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Course Information

e Time: Tuesdays and Thursdays, 10:10am - 12:00pm

e Location: 1llill-319

e Instructor: Shi Li (Z£/i)

e Email: [first name][last name][at][nju][dot][edu][dot][cn]



Logistics

@ Instructor’s Office Hours: Wednesdays 11:00am-12:00pm

e Location: TTHWLRAI605
o TA: FHEZE(zhliang[at]smail[dot]nju[dot]edu[dot]cn)



What You Will Learn

@ How to analyze the correctness and running time of an algorithm.
o Classic algorithms for classic problems
e sorting, minimum spanning tree, shortest paths
@ Algorithm design paradigms
e greedy algorithms, divide and conquer, dynamic programming
@ Network flow, linear programming, and problem reductions.
@ NP-completeness.
@ Advanced topics

e randomized algorithms, approximation algorithms, fixed-parameter
tractability, online algorithms



Prerequisites

@ Basic skills in formulating mathematical proofs.
@ Courses on data structures covering:
e Linked lists, arrays, stacks, queues, priority queues, trees, graphs.

@ Some programming experience using Python, C, C++, or Java.



Textbook

Required Textbook:

@ Jon Kleinberg and Eva Tardos, Algorithm
Design, 1st Edition, 2005, Pearson.

Reference Book:

@ Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein,
Introduction to Algorithms, 3rd Edition,
2009, MIT Press.
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Grading

Your final grade will be calculated as follows:
e 5 Homework Assignments: 20%.

e Midterm Exam: 20% or 30%.

e Final Exam: 60% or 50%.

Overall Score: The highest of the following weighting schemes:
@ 20% Homework + 20% Midterm + 60% Final
@ 20% Homework + 30% Midterm + 50% Final

Note: Both exams are closed-book.



Policies for Assignments

@ No late submissions will be accepted.

@ Do not search online for solutions or use Al tools to generate
solutions.

o Allowed Materials: Textbook, reference book, course slides, and
instructor-distributed materials.

e Collaboration:

e You may discuss with classmates but must write solutions
independently.
o Write down the names of collaborators.



Use of Al Tools

@ Al tools (e.g., ChatGPT, DeepSeek) are allowed as learning
tools but prohibited for solving homework problems.

o Al-generated content may contain errors; you are responsible to
verify correctness

@ Rule: Once you begin working on an assignment, you must
complete it without searching for solutions online or using Al tools.



Tentative Schedule

Topic Time
Introduction 4 hours
Graph Basics 4 hours
Greedy Algorithms 6 hours
Divide and Conquer 6 hours
Dynamic Programming 6 hours
Graph Algorithms 6 hours
Midterm Exam 2 hours
Network Flow 6 hours
NP-Completeness 6 hours
Linear Programming 4 hours
Advanced Topics 10 hours
Final Review 2 hours
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What is an Algorithm?

THE CLASSIC WORK
NEWLY UPDATED AND REVISED

The Art of @ Donald Knuth: An algorithm is a

Computer .. .. .

Programming finite, definite effective procedure,
with some input and some output.

DONALD E. KNUTH



What is an Algorithm?

The Art of @ Donald Knuth: An algorithm is a
gi’fg'f;f&mg finite, definite effective procedure,

with some input and some output.

DONALD E. KNUTH

e finite: description is finite, (stronger requirement: terminate in
finite number of steps)

o definite: clearly defined, no ambiguity
o effective: must be realizable using a finite amount of resources
@ input: take 0 or some inputs

@ output: produce 1 or more outputs



What is an Algorithm?

e Computational problem: specifies the input/output relationship.

@ An algorithm solves a computational problem if it produces the
correct output for any given input.



Examples

Greatest Common Divisor
Input: two integers a,b > 0

Output: the greatest common divisor of a and b
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Examples

Greatest Common Divisor
Input: two integers a,b > 0

Output: the greatest common divisor of a and b

Example:
@ Input: 210, 270
e Output: 30

@ Algorithm: Euclidean algorithm
e gcd(270,210) = ged (210,270 mod 210) = ged(210, 60)



Examples

Greatest Common Divisor
Input: two integers a,b > 0

Output: the greatest common divisor of a and b

Example:
Input: 210, 270
Output: 30

Algorithm: Euclidean algorithm
ged(270,210) = ged (210,270 mod 210) = ged(210, 60)
(270,210) — (210,60) — (60,30) — (30,0)
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o Output: 12,15,21, 35,53, 59




Examples

Sorting
Input: sequence of n numbers (ay,as, - ,a,)
Output: a permutation (a},al, - ,a’,) of the input sequence such

that ] <af <--- <a,

Example:
e Input: 53,12, 35,21,59,15
o Output: 12,15,21, 35,53, 59

@ Algorithms: insertion sort, merge sort, quicksort, ...



Examples

Shortest Path
Input: directed graph G = (V, E), s,t € V
Output: a shortest path from s to ¢ in G
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Examples

Shortest Path
Input: directed graph G = (V, E), s,t € V
Output: a shortest path from s to ¢ in G

@ Algorithm: Dijkstra’s algorithm



Algorithm = Computer Program?

@ Algorithm: “abstract”, can be specified using computer program,
English, pseudo-codes or flow charts.

o Computer program: “concrete”, implementation of algorithm,
using a particular programming language



Pseudo-Code

Pseudo-Code:

Euclidean(a, b)

1: while b > 0 do
2: (a,b) < (b,a mod b)

3: return a

Python program:

@ def gcd(a, b):

° while b 1= 0:

° a,b=b,a%b

(] return a

C++ program:
e int Euclidean(int a, int b){

int c;

while (b > 0){
c=b;
b=a%b;
a=g

¥

return a;
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Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)
@ Sometimes: memory usage

@ Not covered in the course: engineering side

extensibility

modularity

object-oriented model
user-friendliness (e.g, GUI)

e Why is it important to study the running time (efficiency) of an
algorithm?
@ feasible vs. infeasible
@ efficient algorithms: less engineering tricks needed, can use languages
aiming for easy programming (e.g, python)
© fundamental
Q it is fun!
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Input: sequence of n numbers (a1, as, - ,a,)

Output: a permutation (a},a), -+ ,al,) of the input sequence such

»'n

that a} <a) <.--<a),

@ Input: 53,12, 35, 21,59, 15
@ Output: 12,15, 21,35, 53,59
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Insertion-Sort

@ At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53,12, 35, 21,59, 15
iteration 2: 12,53, 35, 21,59, 15
iteration 3: 12,35,53, 21,59, 15
iteration 4: 12,21,35,53,59, 15
iteration 5: 12,21,35,53,59,15
iteration 6: 12,15,21,35,53,59



Example:
e Input: 53,12, 35, 21,59, 15
o Output: 12,15, 21, 35,53, 59

insertion-sort( A, n)
1: for j « 2 ton do

key < Alj]

i j—1

while i > 0 and A[i] > key do
Ali + 1] « A[l]
1 1—1

Ali + 1] < key

N

No g ks w




Example:
e Input: 53,12, 35,21,59,15
o Output: 12,15, 21, 35,53, 59

insertion-sort(A, n)

1. for j < 2 ton do

key < Alj]

i j—1

while i > 0 and A[i] > key do
Ali + 1] + A[i]
141—1

Ali + 1] < key

N

No g ks w

@ j=6
@ key =15
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/I\

l
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Example:
e Input: 53,12, 35,21,59,15
o Output: 12,15, 21, 35,53, 59

insertion-sort(A, n)

1. for j < 2 ton do

key < Alj]

i j—1

while i > 0 and A[i] > key do
Ali + 1] + A[i]
141—1

Ali + 1] < key

N

No g ks w

@ j=6
@ key =15

12 15 21 35 53
/]\

?
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Analysis of Insertion Sort

@ Correctness

@ Running time



Correctness of Insertion Sort

@ Invariant: after iteration j of outer loop, A[l..j] is the sorted array
for the original A[l..j].

after j =1:53,12,35,21,59,15
after j =2:12,53,35,21,59,15
after j = 3:12,35,53,21,59,15
after j =4:12,21,35,53,59,15
after j =5:12,21,35,53,59,15
after j =6 :12,15,21, 35,53, 59
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ascending order, then algorithm runs much faster than when it is
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Analyzing Running Time of Insertion Sort

@ QI1: what is the size of input?
@ Al: Running time as the function of size

@ possible definition of size :

e Sorting problem: # integers,
o Greatest common divisor: total length of two integers
o Shortest path in a graph: # edges in graph

@ Q2: Which input?

e For the insertion sort algorithm: if input array is already sorted in
ascending order, then algorithm runs much faster than when it is
sorted in descending order.

o A2: Worst-case analysis:

e Running time for size n = worst running time over all possible arrays
of length n
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Analyzing Running Time of Insertion Sort

@ Q3: How fast is the computer?
@ Q4: Programming language?
@ A: They do not matter!

Important idea: asymptotic analysis

@ Focus on growth of running-time as a function, not any particular
value.
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Asymptotic Analysis: O-notation

Informal way to define O-notation:

@ Ignoring lower order terms

Ignoring leading constant

3nd 4+ 2n? — 18n + 1028 = 3n® = n?
3n3 4+ 2n? — 18n + 1028 = O(n?)

n%/100 — 3n + 10 = n?/100 = n?
n?/100 — 3n + 10 = O(n?)



Asymptotic Analysis: O-notation

e 3n®+2n? — 18n + 1028 = O(n?)
o 72/100 — 3n% + 10 = O(n?)
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Asymptotic Analysis: O-notation

e 3n®+2n? — 18n + 1028 = O(n?)

e n2/100 — 3n* + 10 = O(n?)

O-notation allows us to ignore

@ architecture of computer

@ programming language

@ how we measure the running time: seconds or # instructions?

@ to execute a + b+ c:

e program 1 requires 10 instructions, or 10~® seconds

e program 2 requires 2 instructions, or 10~ seconds

e they only change by a constant in the running time, which will be
hidden by the O(-) notation
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Asymptotic Analysis: O-notation

@ Algorithm 1 runs in time O(n?)
@ Algorithm 2 runs in time O(n)

@ Does not tell which algorithm is faster for a specific n!

@ Algorithm 2 will eventually beat algorithm 1 as n increases.

@ For Algorithm 1: if we increase n by a factor of 2, running time
increases by a factor of 4

@ For Algorithm 2: if we increase n by a factor of 2, running time
increases by a factor of 2



Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1: for j < 2ton do

key < Alj]

i -1

while i > 0 and Ai] > key do
Ali + 1] + Ali]
141—1

Ali 4+ 1] « key

N

No g s w
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Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1: for j < 2ton do

key < Alj]

i -1

while i > 0 and Ai] > key do
Ali + 1] + Ali]
141—1

Ali 4+ 1] « key

N

No g s w

@ Worst-case running time for iteration j of the outer loop?
Answer: O(j)

o Total running time = > 7, O(j) = O(3_7_, 7)
_ O(n (n+1) . 1) — O(n2)
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Computation Model

@ Random-Access Machine (RAM) model
o reading and writing A[j] takes O(1) time

@ Basic operations such as addition, subtraction and multiplication
take O(1) time

@ Each integer (word) has clogn bits, ¢ > 1 large enough

e Reason: often we need to read the integer n and handle integers
within range [—n® n¢], it is convenient to assume this takes O(1)
time.

@ What is the precision of real numbers?
Most of the time, we only consider integers.
@ Can we do better than insertion sort asymptotically?

@ Yes: merge sort, quicksort and heap sort take O(nlogn) time
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e n?>—n-—230 Yes
@ 2" —n? Yes

e 100n —n?/10 + 507 No



Asymptotically Positive Functions

Def. f:N — R is an asymptotically positive function if:
@ dng > 0 such that Vn > ny we have f(n) >0

In other words, f(n) is positive for large enough n.
n?—n—30 Yes
2n — 20 Yes

100n — n?/10 + 507 No

We only consider asymptotically positive functions.



O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) <cg(n),¥n > no}.




O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) <cg(n),¥n > no}.

@ In short, f(n) € O(g(n)) if f(n) < cg(n) for some ¢ > 0 and
every large enough n.



O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) <cg(n),¥n > no}.

@ In short, f(n) € O(g(n)) if f(n) < cg(n) for some ¢ > 0 and
every large enough n.




O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) <cg(n),¥n > no}.

e 3n? +2n € O(n* — 10n)



O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),¥n >ne}.

e 3n? +2n € O(n* — 10n)

Proof.

Let ¢ =4 and ng = 50, for every n > ny = 50, we have,
3n? 4+ 2n — c(n? — 10n) = 3n? + 2n — 4(n® — 10n)
= —n?+42n <0.
3n? 4+ 2n < ¢(n? — 10n)
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O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),¥n > ne}.

e 3n?+2n € O(n? — 10n)
e 3n?+2n € O(n® — 5n?)
e n' e O(2")
e n® ¢ O(10n?)
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Conventions

We use “f(n) = O(g(n))" to denote “f(n) € O(g(n))”
3n? 4+ 2n = O(n?)

e “=" is asymmetric: we do not write O(n?) = 3n? + 2n
Analogy: Mike is a student. A-student-isMike:

We use “O(g(n)) = O(g'(n))" to denote “O(g(n)) C O(¢'(n))".
O(3n? + 2n) = O(n?)

Again, “=" is asymmetric.
O(n?) = O(3n? + 2n) makes sense, but is wrong.

Analogy: All students are people.
Equalities can be chained: 3n? + 2n = O(n?) = O(n?).



(2-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) <cg(n),¥n > no}.

2-Notation For a function g(n),
Q(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) > cg(n),¥n > ne}.



(2-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) <cg(n),¥n > no}.

2-Notation For a function g(n),
Q(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) > cg(n),¥n > ne}.

@ In short, f(n) € Q(g(n)) if f(n) > cg(n) for some ¢ and large
enough n.



(2-Notation: Asymptotic Lower Bound

(2-Notation For a function g(n),
Q(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) > cg(n),¥n > ne}.

fn)
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@ Again, we use “=" instead of €.
o 4n% = Q(n — 10)
o 3n? —n+10 = Q(n? — 20)
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(2-Notation: Asymptotic Lower Bound

@ Again, we use “=" instead of €.
o 4n% = Q(n — 10)
o 3n? —n+10 = Q(n? — 20)

Asymptotic Notations | O | Q | ©
Comparison Relations | < | > |

Theorem f(n) =0(g(n)) < g(n) =Q(f(n

[y
~—

).




©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
©(g(n)) = {function f: ez > ¢; > 0,ng > 0 such that

c1g(n) < f(n) < cag(n),¥n > ng}.




©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
©(g(n)) = {function f: ez > ¢; > 0,ng > 0 such that

c1g(n) < f(n) < cag(n),¥n > ng}.

e f(n) =0©(g(n)), then for large enough n, we have “f(n) ~ g(n)".



©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
©(g(n)) = {function f: ez > ¢; > 0,ng > 0 such that

c1g(n) < f(n) < cag(n),¥n > ng}.

e f(n) =0©(g(n)), then for large enough n, we have “f(n) ~ g(n)".
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©-Notation For a function g(n),
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©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
O(g(n)) = {function f : ez > ¢ > 0,ng > 0 such that

aig(n) < f(n) < cag(n).¥n > o}

e 3n% +2n = 0O(n*—20n)
° 2n/3+100 — @(271/3)

@
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©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
O(g(n)) = {function f : ez > ¢ > 0,ng > 0 such that

aig(n) < f(n) < cag(n).¥n > o}

@ 3n?+2n = O(n? — 20n)
° 2n/3+100 — @(271/3)

@

Asymptotic Notations ‘ O ‘ Q ‘
Comparison Relations ‘ < ‘ > ‘ =
Theorem f(n) = 0O(g(n)) if and only if

f(n) = O(g(n)) and f(n) = Q(g(n)).



o and w-Notations

o-Notation For a function g(n),
o(g(n)) = {function f : Ve > 0,3ng > 0 such that

f(n) < cg(n),¥n > ng}.

w-Notation For a function g(n),
w(g(n)) = {function f : Vc > 0,3ng > 0 such that

f(n) > cg(n),¥n > ng}.
Example:

@ 3n?+5n+ 10 = o(n*logn).
@ 3n% +5n+ 10 = w(n?/logn).

Asymptotic Notations ‘ O ‘ Q ‘
Comparison Relations ‘ <|>



Asymptotic Notations |

Comparison Relations |

For two constants a,b € R:

n® = O(n®) if and only if a < b
n® = Q(n®) if and only if a > b
n® = 0O(nb) if and only if a = b
n® = o(n®) if and only if a < b
n® = w(n®) if and only if a > b

@)
<

Q
>



@

o |w
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Facts on Comparison Relations

ea<b <= b>a

ea=b<= a<banda>b

ea<b = a<b

ea<b << b>a
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V|2
o

Facts on Comparison Relations
ea<b <= b>a
ea=b<= a<banda>b
ea<b = a<b

ea<b << b>a

Correct Analogies
o f(n) =0(g(n) < (n)ZQ(f(n))
o f(n)=6(g9(n)) < f( (

o f(n) =o(g(n)) = (n) IO(g(n)
o f(n)=o(g(n)) <




@

o |w

Asymptotic Notations ‘ @) ‘ Q ‘ 0
Comparison Relations ‘ < ‘ > ‘ = ‘ < ‘ >
Facts on Comparison Relations

ea<bora>b

e a<b << a=bora<b
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Facts on Comparison Relations
ea<bora>b
e a<b << a=bora<b

Incorrect Analogies
° f(n) =0(g(n)) or f(n) =g(n))
o f(n) =0(g(n)) <= f(n) =0(g(n)) or f(n) = o(g(n))
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o f(n)=0(g(n)) or f(n) =Q(g(n))
f(n) =n’
o= {ly e

53/74



Recall: Informal way to define O-notation

@ ignoring lower order terms: 3n? — 10n — 5 — 3n?

@ ignoring leading constant: 3n? — n?

@ 3n? —10n — 5= 0(n?)

@ In the formal definition of O(-), nothing tells us to ignore lower
order terms and leading constant.



Recall: Informal way to define O-notation

@ ignoring lower order terms: 3n? — 10n — 5 — 3n?

@ ignoring leading constant: 3n? — n?

@ 3n? —10n — 5= 0(n?)

@ In the formal definition of O(-), nothing tells us to ignore lower
order terms and leading constant.

@ 3n? —10n — 5 = O(5n* — 6n + 5) is correct, though weird

@ 3n? —10n — 5 = O(n?) is the most natural since n? is the
simplest term we can have inside O(-).



Notice that O denotes asymptotic upper bound

@ n? +2n = O(n?) is correct.

@ The following sentence is correct: the running time of insertion
sort is O(n?).

@ Usually we say: The running time of insertion sort is O(n?) and
the bound is tight.

@ Also correct: the worst-case running time of insertion sort is

O(n?).



© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

56,74



O(n) (Linear) Running Time

Computing the sum of n numbers

sum(A,n)
1: S0
2: fori< 1ton
3: S« S+ A[Z]
4: return S
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o Merge two sorted arrays
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o Merge two sorted arrays

v

31812203248

v
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o Merge two sorted arrays
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O(n) (Linear) Running Time

o Merge two sorted arrays

38112

20

32

48
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29
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20
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48




O(n) (Linear) Running Time

merge(B, C,ny, ny) \\ B and C are sorted, with
length ny and ns

LA[;i+1, 5«1
2: while i < n; and j < ny, do
3 if B[i] < C[j] then
4 append Bli] to A; i <1+ 1
5: else
6 append Cljlto A; j+ j+1
7: if i < ny then append Bli..ny] to A
8: if j < my then append C[j..ns] to A
9: return A




O(n) (Linear) Running Time

merge(B, C,ny, ny) \\ B and C are sorted, with
length n; and ns

LA[;i+1, 5«1
2: while i < n; and j < ny, do
3 if B[i] < C[j] then
4 append Bli] to A; i <1+ 1
5: else
6 append Cljlto A; j+ j+1
7: if i < ny then append Bli..ny] to A
8: if j < my then append C[j..ns] to A
9: return A

Running time = O(n) where n = ny + no.



O(nlogn) Running Time

merge-sort(A, n)

1. if n =1 then

2: return A
. B+ merge—sort(A[l..Ln/ZJ], Ln/2j>
4: C merge—sort(A[[n/Zj +1.n],n— Ln/2j>
5. return merge(B,C, [n/2|,n — |n/2])

w




O(nlogn) Running Time

@ Merge-Sort

\ A[L.8] \

\Auzw \Ap4w \Apﬁw %ws]\
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O(nlogn) Running Time

@ Merge-Sort

iy

A[l 2]‘ AJ3. 4 %[7 8|

ﬁﬁ

@ Each level takes running time O(n

@ There are O(logn) levels

@ Running time = O(nlogn)



O(n?) (Quadratic) Running Time

Closest Pair
Input: n points in plane: (z1,y1), (z2,¥2), ", (Tn, Yn)
Output: the pair of points that are closest
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¢ ° °
o °
L °
°
° L4 ° °
L °



O(n?) (Quadratic) Running Time

Closest Pair
Input: n points in plane: (z1,y1), (z2,¥2), ", (Tn, Yn)
Output: the pair of points that are closest
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S
°
L °
°
° L4 ° °
L °



O(n?) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (z1,y1), (¥2,92), " ; (Tn; Yn)
Output: the pair of points that are closest

closest-pair(z, y,n)

1: bestd < oo

2. fori<1ton—1do

3: for j«—i+1tondo

4 d + /(@[i] — 2[5])? + (y[i] - yls])?
5: if d < bestd then
6
7:

besti < i, bestj < 7, bestd < d
return (besti, bestyj)




O(n?) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (z1,1), (¥2,92),** , (¥n, Yn)
Output: the pair of points that are closest

closest-pair(z, y,n)

1: bestd + oo

2. fori<1ton—1do

3: for j«—i+1tondo

4 d + /(@[i] — 2[5])? + (y[i] - yls])?
5: if d < bestd then
6
7:

besti < i, bestj < 7, bestd < d
return (besti, bestyj)

Closest pair can be solved in O(nlogn) time!



O(n?) (Cubic) Running Time

Multiply two matrices of size n x n

matrix-multiplication(A, B, n)
1: C' < matrix of size n x n, with all entries being 0
2: for i < 1 ton do

3 for j + 1 ton do

4: for k < 1 ton do

5 Cli, k] + Ci, k] + A[i, j] x B[j, k]|

6: return C




Beyond Polynomial Time: 2"

Def. An independent set of a graph G = (V, E) is a subset S C V
of vertices such that for every u,v € S, we have (u,v) ¢ FE.
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Beyond Polynomial Time: 2"

Def. An independent set of a graph G = (V, F) is a subset S C V
of vertices such that for every u,v € S, we have (u,v) ¢ FE.




Beyond Polynomial Time: 2"

Maximum Independent Set Problem
Input: graph G = (V, E)
Output: the maximum independent set of G

max-independent-set(G = (V, F))
1. R+ 0
2: for every set S C V do
3: b < true
4 for every u,v € S do
5: if (u,v) € E then b < false
6 if b and |S| > |R| then R < S
7: return R

Running time = O(2"n?).



Beyond Polynomial Time: n!

Hamiltonian Cycle Problem
Input: a graph with n vertices
Output: a cycle that visits each node exactly once,

or say no such cycle exists




Beyond Polynomial Time: n!

Hamiltonian Cycle Problem
Input: a graph with n vertices
Output: a cycle that visits each node exactly once,

or say no such cycle exists




Beyond Polynomial Time: n!

Hamiltonian(G = (V, E))

1. for every permutation (p1,ps2, -+ ,p,) of V do
2 b < true

3 fori< 1ton—1do

4: if (ps,pir1) ¢ E then b« false

5 if (pn,p1) ¢ E then b < false

6 if b then return (p1,p2, -+ ,Pn)

7

return “No Hamiltonian Cycle”

Running time = O(n! x n)
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@ Binary search

o Input: sorted array A of size n, an integer t;

e Output: whether t appears in A.

e E.g, search 35 in the following array:

25
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O(logn) (Logarithmic) Running Time

@ Binary search

o Input: sorted array A of size n, an integer t;
e Output: whether t appears in A.

e E.g, search 35 in the following array:

42 > 35

| |

3 8 10| 25| 29| 37| 38| 42| 46| 52| 59
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@ Binary search

o Input: sorted array A of size n, an integer t;

e Output: whether t appears in A.

e E.g, search 35 in the following array:
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@ Binary search

o Input: sorted array A of size n, an integer t;

e Output: whether t appears in A.

e E.g, search 35 in the following array:
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O(logn) (Logarithmic) Running Time

@ Binary search

o Input: sorted array A of size n, an integer t;

e Output: whether t appears in A.

e E.g, search 35 in the following array:

25 < 35
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@ Binary search
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@ Binary search

o Input: sorted array A of size n, an integer t;
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e E.g, search 35 in the following array:
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@ Binary search

o Input: sorted array A of size n, an integer t;

e Output: whether t appears in A.

e E.g, search 35 in the following array:

37 > 35
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@ Binary search

o Input: sorted array A of size n, an integer t;

e Output: whether t appears in A.

e E.g, search 35 in the following array:
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O(logn) (Logarithmic) Running Time

Binary search
@ Input: sorted array A of size n, an integer t;

@ Output: whether t appears in A.

binary-search(A, n, t)

Li+1,7n

2: while 7 < j do

3 ke [(i+5)/2)

4: if A[k] =t return true

5 if t < Alk] then j <k —1lelsei<+ k+1
6: return false




O(logn) (Logarithmic) Running Time

Binary search
@ Input: sorted array A of size n, an integer t;

@ Output: whether t appears in A.

binary-search(A, n, t)

Li+1,7n

2: while 7 < j do

3 ke [(i+5)/2)

4: if A[k] =t return true

5 if t < Alk] then j <k —1lelsei<+ k+1
6: return false

Running time = O(logn)



Comparing the Orders of Running Times

@ Sort the functions from smallest to largest asymptotically
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e logn
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Comparing the Orders of Running Times

@ Sort the functions from smallest to largest asymptotically
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Comparing the Orders of Running Times

@ Sort the functions from smallest to largest asymptotically
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Comparing the Orders of Running Times

@ Sort the functions from smallest to largest asymptotically
logn, n, n? mnlogn, n!, 2%, e, n", log(n!)
e logn n {nlogn, log(n!)} n? 2" " n! n"

logn =o0(n), n=o(nlogn), nlogn = O(log(n!))
log(n!) = o(n?), n?=o0(2"), 2"=o(e")

e" =o(n!), nl=o(n")



Terminologies

When we talk about upper bounds:
@ Logarithmic time: O(Ign)

@ Linear time: O(n)

@ Quadratic time: O(n?)

@ Cubic time: O(n?)

e Polynomial time: O(n*) for some constant k
@ Exponential time: O(c") for some ¢ > 1

@ Sub-linear time: o(n)

°

Sub-quadratic time: o(n?)



Terminologies

When we talk about upper bounds:
@ Logarithmic time: O(Ign)

@ Linear time: O(n)

@ Quadratic time: O(n?)

@ Cubic time: O(n?)

e Polynomial time: O(n*) for some constant k
@ Exponential time: O(c") for some ¢ > 1

@ Sub-linear time: o(n)

°

Sub-quadratic time: o(n?)

When we talk about lower bounds:
@ Super-linear time: w(n)
@ Super-quadratic time: w(n?)

o Super-polynomial time: (., w(n*) = n*®



@ Design algorithms to minimize the order of the running time. I
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Goal of Algorithm Design

@ Design algorithms to minimize the order of the running time.

@ Using asymptotic analysis allows us to ignore the leading
constants and lower order terms

@ Makes our life much easier! (E.g., the leading constant depends
on the implementation, complier and computer architecture of
computer.)



Q: Can constants really be ignored?

@ e.g, how can we compare an algorithm with running time 0.1n?
with an algorithm with running time 1000n7



Q: Can constants really be ignored?

@ e.g, how can we compare an algorithm with running time 0.1n?
with an algorithm with running time 1000n7

A:
@ Sometimes no
@ For most natural and simple algorithms, constants are not so big.

@ Algorithm with lower order running time beats algorithm with
higher order running time for reasonably large n.
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