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NP-Completeness Theory

@ The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

@ NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results?




NP-Completeness Theory

@ The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

@ NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results?

@ A given problem X cannot be solved in polynomial time.

e Without knowing it, you will have to keep trying to find polynomial
time algorithm for solving X. All our efforts are doomed!
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Efficient = Polynomial Time

e Polynomial time: O(n*) for any constant k > 0
e Example: O(n),0(n?), O(n*logn), O(n'®)
e Not polynomial time: O(2"), O(n'o&™)

@ Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time |
e For natural problems, if there is an O(n*)-time algorithm, then &k
is small, say 4

@ A good cut separating problems: for most natural problems, either
we have a polynomial time algorithm, or the best algorithm runs
in time Q(2™) for some ¢

@ Do not need to worry about the computational model




@ Some Hard Problems

© P, NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
e NP-Complete Problems

© Dealing with NP-Hard Problems

© Summary
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Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C in G that passes each vertex of GG exactly once.

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle




Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
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Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle




Example: Hamiltonian Cycle Problem

@ The graph is called the Petersen Graph. It has no HC.
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Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

@ Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 20(1en)
Better algorithm: 20(?)
Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.
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Def. An independent set of G = (V, E) is a subset I C V' such that
no two vertices in [ are adjacent in G.
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Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V' such that
no two vertices in [ are adjacent in G.

Maximum Independent Set Problem
Input: graph G = (V, E)
Output: the size of the maximum independent set of GG

@ Maximum Independent Set is NP-hard



Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with \V; A, = operators.

Output: whether the boolean formula is satisfiable

e Example: —((—xy A xg) V (mxy A —g) Vg V (mxe A x3)) is not
satisfiable

@ Trivial algorithm: enumerate all possible assignments, and check if
each assignment satisfies the formula. The algorithm runs in
exponential time.



Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with \V; A, = operators.

Output: whether the boolean formula is satisfiable

e Example: —((—xy A xg) V (mxy A —g) Vg V (mxe A x3)) is not
satisfiable

@ Trivial algorithm: enumerate all possible assignments, and check if
each assignment satisfies the formula. The algorithm runs in
exponential time.

@ Formula Satisfiablity is NP-hard



@ Some Hard Problems

e P, NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
e NP-Complete Problems

© Dealing with NP-Hard Problems

© Summary
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Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).
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Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

@ When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version
X' of the problem. If we have a polynomial time algorithm for the
decision version X', we can solve the original problem X in
polynomial time.



Optimization to Decision

Shortest Path
Input: graph G = (V, E), weight w, s,t and a bound L
Output: whether there is a path from s to t of length at most L




Optimization to Decision

Shortest Path
Input: graph G = (V, E), weight w, s,t and a bound L
Output: whether there is a path from s to t of length at most L

Maximum Independent Set
Input: a graph G and a bound %
Output: whether there is an independent set of size at least &
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Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem
e Input: (3, 6, 100, 9, 60)
e Binary: (11, 110, 1100100, 1001, 111100)

@ String: 111101111100011111000011000001
1100001101




Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem
e Input: (3, 6, 100, 9, 60)
e Binary: (11, 110, 1100100, 1001, 111100)

@ String: 111101111100011111000011000001
110000110111111111000001
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The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem
01 2345678 9
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e (0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)




Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem
0 1 2 3 4 5 6 7 8 9

E——
B e e B
| I e
I .

e (0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)

@ Encode the sequence into a binary string as before




Encoding

Def. The size of an input is the length of the encoded string s for
the input, denoted as |s|.

Q: Does it matter how we encode the input instances?




Encoding

Def. The size of an input is the length of the encoded string s for
the input, denoted as |s|. ‘

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care
whether the running time is polynomial or not




Define Problem as a Function
X :{0,1}* — {0,1}

Def. A decision problem X is a function mapping {0,1}* to {0, 1}
such that for any s € {0,1}*, X(s) is the correct output for input s.

e {0,1}*: the set of all binary strings of any length.
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Def. An algorithm A solves a problem X if, A(s) = X(s) for any
binary string s




Define Problem as a Function
X :{0,1}* = {0,1}

Def. A decision problem X is a function mapping {0,1}* to {0, 1}
such that for any s € {0,1}*, X(s) is the correct output for input s.

e {0,1}*: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, A(s) = X(s) for any
binary string s

Def. A has a polynomial running time if there is a polynomial
function p(-) so that for every string s, the algorithm A terminates
on s in at most p(|s|) steps.



Complexity Class P

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.




Complexity Class P

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

@ The decision versions of interval scheduling, shortest path and
minimum spanning tree all in P.
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Certifier for Hamiltonian Cycle (HC)

@ Alice has a supercomputer, fast enough to run the 20 time
algorithm for HC

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given a graph G = (V, E)) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of GG

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.
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Certifier for Independent Set (Ind-Set)

@ Alice has a supercomputer, fast enough to run the 20 time
algorithm for Ind-Set

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given graph G = (V, E) and integer k, such that there is an
independent set of size k£ in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

o Certificate: a set of size k
o Certifier: check if the given set is really an independent set



The Complexity Class NP

Def. B is an efficient certifier for a problem X if

@ B is a polynomial-time algorithm that takes two input strings s
and ¢, and outputs 0 or 1.

@ there is a polynomial function p such that, X(s) = 1 if and only if
there is string ¢ such that |t| < p(|s|) and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.




The Complexity Class NP

Def. B is an efficient certifier for a problem X if

@ B is a polynomial-time algorithm that takes two input strings s
and ¢, and outputs 0 or 1.

@ there is a polynomial function p such that, X(s) = 1 if and only if
there is string ¢ such that || < p(|s|) and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.
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HC (Hamiltonian Cycle) € NP

Input: Graph G

Certificate: a permutation S of V' that forms a Hamiltonian Cycle

®

lencoding(S)| < p(|encoding(G)|) for some polynomial function p

Certifier B: B(G,S) =1 if and only if S gives an HC in G

Clearly, B runs in polynomial time

HC(G) =1 — S, B(G,S) =1

(4]
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MIS (Maximum Independent Set) € NP

Input: graph G = (V, E) and integer k

Certificate: aset S CV of size k

lencoding(S)| < p(lencoding(G, k)|) for some polynomial function
p

Certifier B: B((G,k),S) =1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

MIS(G,k)=1 <= 35, B(G.,k),S) =1



Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates
Output: whether there is an assignment such that the output is 17




Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates
Output: whether there is an assignment such that the output is 17

L

@ Is Circuit-Sat € NP?



Input: graph G = (V, E)
Output: whether G does not contain a Hamiltonian cycle
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Input: graph G = (V, E)
Output: whether G does not contain a Hamiltonian cycle

e Is HC € NP?
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@ Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.
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HC
Input: graph G = (V, E)

Output: whether G does not contain a Hamiltonian cycle

Is HC € NP?

Can Alice convince Bob that G is a yes-instance (i.e, G’ does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance
HC € Co-NP



The Complexity Class Co-NP

Def. For a problem X, the problem X is the problem such that
X(s) =1if and only if X(s) = 0.

Def. Co-NP is the set of decision problems X such that X € NP. )
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Def. A tautology is a boolean formula that always evaluates to 1. J

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

@ eg. (mx1 Axa)V (—x1 A—xs) Vg V (—xe Axs) is a tautology
@ Bob can certify that a formula is not a tautology
@ Thus Tautology € Co-NP
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PC NP

o Let X € Pand X(s) =1

Q: How can Alice convince Bob that s is a yes instance?

A: Since X € P, Bob can check whether X (s) = 1 by himself,
without Alice's help.

@ The certificate is an empty string
@ Thus, X € NP and P C NP

@ Similarly, P C Co-NP, thus P € NP N Co-NP
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e A famous, big, and fundamental open problem in computer science
o Little progress has been made
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efficiently, then one can find a solution efficiently

@ We assume P # NP and prove that problems do not have
polynomial time algorithms.



ls P = NP?

e A famous, big, and fundamental open problem in computer science
o Little progress has been made
@ Most researchers believe P £ NP

@ It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

@ We assume P # NP and prove that problems do not have
polynomial time algorithms.

o We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:
o if P # NP, then HC ¢ P
e HC ¢ P, unless P = NP
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@ Again, a big open problem



Is NP = Co-NP?

@ Again, a big open problem
@ Most researchers believe NP # Co-NP.



4 Possibilities of Relationships

Notice that X € NP <= X € Co-NP and P C NP N Co-NP

NP = Co-NP

NP N Co-NP

@ People commonly believe we are in the 4th scenario



Outline

© Polynomial Time Reductions and NP-Completeness



Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.
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Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

To prove positive results:

Suppose Y <p X. If X can be solved in polynomial time, then Y
can be solved in polynomial time.

To prove negative results:

Suppose Y <p X. If Y cannot be solved in polynomial time, then X
cannot be solved in polynomial time.
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Hamiltonian-Path (HP) problem
Input: G=(V,E) and s,t €V
Output: whether there is a Hamiltonian path from s to ¢t in G
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Hamiltonian-Path (HP) problem
Input: G=(V,E) and s,t €V
Output: whether there is a Hamiltonian path from s to ¢t in G

Lemma HP <p HC.




Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem |
Input: G=(V,E) and s,t €V
Output: whether there is a Hamiltonian path from s to ¢t in G

Lemma HP <p HC.

Obs. G has a HP from s to t if and only if graph on right side has a
HC.

Y 'I‘(
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NP-Completeness

Def. A problem X is called NP-complete if

Q@ X € NP, and
Q Y <p X for every Y € NP.

Theorem If X is NP-complete and X € P, then P = NP.

@ NP-complete problems are the hardest problems in NP
@ NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)



@ Some Hard Problems

© P, NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
@ NP-Complete Problems

© Dealing with NP-Hard Problems

© Summary

35,/99



Def. A problem X is called NP-complete if
@ X € NP, and
Q Y <p X for every Y € NP.




Def. A problem X is called NP-complete if
@ X € NP, and
Q Y <p X for every Y € NP.

@ How can we find a problem X & NP such that every problem Y €

NP is polynomial time reducible to X? Are we asking for too
much?



Def. A problem X is called NP-complete if
Q@ X € NP, and
Q Y <p X for every Y € NP.

@ How can we find a problem X & NP such that every problem Y €
NP is polynomial time reducible to X? Are we asking for too
much?

@ No! There is indeed a large family of natural NP-complete
problems



The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)
Input: a circuit

Output: whether the circuit is satisfiable

T1e
T e

>
>

Y Y




Circuit-Sat is NP-Complete

@ key fact: algorithms can be converted
to circuits

Fact Any algorithm that takes n bits as
input and outputs 0/1 with running time
T'(n) can be converted into a circuit of
size p(T'(n)) for some polynomial
function p(-).

program data

Time 1 ‘

Time 2

O

Time 2

A‘xl\m

Time T'




Circuit-Sat is NP-Complete

@ key fact: algorithms can be converted
to circuits

Fact Any algorithm that takes n bits as
input and outputs 0/1 with running time
T'(n) can be converted into a circuit of
size p(T'(n)) for some polynomial
function p(-).

program data

Time 1 ‘ ‘

O

Time 2

A‘xl\m

Time 2

Time T' ‘ ‘

@ Then, we can show that any problem Y € NP can be reduced to

Circuit-Sat.

@ We prove HC <p Circuit-Sat as an example.
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o Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

@ (7 is a yes-instance if and only if there is an .S such that
check-HC(G, S) returns 1
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o Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.
@ (7 is a yes-instance if and only if there is an .S such that
check-HC(G, S) returns 1

@ Construct a circuit C’ for the algorithm check-HC
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o Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

@ (7 is a yes-instance if and only if there is an .S such that
check-HC(G, S) returns 1

@ Construct a circuit C’ for the algorithm check-HC
@ hard-wire the instance G to the circuit C’ to obtain the circuit C



HC <p Circuit-Sat

check-HC(G, S) —* (o c

[TTTTTTT TTTTTITIT
S

CTITTTTT TTTTTTTIT
G 01001100 g

Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

(G is a yes-instance if and only if there is an .S such that
check-HC(G, S) returns 1

Construct a circuit C’ for the algorithm check-HC
hard-wire the instance G to the circuit C’ to obtain the circuit C
G is a yes-instance if and only if C' is satisfiable [d

® 6 ©



Y <p Circuit-Sat, For Every Y €NP

@ Let check-Y(s,t) be the certifier for problem Y: check-Y(s, )
returns 1 if ¢ is a valid certificate for s.

@ s is a yes-instance if and only if there is a ¢ such that
check-Y(s,t) returns 1

@ Construct a circuit C’ for the algorithm check-Y
@ hard-wire the instance s to the circuit C’ to obtain the circuit C

@ s is a yes-instance if and only if C' is satisfiable



Y <p Circuit-Sat, For Every Y eNP

@ Let check-Y(s,t) be the certifier for problem Y: check-Y(s, )
returns 1 if ¢ is a valid certificate for s.

@ s is a yes-instance if and only if there is a ¢ such that
check-Y(s,t) returns 1

@ Construct a circuit C’ for the algorithm check-Y
@ hard-wire the instance s to the circuit C’ to obtain the circuit C

@ s is a yes-instance if and only if C' is satisfiable

Theorem Circuit-Sat is NP-complete.




Reductions of NP-Complete Problems

Clique

Circuit-Sat

3-Sat
Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover

Knapsack
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3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

@ Boolean variables: x1, 25, -+, 2,

e Literals: z; or —z;

@ Clause: disjunction (“or") of at most 3 literals: x3 V =y,
fL’l\/[Eg\/_'ZEg, _|ZE2\/_|[E5\/ZL‘7

@ 3-CNF formula: conjunction (“and”) of clauses:
(.I’l V ) V _|.T3) A (ZEQ V x3 V (L’4) N (_'1’1 V —T3 V _|I4)



Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

43/99
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3-Sat

3-Sat
Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

o To satisfy a 3-CNF, we need to satisfy all clauses
@ To satisfy a clause, we need to satisfy at least 1 literal

@ Assignment x; = 1,29 = 1,23 = 0,24 = 0 satisfies
([L’l V ) V _|l'3) VAN (IQ V T3 V ZL’4) A (_L%'l V -3 V _|l'4)



Circuit-Sat <p 3-Sat
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Circuit-Sat <p 3-Sat

Z1
)

xs3

@ Associate every wire with a new variable
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Circuit-Sat <p 3-Sat

I ) Ty
)
xs
> :$6
Ty Z10

)
T3 Do% D‘T 7‘ r‘—/

@ Associate every wire with a new variable

@ The circuit is equivalent to the following formula:
(x4 =23) A (25 = 21 V 22) A (26 = TT4)
/\([E7:ZL’1/\ZL‘2/\$4)/\<J]8 2175\/1’6)

/\(279:.T6\/Q37)/\<.§610:l’g/\.TQAJI7)/\SC10



Circuit-Sat <p 3-Sat

(IL’4 = _|ZL‘3) A (1'5 =V 5(72) A\ (ZL’G = _|JZ4)
/\(l‘7 :Il/\.fg/\le)/\(Ig :x5\/x6)

/\(:1:9:$6Vx7)/\(x10:xg/\:1:9/\x7)/\x10

Convert each clause to a 3-CNF
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Convert each clause to a 3-CNF Ts < 21 V T2
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(IL’4 = _|ZL‘3) A (1'5 =V 5(72) A\ (ZL’G = _|JZ4)
/\(l‘7 :Il/\.fg/\le)/\(Ig :x5\/x6)
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Convert each clause to a 3-CNF Ts < 21 V T2

1
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Circuit-Sat <p 3-Sat

(IL’4 = _|ZL‘3) A (1'5 =V 5(72) A\ (ZL’G = _|JZ4)

/\(l‘7:Il/\ﬂig/\l’4>/\<x8:x5\/$6)

/\(339:.CEG\/.%'7)/\($10:.Tg/\.ilﬁg/\.%’7)/\x10

Convert each clause to a 3-CNF

Ts =21 V Xo ~

(.Tl V i) vV _\335) A

r1 o Ty | Ty > 21V Xo
0 0 O 1
0 O 1 0
0 1 0 0
0 1 1 1
1 0 O 0
1 0 1 1
1 1 0 0
1 1 1 1



Circuit-Sat <p 3-Sat

(IL’4 = _|ZL‘3) A (1'5 =V 5(72) A\ (ZL’G = _|JZ4)
/\(l‘7 :I1A$2/\§C4>/\<I8 :x5\/x6)
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Convert each clause to a 3-CNF Ts < 21 V T2

1
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Convert each clause to a 3-CNF
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(IL’4 = _|ZL‘3) A (1'5 =V 5(72) A\ (ZL’G = _|JZ4)
/\(l‘7 :I1A$2/\§C4>/\<I8 :x5\/x6)
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Convert each clause to a 3-CNF T X2 X5 | Tp X1 VT2
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Ts =21 VIy <& 0 0 1 0
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(1 VaaV-xs) A 0 1 1 1

(ZL’I V —x9 V ZE5) VAN 1 0 0 0
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Circuit-Sat <p 3-Sat

(IL’4 = _|ZL‘3) A (1'5 =V 5(72) A\ (ZL’G = _|JZ4)
/\(l‘7 :I1A$2/\§C4>/\<I8 :x5\/x6)

/\(339:.CEG\/.%'7)/\($10:.Tg/\.ilﬁg/\.%’7)/\x10

Convert each clause to a 3-CNF T X2 X5 | Tp X1 VT2

0 0 0 1
Ts =21 VIy <& 0 0 1 0

0 1 0 0
(1 VaaV-xs) A 0 1 1 1
(ZL’I V —x9 V ZE5) VAN 1 0 0 0

1 0 1 1
X1 VraVe A
(b1 Vs V ) 1 1 0 0
(mx1 V - V T5) 101 1 1
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Circuit-Sat <p 3-Sat

o Circuit <= Formula <= 3-CNF
@ The circuit is satisfiable if and only if the 3-CNF is satisfiable

@ The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

@ Thus, Circuit-Sat <p 3-Sat



Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack




Recall: Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V' such that
no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem
Input: G = (V,E),k
Output: whether there is an independent set of size k in G
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@ A clause = a group of 3
vertices, one for each literal

@ An edge between every pair of
vertices in same group

@ An edge between every pair of
contradicting literals

@ Problem: whether there is an
IS of size k = #clauses

3-Sat instance is yes-instance <> Ind-Set instance is yes-instance:



3-Sat <p Ind-Set

@ (1 VxeVxg) A(xeVazVay) A(—xy V-oxg V)

@ A clause = a group of 3
vertices, one for each literal

@ An edge between every pair of
vertices in same group

@ An edge between every pair of
contradicting literals

@ Problem: whether there is an
IS of size k = #clauses

3-Sat instance is yes-instance <> Ind-Set instance is yes-instance:
@ satisfying assignment = independent set of size k

@ independent set of size k = satisfying assignment
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the literal




Satisfying Assignment = IS of Size k

@ (1 VxeVoxg) A(xeVazVay) A(—xy V-oxg V)

@ For every clause, at least 1
literal is satisfied

@ Pick the vertex correspondent
the literal

@ So, 1 literal from each group




Satisfying Assignment = IS of Size k

@ (1 VxeVoxg) A(xeVazVay) A(—xy V-oxg V)

@ For every clause, at least 1
literal is satisfied

@ Pick the vertex correspondent
the literal

@ So, 1 literal from each group

@ No contradictions among the
selected literals




Satisfying Assignment = IS of Size k

@ (1 VxeVoxg) A(xeVazVay) A(—xy V-oxg V)

@ For every clause, at least 1
literal is satisfied

@ Pick the vertex correspondent
the literal

@ So, 1 literal from each group

@ No contradictions among the
selected literals

@ An IS of size k
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@ (1 VxeVoxg) A(xeVazVay) A(—xy V-oxg V)

@ For every group, exactly one
literal is selected in IS
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selected literals




IS of Size £k = Satisfying Assignment

@ (1 VxeVoxg) A(xeVazVay) A(—xy V-oxg V)

@ For every group, exactly one
literal is selected in IS

@ No contradictions among the
selected literals

o If x; is selected in IS, set x; = 1




IS of Size £k = Satisfying Assignment

@ (1 VxeVoxg) A(xeVazVay) A(—xy V-oxg V)
@ For every group, exactly one
literal is selected in IS

@ No contradictions among the
selected literals

o If x; is selected in IS, set x; = 1

o If —x; is selected in IS, set




IS of Size £k = Satisfying Assignment

@ (1 VxeVoxg) A(xeVazVay) A(—xy V-oxg V)

@ For every group, exactly one
literal is selected in IS

@ No contradictions among the
selected literals

o If x; is selected in IS, set x; = 1

o If —x; is selected in IS, set

@ Otherwise, set x; arbitrarily



Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack
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Def. A clique in an undirected graph G = (V| E) is a subset S C V/
such that Yu,v € S we have (u,v) € E J

Clique Problem
Input: G = (V, E) and integer k& > 0,
Output: whether there exists a clique of size k£ in G




Def. A clique in an undirected graph G = (V| E) is a subset S C V/
such that Yu,v € S we have (u,v) € E J

Clique Problem
Input: G = (V, E) and integer k& > 0,
Output: whether there exists a clique of size k in G

@ What is the relationship between Clique and Ind-Set?



Clique =p Ind-Set

Def. Given a graph G = (V, E), define ' = (V, E) be the graph
such that (u,v) € £ if and only if (u,v) ¢ E.

Obs. S is an independent set in G if and only if S is a clique in G. )




Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
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Vertex-Cover

Def. Given a graph G = (V| E), a vertex cover of GG is a subset
S C V such that for every (u,v) € E'thenu e Sorve S .
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Def. Given a graph G = (V, E), a vertex cover of G is a subset
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Vertex-Cover

Def. Given a graph G = (V| E), a vertex cover of GG is a subset
S C V such that for every (u,v) € E'thenu e Sorve S . J

Vertex-Cover Problem
Input: G = (V, E) and integer k

Output: whether there is a vertex cover of G of size at most k




Vertex-Cover =p Ind-Set



Vertex-Cover =p Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?




Vertex-Cover =p Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V, E) if and only if V'\ S is an
independent set of G.
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Input' Sl,SQ,"' SM [ ] with U [m] S = [ ]
Output: The smallest set I C [M] satisfying |

= [N]

zeI
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Set Cover
InPUt: 817527' o 7SM C [ ] with UZEm] = [N]
Output: The smallest set 1 C [M] satisfying | J,.; Si = [IV]

@ decision version: given ¢, does there exist a solution I with
|[I| <t?



Set Cover
InPUt: Sla SQ> U aSM g [N] with Ule[m} Sz = [N]
Output: The smallest set 1 C [M] satisfying | J,.; Si = [IV]

@ decision version: given ¢, does there exist a solution I with
|[I| <t?

Vertex Cover <p Set Cover

@ m edges & N elements
@ n vertices & M sets
@ vertex is incident to edge ¢ & set contains element

@ Vertex cover is the special case of set cover where each element
appears in exactly two sets.



Reductions of NP-Complete Problems
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k-coloring problem

Def. A k-coloring of G = (V, E) is a
function f:V — {1,2,3,--- ,k} so that
for every edge (u,v) € E, we have

f(u) # f(v). G is k-colorable if there is
a k-coloring of G.
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k-coloring problem

Def. A k-coloring of G = (V, E) is a
function f:V — {1,2,3,--- ,k} so that
for every edge (u,v) € E, we have

f(u) # f(v). G is k-colorable if there is
a k-coloring of G.

k-coloring problem
Input: a graph G = (V, E)
Output: whether G is k-colorable or not




2-Coloring Problem

Obs. A graph G is 2-colorable if and only if it is bipartite.

Q: How do we check if a graph G is 2-colorable?




2-Coloring Problem

Obs. A graph G is 2-colorable if and only if it is bipartite.

Q: How do we check if a graph G is 2-colorable?

A: We check if G is bipartite.




3-SAT <p 3-Coloring

@ Construct the base graph

Base Graph
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Recall: Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)
Output: whether G contains a Hamiltonian cycle

@ We consider Hamiltonian Cycle Problem in directed graphs
@ Exercise: HC-directed <p HC
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@ Vertices s,t

@ A long enough double-path P;

o for each variable z;
e Edges from s to P,
e Edges from P, to t

e Edges from P; to P,y
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@ Vertices s,t

@ A long enough double-path P;

x .
! for each variable z;

e Edges from s to P,
€T
"o Edges from P, to t
- e Edges from P; to P,y
e r,=1 <= traverse P,

from left to right
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for each variable z;
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r;=1 <= traverse b,
from left to right
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X1
T

T3

@ Vertices s,t

@ A long enough double-path P,
for each variable z;

Edges from s to P,
Edges from P, to t
Edges from P, to Py,

r;=1 <= traverse b,
from left to right
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@ There are exactly 2" different
Hamiltonian cycles, each
correspondent to one
assignment of variables

z1

D

T3




3-Sat <p Directed-HC

c1=x1VTyVas

@ There are exactly 2" different
Hamiltonian cycles, each
correspondent to one
assignment of variables

X1

2

@ Add a vertex for each clause,
so that the vertex can be
visited only if one of the literals
is satisfied.

T3




A Path Should Be Long Enough

@ k: number of clauses



Yes-Instance for 3-Sat = Yes-Instance for Di-HC
c1=x1VTyVas

@ In base graph, construct an HC
according to the satisfying
assignment

X1
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T3




Yes-Instance for 3-Sat = Yes-Instance for Di-HC
c1=x1VTyVas

@ In base graph, construct an HC
according to the satisfying
assignment

X1

T
@ For every clause, one literal is

satisfied
T3




Yes-Instance for 3-Sat = Yes-Instance for Di-HC
c1=x1VTyVas

@ In base graph, construct an HC
according to the satisfying

X1

assignment
:L.Q - -
@ For every clause, one literal is
satisfied
T3

@ Visit the vertex for the clause
by taking a “detour” from the
path for the literal
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o Idea: for each path P;, must follow the left-to-right or
right-to-right pattern.
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Yes-Instance for Di-HC = Yes-Instance for 3-Sat

AN

SO L0 =00

o Idea: for each path P;, must follow the left-to-right or
right-to-right pattern.
@ To visit vertex b, can either go a-b-c or b-c-a

@ Created “chunks” of 3 vertices.
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OO e

o Idea: for each path P;, must follow the left-to-right or
right-to-right pattern.

@ To visit vertex b, can either go a-b-c or b-c-a

@ Created “chunks” of 3 vertices.

@ Directions of the chunks must be the same



Yes-Instance for Di-HC = Yes-Instance for 3-Sat

Idea: for each path P;, must follow the left-to-right or
right-to-right pattern.

To visit vertex b, can either go a-b-c or b-c-a
Created “chunks” of 3 vertices.

Directions of the chunks must be the same

e 6 6 o

Can not take a detour to some other path



Reductions of NP-Complete Problems
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3-Sat
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Set-Cover Knapsack
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@ He needs to start from and return to
city 1

@ Goal: find a tour with the minimum
cost
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Traveling Salesman Problem

@ A salesman needs to visit n cities
1a 2a 37 e ,Nn

@ He needs to start from and return to
city 1

@ Goal: find a tour with the minimum
cost

Travelling Salesman Problem (TSP)

Input: a graph G = (V, E), weights w : E — R>(, and L > 0
Output: whether there is a tour of length at most D




HC <p TSP

Obs. There is a Hamilton cycle in G if and only if there is a tour for
the salesman of length n = |V]|. J




Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack




Bipartite Graph Matching
Input: A bipartite graph G = (X UY, E) with | X|=|Y|=n
Output: whether there exists a prefect matching in G




Bipartite Graph Matching
Input: A bipartite graph G = (X UY, E) with | X|=|Y|=n
Output: whether there exists a prefect matching in G

Application: Matching between Teachers and Courses
@ n teachers and n courses

@ a teacher may or may not be able to teach a course

e find a way to match the n teachers and n courses.




3D-Matching
Input: | X|=|Y|=|Z|=n ECX XY XZ|E|l=m
Output: whether there exists a perfect 3-dimensional matching M,
i.e., aset M C E of size n such that

U(myz)eM{x,y,z} =XUYuZz




3D-Matching
Input: | X|=|Y|=|Z|=n ECX XY XZ|E|l=m
Output: whether there exists a perfect 3-dimensional matching M,
i.e., aset M C E of size n such that

U(myz)GM{x,y,z} =XUYuZz

Example
o X ={1,2,3,4}, Y = {A,B,C,D}
e Z ={a,b,c,d}
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3D-Matching
Input: | X|=|Y|=|Z|=n ECX XY XZ|E|l=m
Output: whether there exists a perfect 3-dimensional matching M,
i.e., aset M C E of size n such that

U(Mz)GM{x,y,z} =XUYuZz

Example
o X ={1,2,3,4}, Y = {A,B,C,D}
e Z ={a,b,c,d}

o M= {(1,A,a), (2,A,b), (2, B, b),
(2,C,c), (3, B, a), (3,D,d),
(4, c,c)}




3D-Matching
Input: | X|=|Y|=|Z|=n ECX XY XZ|E|=m
Output: whether there exists a perfect 3-dimensional matching M,
i.e., aset M C E of size n such that

U(Mz)eM{x,y,z} =XUYuZz

Example
o X ={1,2,3,4}, Y = {A,B,C,D}
e Z ={a,b,c,d}

o M= {(LA,a), (2,A,b), (2, B, b),
(2,C,c),(3, B, a),(3,D,d),
(4,c,c)}




Application: Matching among Teachers, Courses
and Resources

@ n teachers, n courses and n resources
o e.g., resource = (location, time) pair
@ (z,y,z) € E teacher x can teach a course y using resource z

e find a way to match the teachers, courses and resources



Application: Matching among Teachers, Courses
and Resources

@ n teachers, n courses and n resources
o e.g., resource = (location, time) pair
@ (z,y,z) € E teacher x can teach a course y using resource z

e find a way to match the teachers, courses and resources

Remark

@ The tuples can be arbitrary: the relationship is 3-dimensional.

@ It is not a concatenation of two bipartite matching problems: If a
teacher = can teach a course y, and resource z is available for
teacher z, it does not necessarily mean (z,y,z) € E




3D-Matching = Colorful Bipartite Matching

Colorful Bipartite Matching
Input: a bipartite multi-graph G = (X UY, E) with
| X|=1Y|=n each edge in E has a color ¢ € [n]
Output: find a perfect matching M C E of G with n distinct colors
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@ Idea: using the third dimension for colors.
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Colorful Bipartite Matching
Input: a bipartite multi-graph G = (X UY, E) with
| X|=1Y|=n each edge in E has a color ¢ € [n]
Output: find a perfect matching M C E of G with n distinct colors

@ Idea: using the third dimension for colors.

Example
e X =1{1,2,3,4},Y ={A,B,C,D}
e Z ={a,b,c,d}
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3D-Matching = Colorful Bipartite Matching

Colorful Bipartite Matching
Input: a bipartite multi-graph G = (X UY, E) with
| X|=1Y|=n each edge in E has a color ¢ € [n]
Output: find a perfect matching M C E of G with n distinct colors

@ Idea: using the third dimension for colors.

Example X Y
o X =1{1,2,3,4}, Y ={A,B,C,D}
e Z ={a,b,c,d}

o M= {(1,A,a)7 (2,A,b),(2,B,b),(2,C,0), @/\g
@

(3,B,a), (3,D,d), (4,C, c)}




3D-Matching = Colorful Bipartite Matching

Colorful Bipartite Matching
Input: a bipartite multi-graph G = (X UY, E) with
| X|=1Y|=n each edge in E has a color ¢ € [n]
Output: find a perfect matching M C E of G with n distinct colors

@ Idea: using the third dimension for colors.

Example X Y
o X =1{1,2,3,4}, Y ={A,B,C,D}
e Z ={a,b,c,d}

o M= {(LA?a), (2,A,b), (2.B,b), (2,C,c), @KD ;©
@

(3,B,a), (3,D,d), (4,C, c)}
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3-SAT <p 3D-Matching

(] (ml V —xo V _|$3) A (_|LL’1 V o V _'.774) A (_']31 V —T3 V JI4>/\
(1 V 2x3 Voxg) A (0o Vag Vo oxy) A (e V ag V zy)
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@ Satisfying assignment: x1 = 0,20 = 1,23 = 0,24 =0




3-SAT <p 3D-Matching

(] (Il V —xo V _|J?3) A (_031 V o V _|.I4) A (_|ZL’1 V —T3 V .134)/\
(X1 V —x3 Voxg) A (mxa Vag Vo) A (s V ag V xy)

@ Satisfying assignment: x1 = 0,20 = 1,23 = 0,24 =0




3-SAT <p 3D-Matching

@ (z1Vxa V —x3) A(—xy Vg Vozy) A(—a Vo Vo)A
(X1 V —x3 Voxg) A (mxa Vag Vo) A (s V ag V xy)
@ Satisfying assignment: 2, = 0,20 = 1,23 = 0,24 =0

x1 V —xe V —x3 (—L’E1 Va9V —'$4) (“:El V —z3 V ZE4)

79/99
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@ (z1Vxa V —x3) A(—xy Vg Vozy) A(—a Vo Vo)A
(X1 V —x3 Voxg) A (mxa Vag Vo) A (s V ag V xy)
@ Satisfying assignment: 2, = 0,20 = 1,23 = 0,24 =0

@ Using “dummy” tuples to cover remaining tip vertices.

O é . ? 5 OO, O e
A ;Vvi]; P

Ty

x1 V —xe V —x3 (—L’E1 Va9V —'$4) (“:171 V —z3 V ZE4)

79/99
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@ n: number of variables m: number of clauses
@ k: maximum number of times a literal appears in 3-CNF formula

@ assume each clause contains exactly 3 literals so, 3m < 2kn



3-SAT <p 3D-Matching

@ n: number of variables m: number of clauses
@ k: maximum number of times a literal appears in 3-CNF formula

@ assume each clause contains exactly 3 literals so, 3m < 2kn

Construction of 3D-Matching Instance
. for each z;,i € [n| do
create a core with k true tips and £ false tips
. for each clause do
create two private vertices u, v for the clause
for each of the 3 literals in clause do
create a tuple containing u, v and a tip for the literal
: Repeat kn — m times:
create a dummy vertex pair (u,v)
for every tip w do: add a tuple (u, v, w) for each tip w

N s

7YY
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@ Check: the hyper-graph constructed is indeed tripartite.

Yes-Instance for 3-SAT = Yes-Instance for
3D-Matching




3-SAT <p 3D-Matching

@ Check: the hyper-graph constructed is indeed tripartite.

Yes-Instance for 3-SAT = Yes-Instance for
3D-Matching

o Let (1,9, -+ ,x,) be the satisfying assignment
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@ For every clause, one literal is satisfied. Take the tuple containing
the two private vertices for the clause, and the satisfied literal
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3D-Matching

o Let (1,9, -+ ,x,) be the satisfying assignment
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@ Check: the hyper-graph constructed is indeed tripartite.

Yes-Instance for 3-SAT = Yes-Instance for
3D-Matching

o Let (1,9, -+ ,x,) be the satisfying assignment

@ Take the kn tuples in cores covering unsatisfied literals

@ All unsatisfied tips are taken; all satisfied tips remain

For every clause, one literal is satisfied. Take the tuple containing
the two private vertices for the clause, and the satisfied literal

3k — m satisfied tips remain

Use 3k — m dummy tuples to cover the 3k — m remaining tips




3-SAT <p 3D-Matching

@ Check: the hyper-graph constructed is indeed tripartite.

Yes-Instance for 3-SAT = Yes-Instance for
3D-Matching

o Let (1,9, -+ ,x,) be the satisfying assignment

@ Take the kn tuples in cores covering unsatisfied literals

@ All unsatisfied tips are taken; all satisfied tips remain

For every clause, one literal is satisfied. Take the tuple containing
the two private vertices for the clause, and the satisfied literal

@ 3k — m satisfied tips remain
@ Use 3k — m dummy tuples to cover the 3k — m remaining tips
@ All vertices are covered; every vertex is covered once.
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No-Instance for 3-SAT = No-Instance for
3D-Matching

@ Focus on a perfect 3D-matching
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@ For every clause, we must a tuple containing the two private
vertices, and one literal
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@ For every clause, we must a tuple containing the two private
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@ 3-SAT is not satisfiable: for some variable z;, we must have
chosen a tip for z; and a tip for —z;
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No-Instance for 3-SAT = No-Instance for
3D-Matching

@ Focus on a perfect 3D-matching

@ For every clause, we must a tuple containing the two private
vertices, and one literal

@ 3-SAT is not satisfiable: for some variable z;, we must have
chosen a tip for z; and a tip for —z;

@ No way to cover the 2k center vertices correspondent to z;.




3-SAT <p 3D-Matching

No-Instance for 3-SAT = No-Instance for
3D-Matching
@ Focus on a perfect 3D-matching

@ For every clause, we must a tuple containing the two private
vertices, and one literal

@ 3-SAT is not satisfiable: for some variable z;, we must have
chosen a tip for z; and a tip for —z;

No way to cover the 2k center vertices correspondent to x;.

Contradiction.




Subset-Sum Problem

Subset Sum Problem
Input: an integer bound 1/ > 0
a set of n items, each with an integer weight w; > 0
Output: a subset S of items that

maximizes Zwi s.t. Zwi < W.

i€S €S

@ Decision version: decide if there is an S with ZieS w; = W.



3D-Matching <p Subset-Sum

Example
o X =1{1,2,3,4} Y ={A,B,C,D} Z ={a,b,c,d}




3D-Matching <p Subset-Sum

Example |
o X =1{1,2,3,4} Y ={A,B,C,D} Z ={a,b,c,d}
° (17A7 a)7(27A7 b)7(27 B7 b)7(27 C7 C)7(37 B7a)7<37 D? d)7<47 C? C)

1 2 3 4 |A|B|C|D a b c d

(1, A,2) (001/000[000/000[001[000[000[000/001[000/000[000
(2,A,b) [000/001{000/000[001[000[000[0O0OO0O0[00L000[000
(2,B,b) 00000 1[000/000/000[00 100000000000 1|000[000
(2,C,¢c) [000/001[000/000[000[000[00L[000/000[000/001{000
(3,B,a) [000/000[001/000[000[001/000[000[00 1000000000
(3,D,d) [000/000[001000[000[000[000[001000[000/000][00 1
(4,C,¢) [000/000[000/001{000[000[00L{000/000[000/001{000
sum= [0 0 1/001/001/001/001/001/001/001/001/0011001/00 1




3D-Matching <p Subset-Sum

Example |
o X =1{1,2,3,4} Y ={A,B,C,D} Z ={a,b,c,d}
o (1,A,a),(2,A,b), (2,B,b),(2,C,c), (3,B,a),(3,D,d), (4,C,c)

1 2 3 4 |A|B|C|D a b c d
I.A. a) [001/000[000/000[00TII000/000[000[00TI[000[000[000]
2,A,b) 1000[001[000[000[001/000[000/000[000/001{000[000
2. B.b) [000[001]000[000[000[00I[000[000[000[00I000[000]
000/001/000/000[000[000]001000[000]000[001|000
ooojooopoo10000000010000000OCTII00000O0O0OOO
3. D,d) [000[000]001[000[000[000[000]00I[000[000[000[00T]
4,C.¢c) 1000[000[000[001/000[000[00I[000[000[000[00I000]
sum= [0 0 1/001/001/001/0011001/0011001/0011001/001/001
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A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

@ In general, algorithm for Y can call the algorithm for X many
times.

@ However, for most reductions, we call algorithm for X only once

e That is, for a given instance sy for Y, we only construct one
instance sx for X



A Strategy of Polynomial Reduction

@ Given an instance sy of problem Y, show how to construct in
polynomial time an instance sx of problem such that:
@ sy is a yes-instance of Y = sx is a yes-instance of X
e sy is a yes-instance of X = sy is a yes-instance of Y
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Q: How far away are we from proving or disproving P = NP?

@ Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

@ For 3-Sat problem:
o Assume the number of clauses is ©(n), n = number variables
o Best algorithm runs in time O(c™) for some constant ¢ > 1
o Best lower bound is Q(n)

o Essentially we have no techniques for proving lower bound for
running time



Dealing with NP-Hard Problems

@ Faster exponential time algorithms
@ Solving the problem for special cases
o Fixed parameter tractability

@ Approximation algorithms
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Faster Exponential Time Algorithms

3-SAT:
@ Brute-force: O(2" - poly(n))
@0 2" — 1.844" — 1.3334"

@ Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:
@ Brute-force: O(n!- poly(n))
@ Better algorithm: O(2" - poly(n))

@ In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices
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Maximum independent set problem is NP-hard on general graphs, but
easy on

@ trees
@ bounded tree-width graphs
@ interval graphs
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Fixed Parameter Tractability

@ Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is

O(n).)
e Brute-force algorithm: O(knk+1)
@ Better running time : O(2* - kn)

@ Running time is f(k)n® for some ¢
independent of £

@ Vertex-Cover is fixed-parameter
tractable.
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Approximation Algorithms

@ For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

@ Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

@ We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

@ There is an 2-approximation for the vertex cover problem: we can
efficiently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover



@ Some Hard Problems

© P, NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
e NP-Complete Problems

© Dealing with NP-Hard Problems

© Summary
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Summary

@ We consider decision problems

@ Inputs are encoded as {0, 1}-strings

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

@ Alice has a supercomputer, fast enough to run an exponential
time algorithm

@ Bob has a slow computer, which can only run a polynomial-time
algorithm

Def. (Informal) The complexity class NP is the set of problems for
which Alice can convince Bob a yes instance is a yes instance



Summary

Def. B is an efficient certifier for a problem X if

@ B is a polynomial-time algorithm that takes two input strings s
and t

@ there is a polynomial function p such that, X(s) = 1 if and only if
there is string ¢ such that || < p(|s|) and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.




Summary

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

Def. A problem X is called NP-complete if
Q@ X € NP, and
Q Y <p X forevery Y € NP.

o If any NP-complete problem can be solved in polynomial time,
then P= NP

@ Unless P = NP, a NP-complete problem can not be solved in
polynomial time



Summary

Circuit-Sat

3-Sat

L N

Clique

Ind-Set

HC

3D-Matching

3-Coloring

Vertex-Cover

TSP

Subset-Sum

Set-Cover

Knapsack




Summary

Proof of NP-Completeness for Circuit-Sat

@ Fact 1: a polynomial-time algorithm can be converted to a
polynomial-size circuit

Fact 2: for a problem in NP, there is a efficient certifier.

Given a problem X € NP, let B(s,t) be the certifier
Convert B(s,t) to a circuit and hard-wire s to the input gates

s is a yes-instance if and only if the resulting circuit is satisfiable

Proof of NP-Completeness for other problems by reductions

(4]
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