

算法设计与分析(2026年春季学期)

NP-Completeness

授课老师: 栗师
南京大学计算机学院

NP-Completeness Theory

- The topics we discussed so far are **positive results**: how to design efficient algorithms for solving a given problem.
- NP-Completeness provides **negative results**: some problems can **not** be solved efficiently.

Q: Why do we study negative results?

NP-Completeness Theory

- The topics we discussed so far are **positive results**: how to design efficient algorithms for solving a given problem.
- NP-Completeness provides **negative results**: some problems can **not** be solved efficiently.

Q: Why do we study negative results?

- A given problem X cannot be solved in polynomial time.
- Without knowing it, you will have to keep trying to find polynomial time algorithm for solving X . All our efforts are doomed!

Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n)$, $O(n^2)$, $O(n^{2.5} \log n)$, $O(n^{100})$
- Not polynomial time: $O(2^n)$, $O(n^{\log n})$

Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n)$, $O(n^2)$, $O(n^{2.5} \log n)$, $O(n^{100})$
- Not polynomial time: $O(2^n)$, $O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n)$, $O(n^2)$, $O(n^{2.5} \log n)$, $O(n^{100})$
- Not polynomial time: $O(2^n)$, $O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

- For natural problems, if there is an $O(n^k)$ -time algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega(2^{n^c})$ for some c
- Do not need to worry about the computational model

Outline

- 1 Some Hard Problems
- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- 6 Summary

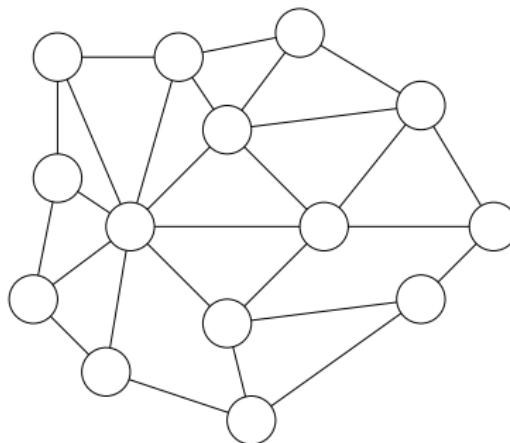
Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A **Hamiltonian Cycle (HC)** of G is a cycle C in G that **passes each vertex of G exactly once**.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle



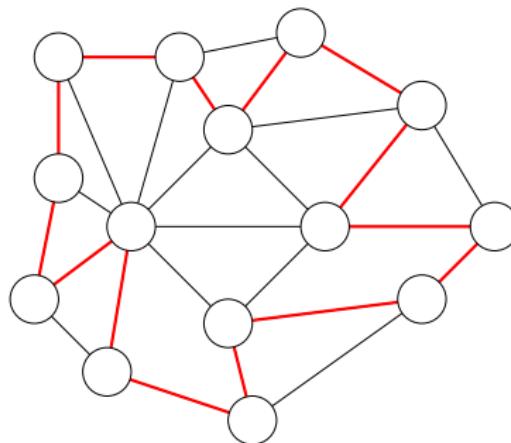
Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A **Hamiltonian Cycle (HC)** of G is a cycle C in G that **passes each vertex of G exactly once**.

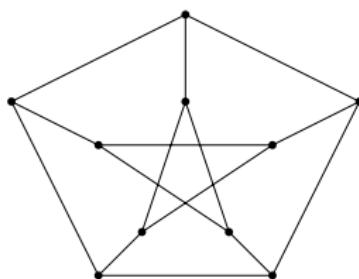
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle



Example: Hamiltonian Cycle Problem



- The graph is called the **Petersen Graph**. It has no HC.

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

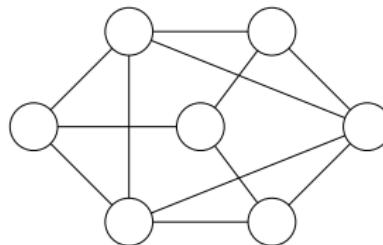
Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is **NP-hard**: it is **unlikely** that it can be solved in polynomial time.

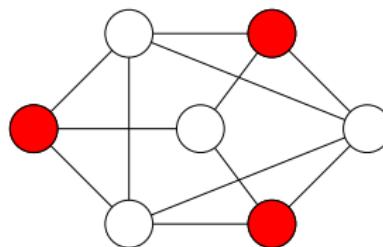
Maximum Independent Set Problem

Def. An **independent set** of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G .



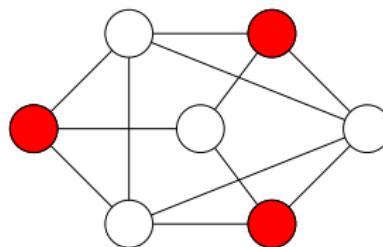
Maximum Independent Set Problem

Def. An **independent set** of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G .



Maximum Independent Set Problem

Def. An **independent set** of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G .



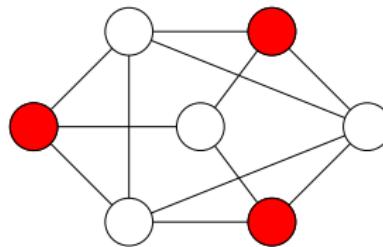
Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the size of the maximum independent set of G

Maximum Independent Set Problem

Def. An **independent set** of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G .



Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the size of the maximum independent set of G

- Maximum Independent Set is NP-hard

Formula Satisfiability

Formula Satisfiability

Input: boolean formula with n variables, with \vee, \wedge, \neg operators.

Output: whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \wedge x_2) \vee (\neg x_1 \wedge \neg x_3) \vee x_1 \vee (\neg x_2 \wedge x_3))$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.

Formula Satisfiability

Formula Satisfiability

Input: boolean formula with n variables, with \vee, \wedge, \neg operators.

Output: whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \wedge x_2) \vee (\neg x_1 \wedge \neg x_3) \vee x_1 \vee (\neg x_2 \wedge x_3))$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.
- Formula Satisfiability is NP-hard

Outline

- 1 Some Hard Problems
- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- 6 Summary

Decision Problem Vs Optimization Problem

Def. A problem X is called a **decision problem** if the output is either 0 or 1 (yes/no).

Decision Problem Vs Optimization Problem

Def. A problem X is called a **decision problem** if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.

Decision Problem Vs Optimization Problem

Def. A problem X is called a **decision problem** if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X , there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X' , we can solve the original problem X in polynomial time.

Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w , s, t and a bound L

Output: whether there is a path from s to t of length at most L

Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w , s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

Output: whether there is an independent set of size at least k

Encoding

The input of a problem will be **encoded** as a binary string.

Encoding

The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

Encoding

The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)

Encoding

The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)

Encoding

The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String:

Encoding

The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: **111101**

Encoding

The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111101**11110001**

Encoding

The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11110111110001**1111000011000001**

Encoding

The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111101111100011111000011000001
1100001101

Encoding

The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111101111100011111000011000001
1100001101**11111111000001**

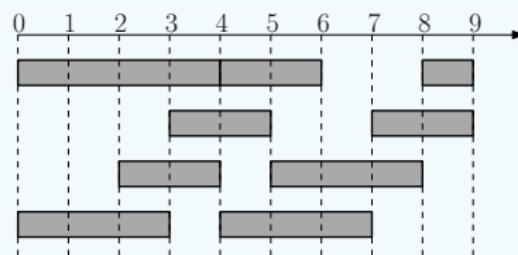
Encoding

The input of an problem will be **encoded** as a binary string.

Encoding

The input of an problem will be **encoded** as a binary string.

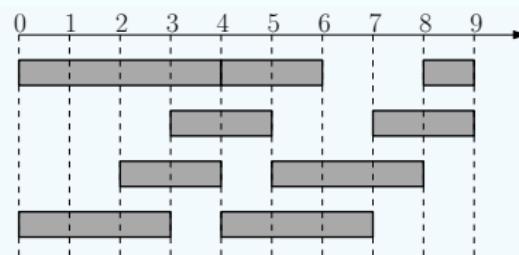
Example: Interval Scheduling Problem



Encoding

The input of an problem will be **encoded** as a binary string.

Example: Interval Scheduling Problem

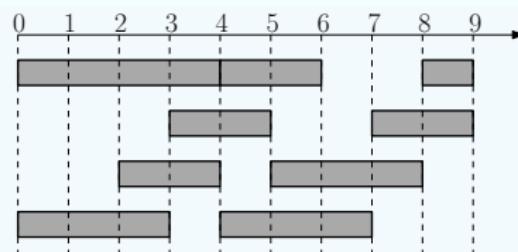


- $(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)$

Encoding

The input of an problem will be **encoded** as a binary string.

Example: Interval Scheduling Problem



- $(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)$
- Encode the sequence into a binary string as before

Encoding

Def. The **size** of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

Encoding

Def. The **size** of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care whether the running time is polynomial or not

Define Problem as a Function

$$X : \{0, 1\}^* \rightarrow \{0, 1\}$$

Def. A **decision problem** X is a function mapping $\{0, 1\}^*$ to $\{0, 1\}$ such that for any $s \in \{0, 1\}^*$, $X(s)$ is the correct output for input s .

- $\{0, 1\}^*$: the set of all binary strings of any length.

Define Problem as a Function

$$X : \{0, 1\}^* \rightarrow \{0, 1\}$$

Def. A **decision problem** X is a function mapping $\{0, 1\}^*$ to $\{0, 1\}$ such that for any $s \in \{0, 1\}^*$, $X(s)$ is the correct output for input s .

- $\{0, 1\}^*$: the set of all binary strings of any length.

Def. An algorithm A **solves** a problem X if, $A(s) = X(s)$ for any binary string s

Define Problem as a Function

$$X : \{0, 1\}^* \rightarrow \{0, 1\}$$

Def. A **decision problem** X is a function mapping $\{0, 1\}^*$ to $\{0, 1\}$ such that for any $s \in \{0, 1\}^*$, $X(s)$ is the correct output for input s .

- $\{0, 1\}^*$: the set of all binary strings of any length.

Def. An algorithm A **solves** a problem X if, $A(s) = X(s)$ for any binary string s

Def. A has a **polynomial running time** if there is a polynomial function $p(\cdot)$ so that for every string s , the algorithm A terminates on s in at most $p(|s|)$ steps.

Complexity Class P

Def. The **complexity class P** is the set of decision problems X that can be solved in polynomial time.

Complexity Class P

Def. The **complexity class P** is the set of decision problems X that can be solved in polynomial time.

- The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.

Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC

Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$ -time algorithm

Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$ -time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$ -time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$ -time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a **certificate**, and the algorithm Bob runs is called a **certifier**.

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$ -time algorithm

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$ -time algorithm

Q: Given graph $G = (V, E)$ and integer k , such that there is an independent set of size k in G , how can Alice convince Bob that there is such a set?

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$ -time algorithm

Q: Given graph $G = (V, E)$ and integer k , such that there is an independent set of size k in G , how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G .

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$ -time algorithm

Q: Given graph $G = (V, E)$ and integer k , such that there is an independent set of size k in G , how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G .

- Certificate: a set of size k

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$ -time algorithm

Q: Given graph $G = (V, E)$ and integer k , such that there is an independent set of size k in G , how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G .

- Certificate: a set of size k
- Certifier: check if the given set is really an independent set

The Complexity Class NP

Def. B is an **efficient certifier** for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t , and outputs 0 or 1.
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a **certificate**.

The Complexity Class NP

Def. B is an **efficient certifier** for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t , and outputs 0 or 1.
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a **certificate**.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

HC (Hamiltonian Cycle) \in NP

- Input: Graph G

HC (Hamiltonian Cycle) \in NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p

HC (Hamiltonian Cycle) \in NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- Certifier B : $B(G, S) = 1$ if and only if S gives an HC in G
- Clearly, B runs in polynomial time

HC (Hamiltonian Cycle) \in NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- Certifier B : $B(G, S) = 1$ if and only if S gives an HC in G
- Clearly, B runs in polynomial time
- $\text{HC}(G) = 1 \iff \exists S, B(G, S) = 1$

MIS (Maximum Independent Set) \in NP

- Input: graph $G = (V, E)$ and integer k

MIS (Maximum Independent Set) \in NP

- Input: graph $G = (V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p

MIS (Maximum Independent Set) \in NP

- Input: graph $G = (V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
- Certifier B : $B((G, k), S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time

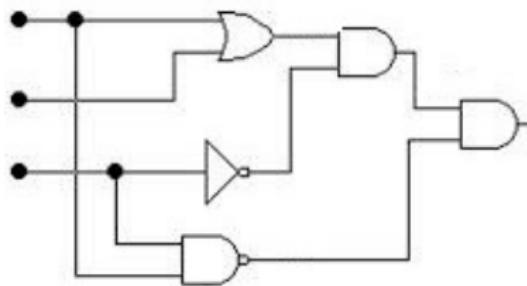
MIS (Maximum Independent Set) \in NP

- Input: graph $G = (V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
- Certifier B : $B((G, k), S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
- $\text{MIS}(G, k) = 1 \iff \exists S, B((G, k), S) = 1$

Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

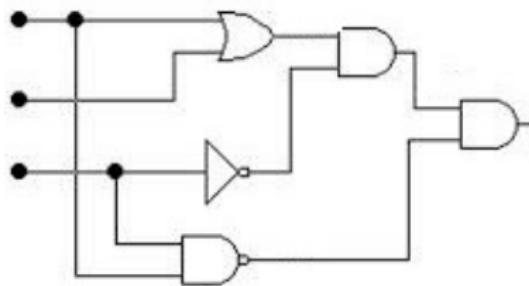
Output: whether there is an assignment such that the output is 1?



Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?



- Is Circuit-Sat \in NP?

HC

Input: graph $G = (V, E)$

Output: whether G **does not** contain a Hamiltonian cycle

$\overline{\text{HC}}$

Input: graph $G = (V, E)$

Output: whether G **does not** contain a Hamiltonian cycle

- Is $\overline{\text{HC}} \in \text{NP}$?

HC

Input: graph $G = (V, E)$

Output: whether G **does not** contain a Hamiltonian cycle

- Is $\overline{\text{HC}} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G **does not** contain a HC), if this is true.

HC

Input: graph $G = (V, E)$

Output: whether G **does not** contain a Hamiltonian cycle

- Is $\overline{\text{HC}} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G **does not** contain a HC), if this is true.
- Unlikely

$\overline{\text{HC}}$

Input: graph $G = (V, E)$

Output: whether G **does not** contain a Hamiltonian cycle

- Is $\overline{\text{HC}} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G **does not** contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance

$\overline{\text{HC}}$

Input: graph $G = (V, E)$

Output: whether G **does not** contain a Hamiltonian cycle

- Is $\overline{\text{HC}} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G **does not** contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance
- $\overline{\text{HC}} \in \text{Co-NP}$

The Complexity Class Co-NP

Def. For a problem X , the problem \overline{X} is the problem such that $\overline{X}(s) = 1$ if and only if $X(s) = 0$.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in \text{NP}$.

Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. $(\neg x_1 \wedge x_2) \vee (\neg x_1 \wedge \neg x_3) \vee x_1 \vee (\neg x_2 \wedge x_3)$ is a tautology

Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. $(\neg x_1 \wedge x_2) \vee (\neg x_1 \wedge \neg x_3) \vee x_1 \vee (\neg x_2 \wedge x_3)$ is a tautology
- Bob can certify that a formula is not a tautology

Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. $(\neg x_1 \wedge x_2) \vee (\neg x_1 \wedge \neg x_3) \vee x_1 \vee (\neg x_2 \wedge x_3)$ is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \in Co-NP

$P \subseteq NP$

- Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

- Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice's help.

- Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice's help.

- The certificate is an empty string

- Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$

- Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$
- Similarly, $P \subseteq \text{Co-NP}$, thus $P \subseteq NP \cap \text{Co-NP}$

Is P = NP?

Is P = NP?

- A famous, big, and fundamental open problem in computer science

Is P = NP?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can **check** a solution efficiently, then one can find a **solution** efficiently

Is P = NP?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can **check** a solution efficiently, then one can find a **solution** efficiently
- We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.

Is P = NP?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can **check** a solution efficiently, then one can find a **solution** efficiently
- We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.
- We said it is **unlikely** that Hamiltonian Cycle can be solved in polynomial time:
 - if $P \neq NP$, then $HC \notin P$
 - $HC \notin P$, unless $P = NP$

Is NP = Co-NP?

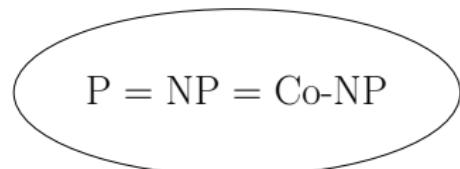
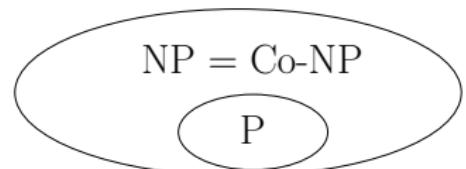
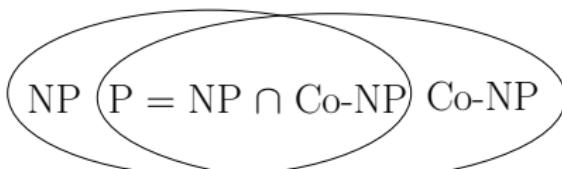
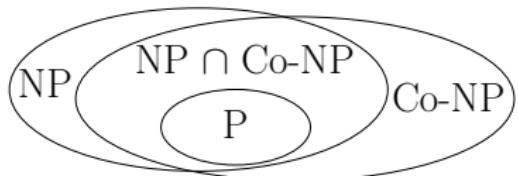
- Again, a big open problem

Is NP = Co-NP?

- Again, a big open problem
- Most researchers believe $\text{NP} \neq \text{Co-NP}$.

4 Possibilities of Relationships

Notice that $X \in \text{NP} \iff \overline{X} \in \text{Co-NP}$ and $P \subseteq \text{NP} \cap \text{Co-NP}$



- People commonly believe we are in the 4th scenario

Outline

- 1 Some Hard Problems
- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- 6 Summary

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X , if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A , then we say Y is polynomial-time reducible to X , denoted as $Y \leq_P X$.

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X , if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A , then we say Y is polynomial-time reducible to X , denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X , if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A , then we say Y is polynomial-time reducible to X , denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_P \text{HC}$.

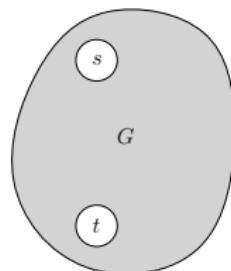
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_P \text{HC}$.



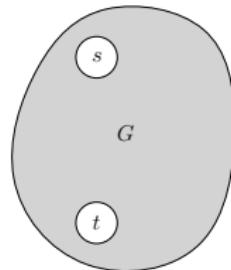
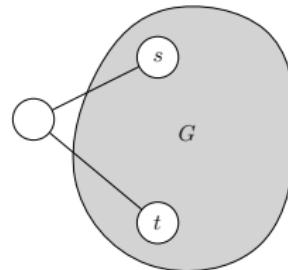
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_P \text{HC}$.



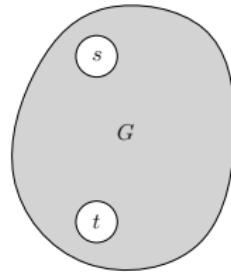
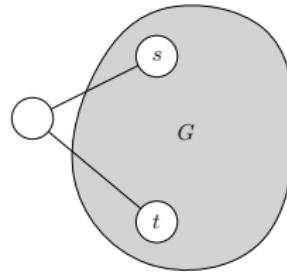
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_P \text{HC}$.



Obs. G has a HP from s to t if and only if graph on right side has a HC.

NP-Completeness

Def. A problem X is called **NP-complete** if

- ① $X \in \text{NP}$, and
- ② $Y \leq_P X$ for every $Y \in \text{NP}$.

NP-Completeness

Def. A problem X is called **NP-hard** if

- ② $Y \leq_P X$ for every $Y \in \text{NP}$.

NP-Completeness

Def. A problem X is called **NP-complete** if

- ① $X \in \text{NP}$, and
- ② $Y \leq_P X$ for every $Y \in \text{NP}$.

NP-Completeness

Def. A problem X is called **NP-complete** if

- ① $X \in \text{NP}$, and
- ② $Y \leq_P X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

NP-Completeness

Def. A problem X is called **NP-complete** if

- ① $X \in \text{NP}$, and
- ② $Y \leq_P X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP

NP-Completeness

Def. A problem X is called **NP-complete** if

- ① $X \in \text{NP}$, and
- ② $Y \leq_P X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

Outline

- 1 Some Hard Problems
- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- 6 Summary

Def. A problem X is called **NP-complete** if

- ① $X \in \text{NP}$, and
- ② $Y \leq_P X$ for every $Y \in \text{NP}$.

Def. A problem X is called **NP-complete** if

- ① $X \in \text{NP}$, and
- ② $Y \leq_P X$ for every $Y \in \text{NP}$.

- How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X ? Are we asking for too much?

Def. A problem X is called **NP-complete** if

- ① $X \in \text{NP}$, and
- ② $Y \leq_P X$ for every $Y \in \text{NP}$.

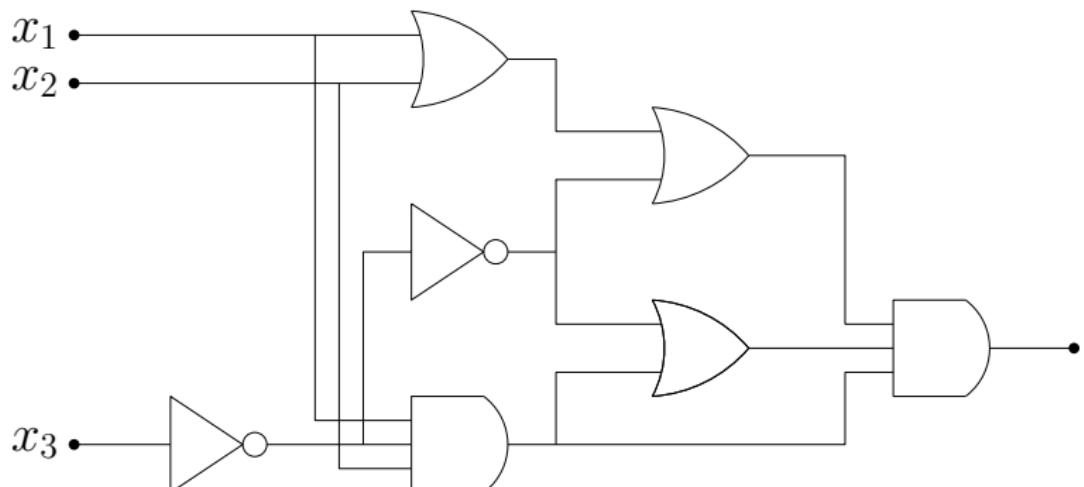
- How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X ? Are we asking for too much?
- No! There is indeed a large family of natural NP-complete problems

The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit

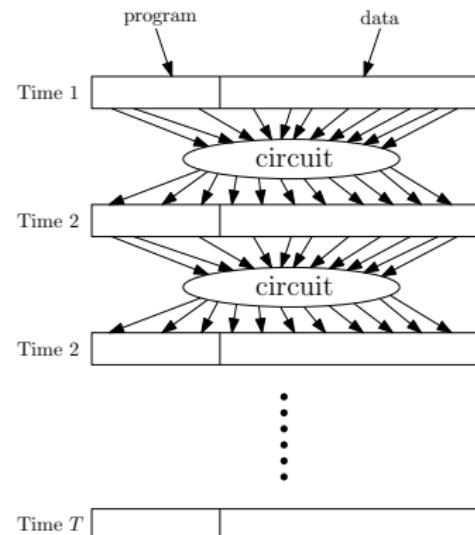
Output: whether the circuit is satisfiable



Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

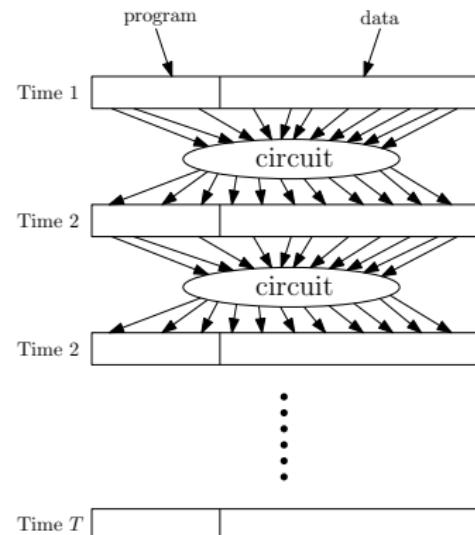
Fact Any algorithm that takes n bits as input and outputs 0/1 with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.



Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.



- Then, we can show that any problem $Y \in \text{NP}$ can be reduced to Circuit-Sat.
- We prove $\text{HC} \leq_P \text{Circuit-Sat}$ as an example.

$\text{HC} \leq_P \text{Circuit-Sat}$

$\text{check-}\text{HC}(G, S)$

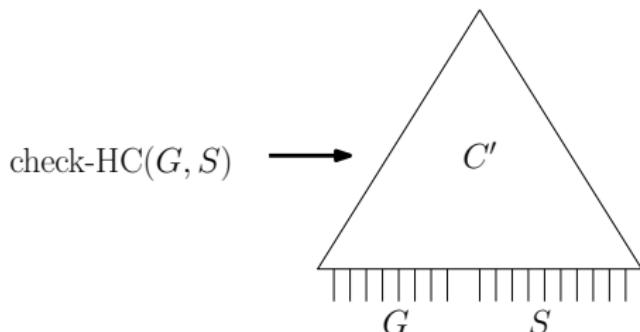
- Let $\text{check-}\text{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: $\text{check-}\text{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle in G and 0 otherwise.

$\text{HC} \leq_P \text{Circuit-Sat}$

$\text{check-}\text{HC}(G, S)$

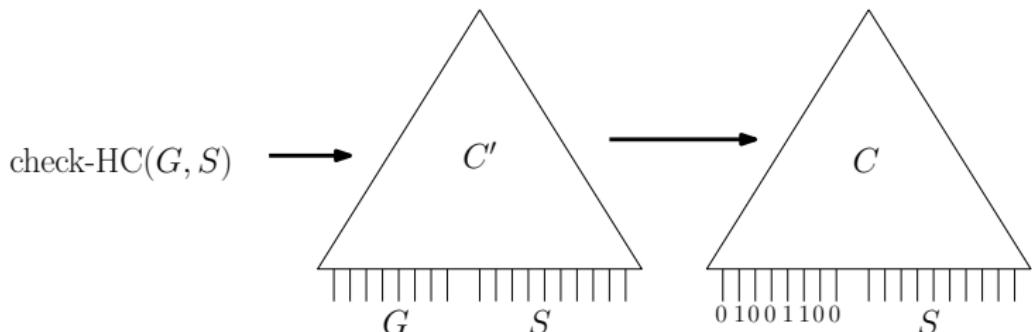
- Let $\text{check-}\text{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: $\text{check-}\text{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle in G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that $\text{check-}\text{HC}(G, S)$ returns 1

$\text{HC} \leq_P \text{Circuit-Sat}$



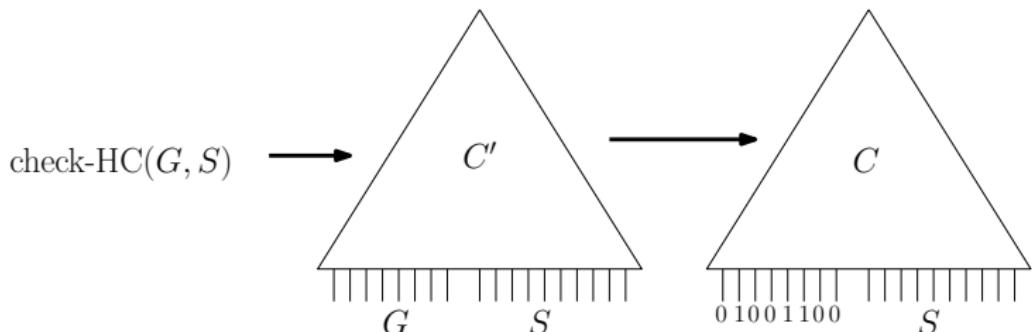
- Let $\text{check-HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: $\text{check-HC}(G, S)$ returns 1 if S is a Hamiltonian cycle in G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that $\text{check-HC}(G, S)$ returns 1
- Construct a circuit C' for the algorithm check-HC

$\text{HC} \leq_P \text{Circuit-Sat}$



- Let $\text{check-HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: $\text{check-HC}(G, S)$ returns 1 if S is a Hamiltonian cycle in G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that $\text{check-HC}(G, S)$ returns 1
- Construct a circuit C' for the algorithm check-HC
- hard-wire the instance G to the circuit C' to obtain the circuit C

$\text{HC} \leq_P \text{Circuit-Sat}$



- Let $\text{check-HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: $\text{check-HC}(G, S)$ returns 1 if S is a Hamiltonian cycle in G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that $\text{check-HC}(G, S)$ returns 1
- Construct a circuit C' for the algorithm check-HC
- hard-wire the instance G to the circuit C' to obtain the circuit C
- G is a yes-instance if and only if C is satisfiable

$Y \leq_P \text{Circuit-Sat}$, For Every $Y \in \text{NP}$

- Let $\text{check-}Y(s, t)$ be the certifier for problem Y : $\text{check-}Y(s, t)$ returns 1 if t is a valid certificate for s .
- s is a yes-instance if and only if there is a t such that $\text{check-}Y(s, t)$ returns 1
- Construct a circuit C' for the algorithm $\text{check-}Y$
- hard-wire the instance s to the circuit C' to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

□

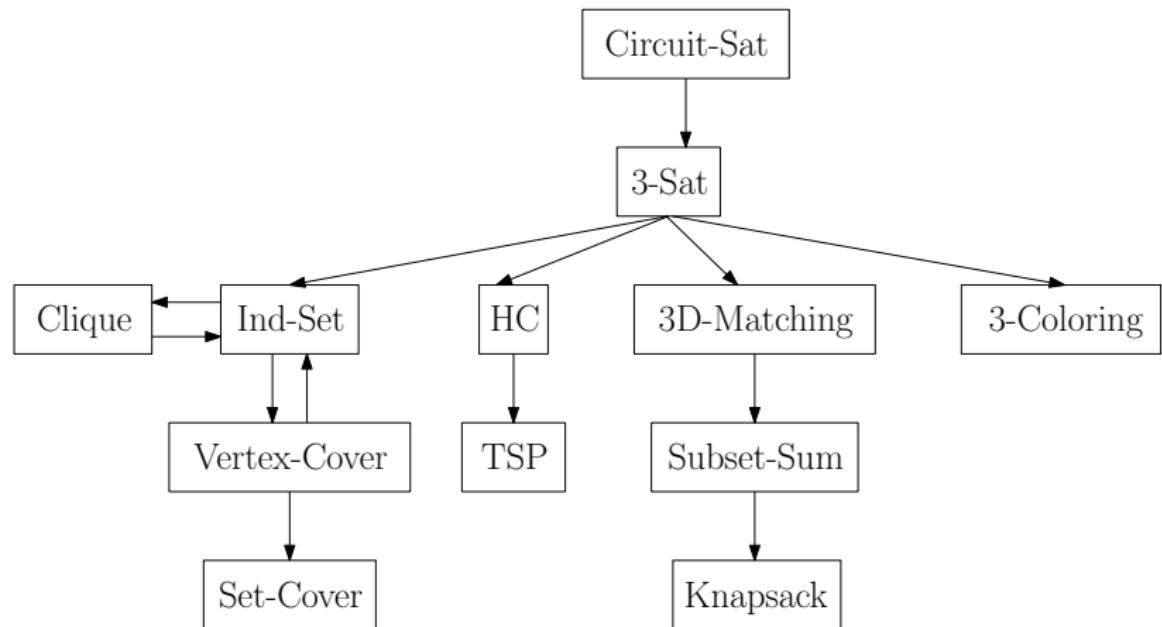
$Y \leq_P \text{Circuit-Sat}$, For Every $Y \in \text{NP}$

- Let $\text{check-}Y(s, t)$ be the certifier for problem Y : $\text{check-}Y(s, t)$ returns 1 if t is a valid certificate for s .
- s is a yes-instance if and only if there is a t such that $\text{check-}Y(s, t)$ returns 1
- Construct a circuit C' for the algorithm $\text{check-}Y$
- hard-wire the instance s to the circuit C' to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

□

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems



3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: x_1, x_2, \dots, x_n

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: x_1, x_2, \dots, x_n
- Literals: x_i or $\neg x_i$

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: x_1, x_2, \dots, x_n
- Literals: x_i or $\neg x_i$
- Clause: disjunction ("or") of at most 3 literals: $x_3 \vee \neg x_4$,
 $x_1 \vee x_8 \vee \neg x_9$, $\neg x_2 \vee \neg x_5 \vee x_7$

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: x_1, x_2, \dots, x_n
- Literals: x_i or $\neg x_i$
- Clause: disjunction ("or") of at most 3 literals: $x_3 \vee \neg x_4$,
 $x_1 \vee x_8 \vee \neg x_9$, $\neg x_2 \vee \neg x_5 \vee x_7$
- 3-CNF formula: conjunction ("and") of clauses:
$$(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4)$$

3-Sat

3-Sat

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

3-Sat

3-Sat

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses

3-Sat

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal

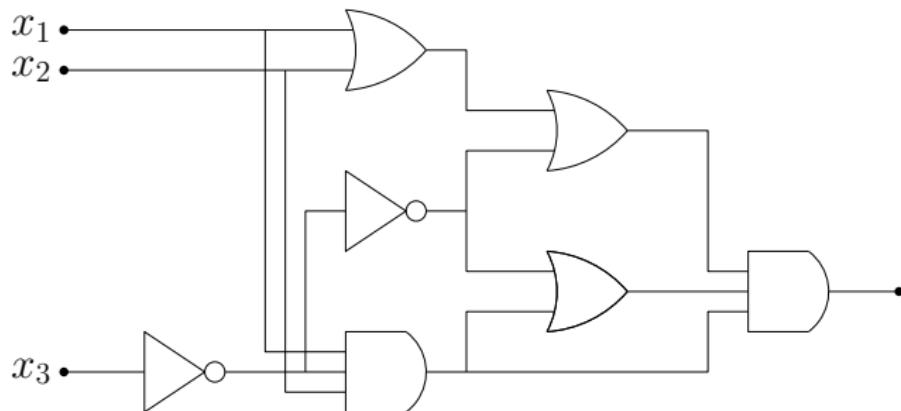
3-Sat

Input: a 3-CNF formula

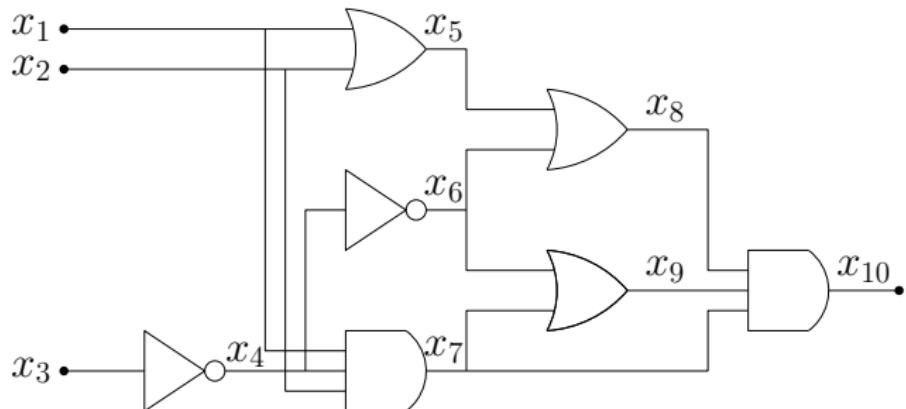
Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal
- Assignment $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$ satisfies $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4)$

Circuit-Sat \leq_P 3-Sat

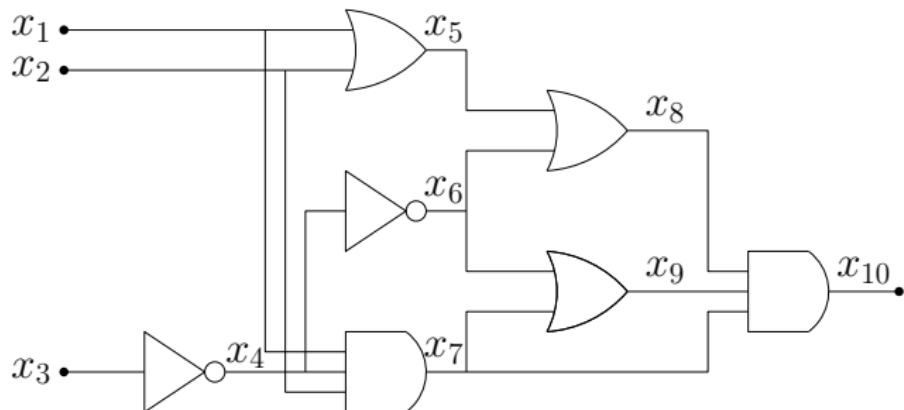


Circuit-Sat \leq_P 3-Sat



- Associate every wire with a new variable

Circuit-Sat \leq_P 3-Sat



- Associate every wire with a new variable
- The circuit is equivalent to the following formula:

$$\begin{aligned} & (x_4 = \neg x_3) \wedge (x_5 = x_1 \vee x_2) \wedge (x_6 = \neg x_4) \\ & \wedge (x_7 = x_1 \wedge x_2 \wedge x_4) \wedge (x_8 = x_5 \vee x_6) \\ & \wedge (x_9 = x_6 \vee x_7) \wedge (x_{10} = x_8 \wedge x_9 \wedge x_7) \wedge x_{10} \end{aligned}$$

Circuit-Sat \leq_P 3-Sat

$$\begin{aligned} & (x_4 = \neg x_3) \wedge (x_5 = x_1 \vee x_2) \wedge (x_6 = \neg x_4) \\ & \wedge (x_7 = x_1 \wedge x_2 \wedge x_4) \wedge (x_8 = x_5 \vee x_6) \\ & \wedge (x_9 = x_6 \vee x_7) \wedge (x_{10} = x_8 \wedge x_9 \wedge x_7) \wedge x_{10} \end{aligned}$$

Convert each clause to a 3-CNF

Circuit-Sat \leq_P 3-Sat

$$\begin{aligned}(x_4 = \neg x_3) \wedge (x_5 = x_1 \vee x_2) \wedge (x_6 = \neg x_4) \\ \wedge (x_7 = x_1 \wedge x_2 \wedge x_4) \wedge (x_8 = x_5 \vee x_6) \\ \wedge (x_9 = x_6 \vee x_7) \wedge (x_{10} = x_8 \wedge x_9 \wedge x_7) \wedge x_{10}\end{aligned}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \vee x_2 \iff$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \vee x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_P 3-Sat

$$\begin{aligned}(x_4 = \neg x_3) \wedge (x_5 = x_1 \vee x_2) \wedge (x_6 = \neg x_4) \\ \wedge (x_7 = x_1 \wedge x_2 \wedge x_4) \wedge (x_8 = x_5 \vee x_6) \\ \wedge (x_9 = x_6 \vee x_7) \wedge (x_{10} = x_8 \wedge x_9 \wedge x_7) \wedge x_{10}\end{aligned}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \vee x_2 \iff$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \vee x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_P 3-Sat

$$\begin{aligned}(x_4 = \neg x_3) \wedge (x_5 = x_1 \vee x_2) \wedge (x_6 = \neg x_4) \\ \wedge (x_7 = x_1 \wedge x_2 \wedge x_4) \wedge (x_8 = x_5 \vee x_6) \\ \wedge (x_9 = x_6 \vee x_7) \wedge (x_{10} = x_8 \wedge x_9 \wedge x_7) \wedge x_{10}\end{aligned}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \vee x_2 \Leftrightarrow$$

$$(x_1 \vee x_2 \vee \neg x_5) \wedge$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \vee x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_P 3-Sat

$$\begin{aligned}(x_4 = \neg x_3) \wedge (x_5 = x_1 \vee x_2) \wedge (x_6 = \neg x_4) \\ \wedge (x_7 = x_1 \wedge x_2 \wedge x_4) \wedge (x_8 = x_5 \vee x_6) \\ \wedge (x_9 = x_6 \vee x_7) \wedge (x_{10} = x_8 \wedge x_9 \wedge x_7) \wedge x_{10}\end{aligned}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \vee x_2 \Leftrightarrow$$

$$(x_1 \vee x_2 \vee \neg x_5) \wedge$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \vee x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_P 3-Sat

$$\begin{aligned} & (x_4 = \neg x_3) \wedge (x_5 = x_1 \vee x_2) \wedge (x_6 = \neg x_4) \\ & \wedge (x_7 = x_1 \wedge x_2 \wedge x_4) \wedge (x_8 = x_5 \vee x_6) \\ & \wedge (x_9 = x_6 \vee x_7) \wedge (x_{10} = x_8 \wedge x_9 \wedge x_7) \wedge x_{10} \end{aligned}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \vee x_2 \Leftrightarrow$$

$$(x_1 \vee x_2 \vee \neg x_5) \wedge$$

$$(x_1 \vee \neg x_2 \vee x_5) \wedge$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \vee x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_P 3-Sat

$$\begin{aligned} & (x_4 = \neg x_3) \wedge (x_5 = x_1 \vee x_2) \wedge (x_6 = \neg x_4) \\ & \wedge (x_7 = x_1 \wedge x_2 \wedge x_4) \wedge (x_8 = x_5 \vee x_6) \\ & \wedge (x_9 = x_6 \vee x_7) \wedge (x_{10} = x_8 \wedge x_9 \wedge x_7) \wedge x_{10} \end{aligned}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \vee x_2 \Leftrightarrow$$

$$(x_1 \vee x_2 \vee \neg x_5) \wedge$$

$$(x_1 \vee \neg x_2 \vee x_5) \wedge$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \vee x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_P 3-Sat

$$\begin{aligned}(x_4 = \neg x_3) \wedge (x_5 = x_1 \vee x_2) \wedge (x_6 = \neg x_4) \\ \wedge (x_7 = x_1 \wedge x_2 \wedge x_4) \wedge (x_8 = x_5 \vee x_6) \\ \wedge (x_9 = x_6 \vee x_7) \wedge (x_{10} = x_8 \wedge x_9 \wedge x_7) \wedge x_{10}\end{aligned}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \vee x_2 \Leftrightarrow$$

$$(x_1 \vee x_2 \vee \neg x_5) \wedge$$

$$(x_1 \vee \neg x_2 \vee x_5) \wedge$$

$$(\neg x_1 \vee x_2 \vee x_5) \wedge$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \vee x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_P 3-Sat

$$\begin{aligned}(x_4 = \neg x_3) \wedge (x_5 = x_1 \vee x_2) \wedge (x_6 = \neg x_4) \\ \wedge (x_7 = x_1 \wedge x_2 \wedge x_4) \wedge (x_8 = x_5 \vee x_6) \\ \wedge (x_9 = x_6 \vee x_7) \wedge (x_{10} = x_8 \wedge x_9 \wedge x_7) \wedge x_{10}\end{aligned}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \vee x_2 \Leftrightarrow$$

$$(x_1 \vee x_2 \vee \neg x_5) \wedge$$

$$(x_1 \vee \neg x_2 \vee x_5) \wedge$$

$$(\neg x_1 \vee x_2 \vee x_5) \wedge$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \vee x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_P 3-Sat

$$\begin{aligned} & (x_4 = \neg x_3) \wedge (x_5 = x_1 \vee x_2) \wedge (x_6 = \neg x_4) \\ & \wedge (x_7 = x_1 \wedge x_2 \wedge x_4) \wedge (x_8 = x_5 \vee x_6) \\ & \wedge (x_9 = x_6 \vee x_7) \wedge (x_{10} = x_8 \wedge x_9 \wedge x_7) \wedge x_{10} \end{aligned}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \vee x_2 \Leftrightarrow$$

$$(x_1 \vee x_2 \vee \neg x_5) \wedge$$

$$(x_1 \vee \neg x_2 \vee x_5) \wedge$$

$$(\neg x_1 \vee x_2 \vee x_5) \wedge$$

$$(\neg x_1 \vee \neg x_2 \vee x_5)$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \vee x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_P 3-Sat

- Circuit \iff Formula \iff 3-CNF

Circuit-Sat \leq_P 3-Sat

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable

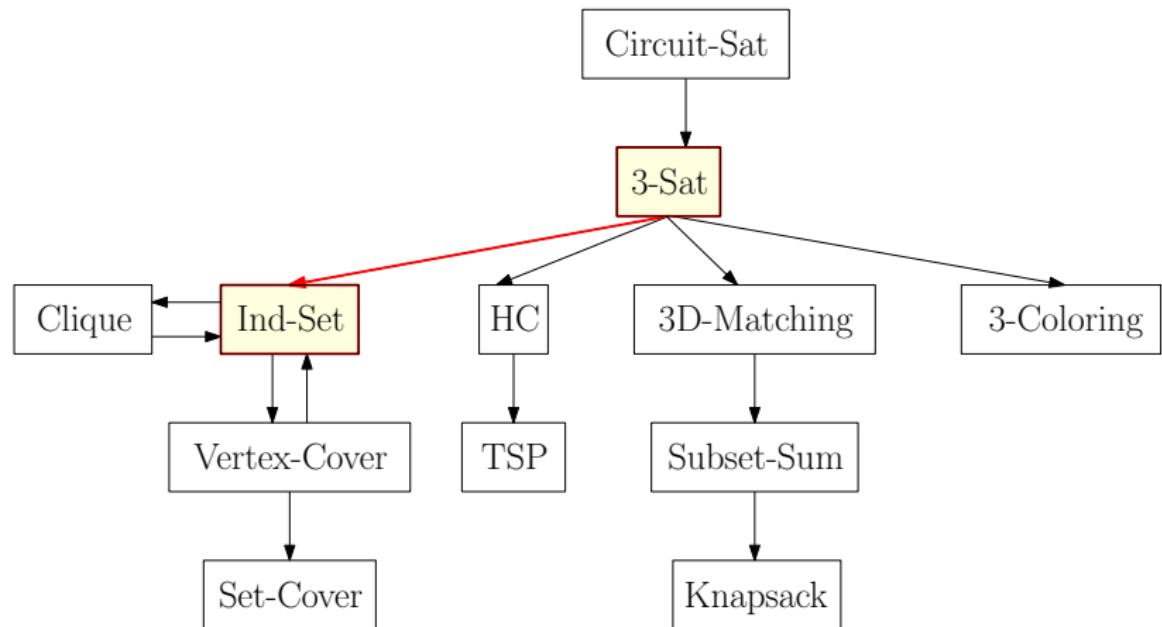
Circuit-Sat \leq_P 3-Sat

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit

Circuit-Sat \leq_P 3-Sat

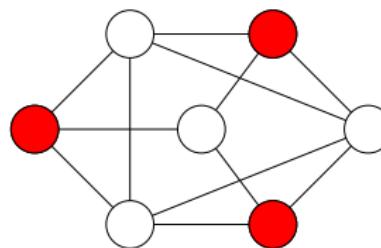
- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit
- Thus, Circuit-Sat \leq_P 3-Sat

Reductions of NP-Complete Problems



Recall: Independent Set Problem

Def. An **independent set** of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G .



Independent Set (Ind-Set) Problem

Input: $G = (V, E), k$

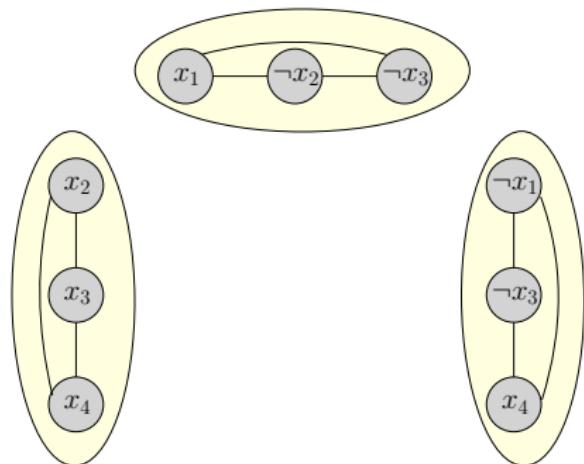
Output: whether there is an independent set of size k in G

3-Sat \leq_P Ind-Set

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$

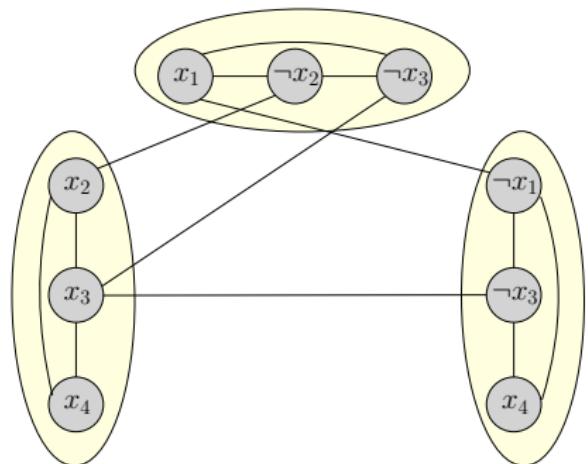
3-Sat \leq_P Ind-Set

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group



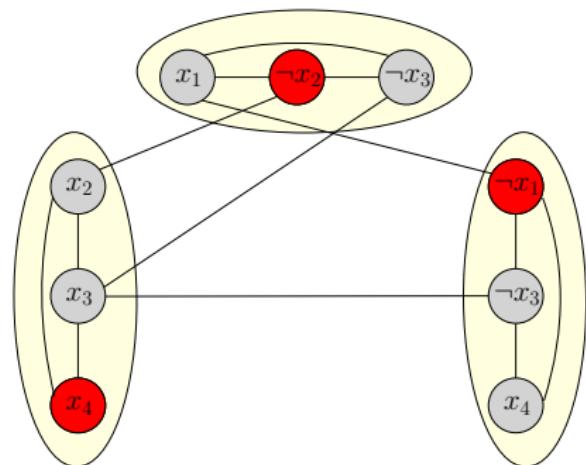
3-Sat \leq_P Ind-Set

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals



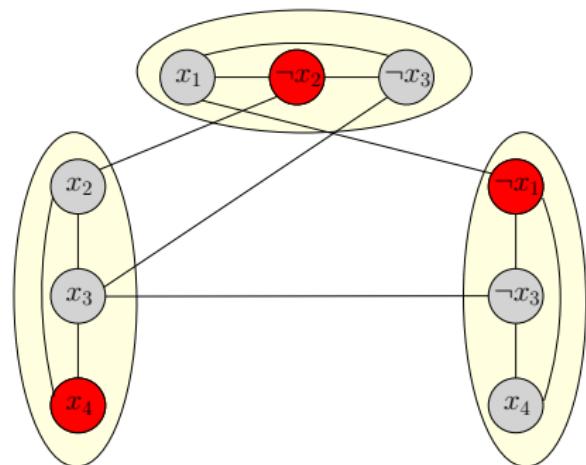
3-Sat \leq_P Ind-Set

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k = \#\text{clauses}$



3-Sat \leq_P Ind-Set

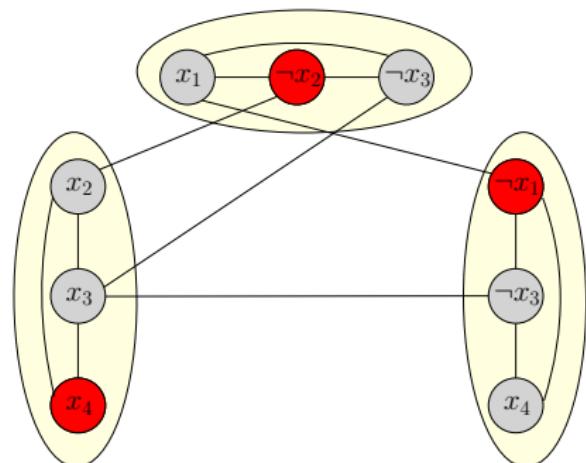
- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k = \#\text{clauses}$



3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:

3-Sat \leq_P Ind-Set

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k = \#\text{clauses}$

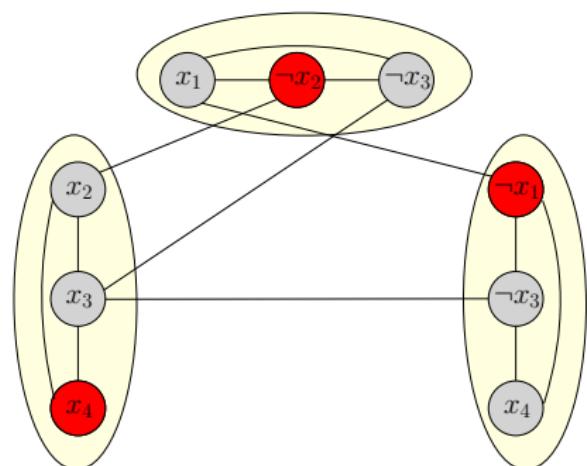


3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:

- satisfying assignment \Rightarrow independent set of size k
- independent set of size $k \Rightarrow$ satisfying assignment

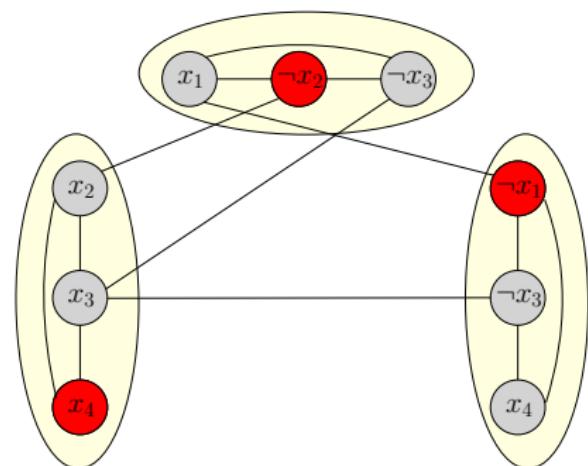
Satisfying Assignment \Rightarrow IS of Size k

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$



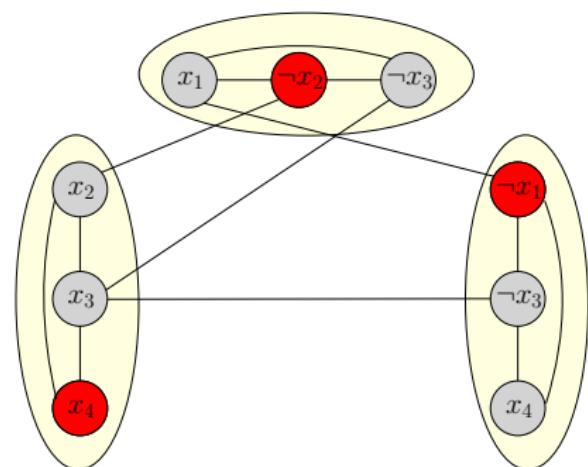
Satisfying Assignment \Rightarrow IS of Size k

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- For every clause, at least 1 literal is satisfied



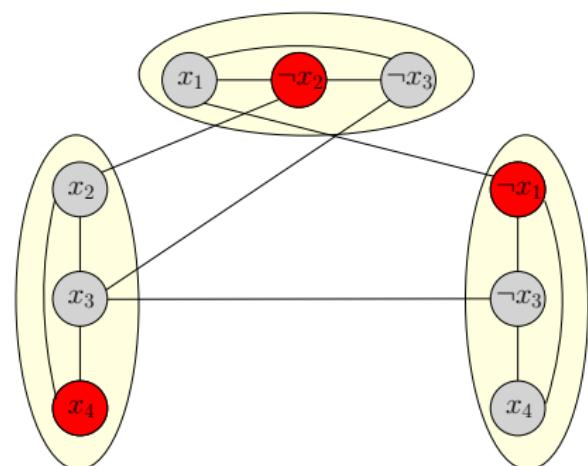
Satisfying Assignment \Rightarrow IS of Size k

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal



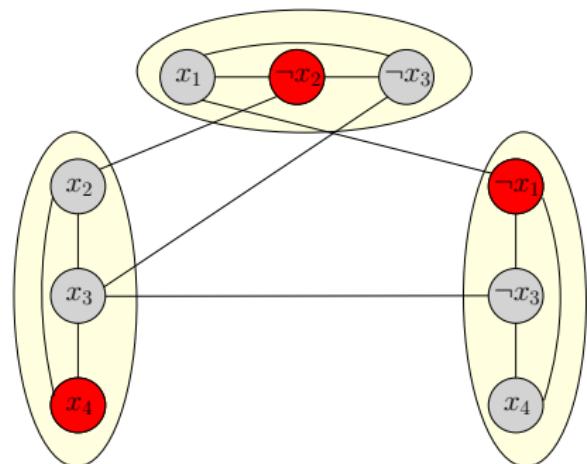
Satisfying Assignment \Rightarrow IS of Size k

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group



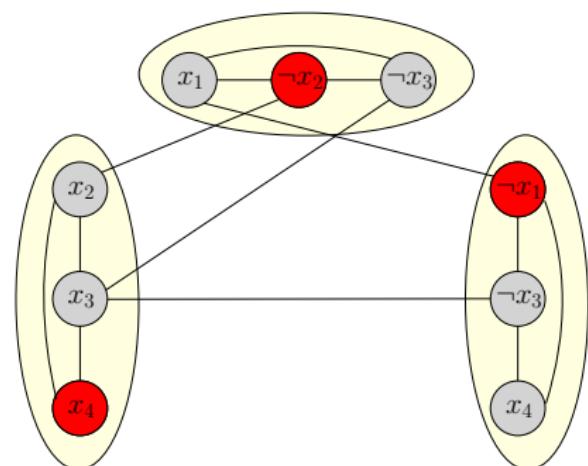
Satisfying Assignment \Rightarrow IS of Size k

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals



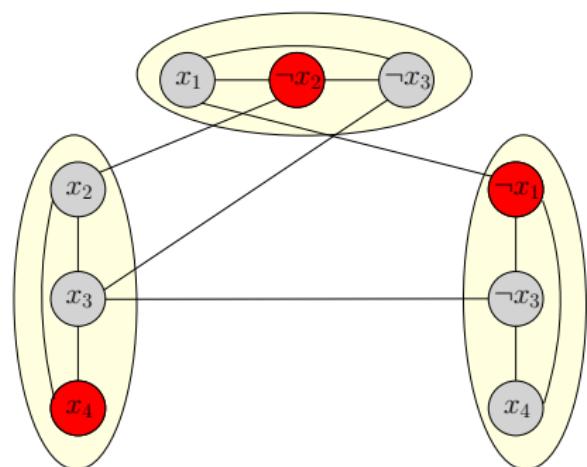
Satisfying Assignment \Rightarrow IS of Size k

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals
- An IS of size k



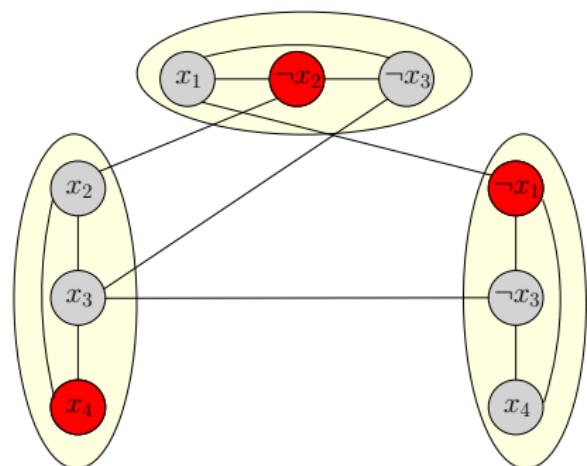
IS of Size $k \Rightarrow$ Satisfying Assignment

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$



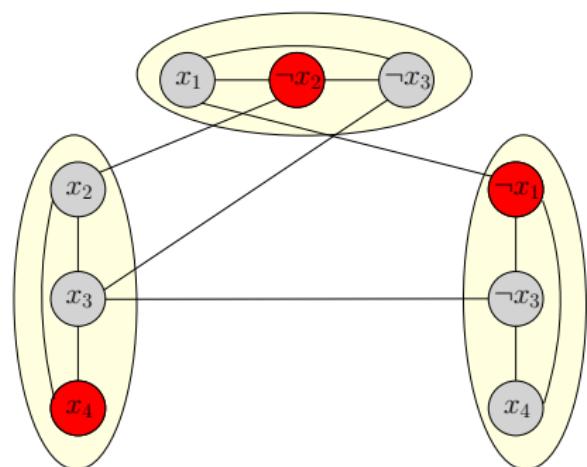
IS of Size $k \Rightarrow$ Satisfying Assignment

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- For every group, exactly one literal is selected in IS



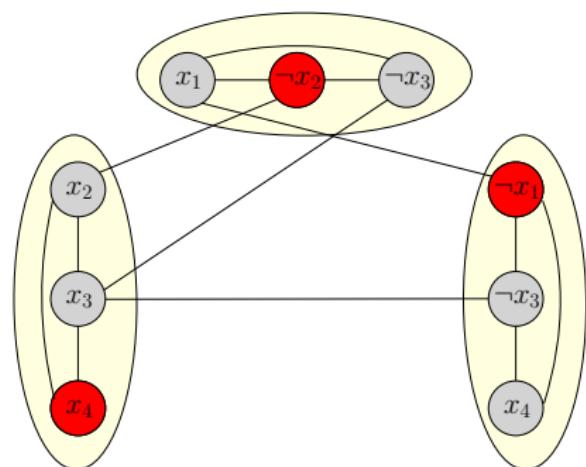
IS of Size $k \Rightarrow$ Satisfying Assignment

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals



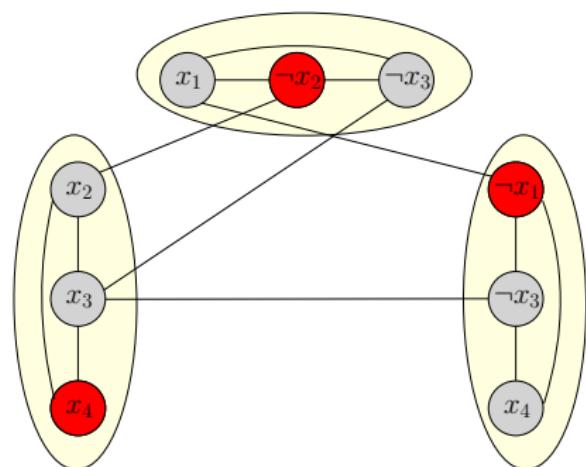
IS of Size $k \Rightarrow$ Satisfying Assignment

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$



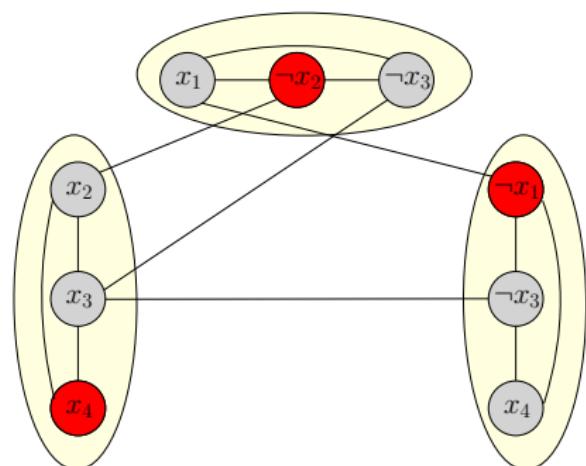
IS of Size $k \Rightarrow$ Satisfying Assignment

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
- If $\neg x_i$ is selected in IS, set $x_i = 0$

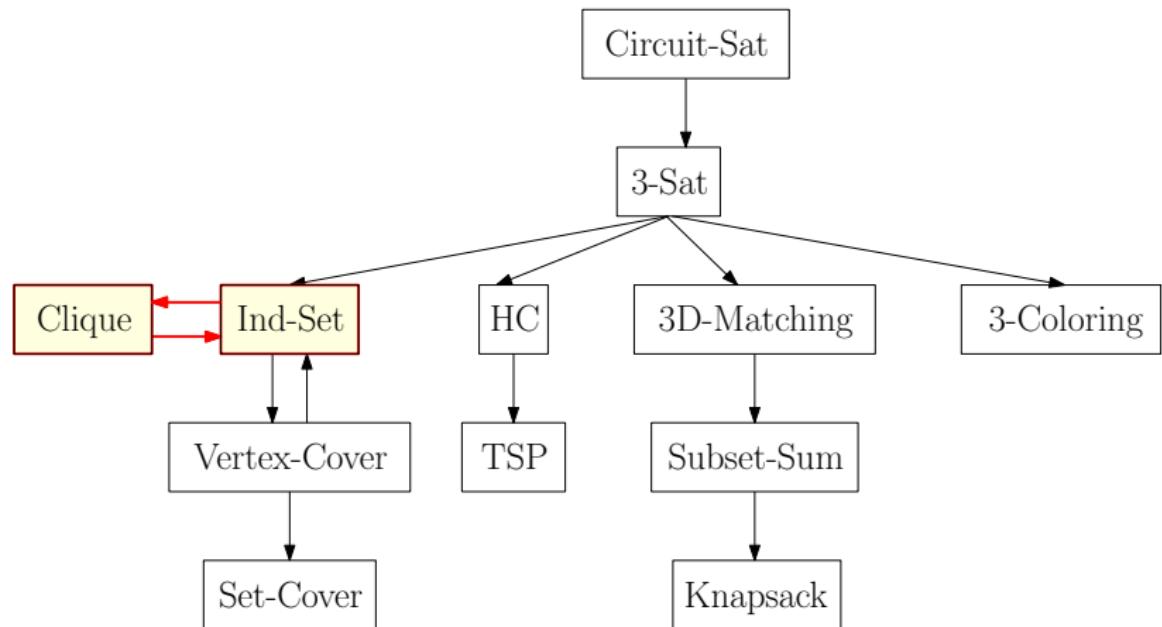


IS of Size $k \Rightarrow$ Satisfying Assignment

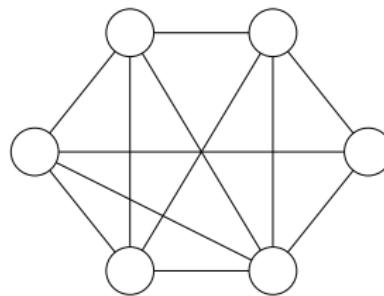
- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
- If $\neg x_i$ is selected in IS, set $x_i = 0$
- Otherwise, set x_i arbitrarily



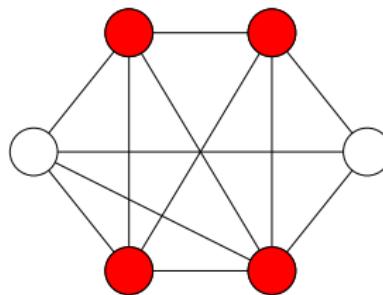
Reductions of NP-Complete Problems



Def. A **clique** in an undirected graph $G = (V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$



Def. A **clique** in an undirected graph $G = (V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$



Def. A **clique** in an undirected graph $G = (V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$

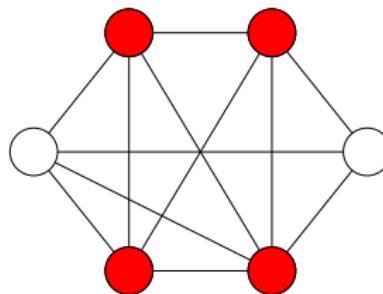


Clique Problem

Input: $G = (V, E)$ and integer $k > 0$,

Output: whether there exists a clique of size k in G

Def. A **clique** in an undirected graph $G = (V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$



Clique Problem

Input: $G = (V, E)$ and integer $k > 0$,

Output: whether there exists a clique of size k in G

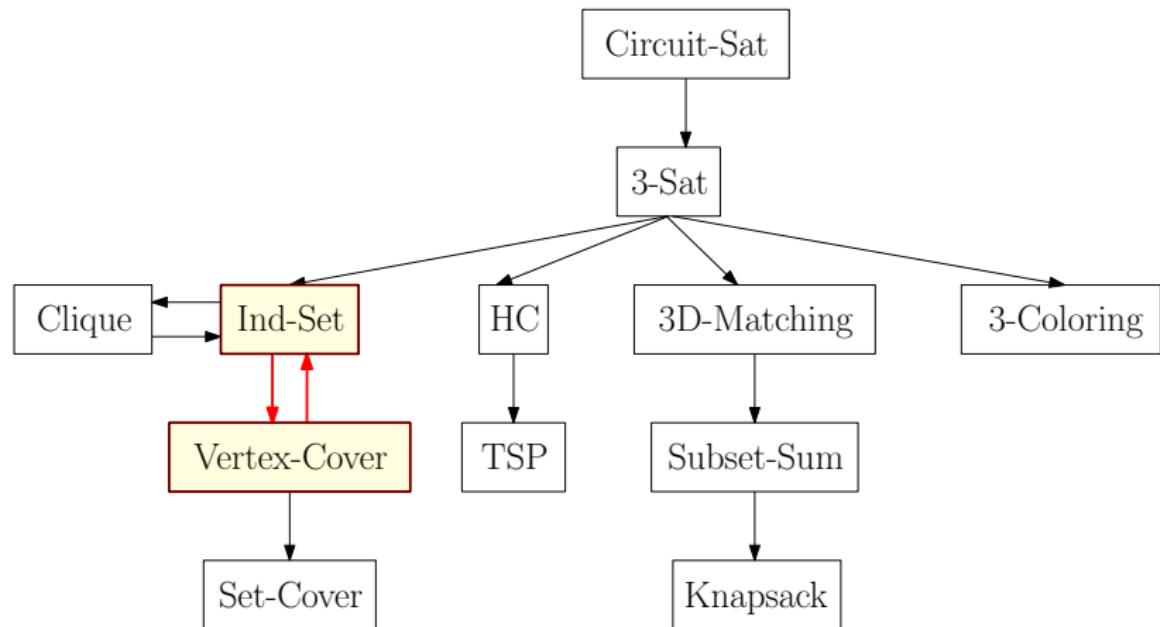
- What is the relationship between Clique and Ind-Set?

Clique $=_P$ Ind-Set

Def. Given a graph $G = (V, E)$, define $\overline{G} = (V, \overline{E})$ be the graph such that $(u, v) \in \overline{E}$ if and only if $(u, v) \notin E$.

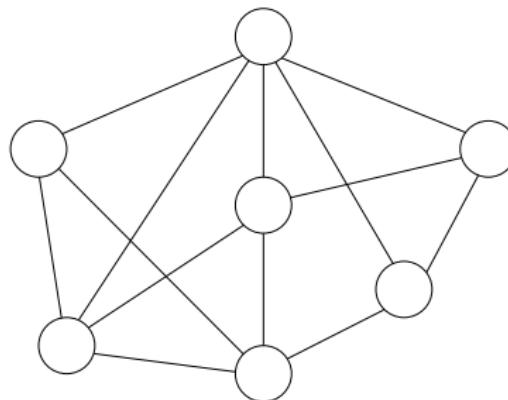
Obs. S is an independent set in G if and only if S is a clique in \overline{G} .

Reductions of NP-Complete Problems



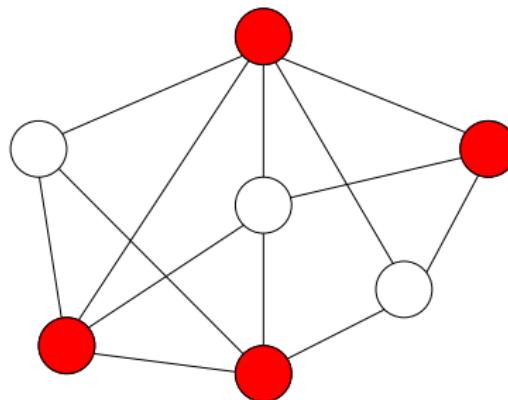
Vertex-Cover

Def. Given a graph $G = (V, E)$, a **vertex cover** of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.



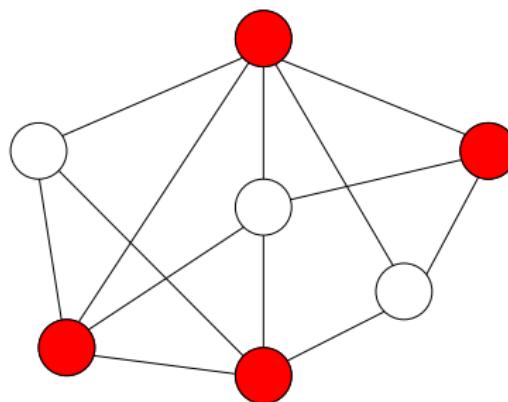
Vertex-Cover

Def. Given a graph $G = (V, E)$, a **vertex cover** of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.



Vertex-Cover

Def. Given a graph $G = (V, E)$, a **vertex cover** of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.



Vertex-Cover Problem

Input: $G = (V, E)$ and integer k

Output: whether there is a vertex cover of G of size at most k

Vertex-Cover =_P Ind-Set

Vertex-Cover =_P Ind-Set

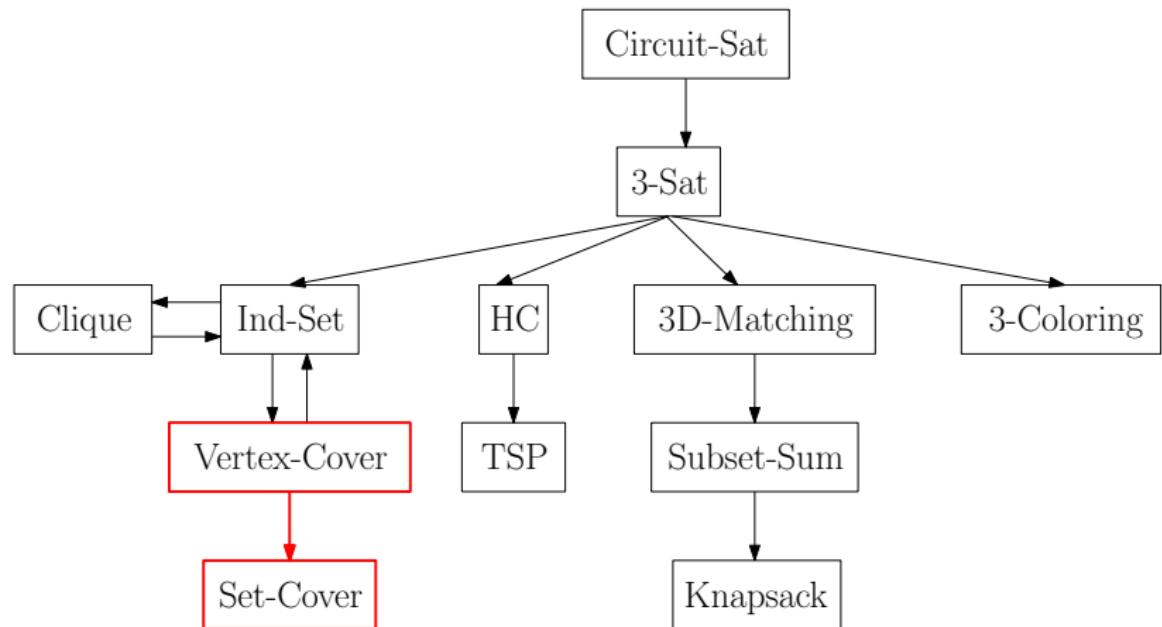
Q: What is the relationship between Vertex-Cover and Ind-Set?

Vertex-Cover =_P Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of $G = (V, E)$ if and only if $V \setminus S$ is an independent set of G .

Reductions of NP-Complete Problems



Set Cover

Input: $S_1, S_2, \dots, S_M \subseteq [N]$ with $\bigcup_{i \in [m]} S_i = [N]$

Output: The smallest set $I \subseteq [M]$ satisfying $\bigcup_{i \in I} S_i = [N]$

Set Cover

Input: $S_1, S_2, \dots, S_M \subseteq [N]$ with $\bigcup_{i \in [m]} S_i = [N]$

Output: The smallest set $I \subseteq [M]$ satisfying $\bigcup_{i \in I} S_i = [N]$

- decision version: given t , does there exist a solution I with $|I| \leq t$?

Set Cover

Input: $S_1, S_2, \dots, S_M \subseteq [N]$ with $\bigcup_{i \in [m]} S_i = [N]$

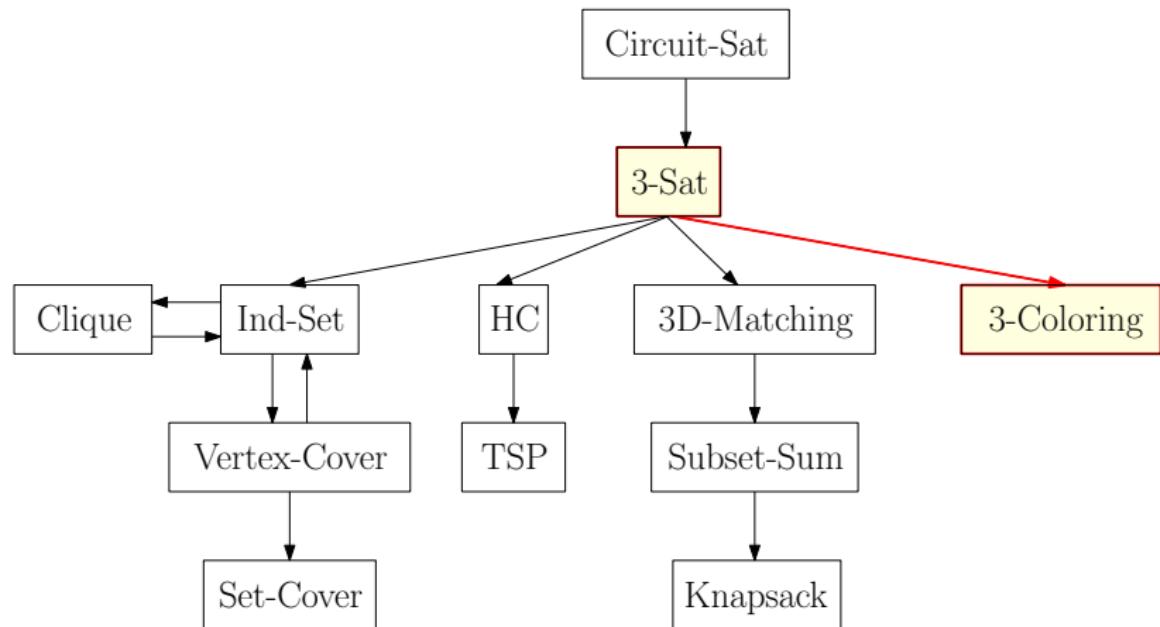
Output: The smallest set $I \subseteq [M]$ satisfying $\bigcup_{i \in I} S_i = [N]$

- decision version: given t , does there exist a solution I with $|I| \leq t$?

Vertex Cover \leq_P Set Cover

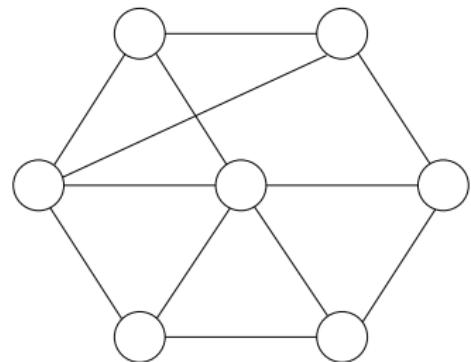
- m edges $\Leftrightarrow N$ elements
- n vertices $\Leftrightarrow M$ sets
- vertex is incident to edge $e \Leftrightarrow$ set contains element
- Vertex cover is the special case of set cover where each element appears in exactly two sets.

Reductions of NP-Complete Problems



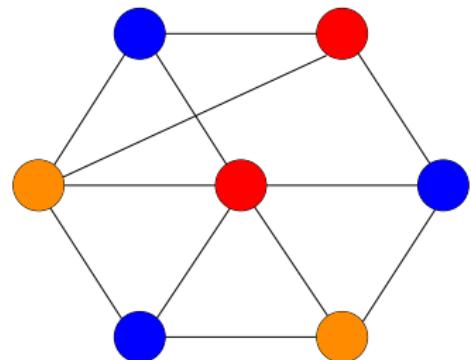
k -coloring problem

Def. A k -coloring of $G = (V, E)$ is a function $f : V \rightarrow \{1, 2, 3, \dots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v)$. G is k -colorable if there is a k -coloring of G .



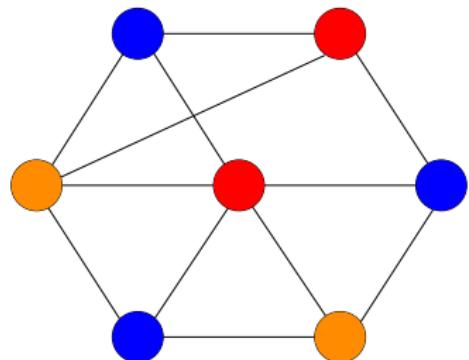
k -coloring problem

Def. A k -coloring of $G = (V, E)$ is a function $f : V \rightarrow \{1, 2, 3, \dots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v)$. G is k -colorable if there is a k -coloring of G .



k -coloring problem

Def. A k -coloring of $G = (V, E)$ is a function $f : V \rightarrow \{1, 2, 3, \dots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v)$. G is k -colorable if there is a k -coloring of G .



k -coloring problem

Input: a graph $G = (V, E)$

Output: whether G is k -colorable or not

2-Coloring Problem

Obs. A graph G is 2-colorable if and only if it is bipartite.

Q: How do we check if a graph G is 2-colorable?

2-Coloring Problem

Obs. A graph G is 2-colorable if and only if it is bipartite.

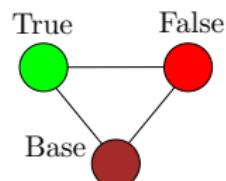
Q: How do we check if a graph G is 2-colorable?

A: We check if G is bipartite.

3-SAT \leq_P 3-Coloring

- Construct the base graph

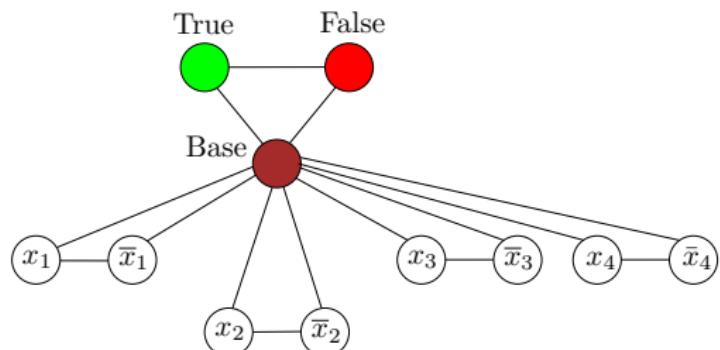
Base Graph



3-SAT \leq_P 3-Coloring

- Construct the base graph

Base Graph

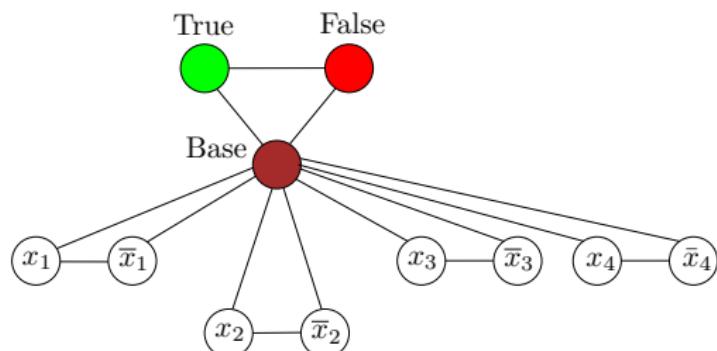


3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

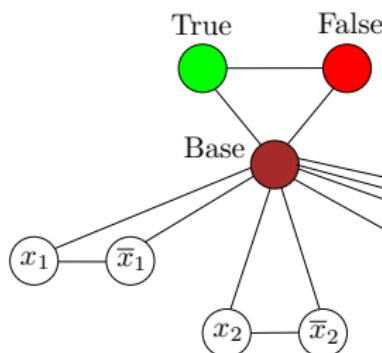
$$x_1 \vee \neg x_2 \vee x_3$$



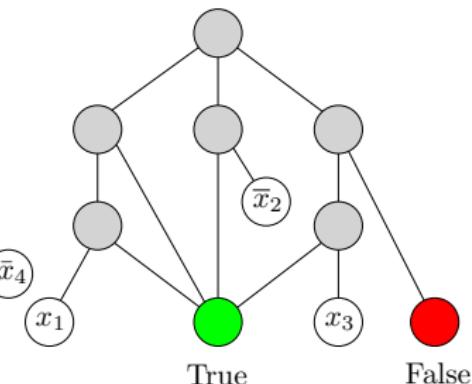
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

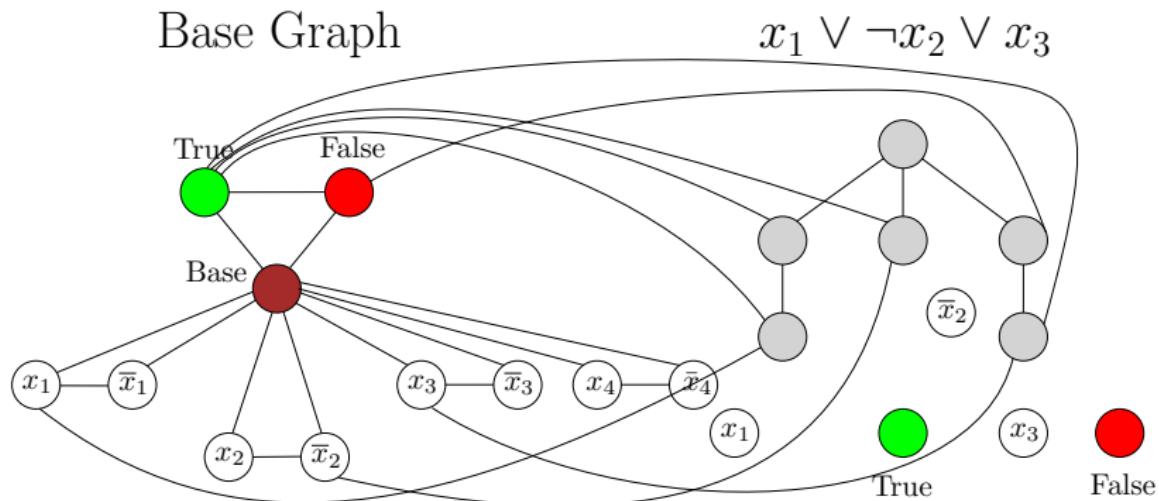


$$x_1 \vee \neg x_2 \vee x_3$$



3-SAT \leq_P 3-Coloring

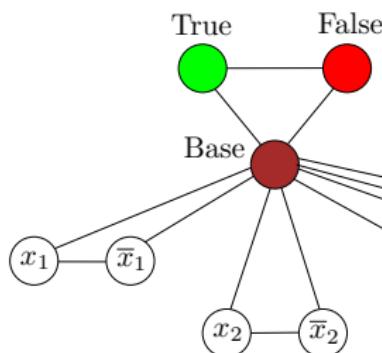
- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.



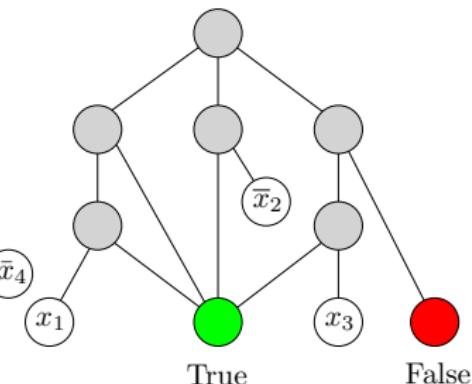
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



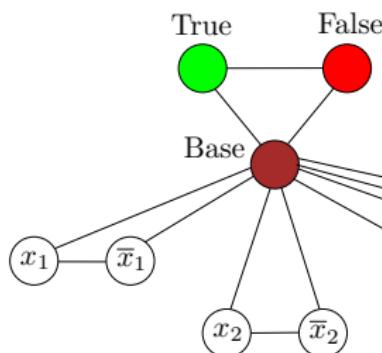
$$x_1 \vee \neg x_2 \vee x_3$$



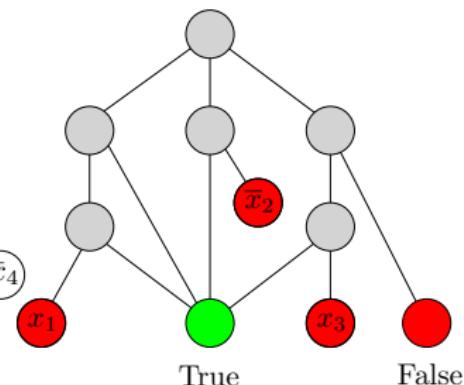
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



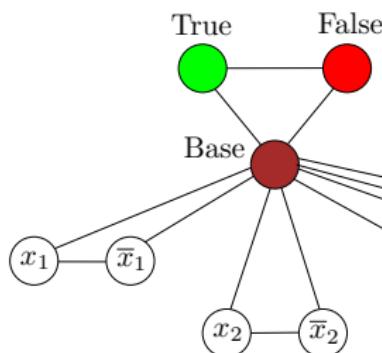
$$x_1 \vee \neg x_2 \vee x_3$$



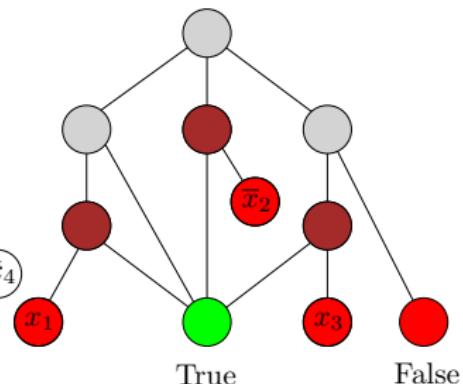
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



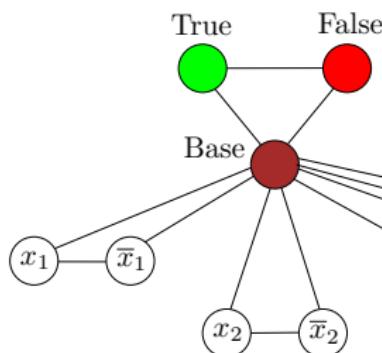
$$x_1 \vee \neg x_2 \vee x_3$$



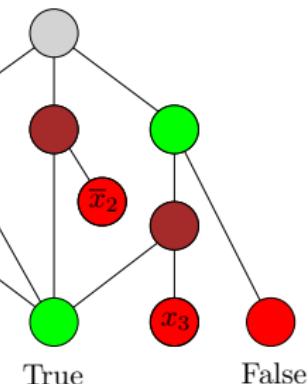
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



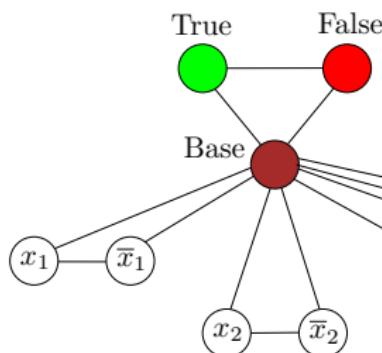
$$x_1 \vee \neg x_2 \vee x_3$$



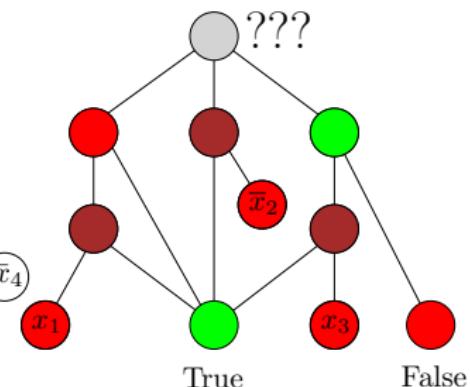
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



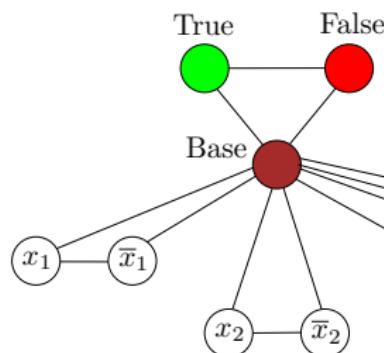
$$x_1 \vee \neg x_2 \vee x_3$$



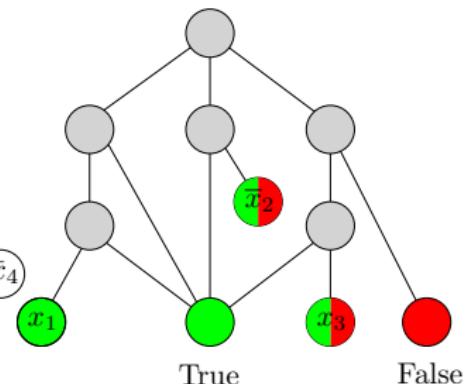
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



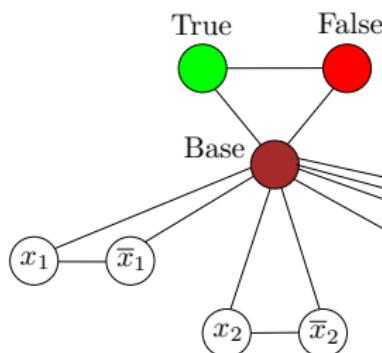
$$x_1 \vee \neg x_2 \vee x_3$$



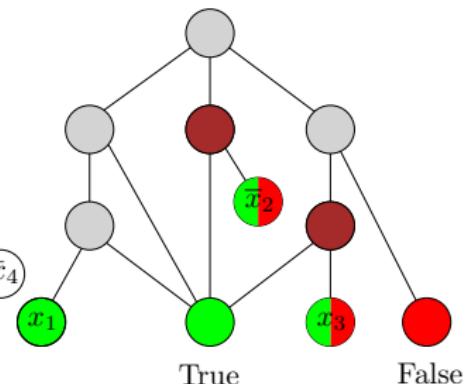
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



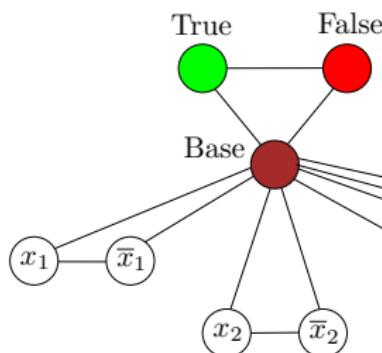
$$x_1 \vee \neg x_2 \vee x_3$$



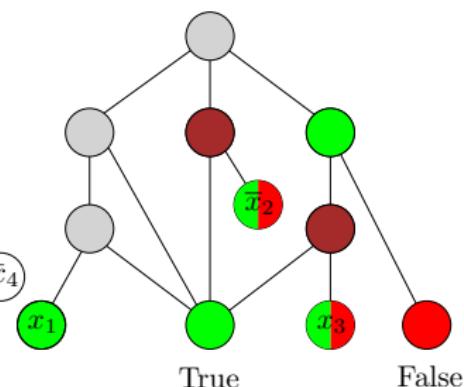
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



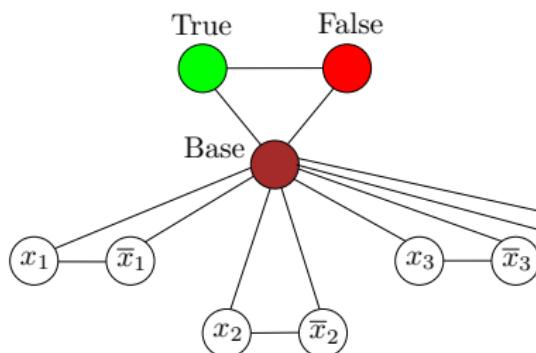
$$x_1 \vee \neg x_2 \vee x_3$$



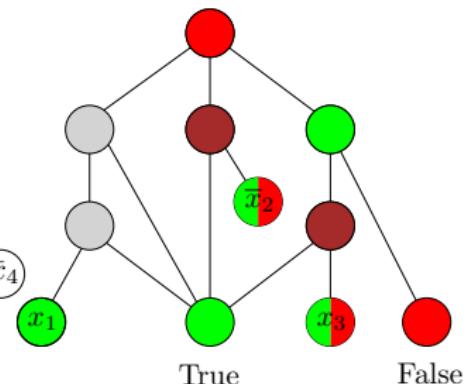
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



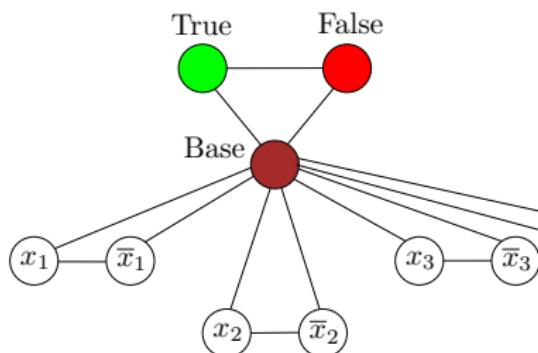
$$x_1 \vee \neg x_2 \vee x_3$$



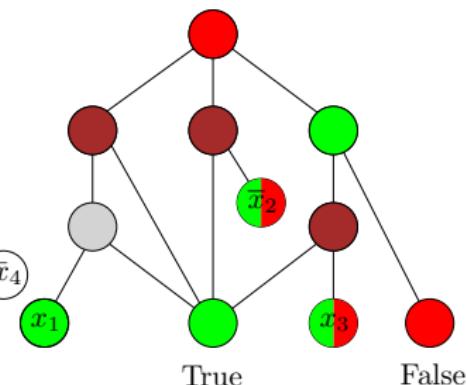
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



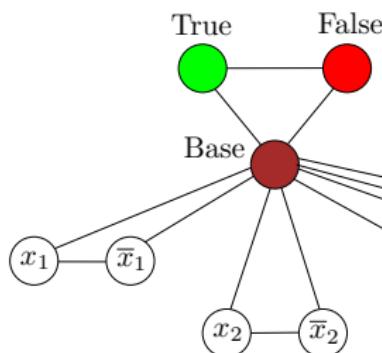
$$x_1 \vee \neg x_2 \vee x_3$$



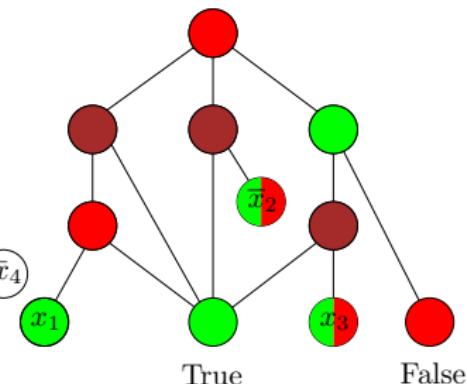
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



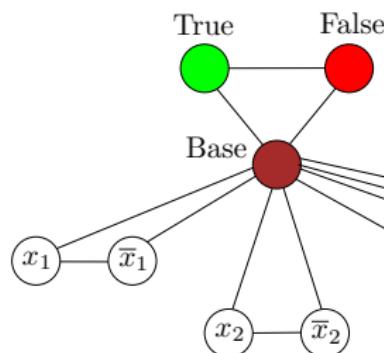
$$x_1 \vee \neg x_2 \vee x_3$$



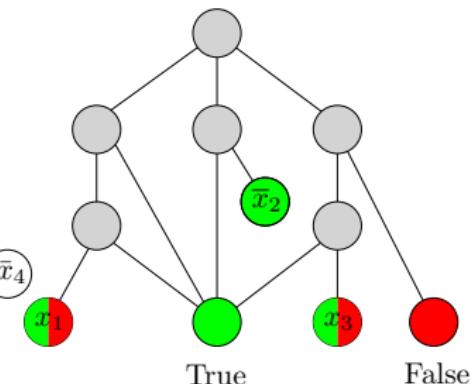
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



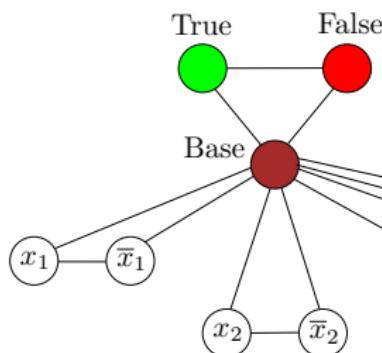
$$x_1 \vee \neg x_2 \vee x_3$$



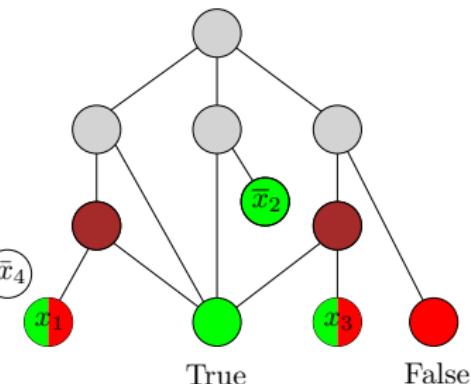
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



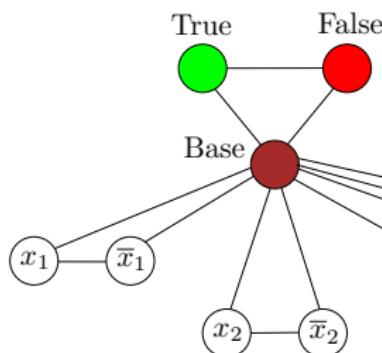
$$x_1 \vee \neg x_2 \vee x_3$$



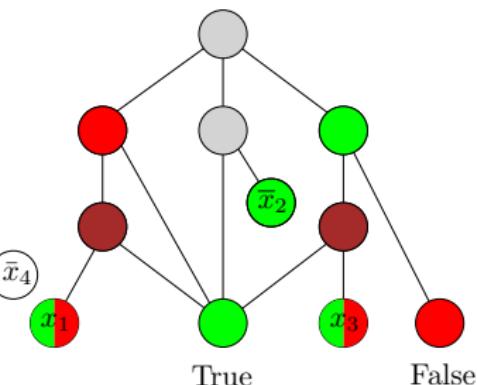
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



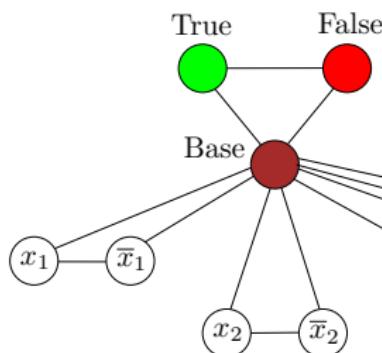
$$x_1 \vee \neg x_2 \vee x_3$$



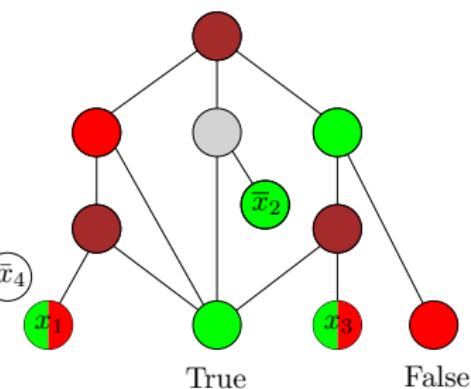
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



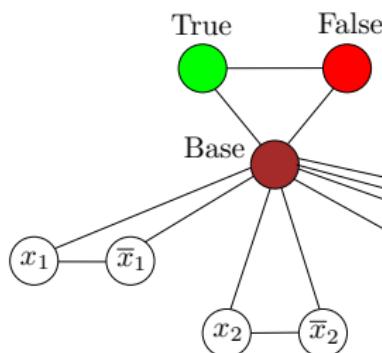
$$x_1 \vee \neg x_2 \vee x_3$$



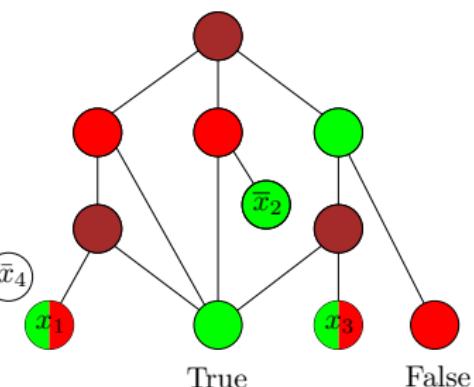
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



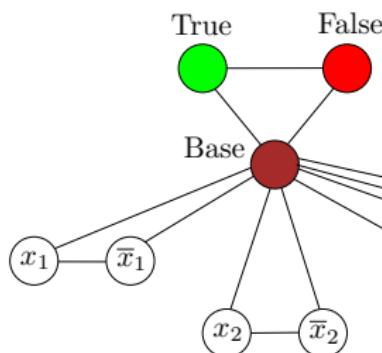
$$x_1 \vee \neg x_2 \vee x_3$$



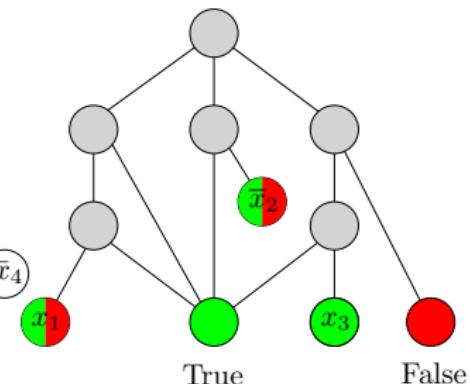
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



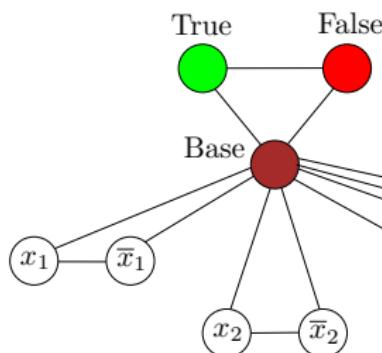
$$x_1 \vee \neg x_2 \vee x_3$$



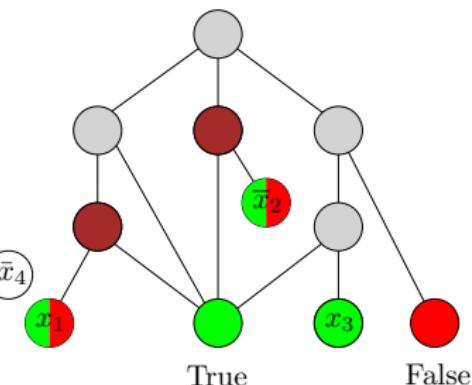
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



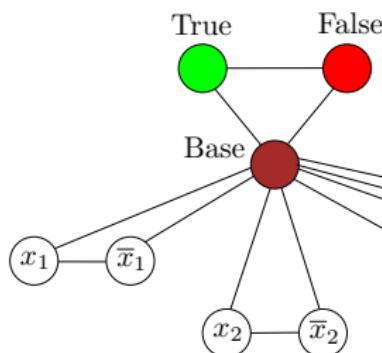
$$x_1 \vee \neg x_2 \vee x_3$$



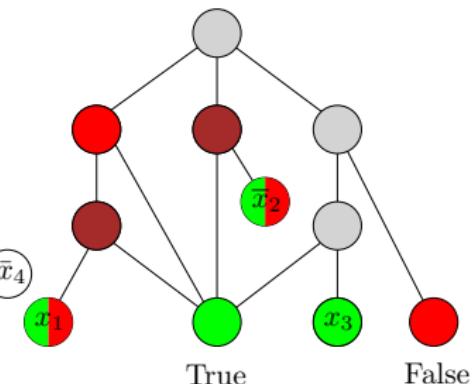
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



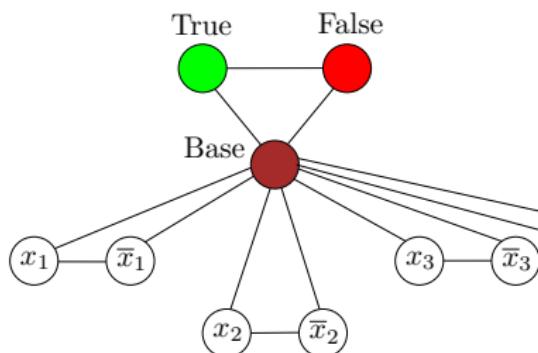
$$x_1 \vee \neg x_2 \vee x_3$$



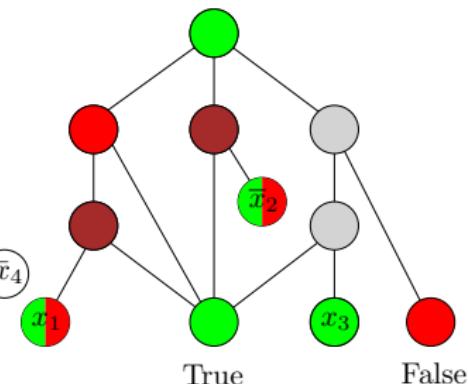
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



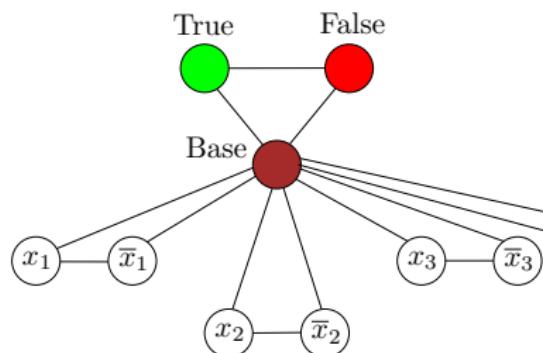
$$x_1 \vee \neg x_2 \vee x_3$$



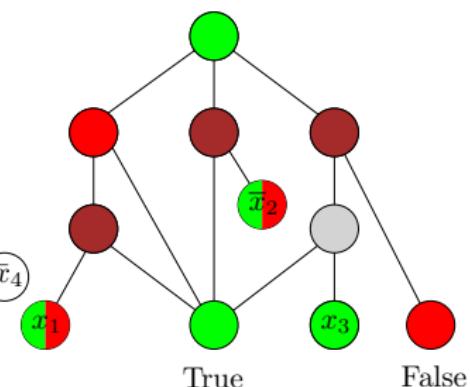
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph



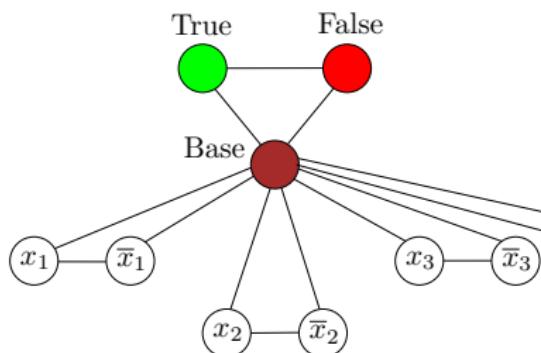
$$x_1 \vee \neg x_2 \vee x_3$$



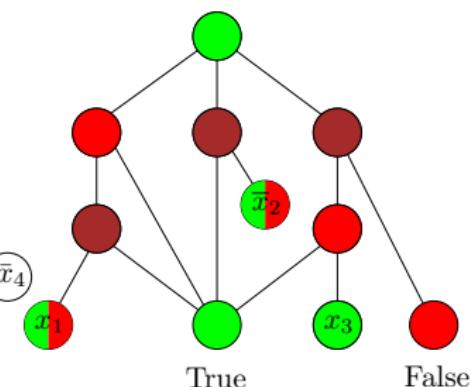
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

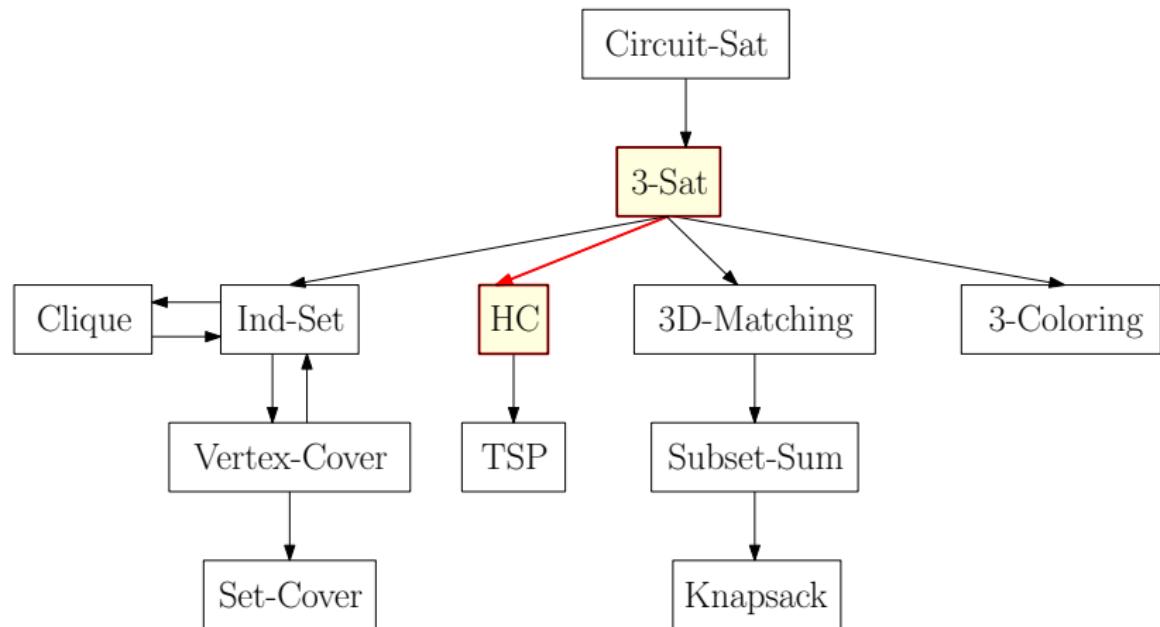
Base Graph



$$x_1 \vee \neg x_2 \vee x_3$$



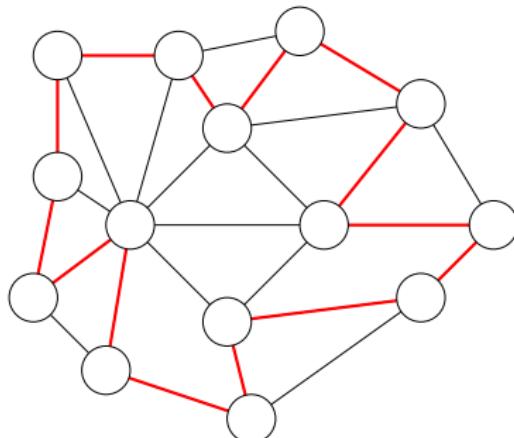
Reductions of NP-Complete Problems



Recall: Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

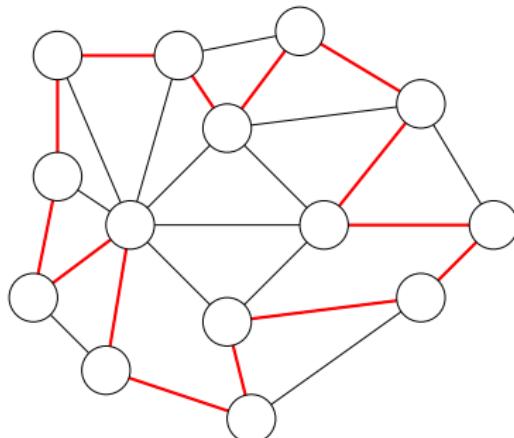
Output: whether G contains a Hamiltonian cycle



Recall: Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

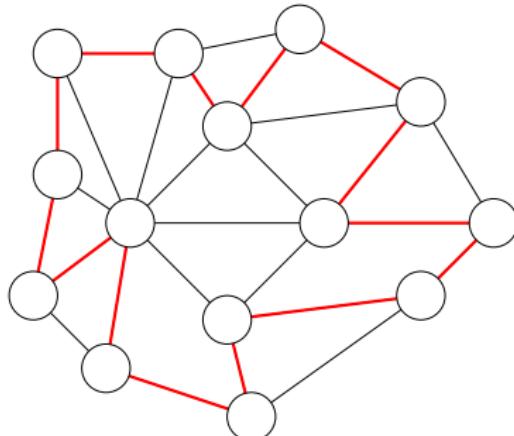


- We consider Hamiltonian Cycle Problem in **directed** graphs

Recall: Hamiltonian Cycle (HC) Problem

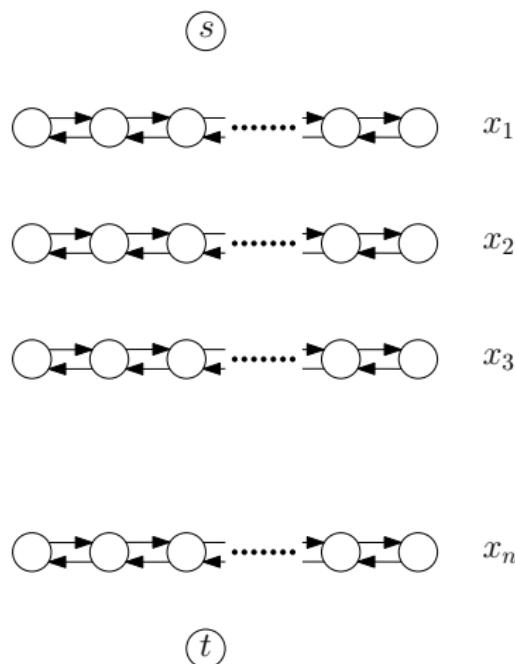
Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle



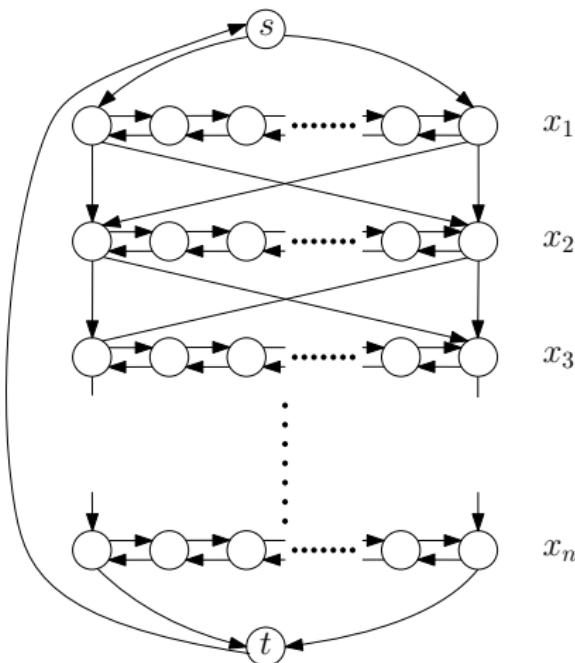
- We consider Hamiltonian Cycle Problem in **directed** graphs
- Exercise: $\text{HC-directed} \leq_P \text{HC}$

3-Sat \leq_P Directed-HC



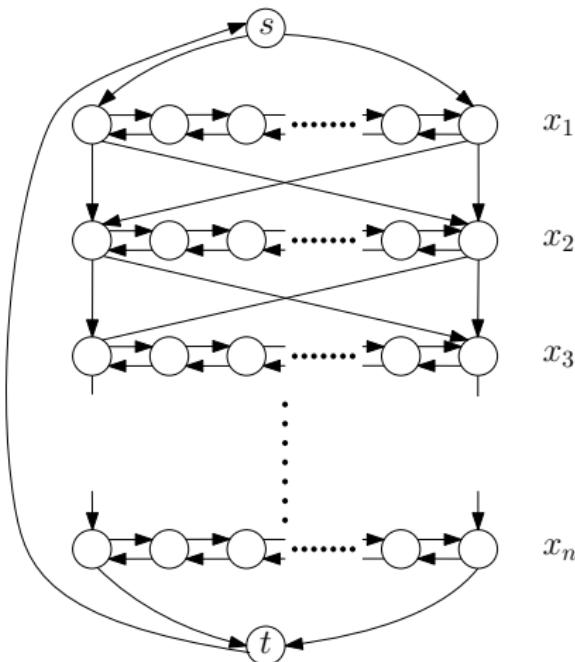
- Vertices s, t
- A long enough double-path P_i for each variable x_i

3-Sat \leq_P Directed-HC



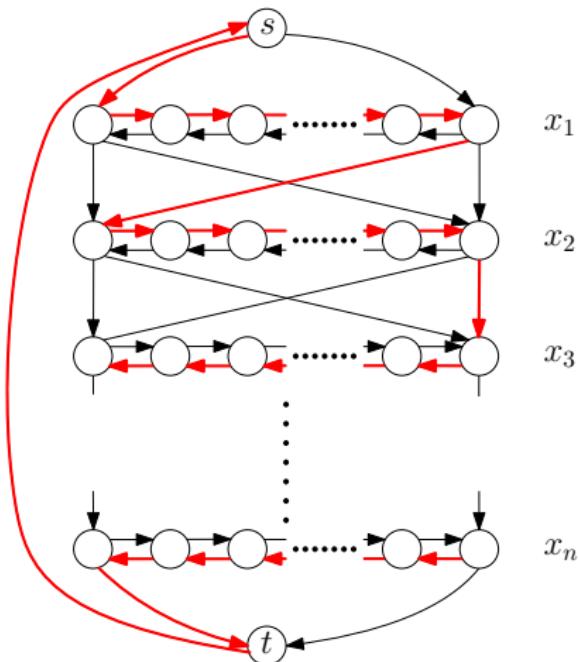
- Vertices s, t
- A long enough double-path P_i for each variable x_i
- Edges from s to P_1
- Edges from P_n to t
- Edges from P_i to P_{i+1}

3-Sat \leq_P Directed-HC



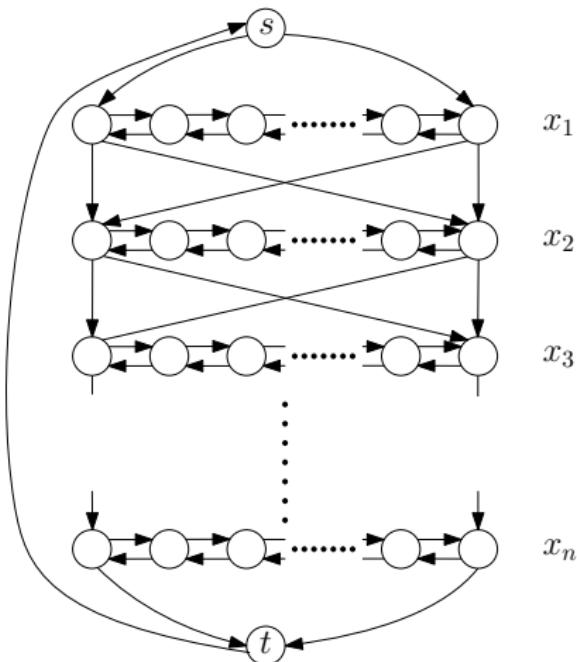
- Vertices s, t
- A long enough double-path P_i for each variable x_i
- Edges from s to P_1
- Edges from P_n to t
- Edges from P_i to P_{i+1}
- $x_i = 1 \iff$ traverse P_i from left to right

3-Sat \leq_P Directed-HC



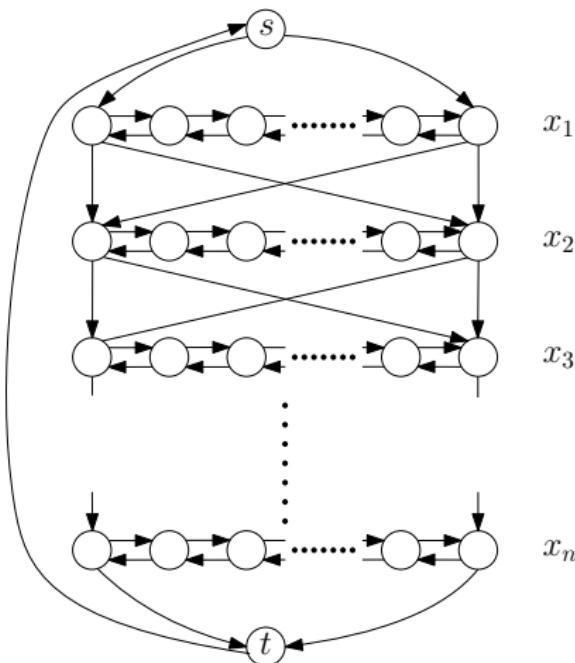
- Vertices s, t
- A long enough double-path P_i for each variable x_i
- Edges from s to P_1
- Edges from P_n to t
- Edges from P_i to P_{i+1}
- $x_i = 1 \iff$ traverse P_i from left to right
- e.g., $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$

3-Sat \leq_P Directed-HC



- Vertices s, t
- A long enough double-path P_i for each variable x_i
- Edges from s to P_1
- Edges from P_n to t
- Edges from P_i to P_{i+1}
- $x_i = 1 \iff$ traverse P_i from left to right
- e.g,
 $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$

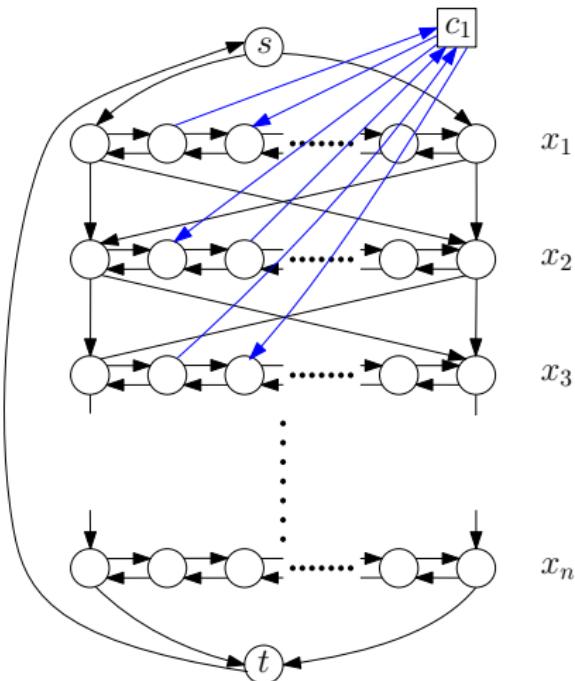
3-Sat \leq_P Directed-HC



- There are exactly 2^n different Hamiltonian cycles, each correspondent to one assignment of variables

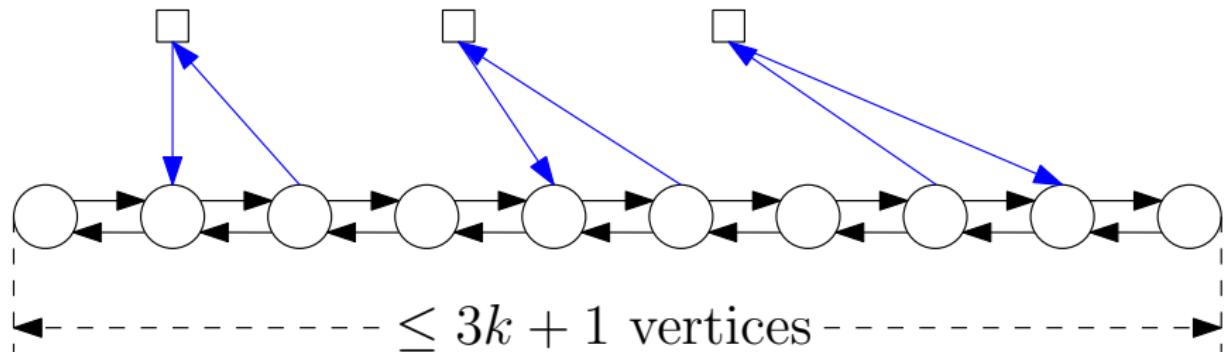
3-Sat \leq_P Directed-HC

$$c_1 = x_1 \vee \bar{x}_2 \vee x_3$$



- There are exactly 2^n different Hamiltonian cycles, each correspondent to one assignment of variables
- Add a vertex for each clause, so that the vertex can be visited only if one of the literals is satisfied.

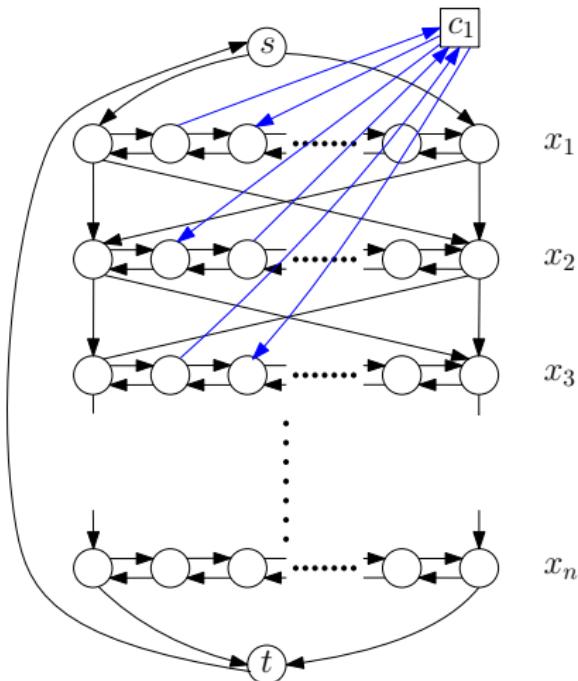
A Path Should Be Long Enough



- k : number of clauses

Yes-Instance for 3-Sat \Rightarrow Yes-Instance for Di-HC

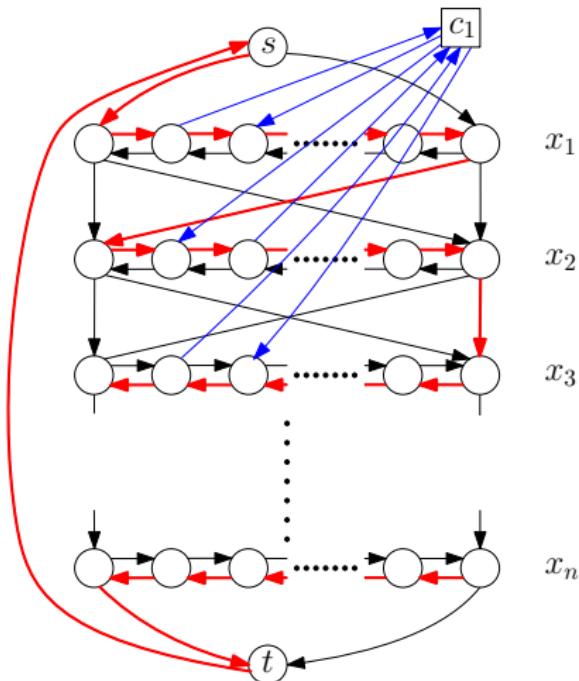
$$c_1 = x_1 \vee \bar{x}_2 \vee x_3$$



- In base graph, construct an HC according to the satisfying assignment

Yes-Instance for 3-Sat \Rightarrow Yes-Instance for Di-HC

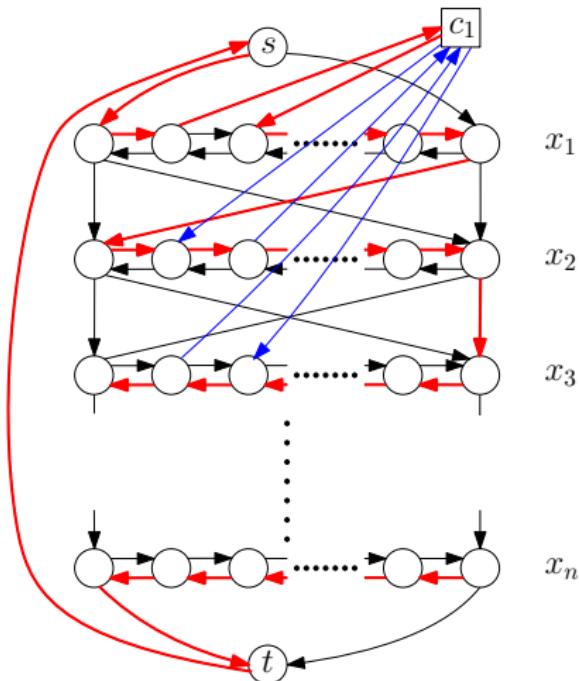
$$c_1 = x_1 \vee \bar{x}_2 \vee x_3$$



- In base graph, construct an HC according to the satisfying assignment
- For every clause, one literal is satisfied

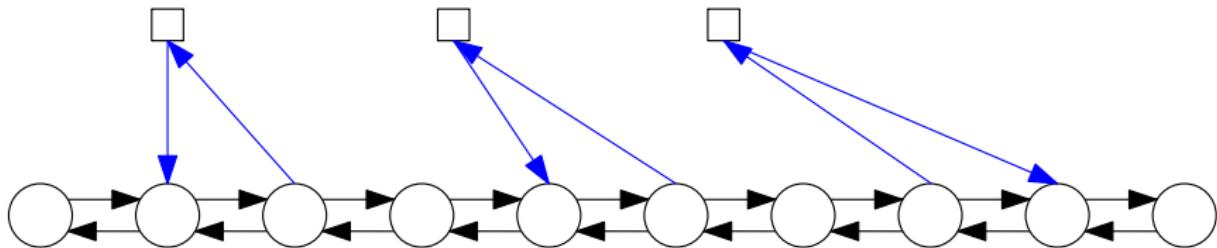
Yes-Instance for 3-Sat \Rightarrow Yes-Instance for Di-HC

$$c_1 = x_1 \vee \bar{x}_2 \vee x_3$$



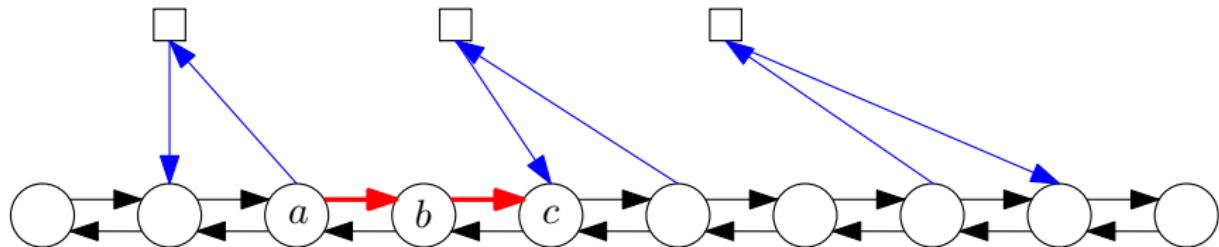
- In base graph, construct an HC according to the satisfying assignment
- For every clause, one literal is satisfied
- Visit the vertex for the clause by taking a “detour” from the path for the literal

Yes-Instance for Di-HC \Rightarrow Yes-Instance for 3-Sat



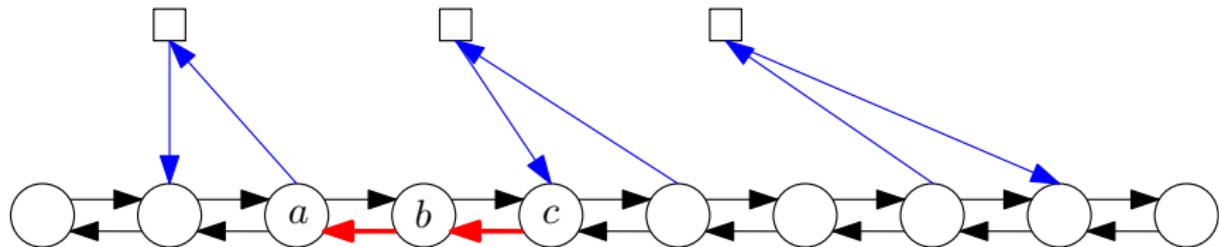
- Idea: for each path P_i , must follow the left-to-right or right-to-right pattern.

Yes-Instance for Di-HC \Rightarrow Yes-Instance for 3-Sat



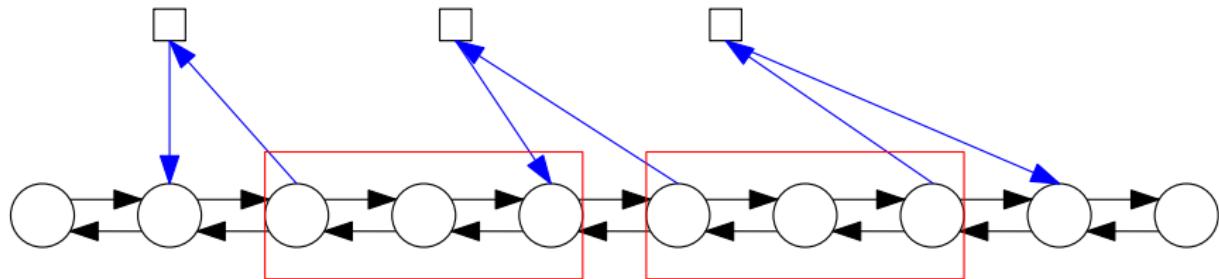
- Idea: for each path P_i , must follow the left-to-right or right-to-right pattern.
- To visit vertex b , can either go $a-b-c$ or $b-c-a$

Yes-Instance for Di-HC \Rightarrow Yes-Instance for 3-Sat



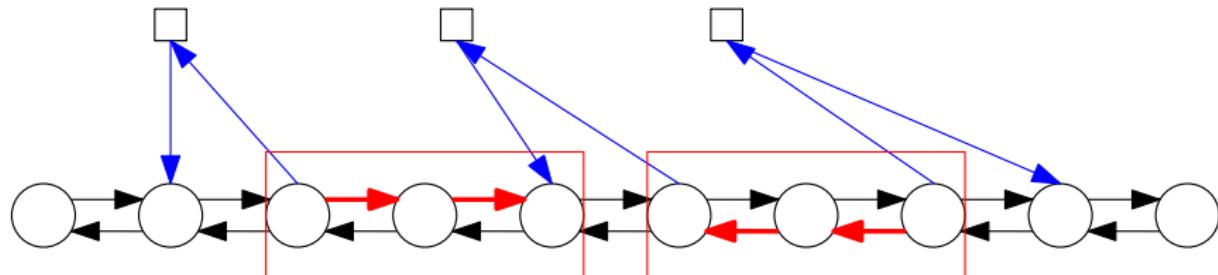
- Idea: for each path P_i , must follow the left-to-right or right-to-right pattern.
- To visit vertex b , can either go $a-b-c$ or $b-c-a$

Yes-Instance for Di-HC \Rightarrow Yes-Instance for 3-Sat



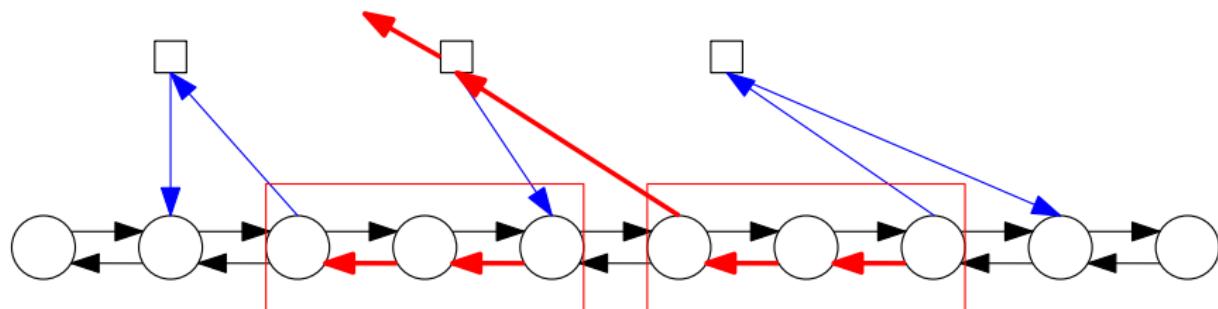
- Idea: for each path P_i , must follow the left-to-right or right-to-right pattern.
- To visit vertex b , can either go $a-b-c$ or $b-c-a$
- Created “chunks” of 3 vertices.

Yes-Instance for Di-HC \Rightarrow Yes-Instance for 3-Sat



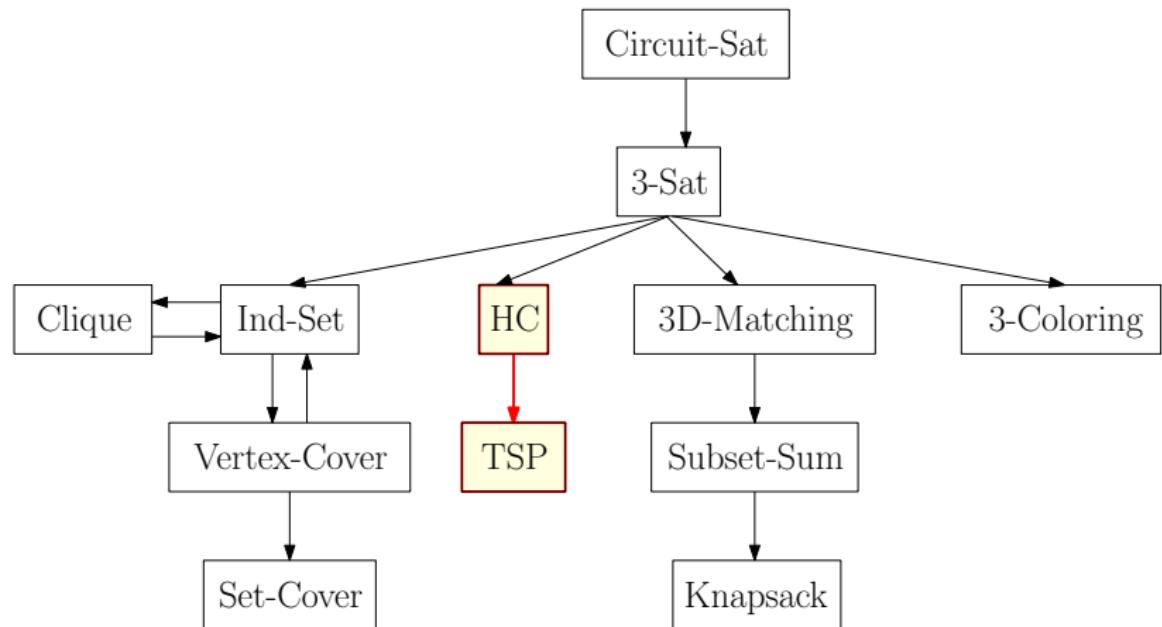
- Idea: for each path P_i , must follow the left-to-right or right-to-right pattern.
- To visit vertex b , can either go $a-b-c$ or $b-c-a$
- Created “chunks” of 3 vertices.
- Directions of the chunks must be the same

Yes-Instance for Di-HC \Rightarrow Yes-Instance for 3-Sat



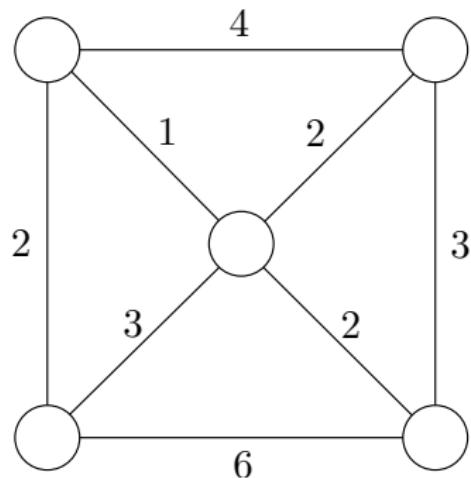
- Idea: for each path P_i , must follow the left-to-right or right-to-right pattern.
- To visit vertex b , can either go $a-b-c$ or $b-c-a$
- Created “chunks” of 3 vertices.
- Directions of the chunks must be the same
- Can not take a detour to some other path

Reductions of NP-Complete Problems



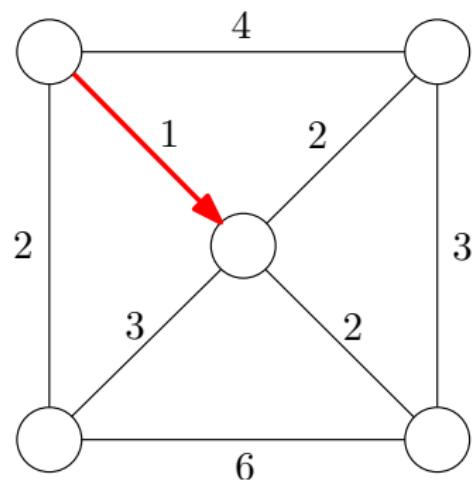
Traveling Salesman Problem

- A salesman needs to visit n cities $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



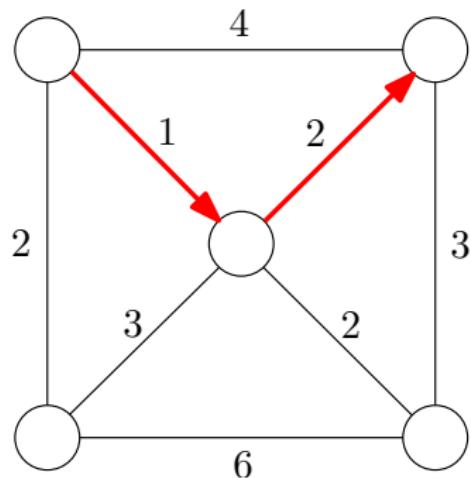
Traveling Salesman Problem

- A salesman needs to visit n cities $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



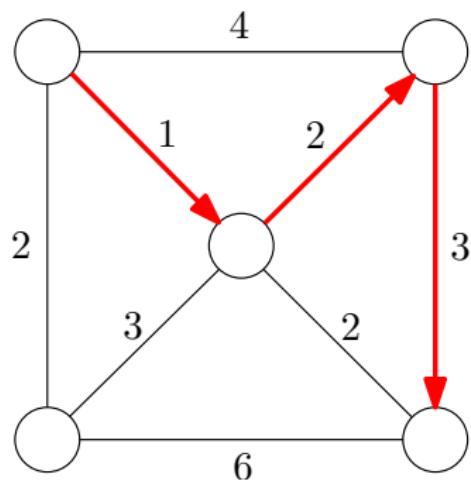
Traveling Salesman Problem

- A salesman needs to visit n cities $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



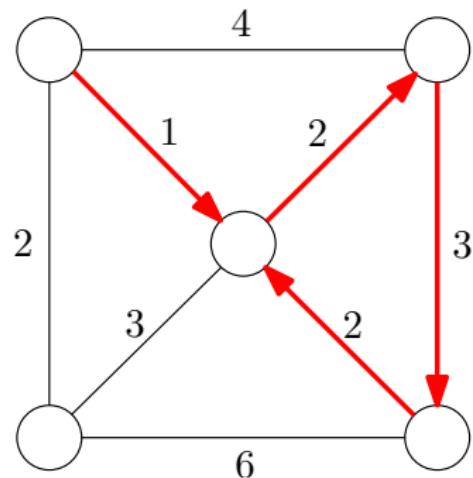
Traveling Salesman Problem

- A salesman needs to visit n cities $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



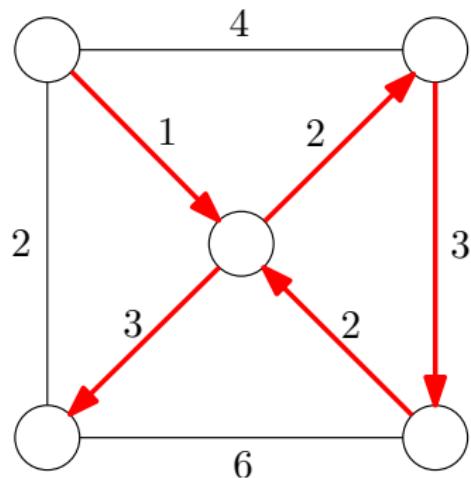
Traveling Salesman Problem

- A salesman needs to visit n cities $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



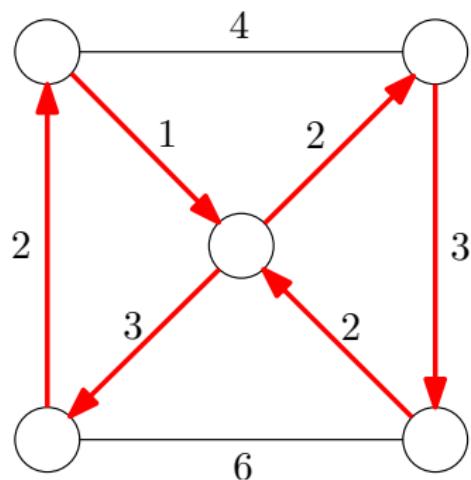
Traveling Salesman Problem

- A salesman needs to visit n cities $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



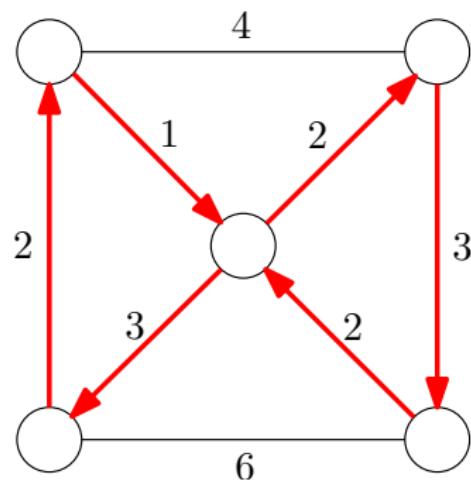
Traveling Salesman Problem

- A salesman needs to visit n cities $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



Traveling Salesman Problem

- A salesman needs to visit n cities $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost

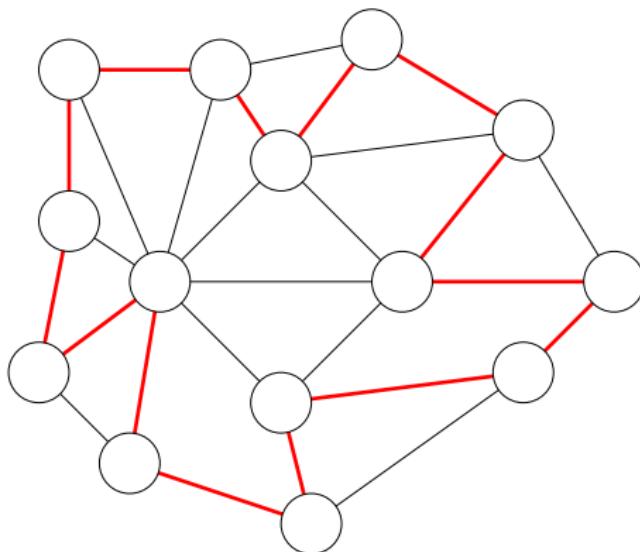


Travelling Salesman Problem (TSP)

Input: a graph $G = (V, E)$, weights $w : E \rightarrow \mathbb{R}_{\geq 0}$, and $L > 0$

Output: whether there is a tour of length at most D

$\text{HC} \leq_P \text{TSP}$



Obs. There is a Hamilton cycle in G if and only if there is a tour for the salesman of length $n = |V|$.

Reductions of NP-Complete Problems



Bipartite Graph Matching

Input: A bipartite graph $G = (X \cup Y, E)$ with $|X| = |Y| = n$

Output: whether there exists a perfect matching in G

Bipartite Graph Matching

Input: A bipartite graph $G = (X \cup Y, E)$ with $|X| = |Y| = n$

Output: whether there exists a perfect matching in G

Application: Matching between Teachers and Courses

- n teachers and n courses
- a teacher may or may not be able to teach a course
- find a way to match the n teachers and n courses.

3D-Matching

Input: $|X| = |Y| = |Z| = n$, $E \subseteq X \times Y \times Z$, $|E| = m$

Output: whether there exists a perfect **3-dimensional** matching M ,
i.e., a set $M \subseteq E$ of size n such that

$$\bigcup_{(x,y,z) \in M} \{x, y, z\} = X \cup Y \cup Z$$

3D-Matching

Input: $|X| = |Y| = |Z| = n$, $E \subseteq X \times Y \times Z$, $|E| = m$

Output: whether there exists a perfect **3-dimensional** matching M ,
i.e., a set $M \subseteq E$ of size n such that

$$\bigcup_{(x,y,z) \in M} \{x, y, z\} = X \cup Y \cup Z$$

Example

- $X = \{1, 2, 3, 4\}$, $Y = \{A, B, C, D\}$
- $Z = \{a, b, c, d\}$

X	Y	Z
①	Ⓐ	a
②	Ⓑ	b
③	Ⓒ	c
④	Ⓓ	d

3D-Matching

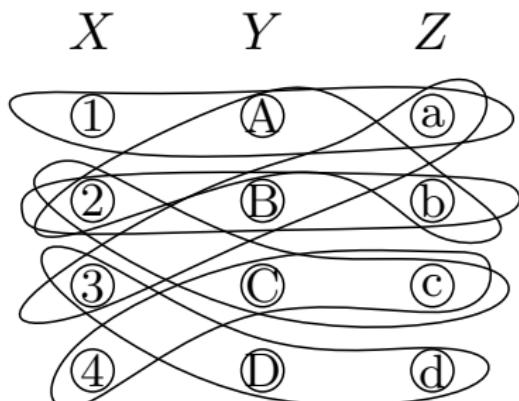
Input: $|X| = |Y| = |Z| = n$, $E \subseteq X \times Y \times Z$, $|E| = m$

Output: whether there exists a perfect **3-dimensional** matching M ,
i.e., a set $M \subseteq E$ of size n such that

$$\bigcup_{(x,y,z) \in M} \{x, y, z\} = X \cup Y \cup Z$$

Example

- $X = \{1, 2, 3, 4\}$, $Y = \{A, B, C, D\}$
- $Z = \{a, b, c, d\}$
- $M = \{(1, A, a), (2, A, b), (2, B, b), (2, C, c), (3, B, a), (3, D, d), (4, C, c)\}$



3D-Matching

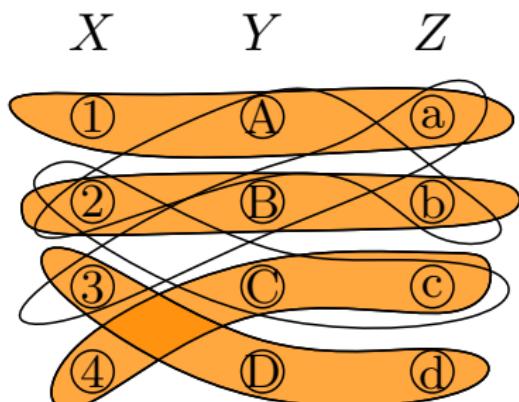
Input: $|X| = |Y| = |Z| = n$, $E \subseteq X \times Y \times Z$, $|E| = m$

Output: whether there exists a perfect **3-dimensional** matching M ,
i.e., a set $M \subseteq E$ of size n such that

$$\bigcup_{(x,y,z) \in M} \{x, y, z\} = X \cup Y \cup Z$$

Example

- $X = \{1, 2, 3, 4\}$, $Y = \{A, B, C, D\}$
- $Z = \{a, b, c, d\}$
- $M = \{(1, A, a), (2, A, b), (2, B, b), (2, C, c), (3, B, a), (3, D, d), (4, C, c)\}$



Application: Matching among Teachers, Courses and Resources

- n teachers, n courses and n resources
 - e.g., resource = (location, time) pair
- $(x, y, z) \in E$ teacher x can teach a course y using resource z
- find a way to match the teachers, courses and resources

Application: Matching among Teachers, Courses and Resources

- n teachers, n courses and n resources
 - e.g., resource = (location, time) pair
- $(x, y, z) \in E$ teacher x can teach a course y using resource z
- find a way to match the teachers, courses and resources

Remark

- The tuples can be arbitrary: the relationship is 3-dimensional.
- It is not a concatenation of two bipartite matching problems: If a teacher x can teach a course y , and resource z is available for teacher x , it does not necessarily mean $(x, y, z) \in E$

3D-Matching = Colorful Bipartite Matching

Colorful Bipartite Matching

Input: a bipartite **multi**-graph $G = (X \cup Y, E)$ with
 $|X| = |Y| = n$ each edge in E has a **color** $c \in [n]$

Output: find a perfect matching $M \subseteq E$ of G with n distinct colors

3D-Matching = Colorful Bipartite Matching

Colorful Bipartite Matching

Input: a bipartite **multi**-graph $G = (X \cup Y, E)$ with $|X| = |Y| = n$ each edge in E has a **color** $c \in [n]$

Output: find a perfect matching $M \subseteq E$ of G with n distinct colors

- Idea: using the third dimension for colors.

3D-Matching = Colorful Bipartite Matching

Colorful Bipartite Matching

Input: a bipartite **multi**-graph $G = (X \cup Y, E)$ with $|X| = |Y| = n$ each edge in E has a **color** $c \in [n]$

Output: find a perfect matching $M \subseteq E$ of G with n distinct colors

- Idea: using the third dimension for colors.

Example

- $X = \{1, 2, 3, 4\}$, $Y = \{A, B, C, D\}$
- $Z = \{a, b, c, d\}$

X	Y
①	Ⓐ
②	Ⓑ
③	Ⓒ
④	Ⓓ

3D-Matching = Colorful Bipartite Matching

Colorful Bipartite Matching

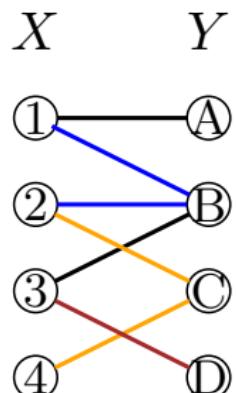
Input: a bipartite **multi**-graph $G = (X \cup Y, E)$ with $|X| = |Y| = n$ each edge in E has a **color** $c \in [n]$

Output: find a perfect matching $M \subseteq E$ of G with n distinct colors

- Idea: using the third dimension for colors.

Example

- $X = \{1, 2, 3, 4\}$, $Y = \{A, B, C, D\}$
- $Z = \{a, b, c, d\}$
- $M = \{(1, A, a), (2, A, b), (2, B, b), (2, C, c), (3, B, a), (3, D, d), (4, C, c)\}$



3D-Matching = Colorful Bipartite Matching

Colorful Bipartite Matching

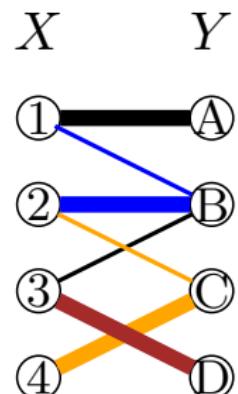
Input: a bipartite **multi**-graph $G = (X \cup Y, E)$ with $|X| = |Y| = n$ each edge in E has a **color** $c \in [n]$

Output: find a perfect matching $M \subseteq E$ of G with n distinct colors

- Idea: using the third dimension for colors.

Example

- $X = \{1, 2, 3, 4\}$, $Y = \{A, B, C, D\}$
- $Z = \{a, b, c, d\}$
- $M = \{(1, A, a), (2, A, b), (2, B, b), (2, C, c), (3, B, a), (3, D, d), (4, C, c)\}$

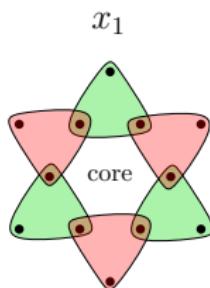
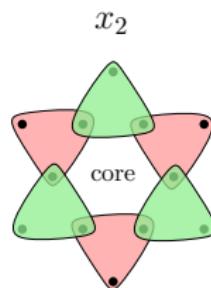
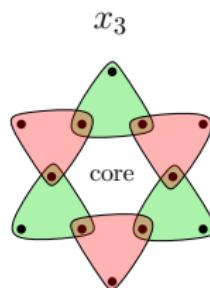


3-SAT \leq_P 3D-Matching

- $$(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4) \wedge \\ (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_2 \vee x_3 \vee \neg x_4) \wedge (x_2 \vee x_3 \vee x_4)$$

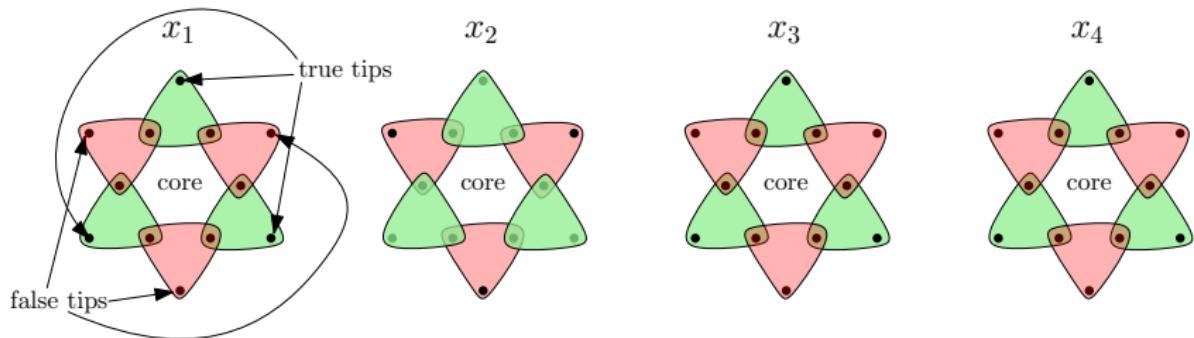
3-SAT \leq_P 3D-Matching

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4) \wedge$
 $(x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_2 \vee x_3 \vee \neg x_4) \wedge (x_2 \vee x_3 \vee x_4)$



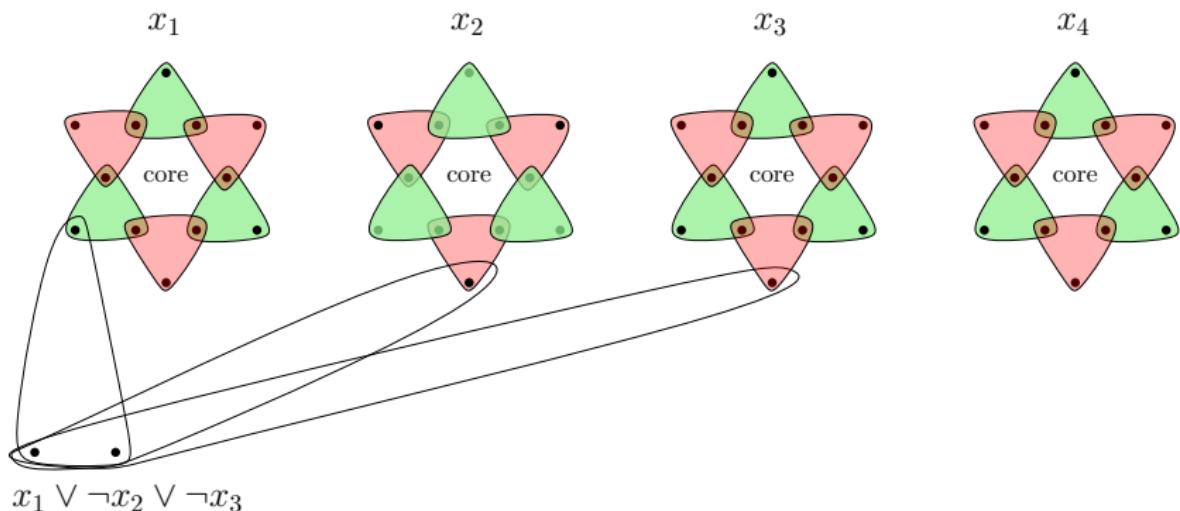
3-SAT \leq_P 3D-Matching

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4) \wedge$
 $(x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_2 \vee x_3 \vee \neg x_4) \wedge (x_2 \vee x_3 \vee x_4)$



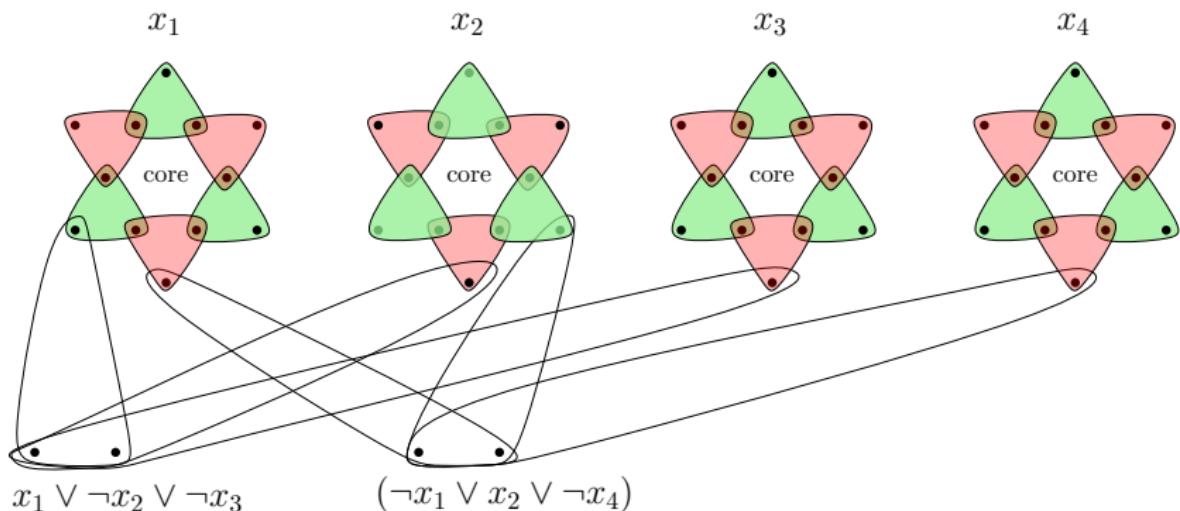
3-SAT \leq_P 3D-Matching

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4) \wedge$
 $(x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_2 \vee x_3 \vee \neg x_4) \wedge (x_2 \vee x_3 \vee x_4)$



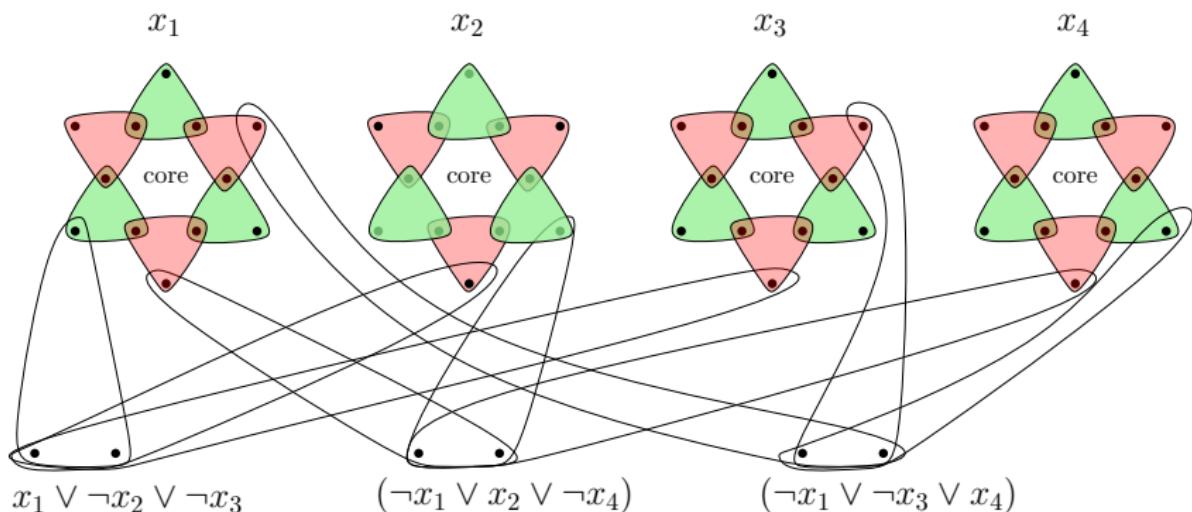
3-SAT \leq_P 3D-Matching

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4) \wedge$
 $(x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_2 \vee x_3 \vee \neg x_4) \wedge (x_2 \vee x_3 \vee x_4)$



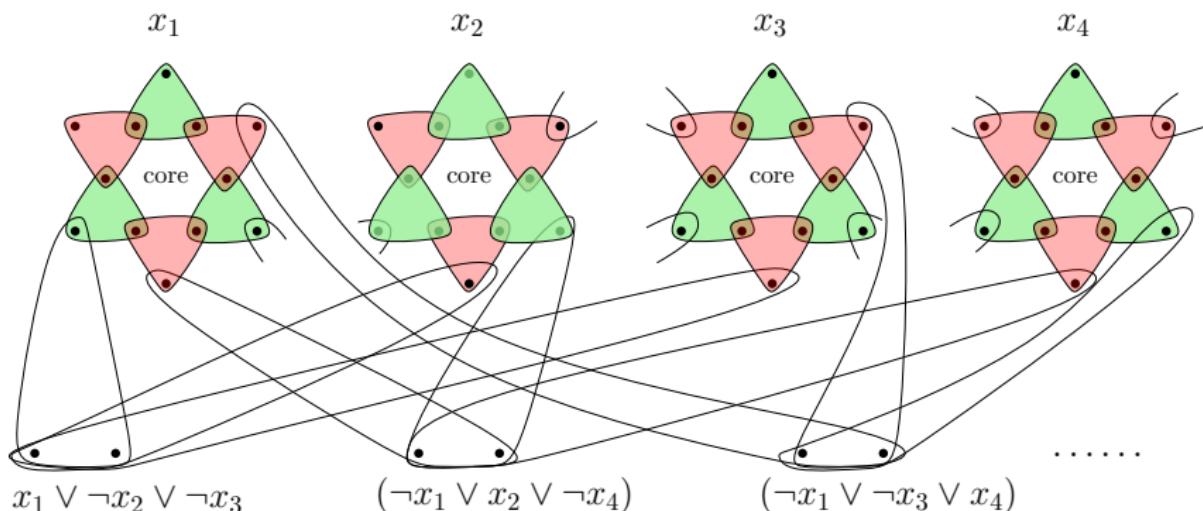
3-SAT \leq_P 3D-Matching

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4) \wedge$
 $(x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_2 \vee x_3 \vee \neg x_4) \wedge (x_2 \vee x_3 \vee x_4)$



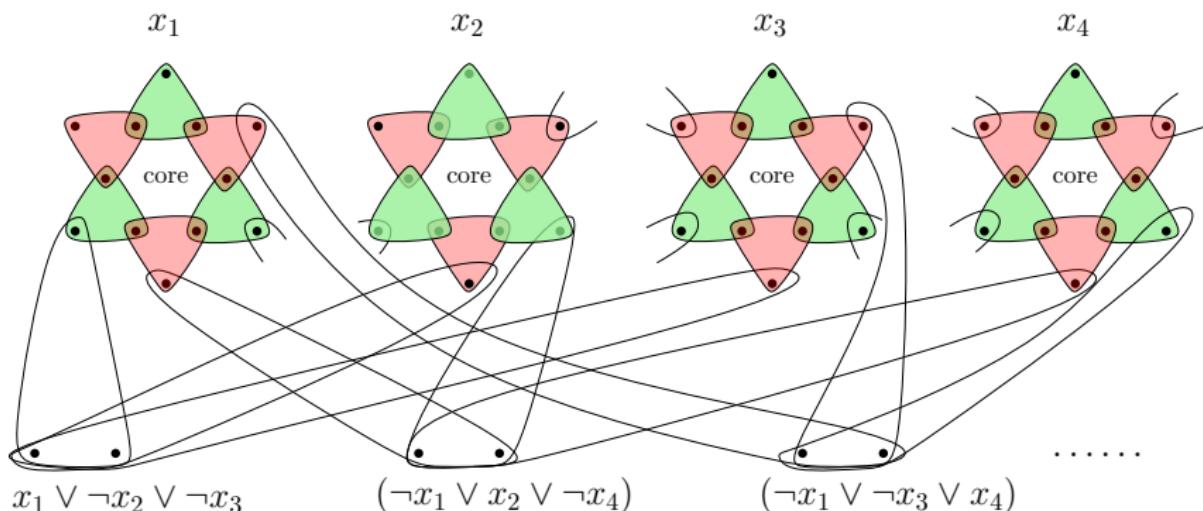
3-SAT \leq_P 3D-Matching

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4) \wedge$
 $(x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_2 \vee x_3 \vee \neg x_4) \wedge (x_2 \vee x_3 \vee x_4)$



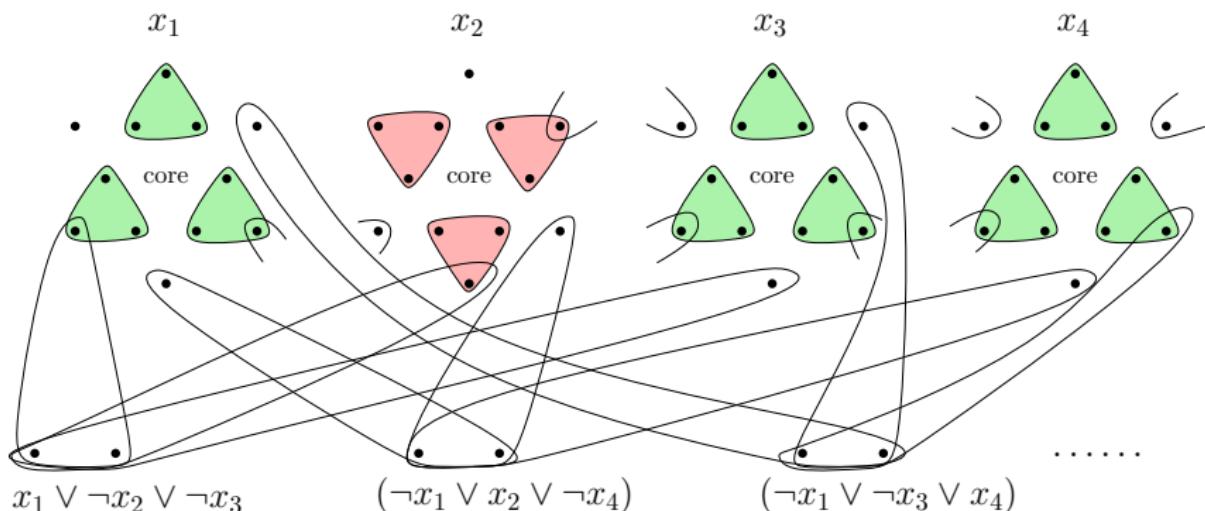
3-SAT \leq_P 3D-Matching

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4) \wedge (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_2 \vee x_3 \vee \neg x_4) \wedge (x_2 \vee x_3 \vee x_4)$
- Satisfying assignment: $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0$



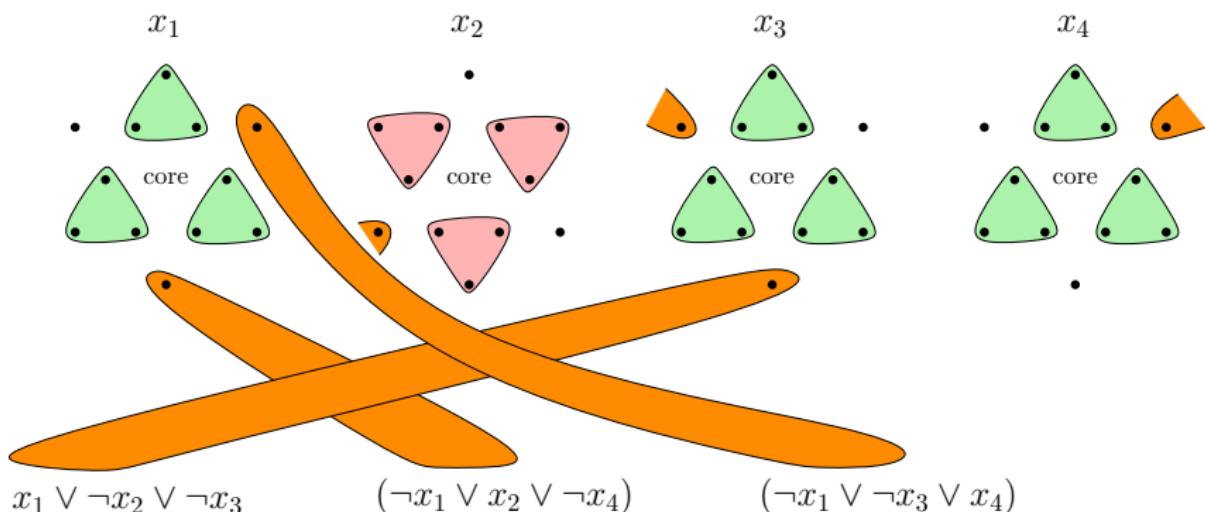
3-SAT \leq_P 3D-Matching

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4) \wedge (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_2 \vee x_3 \vee \neg x_4) \wedge (x_2 \vee x_3 \vee x_4)$
- Satisfying assignment: $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0$



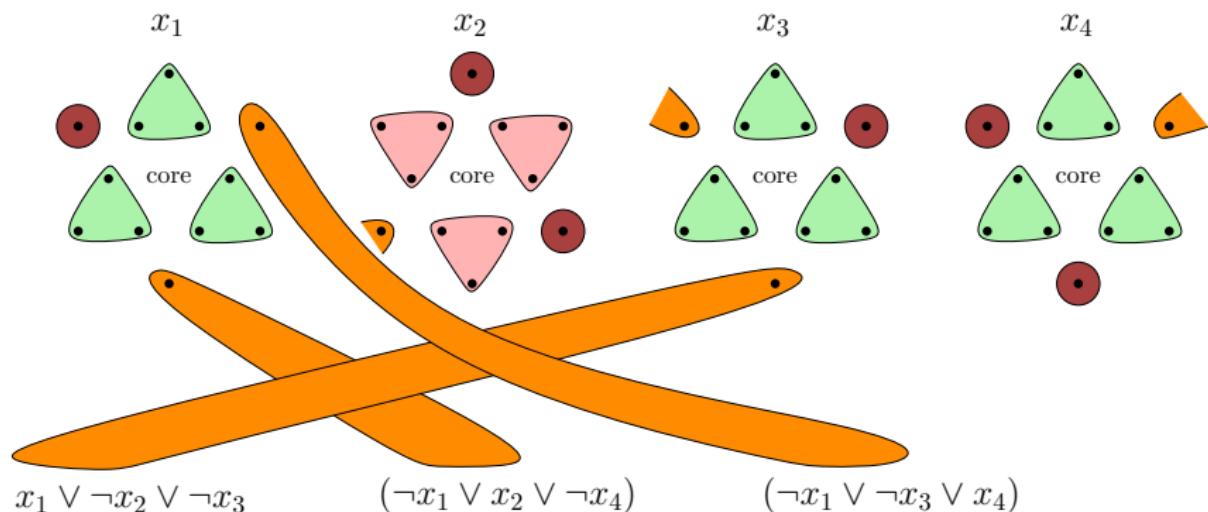
3-SAT \leq_P 3D-Matching

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4) \wedge (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_2 \vee x_3 \vee \neg x_4) \wedge (x_2 \vee x_3 \vee x_4)$
- Satisfying assignment: $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0$



3-SAT \leq_P 3D-Matching

- $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4) \wedge (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_2 \vee x_3 \vee \neg x_4) \wedge (x_2 \vee x_3 \vee x_4)$
- Satisfying assignment: $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0$
- Using “dummy” tuples to cover remaining tip vertices.



3-SAT \leq_P 3D-Matching

- n : number of variables m : number of clauses
- k : maximum number of times a literal appears in 3-CNF formula
- assume each clause contains exactly 3 literals so, $3m \leq 2kn$

3-SAT \leq_P 3D-Matching

- n : number of variables m : number of clauses
- k : maximum number of times a literal appears in 3-CNF formula
- assume each clause contains exactly 3 literals so, $3m \leq 2kn$

Construction of 3D-Matching Instance

- 1: **for** each $x_i, i \in [n]$ **do**
 - 2: create a core with k true tips and k false tips
- 3: **for** each clause **do**
 - 4: create two **private vertices** u, v for the clause
 - 5: **for** each of the 3 literals in clause **do**
 - 6: create a tuple containing u, v and a tip for the literal
- 7: **Repeat** $kn - m$ times:
 - 8: create a **dummy vertex pair** (u, v)
 - 9: **for** every tip w **do**: add a tuple (u, v, w) for each tip w

3-SAT \leq_P 3D-Matching

- Check: the **hyper-graph** constructed is indeed **tripartite**.

Yes-Instance for 3-SAT \implies Yes-Instance for
3D-Matching

3-SAT \leq_P 3D-Matching

- Check: the **hyper-graph** constructed is indeed **tripartite**.

Yes-Instance for 3-SAT \implies Yes-Instance for
3D-Matching

- Let (x_1, x_2, \dots, x_n) be the satisfying assignment

3-SAT \leq_P 3D-Matching

- Check: the **hyper-graph** constructed is indeed **tripartite**.

Yes-Instance for 3-SAT \implies Yes-Instance for
3D-Matching

- Let (x_1, x_2, \dots, x_n) be the satisfying assignment
- Take the kn tuples in cores covering unsatisfied literals

3-SAT \leq_P 3D-Matching

- Check: the **hyper-graph** constructed is indeed **tripartite**.

Yes-Instance for 3-SAT \implies Yes-Instance for 3D-Matching

- Let (x_1, x_2, \dots, x_n) be the satisfying assignment
- Take the kn tuples in cores covering unsatisfied literals
- All unsatisfied tips are taken; all satisfied tips remain

3-SAT \leq_P 3D-Matching

- Check: the **hyper-graph** constructed is indeed **tripartite**.

Yes-Instance for 3-SAT \implies Yes-Instance for 3D-Matching

- Let (x_1, x_2, \dots, x_n) be the satisfying assignment
- Take the kn tuples in cores covering unsatisfied literals
- All unsatisfied tips are taken; all satisfied tips remain
- For every clause, one literal is satisfied. Take the tuple containing the two private vertices for the clause, and the satisfied literal

3-SAT \leq_P 3D-Matching

- Check: the **hyper-graph** constructed is indeed **tripartite**.

Yes-Instance for 3-SAT \implies Yes-Instance for 3D-Matching

- Let (x_1, x_2, \dots, x_n) be the satisfying assignment
- Take the kn tuples in cores covering unsatisfied literals
- All unsatisfied tips are taken; all satisfied tips remain
- For every clause, one literal is satisfied. Take the tuple containing the two private vertices for the clause, and the satisfied literal
- $3k - m$ satisfied tips remain

3-SAT \leq_P 3D-Matching

- Check: the **hyper-graph** constructed is indeed **tripartite**.

Yes-Instance for 3-SAT \implies Yes-Instance for 3D-Matching

- Let (x_1, x_2, \dots, x_n) be the satisfying assignment
- Take the kn tuples in cores covering unsatisfied literals
- All unsatisfied tips are taken; all satisfied tips remain
- For every clause, one literal is satisfied. Take the tuple containing the two private vertices for the clause, and the satisfied literal
- $3k - m$ satisfied tips remain
- Use $3k - m$ dummy tuples to cover the $3k - m$ remaining tips

3-SAT \leq_P 3D-Matching

- Check: the **hyper-graph** constructed is indeed **tripartite**.

Yes-Instance for 3-SAT \implies Yes-Instance for 3D-Matching

- Let (x_1, x_2, \dots, x_n) be the satisfying assignment
- Take the kn tuples in cores covering unsatisfied literals
- All unsatisfied tips are taken; all satisfied tips remain
- For every clause, one literal is satisfied. Take the tuple containing the two private vertices for the clause, and the satisfied literal
- $3k - m$ satisfied tips remain
- Use $3k - m$ dummy tuples to cover the $3k - m$ remaining tips
- All vertices are covered; every vertex is covered once.

$3\text{-SAT} \leq_P 3\text{D-Matching}$

No-Instance for 3-SAT \implies No-Instance for 3D-Matching

- Focus on a perfect 3D-matching

3-SAT \leq_P 3D-Matching

No-Instance for 3-SAT \implies No-Instance for 3D-Matching

- Focus on a perfect 3D-matching
- For every clause, we must a tuple containing the two private vertices, and one literal

3-SAT \leq_P 3D-Matching

No-Instance for 3-SAT \implies No-Instance for 3D-Matching

- Focus on a perfect 3D-matching
- For every clause, we must a tuple containing the two private vertices, and one literal
- 3-SAT is not satisfiable: for some variable x_i , we must have chosen a tip for x_i and a tip for $\neg x_i$

3-SAT \leq_P 3D-Matching

No-Instance for 3-SAT \implies No-Instance for 3D-Matching

- Focus on a perfect 3D-matching
- For every clause, we must a tuple containing the two private vertices, and one literal
- 3-SAT is not satisfiable: for some variable x_i , we must have chosen a tip for x_i and a tip for $\neg x_i$
- No way to cover the $2k$ center vertices correspondent to x_i .

3-SAT \leq_P 3D-Matching

No-Instance for 3-SAT \implies No-Instance for 3D-Matching

- Focus on a perfect 3D-matching
- For every clause, we must a tuple containing the two private vertices, and one literal
- 3-SAT is not satisfiable: for some variable x_i , we must have chosen a tip for x_i and a tip for $\neg x_i$
- No way to cover the $2k$ center vertices correspondent to x_i .
- Contradiction.

Subset-Sum Problem

Subset Sum Problem

Input: an integer bound $W > 0$

a set of n items, each with an integer weight $w_i > 0$

Output: a subset S of items that

$$\text{maximizes } \sum_{i \in S} w_i \quad \text{s.t. } \sum_{i \in S} w_i \leq W.$$

- Decision version: decide if there is an S with $\sum_{i \in S} w_i = W$.

3D-Matching \leq_P Subset-Sum

Example

- $X = \{1, 2, 3, 4\}$ $Y = \{A, B, C, D\}$ $Z = \{a, b, c, d\}$

3D-Matching \leq_P Subset-Sum

Example

- $X = \{1, 2, 3, 4\}$ $Y = \{A, B, C, D\}$ $Z = \{a, b, c, d\}$
- $(1, A, a), (2, A, b), (2, B, b), (2, C, c), (3, B, a), (3, D, d), (4, C, c)$

	1	2	3	4	A	B	C	D	a	b	c	d												
(1, A, a)	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0		
(2, A, b)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	
(2, B, b)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
(2, C, c)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
(3, B, a)	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	
(3, D, d)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	
(4, C, c)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
sum=	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1

3D-Matching \leq_P Subset-Sum

Example

- $X = \{1, 2, 3, 4\}$ $Y = \{A, B, C, D\}$ $Z = \{a, b, c, d\}$
- $(1, A, a), (2, A, b), (2, B, b), (2, C, c), (3, B, a), (3, D, d), (4, C, c)$

	1	2	3	4	A	B	C	D	a	b	c	d	
(1, A, a)	0	0	1	0	0	0	0	0	0	1	0	0	0
(2, A, b)	0	0	0	0	0	1	0	0	0	0	0	0	1
(2, B, b)	0	0	0	0	0	1	0	0	0	0	0	0	1
(2, C, c)	0	0	0	0	0	1	0	0	0	0	0	0	1
(3, B, a)	0	0	0	0	0	0	1	0	0	0	0	1	0
(3, D, d)	0	0	0	0	0	0	1	0	0	0	0	0	1
(4, C, c)	0	0	0	0	0	0	0	1	0	0	0	0	1
sum=	0	0	1	0	0	1	0	0	1	0	0	1	1

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X , if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A , then we say Y is polynomial-time reducible to X , denoted as $Y \leq_P X$.

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X , if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A , then we say Y is polynomial-time reducible to X , denoted as $Y \leq_P X$.

- In general, algorithm for Y can call the algorithm for X many times.

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X , if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A , then we say Y is polynomial-time reducible to X , denoted as $Y \leq_P X$.

- In general, algorithm for Y can call the algorithm for X many times.
- However, for most reductions, we call algorithm for X only once

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X , if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A , then we say Y is polynomial-time reducible to X , denoted as $Y \leq_P X$.

- In general, algorithm for Y can call the algorithm for X many times.
- However, for most reductions, we call algorithm for X only once
- That is, for a given instance s_Y for Y , we only construct one instance s_X for X

A Strategy of Polynomial Reduction

- Given an instance s_Y of problem Y , show how to construct in polynomial time an instance s_X of problem such that:
 - s_Y is a yes-instance of $Y \implies s_X$ is a yes-instance of X
 - s_X is a yes-instance of $X \implies s_Y$ is a yes-instance of Y

Outline

- 1 Some Hard Problems
- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- 6 Summary

Q: How far away are we from proving or disproving $P = NP$?

Q: How far away are we from proving or disproving $P = NP$?

- Try to prove an “unconditional” lower bound on running time of algorithm solving a NP-complete problem.

Q: How far away are we from proving or disproving $P = NP$?

- Try to prove an “unconditional” lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:

Q: How far away are we from proving or disproving $P = NP$?

- Try to prove an “unconditional” lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, $n = \text{number variables}$

Q: How far away are we from proving or disproving $P = NP$?

- Try to prove an “unconditional” lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, $n = \text{number variables}$
 - Best algorithm runs in time $O(c^n)$ for some constant $c > 1$

Q: How far away are we from proving or disproving $P = NP$?

- Try to prove an “unconditional” lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, $n = \text{number variables}$
 - Best algorithm runs in time $O(c^n)$ for some constant $c > 1$
 - Best lower bound is $\Omega(n)$

Q: How far away are we from proving or disproving $P = NP$?

- Try to prove an “unconditional” lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, $n = \text{number variables}$
 - Best algorithm runs in time $O(c^n)$ for some constant $c > 1$
 - Best lower bound is $\Omega(n)$
- Essentially we have no techniques for proving lower bound for running time

Dealing with NP-Hard Problems

- Faster exponential time algorithms
- Solving the problem for special cases
- Fixed parameter tractability
- Approximation algorithms

Faster Exponential Time Algorithms

3-SAT:

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O(2^n \cdot \text{poly}(n))$

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O(2^n \cdot \text{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O(2^n \cdot \text{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O(2^n \cdot \text{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O(2^n \cdot \text{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n! \cdot \text{poly}(n))$

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O(2^n \cdot \text{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n! \cdot \text{poly}(n))$
- Better algorithm: $O(2^n \cdot \text{poly}(n))$

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O(2^n \cdot \text{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n! \cdot \text{poly}(n))$
- Better algorithm: $O(2^n \cdot \text{poly}(n))$
- In practice: TSP Solver can solve Euclidean TSP instances with more than 100,000 vertices

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs
- interval graphs

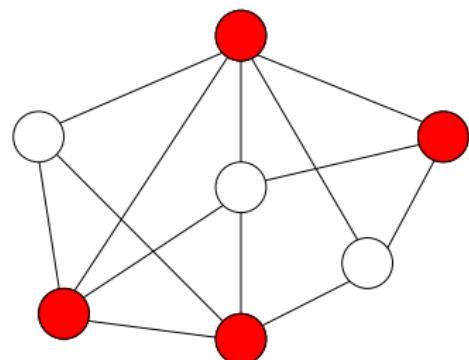
Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs
- interval graphs
- ...

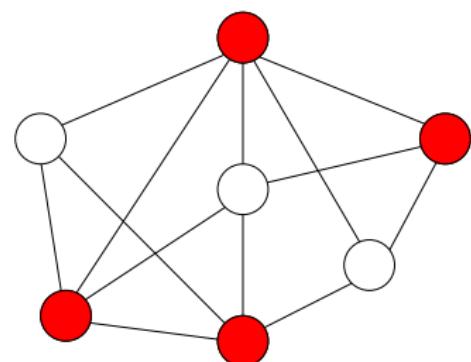
Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k , for a **small** k (number of nodes is n , number of edges is $\Theta(n)$.)



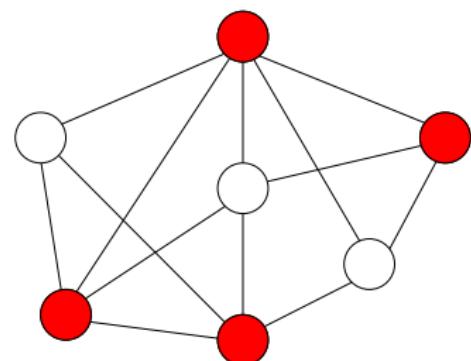
Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k , for a **small** k (number of nodes is n , number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O(kn^{k+1})$



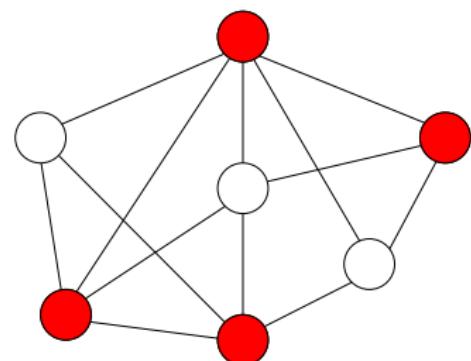
Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k , for a **small** k (number of nodes is n , number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$



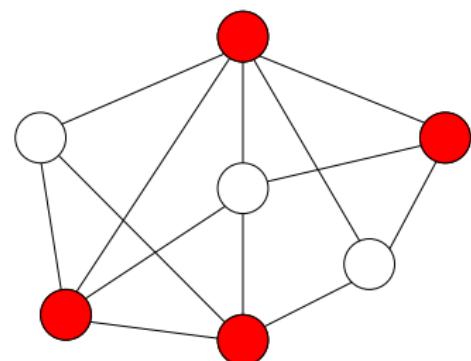
Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k , for a **small** k (number of nodes is n , number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$
- Running time is $f(k)n^c$ for some c independent of k



Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k , for a **small** k (number of nodes is n , number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$
- Running time is $f(k)n^c$ for some c independent of k
- Vertex-Cover is fixed-parameter tractable.



Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in **polynomial time**

Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in **polynomial time**
- **Approximation ratio** is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution

Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in **polynomial time**
- **Approximation ratio** is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time

Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in **polynomial time**
- **Approximation ratio** is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time
- There is an 2-approximation for the vertex cover problem: **we can efficiently find a vertex cover whose size is at most 2 times that of the optimal vertex cover**

Outline

- 1 Some Hard Problems
- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- 6 Summary

Summary

- We consider decision problems
- Inputs are encoded as $\{0, 1\}$ -strings

Def. The complexity class **P** is the set of decision problems X that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class **NP** is the set of problems for which Alice can convince Bob a yes instance is a yes instance

Summary

Def. B is an **efficient certifier** for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a **certificate**.

Def. The complexity class **NP** is the set of all problems for which there exists an efficient certifier.

Summary

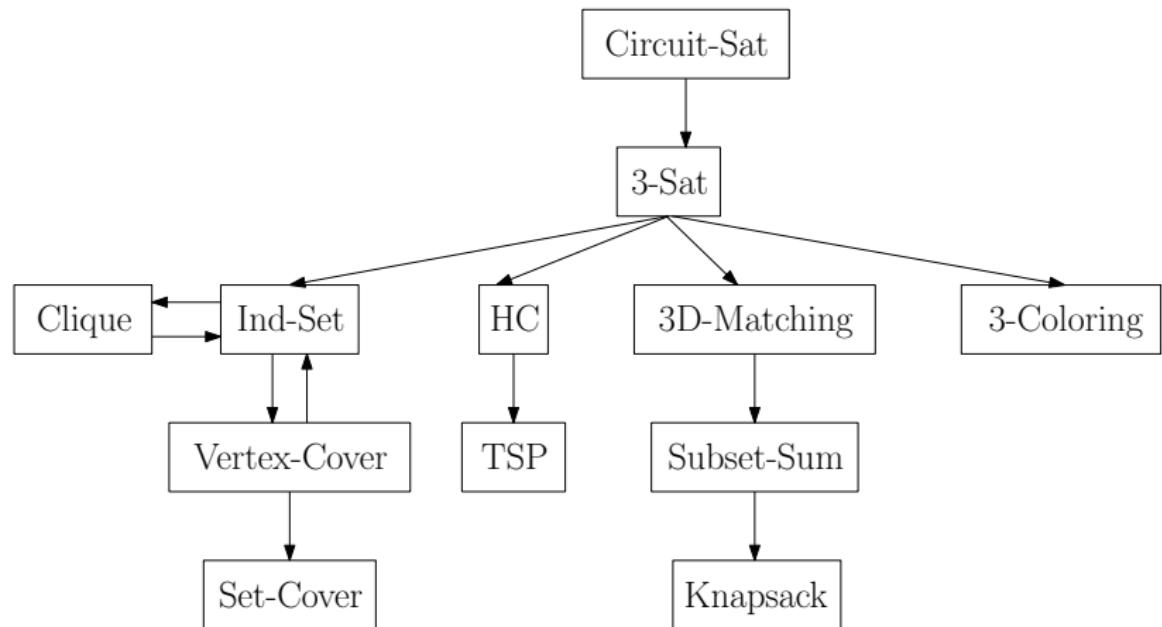
Def. Given a black box algorithm A that solves a problem X , if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A , then we say Y is **polynomial-time reducible to X** , denoted as $Y \leq_P X$.

Def. A problem X is called NP-complete if

- ① $X \in \text{NP}$, and
- ② $Y \leq_P X$ for every $Y \in \text{NP}$.

- If any NP-complete problem can be solved in polynomial time, then $P = NP$
- Unless $P = NP$, a NP-complete problem can not be solved in polynomial time

Summary



Summary

Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is a efficient certifier.
- Given a problem $X \in \text{NP}$, let $B(s, t)$ be the certifier
- Convert $B(s, t)$ to a circuit and hard-wire s to the input gates
- s is a yes-instance if and only if the resulting circuit is satisfiable
- Proof of NP-Completeness for other problems by reductions