

算法设计与分析(2026年春季学期)  
**Introduction and Syllabus**

授课老师: 栗师  
南京大学计算机学院

# Outline

## 1 Syllabus

## 2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

## 3 Asymptotic Notations

## 4 Common Running times

- Course Webpage:

<https://tcs.nju.edu.cn/shili/courses/2025spring-algo>

# Course Information

- **Time:** Tuesdays and Thursdays, 10:10am - 12:00pm
- **Location:** 仙II-319
- **Instructor:** Shi Li (栗师)
- **Email:** [first name][last name][at][nju][dot][edu][dot][cn]

# Logistics

- **Instructor's Office Hours:** Wednesdays 11:00am-12:00pm
- **Location:** 计算机系楼605
- **TA:** 梁梓豪(zhliang[at]smail[dot]nju[dot]edu[dot]cn)

# What You Will Learn

- How to analyze the **correctness** and **running time** of an algorithm.
- **Classic algorithms** for classic problems
  - sorting, minimum spanning tree, shortest paths
- Algorithm design paradigms
  - **greedy algorithms**, **divide and conquer**, **dynamic programming**
- Network flow, linear programming, and problem reductions.
- NP-completeness.
- Advanced topics
  - randomized algorithms, approximation algorithms, fixed-parameter tractability, online algorithms

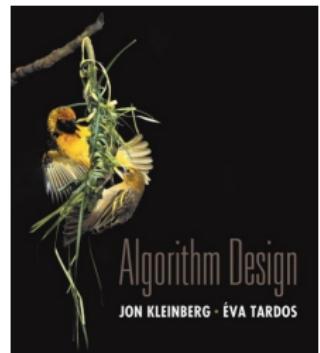
# Prerequisites

- Basic skills in formulating mathematical proofs.
- Courses on data structures covering:
  - Linked lists, arrays, stacks, queues, priority queues, trees, graphs.
- Some programming experience using Python, C, C++, or Java.

# Textbook

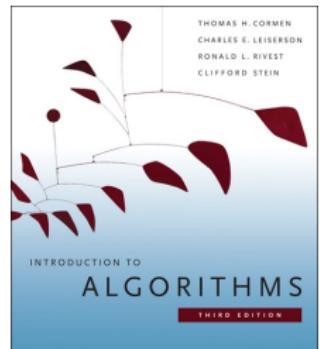
## Required Textbook:

- Jon Kleinberg and Eva Tardos, *Algorithm Design*, 1st Edition, 2005, Pearson.



## Reference Book:

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, *Introduction to Algorithms*, 3rd Edition, 2009, MIT Press.



# Grading

Your final grade will be calculated as follows:

- **5 Homework Assignments:** 20%.
- **Midterm Exam:** 20% or 30%.
- **Final Exam:** 60% or 50%.

**Overall Score:** The highest of the following weighting schemes:

- 20% Homework + 20% Midterm + 60% Final
- 20% Homework + 30% Midterm + 50% Final

**Note:** Both exams are closed-book.

# Policies for Assignments

- No late submissions will be accepted.
- Do not search online for solutions or use AI tools to generate solutions.
- **Allowed Materials:** Textbook, reference book, course slides, and instructor-distributed materials.
- **Collaboration:**
  - You may discuss with classmates but must write solutions independently.
  - Write down the names of collaborators.

# Use of AI Tools

- AI tools (e.g., ChatGPT, DeepSeek) are **allowed as learning tools** but prohibited for solving homework problems.
- AI-generated content may contain errors; you are responsible to verify correctness
- **Rule:** Once you begin working on an assignment, you must complete it without searching for solutions online or using AI tools.

# Tentative Schedule

| <b>Topic</b>        | <b>Time</b> |
|---------------------|-------------|
| Introduction        | 4 hours     |
| Graph Basics        | 4 hours     |
| Greedy Algorithms   | 6 hours     |
| Divide and Conquer  | 6 hours     |
| Dynamic Programming | 6 hours     |
| Graph Algorithms    | 6 hours     |
| Midterm Exam        | 2 hours     |
| Network Flow        | 6 hours     |
| NP-Completeness     | 6 hours     |
| Linear Programming  | 4 hours     |
| Advanced Topics     | 10 hours    |
| Final Review        | 2 hours     |

# Outline

1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

# Outline

## 1 Syllabus

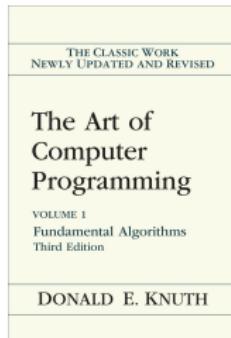
## 2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

## 3 Asymptotic Notations

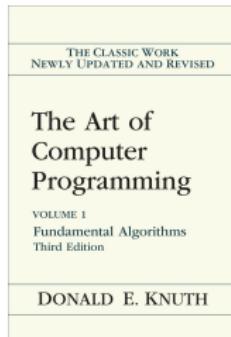
## 4 Common Running times

# What is an Algorithm?



- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.

# What is an Algorithm?



- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
- **finite**: description is finite, (stronger requirement: terminate in finite number of steps)
- **definite**: clearly defined, no ambiguity
- **effective**: must be realizable using a finite amount of resources
- **input**: take 0 or some inputs
- **output**: produce 1 or more outputs

# What is an Algorithm?

- Computational problem: specifies the input/output relationship.
- An algorithm **solves** a computational problem if it produces the correct output for any given input.

# Examples

## Greatest Common Divisor

**Input:** two integers  $a, b > 0$

**Output:** the greatest common divisor of  $a$  and  $b$

# Examples

## Greatest Common Divisor

**Input:** two integers  $a, b > 0$

**Output:** the greatest common divisor of  $a$  and  $b$

### Example:

- Input: 210, 270
- Output: 30

# Examples

## Greatest Common Divisor

**Input:** two integers  $a, b > 0$

**Output:** the greatest common divisor of  $a$  and  $b$

### Example:

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm

# Examples

## Greatest Common Divisor

**Input:** two integers  $a, b > 0$

**Output:** the greatest common divisor of  $a$  and  $b$

### Example:

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm
- $\gcd(270, 210) = \gcd(210, 270 \bmod 210) = \gcd(210, 60)$

# Examples

## Greatest Common Divisor

**Input:** two integers  $a, b > 0$

**Output:** the greatest common divisor of  $a$  and  $b$

### Example:

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm
- $\gcd(270, 210) = \gcd(210, 270 \bmod 210) = \gcd(210, 60)$
- $(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)$

# Examples

## Sorting

**Input:** sequence of  $n$  numbers  $(a_1, a_2, \dots, a_n)$

**Output:** a permutation  $(a'_1, a'_2, \dots, a'_n)$  of the input sequence such that  $a'_1 \leq a'_2 \leq \dots \leq a'_n$

# Examples

## Sorting

**Input:** sequence of  $n$  numbers  $(a_1, a_2, \dots, a_n)$

**Output:** a permutation  $(a'_1, a'_2, \dots, a'_n)$  of the input sequence such that  $a'_1 \leq a'_2 \leq \dots \leq a'_n$

### Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

# Examples

## Sorting

**Input:** sequence of  $n$  numbers  $(a_1, a_2, \dots, a_n)$

**Output:** a permutation  $(a'_1, a'_2, \dots, a'_n)$  of the input sequence such that  $a'_1 \leq a'_2 \leq \dots \leq a'_n$

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59
- Algorithms: insertion sort, merge sort, quicksort, ...

# Examples

## Shortest Path

**Input:** directed graph  $G = (V, E)$ ,  $s, t \in V$

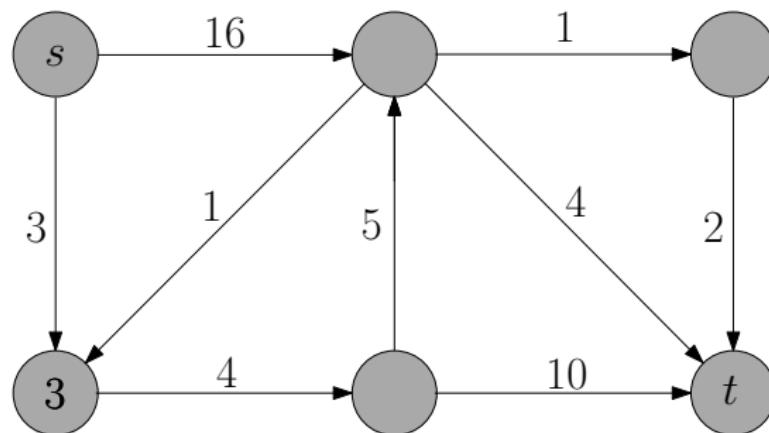
**Output:** a shortest path from  $s$  to  $t$  in  $G$

# Examples

## Shortest Path

**Input:** directed graph  $G = (V, E)$ ,  $s, t \in V$

**Output:** a shortest path from  $s$  to  $t$  in  $G$

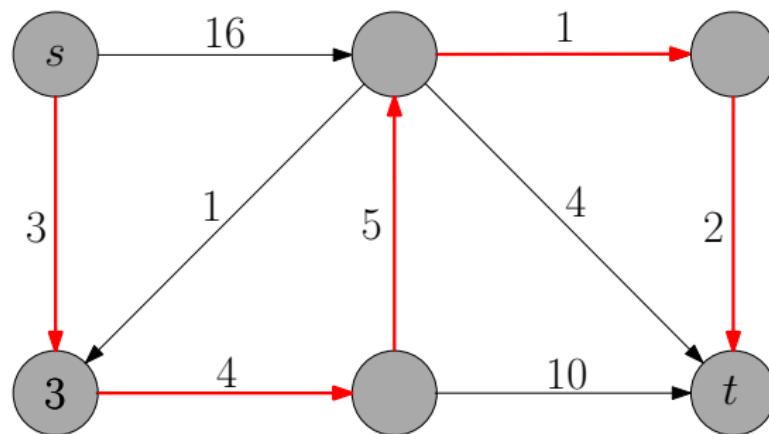


# Examples

## Shortest Path

**Input:** directed graph  $G = (V, E)$ ,  $s, t \in V$

**Output:** a shortest path from  $s$  to  $t$  in  $G$

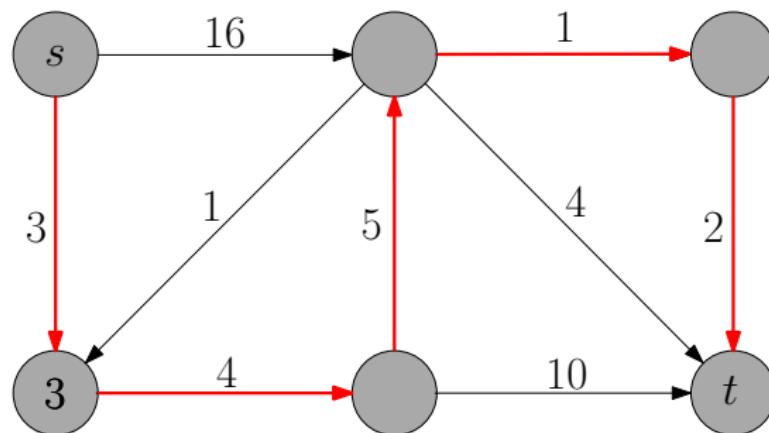


# Examples

## Shortest Path

**Input:** directed graph  $G = (V, E)$ ,  $s, t \in V$

**Output:** a shortest path from  $s$  to  $t$  in  $G$



- Algorithm: Dijkstra's algorithm

# Algorithm = Computer Program?

- Algorithm: “abstract”, can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: “concrete”, implementation of algorithm, using a particular programming language

# Pseudo-Code

Pseudo-Code:

## Euclidean( $a, b$ )

```
1: while  $b > 0$  do
2:    $(a, b) \leftarrow (b, a \bmod b)$ 
3: return  $a$ 
```

Python program:

```
def gcd(a, b):
  while b != 0:
    a, b = b, a % b
  return a
```

C++ program:

```
int Euclidean(int a, int b){
  int c;
  while (b > 0){
    c = b;
    b = a % b;
    a = c;
  }
  return a;
}
```

# Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)

# Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage

# Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
  - extensibility
  - modularity
  - object-oriented model
  - user-friendliness (e.g, GUI)
  - ...

# Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
  - extensibility
  - modularity
  - object-oriented model
  - user-friendliness (e.g, GUI)
  - ...
- Why is it important to study the running time (efficiency) of an algorithm?

# Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
  - extensibility
  - modularity
  - object-oriented model
  - user-friendliness (e.g, GUI)
  - ...
- Why is it important to study the running time (efficiency) of an algorithm?
- ① feasible vs. infeasible

# Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
  - extensibility
  - modularity
  - object-oriented model
  - user-friendliness (e.g, GUI)
  - ...
- Why is it important to study the running time (efficiency) of an algorithm?
  - ① feasible vs. infeasible
  - ② efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)

# Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
  - extensibility
  - modularity
  - object-oriented model
  - user-friendliness (e.g, GUI)
  - ...
- Why is it important to study the running time (efficiency) of an algorithm?
  - ① feasible vs. infeasible
  - ② efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
  - ③ fundamental

# Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
  - extensibility
  - modularity
  - object-oriented model
  - user-friendliness (e.g, GUI)
  - ...
- Why is it important to study the running time (efficiency) of an algorithm?
  - ① feasible vs. infeasible
  - ② efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
  - ③ fundamental
  - ④ it is fun!

# Outline

## 1 Syllabus

## 2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

## 3 Asymptotic Notations

## 4 Common Running times

## Sorting Problem

**Input:** sequence of  $n$  numbers  $(a_1, a_2, \dots, a_n)$

**Output:** a permutation  $(a'_1, a'_2, \dots, a'_n)$  of the input sequence such that  $a'_1 \leq a'_2 \leq \dots \leq a'_n$

### Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

# Insertion-Sort

- At the end of  $j$ -th iteration, the first  $j$  numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15

iteration 2: 12, 53, 35, 21, 59, 15

iteration 3: 12, 35, 53, 21, 59, 15

iteration 4: 12, 21, 35, 53, 59, 15

iteration 5: 12, 21, 35, 53, 59, 15

iteration 6: 12, 15, 21, 35, 53, 59

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

### insertion-sort( $A, n$ )

```
1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 
```

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort( $A, n$ )

```

1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 

```

- $j = 6$
- $key = 15$

12 21 35 53 59 15  
                 ↑  
                  i

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort( $A, n$ )

```

1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 

```

- $j = 6$
- $key = 15$

12 21 35 53 59 **59**

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

### insertion-sort( $A, n$ )

```
1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 
```

- $j = 6$
- $key = 15$

12    21    35    53    59    59  
            ↑  
             $i$

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

### insertion-sort( $A, n$ )

```
1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 
```

- $j = 6$
- $key = 15$

12    21    35    53    53    59  
                    ↑  
                     $i$

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

### insertion-sort( $A, n$ )

```
1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 
```

- $j = 6$
- $key = 15$

12    21    35    53    53    59  
            ↑  
             $i$

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

### insertion-sort( $A, n$ )

```
1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 
```

- $j = 6$
- $key = 15$

12    21    35    35    53    59  
            ↑  
             $i$

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

### insertion-sort( $A, n$ )

```
1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 
```

- $j = 6$
- $key = 15$

12    21    35    35    53    59  
      ↑  
       $i$

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

### insertion-sort( $A, n$ )

```
1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 
```

- $j = 6$
- $key = 15$

12    21    21    35    53    59  
      ↑  
       $i$

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

### insertion-sort( $A, n$ )

```
1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 
```

- $j = 6$
- $key = 15$

12    21    21    35    53    59  
  ↑  
   $i$

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

### insertion-sort( $A, n$ )

```
1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 
```

- $j = 6$
- $key = 15$

12    15    21    35    53    59  
  ↑  
   $i$

# Outline

## 1 Syllabus

## 2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

## 3 Asymptotic Notations

## 4 Common Running times

# Analysis of Insertion Sort

- Correctness
- Running time

# Correctness of Insertion Sort

- Invariant: after iteration  $j$  of outer loop,  $A[1..j]$  is the sorted array for the original  $A[1..j]$ .

after  $j = 1$  : 53, 12, 35, 21, 59, 15

after  $j = 2$  : 12, 53, 35, 21, 59, 15

after  $j = 3$  : 12, 35, 53, 21, 59, 15

after  $j = 4$  : 12, 21, 35, 53, 59, 15

after  $j = 5$  : 12, 21, 35, 53, 59, 15

after  $j = 6$  : 12, 15, 21, 35, 53, 59

# Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?

# Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of **size**

# Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of **size**
- possible definition of size :
  - Sorting problem: # integers,
  - Greatest common divisor: total length of two integers
  - Shortest path in a graph: # edges in graph

# Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of **size**
- possible definition of size :
  - Sorting problem: # integers,
  - Greatest common divisor: total length of two integers
  - Shortest path in a graph: # edges in graph
- Q2: Which input?
  - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.

# Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of **size**
- possible definition of size :
  - Sorting problem: # integers,
  - Greatest common divisor: total length of two integers
  - Shortest path in a graph: # edges in graph
- Q2: Which input?
  - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
- A2: Worst-case analysis:
  - Running time for size  $n$  = worst running time over all possible arrays of length  $n$

# Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?

# Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?
- A: **They do not matter!**

# Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!

Important idea: asymptotic analysis

- Focus on growth of running-time as a function, not any particular value.

# Asymptotic Analysis: $O$ -notation

Informal way to define  $O$ -notation:

- Ignoring lower order terms
- Ignoring leading constant

# Asymptotic Analysis: $O$ -notation

Informal way to define  $O$ -notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$

# Asymptotic Analysis: $O$ -notation

Informal way to define  $O$ -notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$

# Asymptotic Analysis: $O$ -notation

Informal way to define  $O$ -notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$

# Asymptotic Analysis: $O$ -notation

Informal way to define  $O$ -notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$
- $n^2/100 - 3n + 10 = O(n^2)$

# Asymptotic Analysis: $O$ -notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$

# Asymptotic Analysis: $O$ -notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$

$O$ -notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?

# Asymptotic Analysis: $O$ -notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$

$O$ -notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?
- to execute  $a \leftarrow b + c$ :
  - program 1 requires 10 instructions, or  $10^{-8}$  seconds
  - program 2 requires 2 instructions, or  $10^{-9}$  seconds

# Asymptotic Analysis: $O$ -notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$

$O$ -notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?
- to execute  $a \leftarrow b + c$ :
  - program 1 requires 10 instructions, or  $10^{-8}$  seconds
  - program 2 requires 2 instructions, or  $10^{-9}$  seconds
  - they only change by a constant in the running time, which will be hidden by the  $O(\cdot)$  notation

# Asymptotic Analysis: $O$ -notation

- Algorithm 1 runs in time  $O(n^2)$
- Algorithm 2 runs in time  $O(n)$

# Asymptotic Analysis: $O$ -notation

- Algorithm 1 runs in time  $O(n^2)$
- Algorithm 2 runs in time  $O(n)$
- Does not tell which algorithm is faster for a specific  $n$ !
- Algorithm 2 will eventually beat algorithm 1 as  $n$  increases.

# Asymptotic Analysis: $O$ -notation

- Algorithm 1 runs in time  $O(n^2)$
- Algorithm 2 runs in time  $O(n)$
- Does not tell which algorithm is faster for a specific  $n$ !
- Algorithm 2 will eventually beat algorithm 1 as  $n$  increases.
- For Algorithm 1: if we increase  $n$  by a factor of 2, running time increases by a factor of 4
- For Algorithm 2: if we increase  $n$  by a factor of 2, running time increases by a factor of 2

# Asymptotic Analysis of Insertion Sort

**insertion-sort( $A, n$ )**

```
1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 
```

# Asymptotic Analysis of Insertion Sort

**insertion-sort( $A, n$ )**

```
1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 
```

- Worst-case running time for iteration  $j$  of the outer loop?

# Asymptotic Analysis of Insertion Sort

**insertion-sort( $A, n$ )**

```
1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 
```

- Worst-case running time for iteration  $j$  of the outer loop?  
Answer:  $O(j)$

# Asymptotic Analysis of Insertion Sort

## insertion-sort( $A, n$ )

```
1: for  $j \leftarrow 2$  to  $n$  do
2:    $key \leftarrow A[j]$ 
3:    $i \leftarrow j - 1$ 
4:   while  $i > 0$  and  $A[i] > key$  do
5:      $A[i + 1] \leftarrow A[i]$ 
6:      $i \leftarrow i - 1$ 
7:    $A[i + 1] \leftarrow key$ 
```

- Worst-case running time for iteration  $j$  of the outer loop?  
Answer:  $O(j)$
- Total running time =  $\sum_{j=2}^n O(j) = O(\sum_{j=2}^n j)$   
 $= O(\frac{n(n+1)}{2} - 1) = O(n^2)$

# Computation Model

# Computation Model

- Random-Access Machine (RAM) model
  - reading and writing  $A[j]$  takes  $O(1)$  time

# Computation Model

- Random-Access Machine (RAM) model
  - reading and writing  $A[j]$  takes  $O(1)$  time
- Basic operations such as addition, subtraction and multiplication take  $O(1)$  time

# Computation Model

- Random-Access Machine (RAM) model
  - reading and writing  $A[j]$  takes  $O(1)$  time
- Basic operations such as addition, subtraction and multiplication take  $O(1)$  time
- Each integer (word) has  $c \log n$  bits,  $c \geq 1$  large enough
  - Reason: often we need to read the integer  $n$  and handle integers within range  $[-n^c, n^c]$ , it is convenient to assume this takes  $O(1)$  time.

# Computation Model

- Random-Access Machine (RAM) model
  - reading and writing  $A[j]$  takes  $O(1)$  time
- Basic operations such as addition, subtraction and multiplication take  $O(1)$  time
- Each integer (word) has  $c \log n$  bits,  $c \geq 1$  large enough
  - Reason: often we need to read the integer  $n$  and handle integers within range  $[-n^c, n^c]$ , it is convenient to assume this takes  $O(1)$  time.
- What is the precision of real numbers?

# Computation Model

- Random-Access Machine (RAM) model
  - reading and writing  $A[j]$  takes  $O(1)$  time
- Basic operations such as addition, subtraction and multiplication take  $O(1)$  time
- Each integer (word) has  $c \log n$  bits,  $c \geq 1$  large enough
  - Reason: often we need to read the integer  $n$  and handle integers within range  $[-n^c, n^c]$ , it is convenient to assume this takes  $O(1)$  time.
- What is the precision of real numbers?  
Most of the time, we only consider integers.

# Computation Model

- Random-Access Machine (RAM) model
  - reading and writing  $A[j]$  takes  $O(1)$  time
- Basic operations such as addition, subtraction and multiplication take  $O(1)$  time
- Each integer (word) has  $c \log n$  bits,  $c \geq 1$  large enough
  - Reason: often we need to read the integer  $n$  and handle integers within range  $[-n^c, n^c]$ , it is convenient to assume this takes  $O(1)$  time.
- What is the precision of real numbers?  
Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?

# Computation Model

- Random-Access Machine (RAM) model
  - reading and writing  $A[j]$  takes  $O(1)$  time
- Basic operations such as addition, subtraction and multiplication take  $O(1)$  time
- Each integer (word) has  $c \log n$  bits,  $c \geq 1$  large enough
  - Reason: often we need to read the integer  $n$  and handle integers within range  $[-n^c, n^c]$ , it is convenient to assume this takes  $O(1)$  time.
- What is the precision of real numbers?  
Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
- Yes: merge sort, quicksort and heap sort take  $O(n \log n)$  time

Questions?

# Outline

## 1 Syllabus

## 2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

## 3 Asymptotic Notations

## 4 Common Running times

# Asymptotically Positive Functions

**Def.**  $f : \mathbb{N} \rightarrow \mathbb{R}$  is an **asymptotically positive function** if:

- $\exists n_0 > 0$  such that  $\forall n > n_0$  we have  $f(n) > 0$

# Asymptotically Positive Functions

**Def.**  $f : \mathbb{N} \rightarrow \mathbb{R}$  is an **asymptotically positive function** if:

- $\exists n_0 > 0$  such that  $\forall n > n_0$  we have  $f(n) > 0$
- In other words,  $f(n)$  is positive for large enough  $n$ .

# Asymptotically Positive Functions

**Def.**  $f : \mathbb{N} \rightarrow \mathbb{R}$  is an **asymptotically positive function** if:

- $\exists n_0 > 0$  such that  $\forall n > n_0$  we have  $f(n) > 0$
- In other words,  $f(n)$  is positive for large enough  $n$ .
- $n^2 - n - 30$

# Asymptotically Positive Functions

**Def.**  $f : \mathbb{N} \rightarrow \mathbb{R}$  is an **asymptotically positive function** if:

- $\exists n_0 > 0$  such that  $\forall n > n_0$  we have  $f(n) > 0$
- In other words,  $f(n)$  is positive for large enough  $n$ .
- $n^2 - n - 30$       Yes

# Asymptotically Positive Functions

**Def.**  $f : \mathbb{N} \rightarrow \mathbb{R}$  is an **asymptotically positive function** if:

- $\exists n_0 > 0$  such that  $\forall n > n_0$  we have  $f(n) > 0$
- In other words,  $f(n)$  is positive for large enough  $n$ .
- $n^2 - n - 30$       Yes
- $2^n - n^{20}$

# Asymptotically Positive Functions

**Def.**  $f : \mathbb{N} \rightarrow \mathbb{R}$  is an **asymptotically positive function** if:

- $\exists n_0 > 0$  such that  $\forall n > n_0$  we have  $f(n) > 0$
- In other words,  $f(n)$  is positive for large enough  $n$ .
- $n^2 - n - 30$       Yes
- $2^n - n^{20}$       Yes

# Asymptotically Positive Functions

**Def.**  $f : \mathbb{N} \rightarrow \mathbb{R}$  is an **asymptotically positive function** if:

- $\exists n_0 > 0$  such that  $\forall n > n_0$  we have  $f(n) > 0$
- In other words,  $f(n)$  is positive for large enough  $n$ .
- $n^2 - n - 30$  Yes
- $2^n - n^{20}$  Yes
- $100n - n^2/10 + 50$ ?

# Asymptotically Positive Functions

**Def.**  $f : \mathbb{N} \rightarrow \mathbb{R}$  is an **asymptotically positive function** if:

- $\exists n_0 > 0$  such that  $\forall n > n_0$  we have  $f(n) > 0$
- In other words,  $f(n)$  is positive for large enough  $n$ .
- $n^2 - n - 30$       Yes
- $2^n - n^{20}$       Yes
- $100n - n^2/10 + 50?$       No

# Asymptotically Positive Functions

**Def.**  $f : \mathbb{N} \rightarrow \mathbb{R}$  is an **asymptotically positive function** if:

- $\exists n_0 > 0$  such that  $\forall n > n_0$  we have  $f(n) > 0$
- In other words,  $f(n)$  is positive for large enough  $n$ .
- $n^2 - n - 30$       Yes
- $2^n - n^{20}$       Yes
- $100n - n^2/10 + 50?$       No
- We only consider asymptotically positive functions.

# $O$ -Notation: Asymptotic Upper Bound

**$O$ -Notation** For a function  $g(n)$ ,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) \leq cg(n), \forall n \geq n_0 \}.$$

# $O$ -Notation: Asymptotic Upper Bound

**$O$ -Notation** For a function  $g(n)$ ,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) \leq cg(n), \forall n \geq n_0 \}.$$

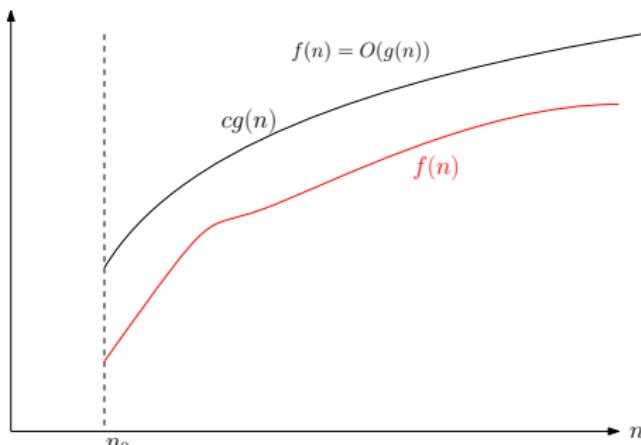
- In short,  $f(n) \in O(g(n))$  if  $f(n) \leq cg(n)$  for **some**  $c > 0$  and **every** large enough  $n$ .

# $O$ -Notation: Asymptotic Upper Bound

**$O$ -Notation** For a function  $g(n)$ ,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In short,  $f(n) \in O(g(n))$  if  $f(n) \leq cg(n)$  for **some**  $c > 0$  and **every** large enough  $n$ .



# $O$ -Notation: Asymptotic Upper Bound

**$O$ -Notation** For a function  $g(n)$ ,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n \in O(n^2 - 10n)$

# $O$ -Notation: Asymptotic Upper Bound

**$O$ -Notation** For a function  $g(n)$ ,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n \in O(n^2 - 10n)$

## Proof.

Let  $c = 4$  and  $n_0 = 50$ , for every  $n > n_0 = 50$ , we have,

$$3n^2 + 2n - c(n^2 - 10n) = 3n^2 + 2n - 4(n^2 - 10n)$$

$$= -n^2 + 42n \leq 0.$$

$$3n^2 + 2n \leq c(n^2 - 10n)$$

□

**$O$ -Notation** For a function  $g(n)$ ,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n \in O(n^2 - 10n)$

**$O$ -Notation** For a function  $g(n)$ ,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$

**$O$ -Notation** For a function  $g(n)$ ,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$

**$O$ -Notation** For a function  $g(n)$ ,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

**$O$ -Notation** For a function  $g(n)$ ,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

| Asymptotic Notations | $O$    | $\Omega$ | $\Theta$ |
|----------------------|--------|----------|----------|
| Comparison Relations | $\leq$ |          |          |

# Conventions

- We use " $f(n) = O(g(n))$ " to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^2)$

# Conventions

- We use " $f(n) = O(g(n))$ " to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^2)$
- " $=$ " is **asymmetric**: we do not write  $O(n^2) = 3n^2 + 2n$

# Conventions

- We use " $f(n) = O(g(n))$ " to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^2)$
- " $=$ " is **asymmetric**: we do not write  $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. ~~A student is Mike.~~

# Conventions

- We use " $f(n) = O(g(n))$ " to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^2)$
- " $=$ " is **asymmetric**: we do not write  $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. ~~A student is Mike.~~
- We use " $O(g(n)) = O(g'(n))$ " to denote " $O(g(n)) \subseteq O(g'(n))$ ".
- $O(3n^2 + 2n) = O(n^2)$

# Conventions

- We use " $f(n) = O(g(n))$ " to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^2)$
- " $=$ " is **asymmetric**: we do not write  $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. ~~A student is Mike.~~
- We use " $O(g(n)) = O(g'(n))$ " to denote " $O(g(n)) \subseteq O(g'(n))$ ".
- $O(3n^2 + 2n) = O(n^2)$
- Again, " $=$ " is **asymmetric**.
- $O(n^3) = O(3n^2 + 2n)$  makes sense, but is wrong.
- Analogy: All students are people.

# Conventions

- We use " $f(n) = O(g(n))$ " to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^2)$
- " $=$ " is **asymmetric**: we do not write  $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. ~~A student is Mike.~~
- We use " $O(g(n)) = O(g'(n))$ " to denote " $O(g(n)) \subseteq O(g'(n))$ ".
- $O(3n^2 + 2n) = O(n^2)$
- Again, " $=$ " is **asymmetric**.
- $O(n^3) = O(3n^2 + 2n)$  makes sense, but is wrong.
- Analogy: All students are people.
- Equalities can be chained:  $3n^2 + 2n = O(n^2) = O(n^3)$ .

# $\Omega$ -Notation: Asymptotic Lower Bound

**$O$ -Notation** For a function  $g(n)$ ,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) \leq cg(n), \forall n \geq n_0 \}.$$

**$\Omega$ -Notation** For a function  $g(n)$ ,

$$\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) \geq cg(n), \forall n \geq n_0 \}.$$

# $\Omega$ -Notation: Asymptotic Lower Bound

**$O$ -Notation** For a function  $g(n)$ ,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) \leq cg(n), \forall n \geq n_0 \}.$$

**$\Omega$ -Notation** For a function  $g(n)$ ,

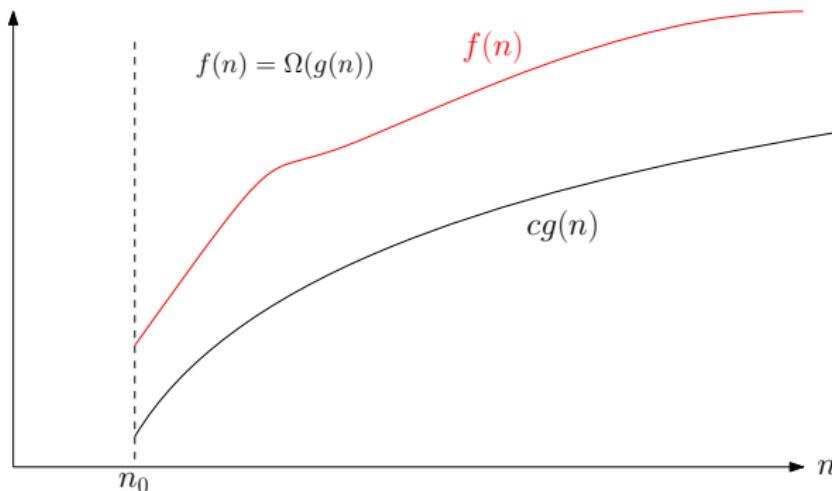
$$\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) \geq cg(n), \forall n \geq n_0 \}.$$

- In short,  $f(n) \in \Omega(g(n))$  if  $f(n) \geq cg(n)$  for some  $c$  and large enough  $n$ .

# $\Omega$ -Notation: Asymptotic Lower Bound

**$\Omega$ -Notation** For a function  $g(n)$ ,

$$\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) \geq cg(n), \forall n \geq n_0 \}.$$



## $\Omega$ -Notation: Asymptotic Lower Bound

- Again, we use “=” instead of  $\in$ .
  - $4n^2 = \Omega(n - 10)$
  - $3n^2 - n + 10 = \Omega(n^2 - 20)$

# $\Omega$ -Notation: Asymptotic Lower Bound

- Again, we use “=” instead of  $\in$ .

- $4n^2 = \Omega(n - 10)$
- $3n^2 - n + 10 = \Omega(n^2 - 20)$

| Asymptotic Notations | $O$    | $\Omega$ | $\Theta$ |
|----------------------|--------|----------|----------|
| Comparison Relations | $\leq$ | $\geq$   |          |

# $\Omega$ -Notation: Asymptotic Lower Bound

- Again, we use “=” instead of  $\in$ .

- $4n^2 = \Omega(n - 10)$
- $3n^2 - n + 10 = \Omega(n^2 - 20)$

| Asymptotic Notations | $O$    | $\Omega$ | $\Theta$ |
|----------------------|--------|----------|----------|
| Comparison Relations | $\leq$ | $\geq$   |          |

**Theorem**  $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$ .

## $\Theta$ -Notation: Asymptotic Tight Bound

**$\Theta$ -Notation** For a function  $g(n)$ ,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$

# $\Theta$ -Notation: Asymptotic Tight Bound

**$\Theta$ -Notation** For a function  $g(n)$ ,

$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that}$

$$c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$

- $f(n) = \Theta(g(n))$ , then for large enough  $n$ , we have " $f(n) \approx g(n)$ ".

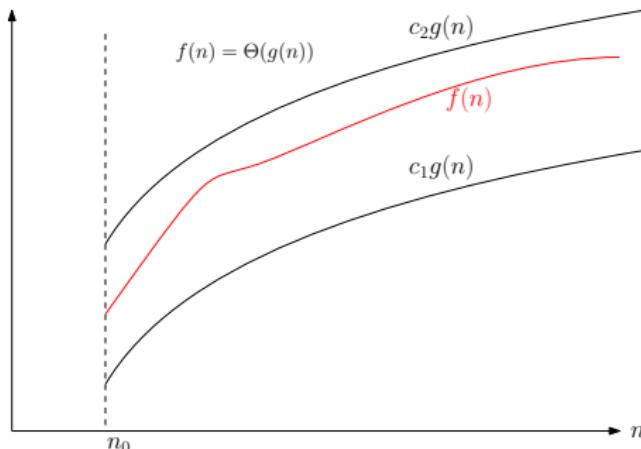
# $\Theta$ -Notation: Asymptotic Tight Bound

**$\Theta$ -Notation** For a function  $g(n)$ ,

$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that}$

$$c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \}.$$

- $f(n) = \Theta(g(n))$ , then for large enough  $n$ , we have " $f(n) \approx g(n)$ ".



# $\Theta$ -Notation: Asymptotic Tight Bound

**$\Theta$ -Notation** For a function  $g(n)$ ,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n = \Theta(n^2 - 20n)$

# $\Theta$ -Notation: Asymptotic Tight Bound

**$\Theta$ -Notation** For a function  $g(n)$ ,

$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that}$

$$c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n = \Theta(n^2 - 20n)$
- $2^{n/3+100} = \Theta(2^{n/3})$

# $\Theta$ -Notation: Asymptotic Tight Bound

**$\Theta$ -Notation** For a function  $g(n)$ ,

$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that}$

$c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \}$ .

- $3n^2 + 2n = \Theta(n^2 - 20n)$
- $2^{n/3+100} = \Theta(2^{n/3})$

| Asymptotic Notations | $O$    | $\Omega$ | $\Theta$ |
|----------------------|--------|----------|----------|
| Comparison Relations | $\leq$ | $\geq$   | $=$      |

# $\Theta$ -Notation: Asymptotic Tight Bound

**$\Theta$ -Notation** For a function  $g(n)$ ,

$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that}$

$$c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n = \Theta(n^2 - 20n)$
- $2^{n/3+100} = \Theta(2^{n/3})$

| Asymptotic Notations | $O$    | $\Omega$ | $\Theta$ |
|----------------------|--------|----------|----------|
| Comparison Relations | $\leq$ | $\geq$   | $=$      |

**Theorem**  $f(n) = \Theta(g(n))$  if and only if  
 $f(n) = O(g(n))$  and  $f(n) = \Omega(g(n))$ .

# $o$ and $\omega$ -Notations

**$o$ -Notation** For a function  $g(n)$ ,

$$o(g(n)) = \{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

**$\omega$ -Notation** For a function  $g(n)$ ,

$$\omega(g(n)) = \{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$

Example:

- $3n^2 + 5n + 10 = o(n^2 \log n)$ .
- $3n^2 + 5n + 10 = \omega(n^2 / \log n)$ .

| Asymptotic Notations | $O$    | $\Omega$ | $\Theta$ | $o$ | $\omega$ |
|----------------------|--------|----------|----------|-----|----------|
| Comparison Relations | $\leq$ | $\geq$   | $=$      | $<$ | $>$      |

| Asymptotic Notations | $O$    | $\Omega$ | $\Theta$ | $o$ | $\omega$ |
|----------------------|--------|----------|----------|-----|----------|
| Comparison Relations | $\leq$ | $\geq$   | $=$      | $<$ | $>$      |

For two constants  $a, b \in \mathbb{R}$ :

- $n^a = O(n^b)$  if and only if  $a \leq b$
- $n^a = \Omega(n^b)$  if and only if  $a \geq b$
- $n^a = \Theta(n^b)$  if and only if  $a = b$
- $n^a = o(n^b)$  if and only if  $a < b$
- $n^a = \omega(n^b)$  if and only if  $a > b$

|                      |        |          |          |     |          |
|----------------------|--------|----------|----------|-----|----------|
| Asymptotic Notations | $O$    | $\Omega$ | $\Theta$ | $o$ | $\omega$ |
| Comparison Relations | $\leq$ | $\geq$   | $=$      | $<$ | $>$      |

## Facts on Comparison Relations

- $a \leq b \iff b \geq a$
- $a = b \iff a \leq b \text{ and } a \geq b$
- $a < b \implies a \leq b$
- $a < b \iff b > a$

|                      |        |          |          |     |          |
|----------------------|--------|----------|----------|-----|----------|
| Asymptotic Notations | $O$    | $\Omega$ | $\Theta$ | $o$ | $\omega$ |
| Comparison Relations | $\leq$ | $\geq$   | $=$      | $<$ | $>$      |

## Facts on Comparison Relations

- $a \leq b \iff b \geq a$
- $a = b \iff a \leq b \text{ and } a \geq b$
- $a < b \implies a \leq b$
- $a < b \iff b > a$

## Correct Analogies

- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$
- $f(n) = o(g(n)) \implies f(n) = O(g(n))$
- $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$

|                      |        |          |          |     |          |
|----------------------|--------|----------|----------|-----|----------|
| Asymptotic Notations | $O$    | $\Omega$ | $\Theta$ | $o$ | $\omega$ |
| Comparison Relations | $\leq$ | $\geq$   | $=$      | $<$ | $>$      |

## Facts on Comparison Relations

- $a \leq b$  or  $a \geq b$
- $a \leq b \iff a = b$  or  $a < b$

|                      |        |          |          |     |          |
|----------------------|--------|----------|----------|-----|----------|
| Asymptotic Notations | $O$    | $\Omega$ | $\Theta$ | $o$ | $\omega$ |
| Comparison Relations | $\leq$ | $\geq$   | $=$      | $<$ | $>$      |

## Facts on Comparison Relations

- $a \leq b$  or  $a \geq b$
- $a \leq b \iff a = b$  or  $a < b$

## Incorrect Analogies

- $f(n) = O(g(n))$  or  $f(n) = \Omega(g(n))$
- $f(n) = O(g(n)) \iff f(n) = \Theta(g(n))$  or  $f(n) = o(g(n))$

## Incorrect Analogy

- $f(n) = O(g(n))$  or  $f(n) = \Omega(g(n))$

## Incorrect Analogy

- $f(n) = O(g(n))$  or  $f(n) = \Omega(g(n))$

$$f(n) = n^2$$

$$g(n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ n^3 & \text{if } n \text{ is even} \end{cases}$$

## Recall: Informal way to define $O$ -notation

- ignoring lower order terms:  $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant:  $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- In the formal definition of  $O(\cdot)$ , nothing tells us to ignore lower order terms and leading constant.

## Recall: Informal way to define $O$ -notation

- ignoring lower order terms:  $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant:  $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- In the formal definition of  $O(\cdot)$ , nothing tells us to ignore lower order terms and leading constant.
- $3n^2 - 10n - 5 = O(5n^2 - 6n + 5)$  is correct, though weird
- $3n^2 - 10n - 5 = O(n^2)$  is the most natural since  $n^2$  is the simplest term we can have inside  $O(\cdot)$ .

Notice that  $O$  denotes asymptotic **upper** bound

- $n^2 + 2n = O(n^3)$  is correct.
- The following sentence is correct: the running time of insertion sort is  $O(n^4)$ .
- Usually we say: The running time of insertion sort is  $O(n^2)$  and **the bound is tight**.
- Also correct: the **worst-case** running time of insertion sort is  $\Theta(n^2)$ .

# Outline

## 1 Syllabus

## 2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

## 3 Asymptotic Notations

## 4 Common Running times

# $O(n)$ (Linear) Running Time

Computing the sum of  $n$  numbers

**sum( $A, n$ )**

```
1:  $S \leftarrow 0$ 
2: for  $i \leftarrow 1$  to  $n$ 
3:    $S \leftarrow S + A[i]$ 
4: return  $S$ 
```

# $O(n)$ (Linear) Running Time

- Merge two sorted arrays

|   |   |    |    |    |    |
|---|---|----|----|----|----|
| 3 | 8 | 12 | 20 | 32 | 48 |
|---|---|----|----|----|----|

|   |   |   |    |    |
|---|---|---|----|----|
| 5 | 7 | 9 | 25 | 29 |
|---|---|---|----|----|

# $O(n)$ (Linear) Running Time

- Merge two sorted arrays



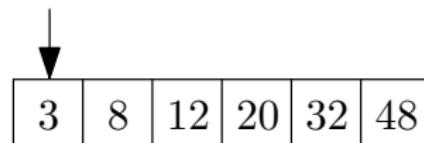
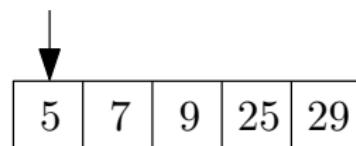
|   |   |    |    |    |    |
|---|---|----|----|----|----|
| 3 | 8 | 12 | 20 | 32 | 48 |
|---|---|----|----|----|----|



|   |   |   |    |    |
|---|---|---|----|----|
| 5 | 7 | 9 | 25 | 29 |
|---|---|---|----|----|

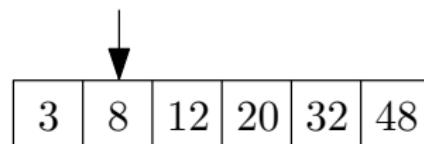
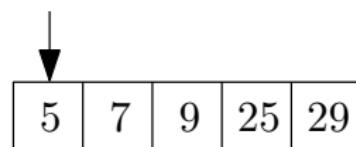
# $O(n)$ (Linear) Running Time

- Merge two sorted arrays



# $O(n)$ (Linear) Running Time

- Merge two sorted arrays



# $O(n)$ (Linear) Running Time

- Merge two sorted arrays

|   |   |    |    |    |    |
|---|---|----|----|----|----|
| 3 | 8 | 12 | 20 | 32 | 48 |
|---|---|----|----|----|----|

|   |   |   |    |    |
|---|---|---|----|----|
| 5 | 7 | 9 | 25 | 29 |
|---|---|---|----|----|

|   |   |
|---|---|
| 3 | 5 |
|---|---|

# $O(n)$ (Linear) Running Time

- Merge two sorted arrays

|   |   |    |    |    |    |
|---|---|----|----|----|----|
| 3 | 8 | 12 | 20 | 32 | 48 |
|---|---|----|----|----|----|

|   |   |   |    |    |
|---|---|---|----|----|
| 5 | 7 | 9 | 25 | 29 |
|---|---|---|----|----|

|   |   |
|---|---|
| 3 | 5 |
|---|---|

# $O(n)$ (Linear) Running Time

- Merge two sorted arrays



|   |   |    |    |    |    |
|---|---|----|----|----|----|
| 3 | 8 | 12 | 20 | 32 | 48 |
|---|---|----|----|----|----|



|   |   |   |    |    |
|---|---|---|----|----|
| 5 | 7 | 9 | 25 | 29 |
|---|---|---|----|----|

|   |   |   |
|---|---|---|
| 3 | 5 | 7 |
|---|---|---|

# $O(n)$ (Linear) Running Time

- Merge two sorted arrays



|   |   |    |    |    |    |
|---|---|----|----|----|----|
| 3 | 8 | 12 | 20 | 32 | 48 |
|---|---|----|----|----|----|



|   |   |   |    |    |
|---|---|---|----|----|
| 5 | 7 | 9 | 25 | 29 |
|---|---|---|----|----|



|   |   |   |
|---|---|---|
| 3 | 5 | 7 |
|---|---|---|

# $O(n)$ (Linear) Running Time

- Merge two sorted arrays



|   |   |    |    |    |    |
|---|---|----|----|----|----|
| 3 | 8 | 12 | 20 | 32 | 48 |
|---|---|----|----|----|----|



|   |   |   |    |    |
|---|---|---|----|----|
| 5 | 7 | 9 | 25 | 29 |
|---|---|---|----|----|



|   |   |   |   |
|---|---|---|---|
| 3 | 5 | 7 | 8 |
|---|---|---|---|

# $O(n)$ (Linear) Running Time

- Merge two sorted arrays

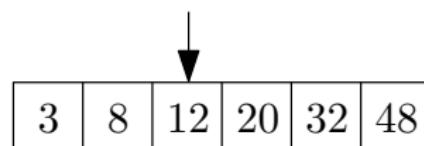


Diagram illustrating the merging of two sorted arrays:

Initial arrays:

|   |   |    |    |    |    |
|---|---|----|----|----|----|
| 3 | 8 | 12 | 20 | 32 | 48 |
|---|---|----|----|----|----|

Intermediate array:

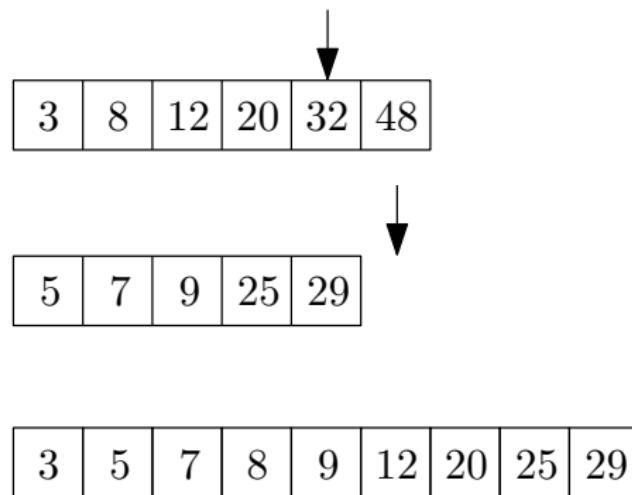
|   |   |   |    |    |
|---|---|---|----|----|
| 5 | 7 | 9 | 25 | 29 |
|---|---|---|----|----|

Merged array:

|   |   |   |   |
|---|---|---|---|
| 3 | 5 | 7 | 8 |
|---|---|---|---|

# $O(n)$ (Linear) Running Time

- Merge two sorted arrays



# $O(n)$ (Linear) Running Time

- Merge two sorted arrays



|   |   |    |    |    |    |
|---|---|----|----|----|----|
| 3 | 8 | 12 | 20 | 32 | 48 |
|---|---|----|----|----|----|



|   |   |   |    |    |
|---|---|---|----|----|
| 5 | 7 | 9 | 25 | 29 |
|---|---|---|----|----|



|   |   |   |   |   |    |    |    |    |    |    |
|---|---|---|---|---|----|----|----|----|----|----|
| 3 | 5 | 7 | 8 | 9 | 12 | 20 | 25 | 29 | 32 | 48 |
|---|---|---|---|---|----|----|----|----|----|----|

# $O(n)$ (Linear) Running Time

$\text{merge}(B, C, n_1, n_2)$  \\\  $B$  and  $C$  are sorted, with length  $n_1$  and  $n_2$

```
1:  $A \leftarrow []$ ;  $i \leftarrow 1$ ;  $j \leftarrow 1$ 
2: while  $i \leq n_1$  and  $j \leq n_2$  do
3:   if  $B[i] \leq C[j]$  then
4:     append  $B[i]$  to  $A$ ;  $i \leftarrow i + 1$ 
5:   else
6:     append  $C[j]$  to  $A$ ;  $j \leftarrow j + 1$ 
7:   if  $i \leq n_1$  then append  $B[i..n_1]$  to  $A$ 
8:   if  $j \leq n_2$  then append  $C[j..n_2]$  to  $A$ 
9: return  $A$ 
```

# $O(n)$ (Linear) Running Time

$\text{merge}(B, C, n_1, n_2)$  \\\  $B$  and  $C$  are sorted, with length  $n_1$  and  $n_2$

```
1:  $A \leftarrow []$ ;  $i \leftarrow 1$ ;  $j \leftarrow 1$ 
2: while  $i \leq n_1$  and  $j \leq n_2$  do
3:   if  $B[i] \leq C[j]$  then
4:     append  $B[i]$  to  $A$ ;  $i \leftarrow i + 1$ 
5:   else
6:     append  $C[j]$  to  $A$ ;  $j \leftarrow j + 1$ 
7:   if  $i \leq n_1$  then append  $B[i..n_1]$  to  $A$ 
8:   if  $j \leq n_2$  then append  $C[j..n_2]$  to  $A$ 
9: return  $A$ 
```

Running time =  $O(n)$  where  $n = n_1 + n_2$ .

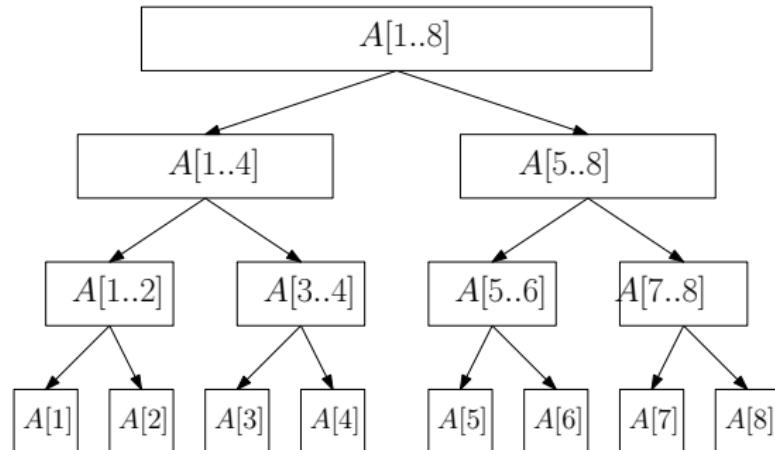
# $O(n \log n)$ Running Time

## merge-sort( $A, n$ )

```
1: if  $n = 1$  then  
2:   return  $A$   
3:  $B \leftarrow \text{merge-sort}\left(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor\right)$   
4:  $C \leftarrow \text{merge-sort}\left(A[\lfloor n/2 \rfloor + 1..n], n - \lfloor n/2 \rfloor\right)$   
5: return  $\text{merge}(B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor)$ 
```

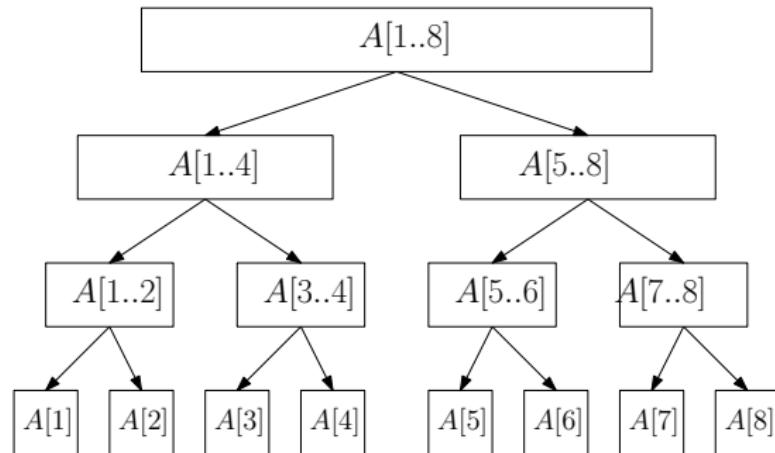
# $O(n \log n)$ Running Time

- Merge-Sort



# $O(n \log n)$ Running Time

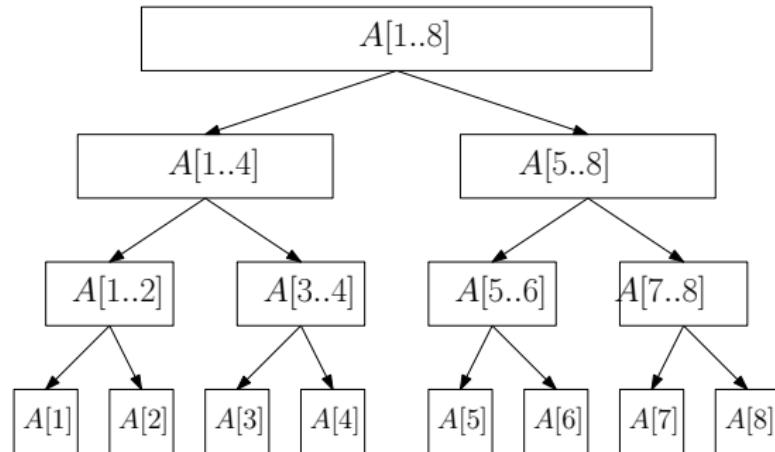
- Merge-Sort



- Each level takes running time  $O(n)$

# $O(n \log n)$ Running Time

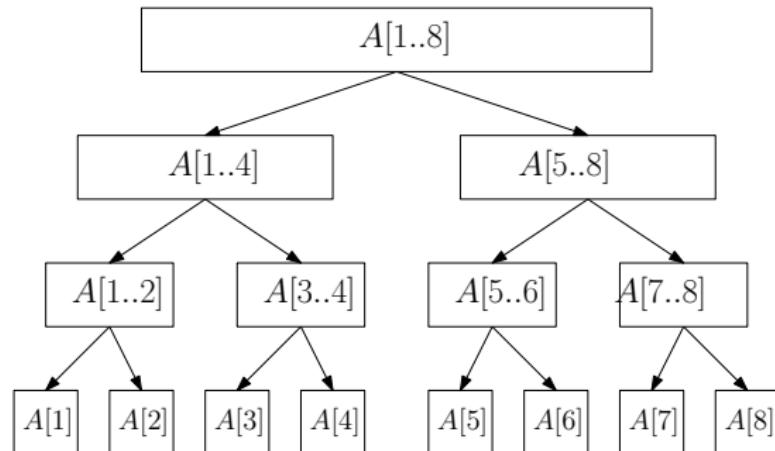
- Merge-Sort



- Each level takes running time  $O(n)$
- There are  $O(\log n)$  levels

# $O(n \log n)$ Running Time

- Merge-Sort



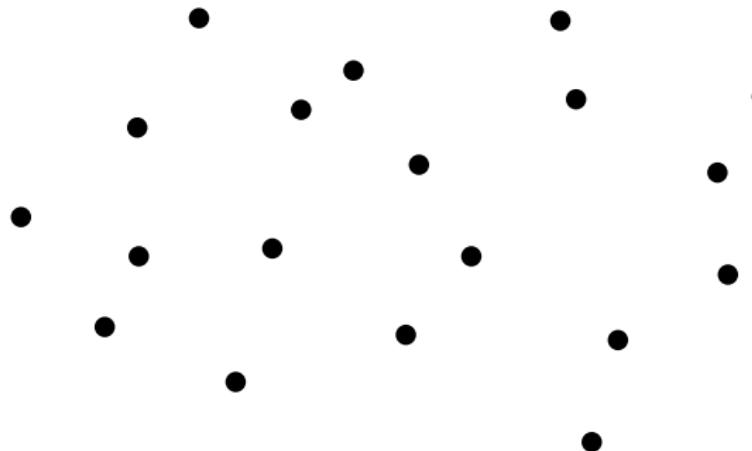
- Each level takes running time  $O(n)$
- There are  $O(\log n)$  levels
- Running time =  $O(n \log n)$

# $O(n^2)$ (Quadratic) Running Time

## Closest Pair

**Input:**  $n$  points in plane:  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

**Output:** the pair of points that are closest

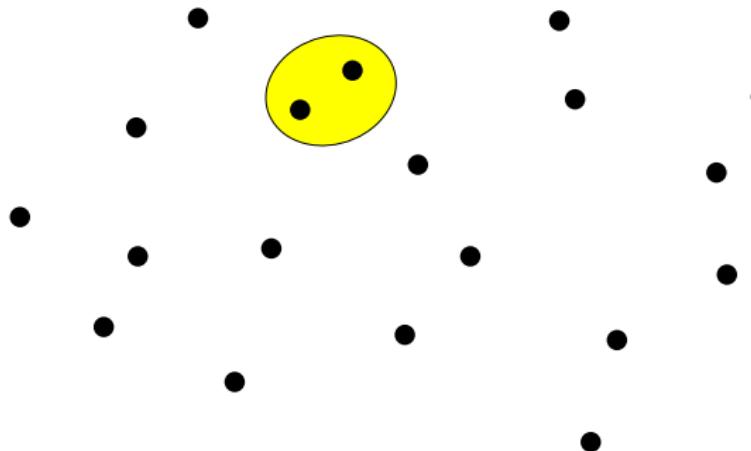


# $O(n^2)$ (Quadratic) Running Time

## Closest Pair

**Input:**  $n$  points in plane:  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

**Output:** the pair of points that are closest



# $O(n^2)$ (Quadratic) Running Time

## Closest Pair

**Input:**  $n$  points in plane:  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

**Output:** the pair of points that are closest

### closest-pair( $x, y, n$ )

```
1: bestd  $\leftarrow \infty$ 
2: for  $i \leftarrow 1$  to  $n - 1$  do
3:   for  $j \leftarrow i + 1$  to  $n$  do
4:      $d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$ 
5:     if  $d < \text{bestd}$  then
6:        $\text{besti} \leftarrow i, \text{bestj} \leftarrow j, \text{bestd} \leftarrow d$ 
7: return  $(\text{besti}, \text{bestj})$ 
```

# $O(n^2)$ (Quadratic) Running Time

## Closest Pair

**Input:**  $n$  points in plane:  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

**Output:** the pair of points that are closest

### closest-pair( $x, y, n$ )

```
1: bestd  $\leftarrow \infty$ 
2: for  $i \leftarrow 1$  to  $n - 1$  do
3:   for  $j \leftarrow i + 1$  to  $n$  do
4:      $d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$ 
5:     if  $d < \text{bestd}$  then
6:        $\text{besti} \leftarrow i, \text{bestj} \leftarrow j, \text{bestd} \leftarrow d$ 
7: return  $(\text{besti}, \text{bestj})$ 
```

Closest pair can be solved in  $O(n \log n)$  time!

# $O(n^3)$ (Cubic) Running Time

Multiply two matrices of size  $n \times n$

## matrix-multiplication( $A, B, n$ )

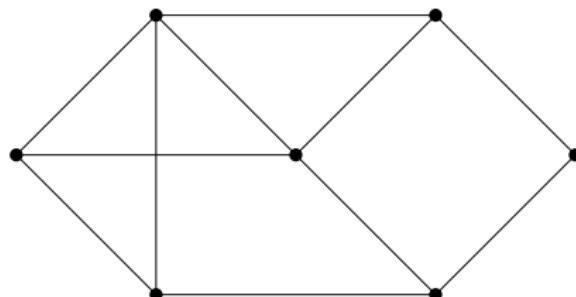
```
1:  $C \leftarrow$  matrix of size  $n \times n$ , with all entries being 0
2: for  $i \leftarrow 1$  to  $n$  do
3:   for  $j \leftarrow 1$  to  $n$  do
4:     for  $k \leftarrow 1$  to  $n$  do
5:        $C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]$ 
6: return  $C$ 
```

## Beyond Polynomial Time: $2^n$

**Def.** An **independent set** of a graph  $G = (V, E)$  is a subset  $S \subseteq V$  of vertices such that for every  $u, v \in S$ , we have  $(u, v) \notin E$ .

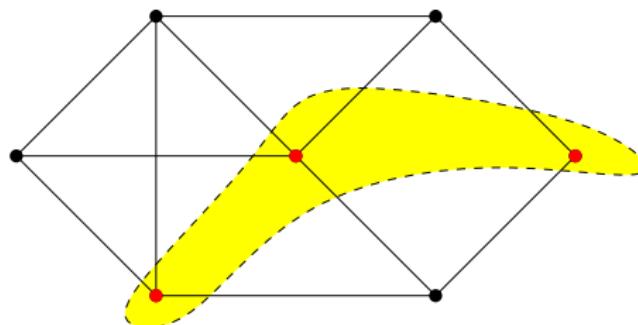
# Beyond Polynomial Time: $2^n$

**Def.** An **independent set** of a graph  $G = (V, E)$  is a subset  $S \subseteq V$  of vertices such that for every  $u, v \in S$ , we have  $(u, v) \notin E$ .



# Beyond Polynomial Time: $2^n$

**Def.** An **independent set** of a graph  $G = (V, E)$  is a subset  $S \subseteq V$  of vertices such that for every  $u, v \in S$ , we have  $(u, v) \notin E$ .



# Beyond Polynomial Time: $2^n$

## Maximum Independent Set Problem

**Input:** graph  $G = (V, E)$

**Output:** the maximum independent set of  $G$

**max-independent-set**( $G = (V, E)$ )

```
1:  $R \leftarrow \emptyset$ 
2: for every set  $S \subseteq V$  do
3:    $b \leftarrow \text{true}$ 
4:   for every  $u, v \in S$  do
5:     if  $(u, v) \in E$  then  $b \leftarrow \text{false}$ 
6:   if  $b$  and  $|S| > |R|$  then  $R \leftarrow S$ 
7: return  $R$ 
```

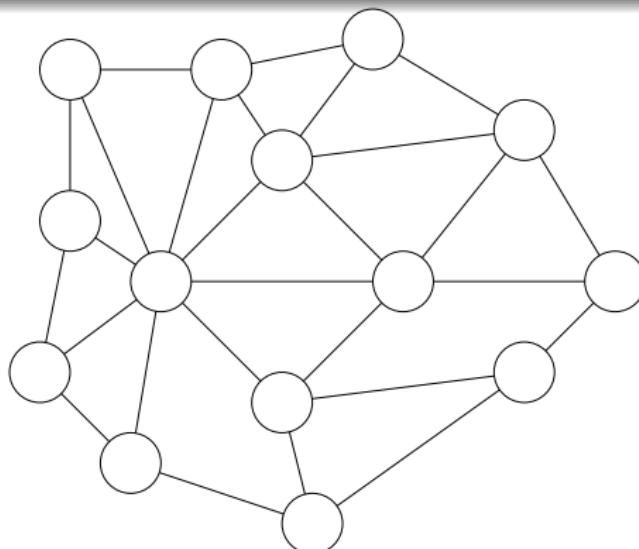
Running time =  $O(2^n n^2)$ .

# Beyond Polynomial Time: $n!$

## Hamiltonian Cycle Problem

**Input:** a graph with  $n$  vertices

**Output:** a cycle that visits each node exactly once,  
or say no such cycle exists

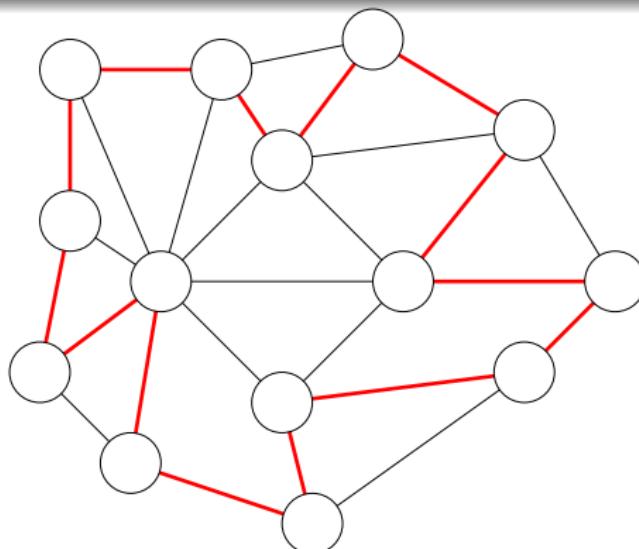


# Beyond Polynomial Time: $n!$

## Hamiltonian Cycle Problem

**Input:** a graph with  $n$  vertices

**Output:** a cycle that visits each node exactly once,  
or say no such cycle exists



# Beyond Polynomial Time: $n!$

## Hamiltonian( $G = (V, E)$ )

```
1: for every permutation  $(p_1, p_2, \dots, p_n)$  of  $V$  do
2:    $b \leftarrow \text{true}$ 
3:   for  $i \leftarrow 1$  to  $n - 1$  do
4:     if  $(p_i, p_{i+1}) \notin E$  then  $b \leftarrow \text{false}$ 
5:     if  $(p_n, p_1) \notin E$  then  $b \leftarrow \text{false}$ 
6:   if  $b$  then return  $(p_1, p_2, \dots, p_n)$ 
7: return "No Hamiltonian Cycle"
```

Running time =  $O(n! \times n)$

# $O(\log n)$ (Logarithmic) Running Time

# $O(\log n)$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
  - Output: whether  $t$  appears in  $A$ .

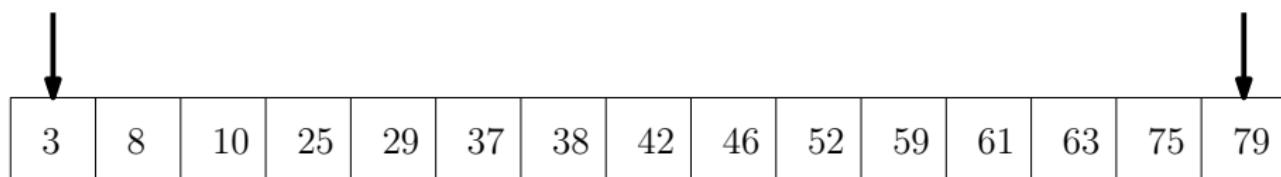
# $O(\log n)$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
  - Output: whether  $t$  appears in  $A$ .
- E.g, search 35 in the following array:

|   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 3 | 8 | 10 | 25 | 29 | 37 | 38 | 42 | 46 | 52 | 59 | 61 | 63 | 75 | 79 |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|

# $O(\log n)$ (Logarithmic) Running Time

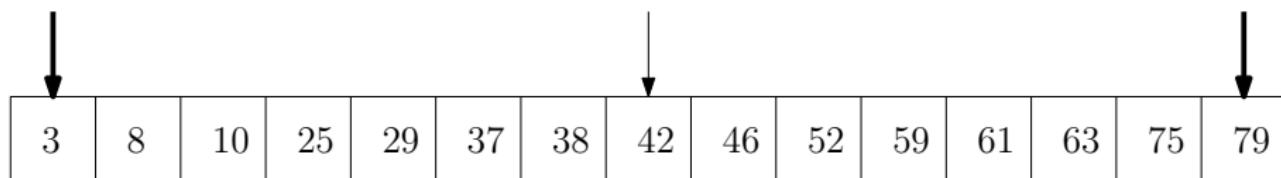
- Binary search
  - Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
  - Output: whether  $t$  appears in  $A$ .
- E.g, search 35 in the following array:



|   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 3 | 8 | 10 | 25 | 29 | 37 | 38 | 42 | 46 | 52 | 59 | 61 | 63 | 75 | 79 |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|

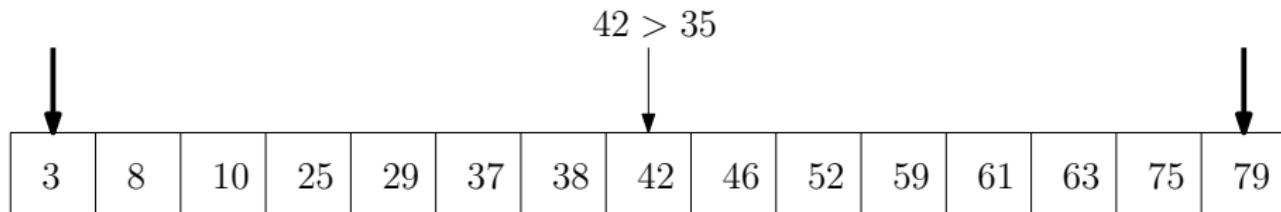
# $O(\log n)$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
  - Output: whether  $t$  appears in  $A$ .
- E.g, search 35 in the following array:



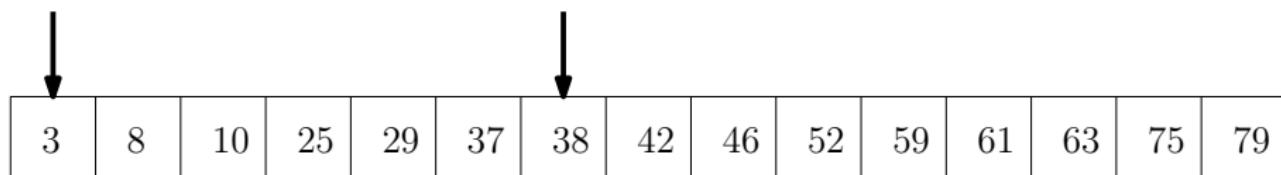
# $O(\log n)$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
  - Output: whether  $t$  appears in  $A$ .
- E.g, search 35 in the following array:



# $O(\log n)$ (Logarithmic) Running Time

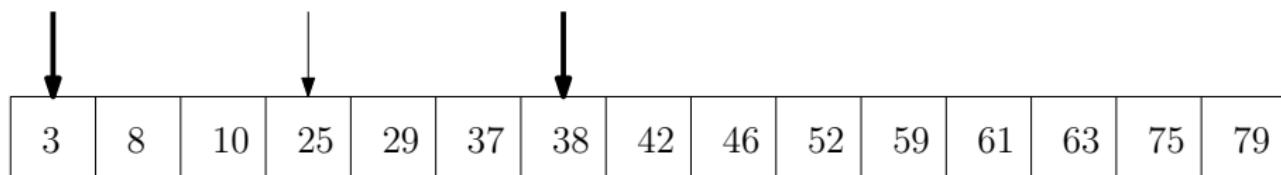
- Binary search
  - Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
  - Output: whether  $t$  appears in  $A$ .
- E.g, search 35 in the following array:



|   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 3 | 8 | 10 | 25 | 29 | 37 | 38 | 42 | 46 | 52 | 59 | 61 | 63 | 75 | 79 |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|

# $O(\log n)$ (Logarithmic) Running Time

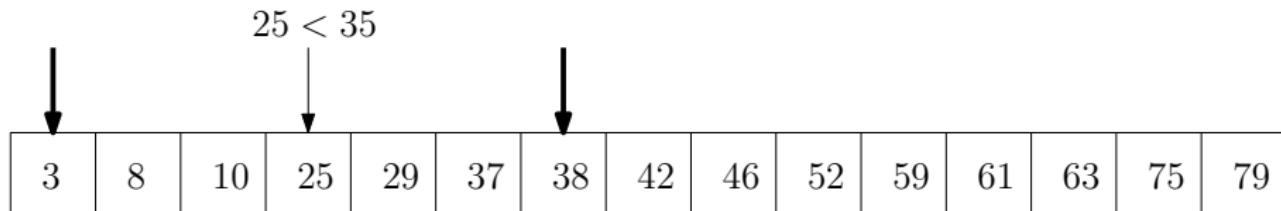
- Binary search
  - Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
  - Output: whether  $t$  appears in  $A$ .
- E.g, search 35 in the following array:



|   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 3 | 8 | 10 | 25 | 29 | 37 | 38 | 42 | 46 | 52 | 59 | 61 | 63 | 75 | 79 |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|

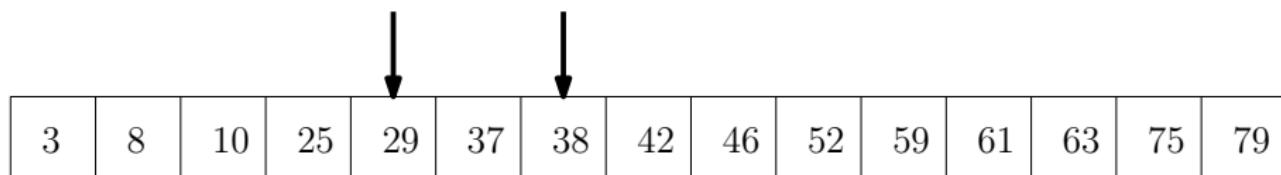
# $O(\log n)$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
  - Output: whether  $t$  appears in  $A$ .
- E.g, search 35 in the following array:



# $O(\log n)$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
  - Output: whether  $t$  appears in  $A$ .
- E.g, search 35 in the following array:



|   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 3 | 8 | 10 | 25 | 29 | 37 | 38 | 42 | 46 | 52 | 59 | 61 | 63 | 75 | 79 |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|

# $O(\log n)$ (Logarithmic) Running Time

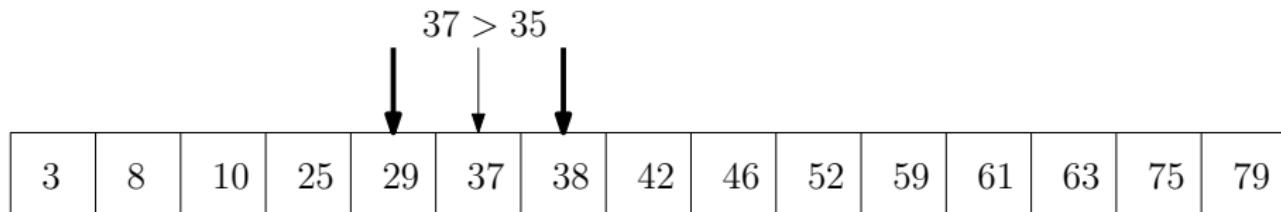
- Binary search
  - Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
  - Output: whether  $t$  appears in  $A$ .
- E.g, search 35 in the following array:



|   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 3 | 8 | 10 | 25 | 29 | 37 | 38 | 42 | 46 | 52 | 59 | 61 | 63 | 75 | 79 |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|

# $O(\log n)$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
  - Output: whether  $t$  appears in  $A$ .
- E.g, search 35 in the following array:



# $O(\log n)$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
  - Output: whether  $t$  appears in  $A$ .
- E.g, search 35 in the following array:



|   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 3 | 8 | 10 | 25 | 29 | 37 | 38 | 42 | 46 | 52 | 59 | 61 | 63 | 75 | 79 |
|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|

# $O(\log n)$ (Logarithmic) Running Time

## Binary search

- Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
- Output: whether  $t$  appears in  $A$ .

### binary-search( $A, n, t$ )

```
1:  $i \leftarrow 1, j \leftarrow n$ 
2: while  $i \leq j$  do
3:    $k \leftarrow \lfloor (i + j)/2 \rfloor$ 
4:   if  $A[k] = t$  return true
5:   if  $t < A[k]$  then  $j \leftarrow k - 1$  else  $i \leftarrow k + 1$ 
6: return false
```

# $O(\log n)$ (Logarithmic) Running Time

## Binary search

- Input: sorted array  $A$  of size  $n$ , an integer  $t$ ;
- Output: whether  $t$  appears in  $A$ .

### binary-search( $A, n, t$ )

```
1:  $i \leftarrow 1, j \leftarrow n$ 
2: while  $i \leq j$  do
3:    $k \leftarrow \lfloor (i + j)/2 \rfloor$ 
4:   if  $A[k] = t$  return true
5:   if  $t < A[k]$  then  $j \leftarrow k - 1$  else  $i \leftarrow k + 1$ 
6: return false
```

Running time =  $O(\log n)$

# Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically  
 $\log n, n, n^2, n \log n, n!, 2^n, e^n, n^n, \log(n!)$
- $\log n$

# Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically  
 $\log n, n, n^2, n \log n, n!, 2^n, e^n, n^n, \log(n!)$
- $\log n \quad n$

# Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically  
 $\log n, n, n^2, n \log n, n!, 2^n, e^n, n^n, \log(n!)$
- $\log n \quad n \quad n^2$

# Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically  
 $\log n, n, n^2, n \log n, n!, 2^n, e^n, n^n, \log(n!)$
- $\log n \quad n \quad n \log n \quad n^2$

# Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically  
 $\log n, n, n^2, n \log n, n!, 2^n, e^n, n^n, \log(n!)$
- $\log n \quad n \quad n \log n \quad n^2 \quad n!$

# Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically  
 $\log n, n, n^2, n \log n, n!, 2^n, e^n, n^n, \log(n!)$
- $\log n \quad n \quad n \log n \quad n^2 \quad 2^n \quad n!$

# Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically  
 $\log n, n, n^2, n \log n, n!, 2^n, e^n, n^n, \log(n!)$
- $\log n \quad n \quad n \log n \quad n^2 \quad 2^n \quad e^n \quad n!$

# Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically  
 $\log n, n, n^2, n \log n, n!, 2^n, e^n, n^n, \log(n!)$
- $\log n \quad n \quad n \log n \quad n^2 \quad 2^n \quad e^n \quad n! \quad n^n$

# Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically  
 $\log n, n, n^2, n \log n, n!, 2^n, e^n, n^n, \log(n!)$
- $\log n \quad n \quad \{n \log n, \log(n!)\} \quad n^2 \quad 2^n \quad e^n \quad n! \quad n^n$

# Comparing the Orders of Running Times

- Sort the functions from smallest to largest asymptotically  
 $\log n, n, n^2, n \log n, n!, 2^n, e^n, n^n, \log(n!)$
- $\log n \quad n \quad \{n \log n, \log(n!)\} \quad n^2 \quad 2^n \quad e^n \quad n! \quad n^n$
- $\log n = o(n), \quad n = o(n \log n), \quad \textcolor{red}{n \log n = \Theta(\log(n!))}$
- $\log(n!) = o(n^2), \quad n^2 = o(2^n), \quad 2^n = o(e^n)$
- $e^n = o(n!), \quad n! = o(n^n)$

# Terminologies

When we talk about upper bounds:

- Logarithmic time:  $O(\lg n)$
- Linear time:  $O(n)$
- Quadratic time:  $O(n^2)$
- Cubic time:  $O(n^3)$
- Polynomial time:  $O(n^k)$  for some constant  $k$
- Exponential time:  $O(c^n)$  for some  $c > 1$
- Sub-linear time:  $o(n)$
- Sub-quadratic time:  $o(n^2)$

# Terminologies

When we talk about upper bounds:

- Logarithmic time:  $O(\lg n)$
- Linear time:  $O(n)$
- Quadratic time:  $O(n^2)$
- Cubic time:  $O(n^3)$
- Polynomial time:  $O(n^k)$  for some constant  $k$
- Exponential time:  $O(c^n)$  for some  $c > 1$
- Sub-linear time:  $o(n)$
- Sub-quadratic time:  $o(n^2)$

When we talk about lower bounds:

- Super-linear time:  $\omega(n)$
- Super-quadratic time:  $\omega(n^2)$
- Super-polynomial time:  $\bigcap_{k>0} \omega(n^k) = n^{\omega(1)}$

## Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

## Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms
- Makes our life much easier! (E.g., the leading constant depends on the implementation, compiler and computer architecture of computer.)

**Q:** Can constants really be ignored?

- e.g, how can we compare an algorithm with running time  $0.1n^2$  with an algorithm with running time  $1000n$ ?

**Q:** Can constants really be ignored?

- e.g, how can we compare an algorithm with running time  $0.1n^2$  with an algorithm with running time  $1000n$ ?

**A:**

- Sometimes no
- For most natural and simple algorithms, constants are not so big.
- Algorithm with lower order running time beats algorithm with higher order running time for **reasonably large  $n$** .