are more frequently used, and
more bits for letters that are less frequently used.

Q: What is the issue with the following encoding scheme?
° a: 0 b: 1 c: 00

Q: What is the issue with the following encoding scheme?
° a: 0 b: 1 c: 00 J

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c. J

Q: What is the issue with the following encoding scheme?
° a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c.

Solution
Use prefix codes to guarantee a unique decoding.

Prefix Codes

Def. A prefix code for a set .S of letters is a function v : S — {0, 1}*
such that for two distinct z,y € S, y(x) is not a prefix of v(y).

Prefix Codes

such that for two distinct z,y € S, y(x) is not a prefix of v(y).

0 1
a b c d / \
001 | 0000 | 0001 | 100 v\ /\®
e o S8
11 | 1010 | 1011 | 01

db db

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a b c d
001 | 0000 | 0001 | 100
e f g h
11 | 1010 | 1011 | 01

2N
AN
AN

§ b &b

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a b

Cc

d

001 | 0000

0001

100

e | f

9

h

11 | 1010

e 0001001100000001011110100001001

1011

01

2N
AN
AN

§ b &b

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

) AN

100 V%@ /\@

a b c
001 | 0000 | 0001
e / g
11 | 1010 | 1011

. 28
FaN Y

e 0001,/001100000001011110100001001

@ C

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

) AN

100 V%@ /\@

a b c
001 | 0000 | 0001
e / g
11 | 1010 | 1011

. 28
FaN Y

e 0001/001,/100000001011110100001001

@ Ca

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

) AN

001

0000

0001

e

f

g

100 V%@ /\@

11

1010

1011

. 28
FaN Y

e 0001/001,/100/000001011110100001001

@ cad

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

) AN

001

0000

0001

e

f

g

100 V%@ /\@

11

1010

1011

. 28
FaN Y

e 0001,/001/100/0000/01011110100001001

@ cadb

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

) AN

001

0000

0001

e

f

g

100 V%@ /\@

11

1010

1011

7 AP A
d b @i?‘@

e 0001,/001,/100/0000/01/011110100001001

@ cadbh

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

) AN

001

0000

0001

e

f

g

100 V%@ /\@

11

1010

1011

7 AP A
d b @i?‘@

e 0001,/001,/100/0000/01/01/1110100001001

@ cadbhh

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

) AN

001

0000

0001

e

f

g

100 V%@ /\@

11

1010

1011

. 28
O %

e 0001,/001,/100/0000/01/01/11/10100001001

@ cadbhhe

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

) AN

001

0000

0001

e

f

g

100 V%@ /\@

11

1010

1011

. 28
Jo @Y

e 0001,/001/100/0000/01/01/11/1010/0001001

@ cadbhhef

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

) AN

001

0000

0001

e

f

g

100 V%@ /\@

11

1010

1011

. 28
Jo @Y

e 0001,/001,/100/0000/01/01/11/1010/0001 /001

@ cadbhhefc

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

) SN

001

0000

0001

e

f

g

100 V%@ /%

11

1010

1011

. 28
Jh 3%

e 0001,/001/100/0000/01/01/11/1010/0001/001/

@ cadbhhefca

Properties of Encoding Tree

RN
AN
2N
§ b b

Properties of Encoding Tree

% \ o Rooted binary tree
4 \@ / \@

(b
b &b

Properties of Encoding Tree

1
/ \ @ Rooted binary tree

o Left edges labelled 0 and right

/% /%emmm
5%\@ @/5%

Properties of Encoding Tree

1
/ \ @ Rooted binary tree

@ Left edges labelled 0 and right

/ \@) / \@ edges labelled 1
@ A leaf corresponds to a code
% 0 for some letter

Properties of Encoding Tree

1
,% \ @ Rooted binary tree

@ Left edges labelled 0 and right
/ \® / \@ edges labelled 1
@ A leaf corresponds to a code
E@ 5 for some letter
@ If coding scheme is not
! wasteful: a non-leaf has exactly
two children

Properties of Encoding Tree

1
,% \ @ Rooted binary tree

@ Left edges labelled 0 and right
/ \® / \@ edges labelled 1
@ A leaf corresponds to a code
E@ 5 for some letter
@ If coding scheme is not
! wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

example

letters a |blc|d]| e
frequencies 1834 /6|10

AN

Lo A @g\@

scheme 1 scheme2 ~ scheme

example

letters a |blc|d] e

frequencies 1834 /6|10
scheme 1 length || 2 |3 |3 |2]| 2 | total =89
scheme 2 length || 1 |3 |3 |3 | 3 | total =87
scheme 3 length | 1 |4 4| 3| 2 || total = 84

AN TN 77

\
S

scheme 1 scheme 2 scheme 3

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?

@ Not clear how to design the greedy algorithm

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make? J

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?

@ Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree. |

Which Two Letters Can Be Safely Put Together
As Brothers?

@ Focus on the “structure” of the optimum encoding tree

Which Two Letters Can Be Safely Put Together
As Brothers?

@ Focus on the “structure” of the optimum encoding tree

@ There are two deepest leaves that are brothers

Which Two Letters Can Be Safely Put Together
As Brothers?

@ Focus on the “structure” of the optimum encoding tree

@ There are two deepest leaves that are brothers

Q best to put the two least

--frenquent symbols here!

Which Two Letters Can Be Safely Put Together
As Brothers?

@ Focus on the “structure” of the optimum encoding tree

@ There are two deepest leaves that are brothers

Q best to put the two least

--frenquent symbols here!

Lemma It is safe to make the two least frequent letters brothers.

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers. J

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers.

@ So we can irrevocably decide to make the two least frequent
letters brothers.

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers. ‘

@ So we can irrevocably decide to make the two least frequent
letters brothers.

Q: Is the residual problem another instance of the best prefix codes
problem? ‘

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers. ‘

@ So we can irrevocably decide to make the two least frequent
letters brothers.

Q: Is the residual problem another instance of the best prefix codes
problem? ‘

A: Yes, though it is not immediate to see why.]

@ f,: the frequency of the letter x in the support.

@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter x in

O

our output encoding tree.

> fuds

€S

= Z fxdm + fml dxl + fmzdﬂm

zeS\{z1,z2}

zeS\{z1,z2}

@ f,: the frequency of the letter x in the support.

@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter x in

O

our output encoding tree.

> fuds

€S

= Z fxdm + fml dxl + fmzdﬂm

zeS\{z1,z2}

zeS\{z1,z2}

@ f,: the frequency of the letter x in the support.

@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter x in

O

()
@) @

Def: fx’ — fml + sz

our output encoding tree.

> fuds

€S

= Z fxdm + fmldxl + fmzdﬂm

zeS\{z1,z2}

zeS\{z1,z2}

@ f,.: the frequency of the letter x in the support.
@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

Jads
. >
e Z fxdm + fmldxl + fw2d3?2

zeS\{z1,z2}

zeS\{z1,z2}

zeS\{z1,x2}
@) @

Def: fa?’ - fm + fﬂCz

@ f,.: the frequency of the letter x in the support.
@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

Jads
. >
e Z fxdm + fmldxl + fw2d3?2

zeS\{z1,z2}

zeS\{z1,z2}

() = Y fedet fulde +1)

zeS\{z1,x2}
@ @ = Z .ffl}d.’lf + fI/
Def: fgg/ — fxl + fmz

zeS\{z1,z2}U{z'}

@ f,.: the frequency of the letter x in the support.
@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

> fuds
O zeS
= Z fxdm + fmldxl + fmzdxg
encoding tree for z€S\{z1,22}

S\ {21, 22} U {2/} = > folat (for + far)da,

z€S\{z1,22}
zeS\{z1,x2}
@ @ = Z .ffl}d.’lf + fI/
Def: fx/ — fml + fmz

zeS\{z1,z2}U{z'}

In order to minimize

> foda,

€S

we need to minimize

> fuda

zeS\{z1,z2}U{z’'}

subject to that d is the depth function for an encoding tree of
S \ {$1, .1'2}.

@ This is exactly the best prefix codes problem, with letters
S\ {z1, 2} U {2’} and frequency vector f!

@27 15 @11 @9 @8 @5

68,75

Example

@27 15 @11 @9 &5

Example

‘ 20 13

Example

Example

Example

Example

Example

Def. The codes given the greedy algorithm is called the Huffman J
codes.

Def. The codes given the greedy algorithm is called the Huffman
codes.

Huffman(S, f)

1: while |S| > 1 do

2 let z1, x5 be the two letters with the smallest f values
3 introduce a new letter 2’ and let fy = fo, + fu,

4: let 1 and 25 be the two children of 2’

5 S+ S\ {x1,z}U{2'}

6:

return the tree constructed

Algorithm using Priority Queue

Huffman(S, f)

1: @ < build-priority-queue(.S)

2: while ().size > 1 do

3 x1 < Q.extract-min()

4 T9 < @Q.extract-min()

5: introduce a new letter 2’ and let f,y = fo, + fu,
6 let z; and 25 be the two children of z’

7 Q.insert (2, fur)

8:

return the tree constructed

© Toy Example: Box Packing

© Interval Scheduling

© Scheduling to Minimize Lateness

@ Weighted Completion Time Scheduling
© Offline Caching

@ Data Compression and Huffman Code

@ Summary

71/75

Summary for Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Summary for Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

@ Interval scheduling problem: schedule the job j* with the earliest
deadline

Summary for Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

@ Interval scheduling problem: schedule the job j* with the earliest
deadline

o Offline Caching: evict the page that is used furthest in the future

Summary for Greedy Algorithms

Greedy Algorithm

Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

@ Interval scheduling problem: schedule the job j* with the earliest
deadline
o Offline Caching: evict the page that is used furthest in the future

Huffman codes: make the two least frequent letters brothers

Summary for Greedy Algorithms

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Summary for Greedy Algorithms

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Def. A strategy is “safe” if there is always an optimum solution
that “agrees with” the decision made according to the strategy.

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S

o If S agrees with the decision made according to the strategy, done

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S
o If S agrees with the decision made according to the strategy, done

@ So assume S does not agree with decision

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S
o If S agrees with the decision made according to the strategy, done
@ So assume S does not agree with decision

@ Change S slightly to another optimum solution S’ that agrees
with the decision

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S
o If S agrees with the decision made according to the strategy, done
@ So assume S does not agree with decision

@ Change S slightly to another optimum solution S’ that agrees
with the decision

o Interval scheduling problem: exchange j* with the first job in an
optimal solution

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S
o If S agrees with the decision made according to the strategy, done
@ So assume S does not agree with decision

@ Change S slightly to another optimum solution S’ that agrees
with the decision
o Interval scheduling problem: exchange j* with the first job in an
optimal solution
o Offline caching: a complicated “copying” algorithm

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S
o If S agrees with the decision made according to the strategy, done
@ So assume S does not agree with decision
@ Change S slightly to another optimum solution S’ that agrees
with the decision
o Interval scheduling problem: exchange j* with the first job in an
optimal solution
o Offline caching: a complicated “copying” algorithm

e Huffman codes: move the two least frequent letters to the deepest
leaves.

Summary for Greedy Algorithms

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Summary for Greedy Algorithms

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

@ Interval scheduling problem: remove j* and the jobs it conflicts
with

Summary for Greedy Algorithms

A Common Way to Analyze Greedy Algorithms
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

@ Interval scheduling problem: remove j* and the jobs it conflicts
with
@ Offline caching: trivial

Summary for Greedy Algorithms

A Common Way to Analyze Greedy Algorithms

Prove that the reasonable strategy is “safe” (key)

Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Interval scheduling problem: remove j* and the jobs it conflicts
with
Offline caching: trivial

Huffman codes: merge two letters into one

Summary for Greedy Algorithms

A Common Way to Analyze Greedy Algorithms

Prove that the reasonable strategy is “safe” (key)

Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Interval scheduling problem: remove j* and the jobs it conflicts
with
Offline caching: trivial

Huffman codes: merge two letters into one

Two problems that do not fall into the category: lateness,
weighted completion time

	Toy Example: Box Packing
	Interval Scheduling
	Scheduling to Minimize Lateness
	Weighted Completion Time Scheduling
	Offline Caching
	Data Compression and Huffman Code
	Summary

