
算法设计与分析(2026年春季学期)

NP-Completeness

授课老师: 栗师

南京大学计算机学院

2/99

NP-Completeness Theory

The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results?

A given problem X cannot be solved in polynomial time.

Without knowing it, you will have to keep trying to find polynomial
time algorithm for solving X. All our efforts are doomed!

2/99

NP-Completeness Theory

The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results?

A given problem X cannot be solved in polynomial time.

Without knowing it, you will have to keep trying to find polynomial
time algorithm for solving X. All our efforts are doomed!

3/99

Efficient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm, then k
is small, say 4

A good cut separating problems: for most natural problems, either
we have a polynomial time algorithm, or the best algorithm runs
in time Ω(2n

c
) for some c

Do not need to worry about the computational model

3/99

Efficient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm, then k
is small, say 4

A good cut separating problems: for most natural problems, either
we have a polynomial time algorithm, or the best algorithm runs
in time Ω(2n

c
) for some c

Do not need to worry about the computational model

3/99

Efficient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm, then k
is small, say 4

A good cut separating problems: for most natural problems, either
we have a polynomial time algorithm, or the best algorithm runs
in time Ω(2n

c
) for some c

Do not need to worry about the computational model

4/99

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary

5/99

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

5/99

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

6/99

Example: Hamiltonian Cycle Problem

The graph is called the Petersen Graph. It has no HC.

7/99

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.

7/99

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.

7/99

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.

7/99

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.

8/99

Maximum Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ⊆ V such that
no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph G = (V,E)

Output: the size of the maximum independent set of G

Maximum Independent Set is NP-hard

8/99

Maximum Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ⊆ V such that
no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph G = (V,E)

Output: the size of the maximum independent set of G

Maximum Independent Set is NP-hard

8/99

Maximum Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ⊆ V such that
no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph G = (V,E)

Output: the size of the maximum independent set of G

Maximum Independent Set is NP-hard

8/99

Maximum Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ⊆ V such that
no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph G = (V,E)

Output: the size of the maximum independent set of G

Maximum Independent Set is NP-hard

9/99

Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with ∨,∧,¬ operators.

Output: whether the boolean formula is satisfiable

Example: ¬((¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x3) ∨ x1 ∨ (¬x2 ∧ x3)) is not
satisfiable

Trivial algorithm: enumerate all possible assignments, and check if
each assignment satisfies the formula. The algorithm runs in
exponential time.

Formula Satisfiablity is NP-hard

9/99

Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with ∨,∧,¬ operators.

Output: whether the boolean formula is satisfiable

Example: ¬((¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x3) ∨ x1 ∨ (¬x2 ∧ x3)) is not
satisfiable

Trivial algorithm: enumerate all possible assignments, and check if
each assignment satisfies the formula. The algorithm runs in
exponential time.

Formula Satisfiablity is NP-hard

10/99

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary

11/99

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version
X ′ of the problem. If we have a polynomial time algorithm for the
decision version X ′, we can solve the original problem X in
polynomial time.

11/99

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version
X ′ of the problem. If we have a polynomial time algorithm for the
decision version X ′, we can solve the original problem X in
polynomial time.

11/99

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version
X ′ of the problem. If we have a polynomial time algorithm for the
decision version X ′, we can solve the original problem X in
polynomial time.

12/99

Optimization to Decision

Shortest Path
Input: graph G = (V,E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set
Input: a graph G and a bound k

Output: whether there is an independent set of size at least k

12/99

Optimization to Decision

Shortest Path
Input: graph G = (V,E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set
Input: a graph G and a bound k

Output: whether there is an independent set of size at least k

13/99

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String:

111101111100011111000011000001
110000110111111111000001

13/99

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String:

111101111100011111000011000001
110000110111111111000001

13/99

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String:

111101111100011111000011000001
110000110111111111000001

13/99

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String:

111101111100011111000011000001
110000110111111111000001

13/99

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String:

111101111100011111000011000001
110000110111111111000001

13/99

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String: 111101

111100011111000011000001
110000110111111111000001

13/99

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String: 11110111110001

1111000011000001
110000110111111111000001

13/99

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String: 111101111100011111000011000001

110000110111111111000001

13/99

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String: 111101111100011111000011000001
1100001101

11111111000001

13/99

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String: 111101111100011111000011000001
110000110111111111000001

14/99

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

0 1 2 3 4 5 6 7 8 9

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)

Encode the sequence into a binary string as before

14/99

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem
0 1 2 3 4 5 6 7 8 9

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)

Encode the sequence into a binary string as before

14/99

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem
0 1 2 3 4 5 6 7 8 9

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)

Encode the sequence into a binary string as before

14/99

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem
0 1 2 3 4 5 6 7 8 9

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)

Encode the sequence into a binary string as before

15/99

Encoding

Def. The size of an input is the length of the encoded string s for
the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care
whether the running time is polynomial or not

15/99

Encoding

Def. The size of an input is the length of the encoded string s for
the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care
whether the running time is polynomial or not

16/99

Define Problem as a Function

X : {0, 1}∗ → {0, 1}

Def. A decision problem X is a function mapping {0, 1}∗ to {0, 1}
such that for any s ∈ {0, 1}∗, X(s) is the correct output for input s.

{0, 1}∗: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, A(s) = X(s) for any
binary string s

Def. A has a polynomial running time if there is a polynomial
function p(·) so that for every string s, the algorithm A terminates
on s in at most p(|s|) steps.

16/99

Define Problem as a Function

X : {0, 1}∗ → {0, 1}

Def. A decision problem X is a function mapping {0, 1}∗ to {0, 1}
such that for any s ∈ {0, 1}∗, X(s) is the correct output for input s.

{0, 1}∗: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, A(s) = X(s) for any
binary string s

Def. A has a polynomial running time if there is a polynomial
function p(·) so that for every string s, the algorithm A terminates
on s in at most p(|s|) steps.

16/99

Define Problem as a Function

X : {0, 1}∗ → {0, 1}

Def. A decision problem X is a function mapping {0, 1}∗ to {0, 1}
such that for any s ∈ {0, 1}∗, X(s) is the correct output for input s.

{0, 1}∗: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, A(s) = X(s) for any
binary string s

Def. A has a polynomial running time if there is a polynomial
function p(·) so that for every string s, the algorithm A terminates
on s in at most p(|s|) steps.

17/99

Complexity Class P

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

The decision versions of interval scheduling, shortest path and
minimum spanning tree all in P.

17/99

Complexity Class P

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

The decision versions of interval scheduling, shortest path and
minimum spanning tree all in P.

18/99

Certifier for Hamiltonian Cycle (HC)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for HC

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given a graph G = (V,E) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.

18/99

Certifier for Hamiltonian Cycle (HC)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for HC

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given a graph G = (V,E) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.

18/99

Certifier for Hamiltonian Cycle (HC)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for HC

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given a graph G = (V,E) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.

18/99

Certifier for Hamiltonian Cycle (HC)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for HC

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given a graph G = (V,E) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.

18/99

Certifier for Hamiltonian Cycle (HC)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for HC

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given a graph G = (V,E) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.

19/99

Certifier for Independent Set (Ind-Set)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for Ind-Set

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given graph G = (V,E) and integer k, such that there is an
independent set of size k in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set

19/99

Certifier for Independent Set (Ind-Set)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for Ind-Set

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given graph G = (V,E) and integer k, such that there is an
independent set of size k in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set

19/99

Certifier for Independent Set (Ind-Set)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for Ind-Set

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given graph G = (V,E) and integer k, such that there is an
independent set of size k in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set

19/99

Certifier for Independent Set (Ind-Set)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for Ind-Set

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given graph G = (V,E) and integer k, such that there is an
independent set of size k in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set

19/99

Certifier for Independent Set (Ind-Set)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for Ind-Set

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given graph G = (V,E) and integer k, such that there is an
independent set of size k in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set

20/99

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

B is a polynomial-time algorithm that takes two input strings s
and t, and outputs 0 or 1.

there is a polynomial function p such that, X(s) = 1 if and only if
there is string t such that |t| ≤ p(|s|) and B(s, t) = 1.

The string t such that B(s, t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.

20/99

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

B is a polynomial-time algorithm that takes two input strings s
and t, and outputs 0 or 1.

there is a polynomial function p such that, X(s) = 1 if and only if
there is string t such that |t| ≤ p(|s|) and B(s, t) = 1.

The string t such that B(s, t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.

21/99

HC (Hamiltonian Cycle) ∈ NP

Input: Graph G

Certificate: a permutation S of V that forms a Hamiltonian Cycle

|encoding(S)| ≤ p(|encoding(G)|) for some polynomial function p

Certifier B: B(G,S) = 1 if and only if S gives an HC in G

Clearly, B runs in polynomial time

HC(G) = 1 ⇐⇒ ∃S, B(G,S) = 1

21/99

HC (Hamiltonian Cycle) ∈ NP

Input: Graph G

Certificate: a permutation S of V that forms a Hamiltonian Cycle

|encoding(S)| ≤ p(|encoding(G)|) for some polynomial function p

Certifier B: B(G,S) = 1 if and only if S gives an HC in G

Clearly, B runs in polynomial time

HC(G) = 1 ⇐⇒ ∃S, B(G,S) = 1

21/99

HC (Hamiltonian Cycle) ∈ NP

Input: Graph G

Certificate: a permutation S of V that forms a Hamiltonian Cycle

|encoding(S)| ≤ p(|encoding(G)|) for some polynomial function p

Certifier B: B(G,S) = 1 if and only if S gives an HC in G

Clearly, B runs in polynomial time

HC(G) = 1 ⇐⇒ ∃S, B(G,S) = 1

21/99

HC (Hamiltonian Cycle) ∈ NP

Input: Graph G

Certificate: a permutation S of V that forms a Hamiltonian Cycle

|encoding(S)| ≤ p(|encoding(G)|) for some polynomial function p

Certifier B: B(G,S) = 1 if and only if S gives an HC in G

Clearly, B runs in polynomial time

HC(G) = 1 ⇐⇒ ∃S, B(G,S) = 1

22/99

MIS (Maximum Independent Set) ∈ NP

Input: graph G = (V,E) and integer k

Certificate: a set S ⊆ V of size k

|encoding(S)| ≤ p(|encoding(G, k)|) for some polynomial function
p

Certifier B: B((G, k), S) = 1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

MIS(G, k) = 1 ⇐⇒ ∃S, B((G, k), S) = 1

22/99

MIS (Maximum Independent Set) ∈ NP

Input: graph G = (V,E) and integer k

Certificate: a set S ⊆ V of size k

|encoding(S)| ≤ p(|encoding(G, k)|) for some polynomial function
p

Certifier B: B((G, k), S) = 1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

MIS(G, k) = 1 ⇐⇒ ∃S, B((G, k), S) = 1

22/99

MIS (Maximum Independent Set) ∈ NP

Input: graph G = (V,E) and integer k

Certificate: a set S ⊆ V of size k

|encoding(S)| ≤ p(|encoding(G, k)|) for some polynomial function
p

Certifier B: B((G, k), S) = 1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

MIS(G, k) = 1 ⇐⇒ ∃S, B((G, k), S) = 1

22/99

MIS (Maximum Independent Set) ∈ NP

Input: graph G = (V,E) and integer k

Certificate: a set S ⊆ V of size k

|encoding(S)| ≤ p(|encoding(G, k)|) for some polynomial function
p

Certifier B: B((G, k), S) = 1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

MIS(G, k) = 1 ⇐⇒ ∃S, B((G, k), S) = 1

23/99

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat ∈ NP?

23/99

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat ∈ NP?

24/99

HC
Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC ∈ NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC ∈ Co-NP

24/99

HC
Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC ∈ NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC ∈ Co-NP

24/99

HC
Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC ∈ NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC ∈ Co-NP

24/99

HC
Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC ∈ NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC ∈ Co-NP

24/99

HC
Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC ∈ NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC ∈ Co-NP

24/99

HC
Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC ∈ NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC ∈ Co-NP

25/99

The Complexity Class Co-NP

Def. For a problem X, the problem X is the problem such that
X(s) = 1 if and only if X(s) = 0.

Def. Co-NP is the set of decision problems X such that X ∈ NP.

26/99

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

e.g. (¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x3) ∨ x1 ∨ (¬x2 ∧ x3) is a tautology

Bob can certify that a formula is not a tautology

Thus Tautology ∈ Co-NP

26/99

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

e.g. (¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x3) ∨ x1 ∨ (¬x2 ∧ x3) is a tautology

Bob can certify that a formula is not a tautology

Thus Tautology ∈ Co-NP

26/99

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

e.g. (¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x3) ∨ x1 ∨ (¬x2 ∧ x3) is a tautology

Bob can certify that a formula is not a tautology

Thus Tautology ∈ Co-NP

27/99

P ⊆ NP

Let X ∈ P and X(s) = 1

Q: How can Alice convince Bob that s is a yes instance?

A: Since X ∈ P, Bob can check whether X(s) = 1 by himself,
without Alice’s help.

The certificate is an empty string

Thus, X ∈ NP and P ⊆ NP

Similarly, P ⊆ Co-NP, thus P ⊆ NP ∩ Co-NP

27/99

P ⊆ NP

Let X ∈ P and X(s) = 1

Q: How can Alice convince Bob that s is a yes instance?

A: Since X ∈ P, Bob can check whether X(s) = 1 by himself,
without Alice’s help.

The certificate is an empty string

Thus, X ∈ NP and P ⊆ NP

Similarly, P ⊆ Co-NP, thus P ⊆ NP ∩ Co-NP

27/99

P ⊆ NP

Let X ∈ P and X(s) = 1

Q: How can Alice convince Bob that s is a yes instance?

A: Since X ∈ P, Bob can check whether X(s) = 1 by himself,
without Alice’s help.

The certificate is an empty string

Thus, X ∈ NP and P ⊆ NP

Similarly, P ⊆ Co-NP, thus P ⊆ NP ∩ Co-NP

27/99

P ⊆ NP

Let X ∈ P and X(s) = 1

Q: How can Alice convince Bob that s is a yes instance?

A: Since X ∈ P, Bob can check whether X(s) = 1 by himself,
without Alice’s help.

The certificate is an empty string

Thus, X ∈ NP and P ⊆ NP

Similarly, P ⊆ Co-NP, thus P ⊆ NP ∩ Co-NP

27/99

P ⊆ NP

Let X ∈ P and X(s) = 1

Q: How can Alice convince Bob that s is a yes instance?

A: Since X ∈ P, Bob can check whether X(s) = 1 by himself,
without Alice’s help.

The certificate is an empty string

Thus, X ∈ NP and P ⊆ NP

Similarly, P ⊆ Co-NP, thus P ⊆ NP ∩ Co-NP

27/99

P ⊆ NP

Let X ∈ P and X(s) = 1

Q: How can Alice convince Bob that s is a yes instance?

A: Since X ∈ P, Bob can check whether X(s) = 1 by himself,
without Alice’s help.

The certificate is an empty string

Thus, X ∈ NP and P ⊆ NP

Similarly, P ⊆ Co-NP, thus P ⊆ NP ∩ Co-NP

28/99

Is P = NP?

A famous, big, and fundamental open problem in computer science

Little progress has been made

Most researchers believe P ̸= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

We assume P ̸= NP and prove that problems do not have
polynomial time algorithms.

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P ̸= NP, then HC /∈ P
HC /∈ P, unless P = NP

28/99

Is P = NP?

A famous, big, and fundamental open problem in computer science

Little progress has been made

Most researchers believe P ̸= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

We assume P ̸= NP and prove that problems do not have
polynomial time algorithms.

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P ̸= NP, then HC /∈ P
HC /∈ P, unless P = NP

28/99

Is P = NP?

A famous, big, and fundamental open problem in computer science

Little progress has been made

Most researchers believe P ̸= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

We assume P ̸= NP and prove that problems do not have
polynomial time algorithms.

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P ̸= NP, then HC /∈ P
HC /∈ P, unless P = NP

28/99

Is P = NP?

A famous, big, and fundamental open problem in computer science

Little progress has been made

Most researchers believe P ̸= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

We assume P ̸= NP and prove that problems do not have
polynomial time algorithms.

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P ̸= NP, then HC /∈ P
HC /∈ P, unless P = NP

28/99

Is P = NP?

A famous, big, and fundamental open problem in computer science

Little progress has been made

Most researchers believe P ̸= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

We assume P ̸= NP and prove that problems do not have
polynomial time algorithms.

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P ̸= NP, then HC /∈ P
HC /∈ P, unless P = NP

29/99

Is NP = Co-NP?

Again, a big open problem

Most researchers believe NP ̸= Co-NP.

29/99

Is NP = Co-NP?

Again, a big open problem

Most researchers believe NP ̸= Co-NP.

30/99

4 Possibilities of Relationships

Notice that X ∈ NP ⇐⇒ X ∈ Co-NP and P ⊆ NP ∩ Co-NP

P = NP = Co-NP
NP = Co-NP

P

NP Co-NPP = NP ∩ Co-NP
NP Co-NP

NP ∩ Co-NP

P

People commonly believe we are in the 4th scenario

31/99

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary

32/99

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y ≤P X.

To prove positive results:

Suppose Y ≤P X. If X can be solved in polynomial time, then Y
can be solved in polynomial time.

To prove negative results:

Suppose Y ≤P X. If Y cannot be solved in polynomial time, then X
cannot be solved in polynomial time.

32/99

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y ≤P X.

To prove positive results:

Suppose Y ≤P X. If X can be solved in polynomial time, then Y
can be solved in polynomial time.

To prove negative results:

Suppose Y ≤P X. If Y cannot be solved in polynomial time, then X
cannot be solved in polynomial time.

32/99

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y ≤P X.

To prove positive results:

Suppose Y ≤P X. If X can be solved in polynomial time, then Y
can be solved in polynomial time.

To prove negative results:

Suppose Y ≤P X. If Y cannot be solved in polynomial time, then X
cannot be solved in polynomial time.

33/99

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V,E) and s, t ∈ V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP ≤P HC.

s

t

G

Obs. G has a HP from s to t if and only if graph on right side has a
HC.

33/99

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V,E) and s, t ∈ V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP ≤P HC.

s

t

G

Obs. G has a HP from s to t if and only if graph on right side has a
HC.

33/99

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V,E) and s, t ∈ V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP ≤P HC.

s

t

G

Obs. G has a HP from s to t if and only if graph on right side has a
HC.

33/99

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V,E) and s, t ∈ V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP ≤P HC.

s

t

s

t

G G

Obs. G has a HP from s to t if and only if graph on right side has a
HC.

33/99

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V,E) and s, t ∈ V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP ≤P HC.

s

t

s

t

G G

Obs. G has a HP from s to t if and only if graph on right side has a
HC.

34/99

NP-Completeness

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

34/99

NP-Completeness

Def. A problem X is called NP-hard if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

34/99

NP-Completeness

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

34/99

NP-Completeness

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

34/99

NP-Completeness

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

34/99

NP-Completeness

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

35/99

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary

36/99

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

How can we find a problem X ∈ NP such that every problem Y ∈
NP is polynomial time reducible to X? Are we asking for too
much?

No! There is indeed a large family of natural NP-complete
problems

36/99

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

How can we find a problem X ∈ NP such that every problem Y ∈
NP is polynomial time reducible to X? Are we asking for too
much?

No! There is indeed a large family of natural NP-complete
problems

36/99

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

How can we find a problem X ∈ NP such that every problem Y ∈
NP is polynomial time reducible to X? Are we asking for too
much?

No! There is indeed a large family of natural NP-complete
problems

37/99

The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit

Output: whether the circuit is satisfiable

x1
x2

x3

38/99

Circuit-Sat is NP-Complete

key fact: algorithms can be converted
to circuits

Fact Any algorithm that takes n bits as
input and outputs 0/1 with running time
T (n) can be converted into a circuit of
size p(T (n)) for some polynomial
function p(·).

program data

Time 1

Time 2

circuit

Time 2

circuit

Time T

Then, we can show that any problem Y ∈ NP can be reduced to
Circuit-Sat.

We prove HC ≤P Circuit-Sat as an example.

38/99

Circuit-Sat is NP-Complete

key fact: algorithms can be converted
to circuits

Fact Any algorithm that takes n bits as
input and outputs 0/1 with running time
T (n) can be converted into a circuit of
size p(T (n)) for some polynomial
function p(·).

program data

Time 1

Time 2

circuit

Time 2

circuit

Time T

Then, we can show that any problem Y ∈ NP can be reduced to
Circuit-Sat.

We prove HC ≤P Circuit-Sat as an example.

39/99

HC ≤P Circuit-Sat

check-HC(G,S)

Let check-HC(G,S) be the certifier for the Hamiltonian cycle
problem: check-HC(G,S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

G is a yes-instance if and only if there is an S such that
check-HC(G,S) returns 1

Construct a circuit C ′ for the algorithm check-HC

hard-wire the instance G to the circuit C ′ to obtain the circuit C

G is a yes-instance if and only if C is satisfiable

39/99

HC ≤P Circuit-Sat

check-HC(G,S)

Let check-HC(G,S) be the certifier for the Hamiltonian cycle
problem: check-HC(G,S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

G is a yes-instance if and only if there is an S such that
check-HC(G,S) returns 1

Construct a circuit C ′ for the algorithm check-HC

hard-wire the instance G to the circuit C ′ to obtain the circuit C

G is a yes-instance if and only if C is satisfiable

39/99

HC ≤P Circuit-Sat

check-HC(G,S) C ′

G S

Let check-HC(G,S) be the certifier for the Hamiltonian cycle
problem: check-HC(G,S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

G is a yes-instance if and only if there is an S such that
check-HC(G,S) returns 1

Construct a circuit C ′ for the algorithm check-HC

hard-wire the instance G to the circuit C ′ to obtain the circuit C

G is a yes-instance if and only if C is satisfiable

39/99

HC ≤P Circuit-Sat

check-HC(G,S) C ′

G S S0

C

0 0 0 01 1 1

Let check-HC(G,S) be the certifier for the Hamiltonian cycle
problem: check-HC(G,S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

G is a yes-instance if and only if there is an S such that
check-HC(G,S) returns 1

Construct a circuit C ′ for the algorithm check-HC

hard-wire the instance G to the circuit C ′ to obtain the circuit C

G is a yes-instance if and only if C is satisfiable

39/99

HC ≤P Circuit-Sat

check-HC(G,S) C ′

G S S0

C

0 0 0 01 1 1

Let check-HC(G,S) be the certifier for the Hamiltonian cycle
problem: check-HC(G,S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

G is a yes-instance if and only if there is an S such that
check-HC(G,S) returns 1

Construct a circuit C ′ for the algorithm check-HC

hard-wire the instance G to the circuit C ′ to obtain the circuit C

G is a yes-instance if and only if C is satisfiable

40/99

Y ≤P Circuit-Sat, For Every Y ∈NP

Let check-Y(s, t) be the certifier for problem Y : check-Y(s, t)
returns 1 if t is a valid certificate for s.

s is a yes-instance if and only if there is a t such that
check-Y(s, t) returns 1

Construct a circuit C ′ for the algorithm check-Y

hard-wire the instance s to the circuit C ′ to obtain the circuit C

s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

40/99

Y ≤P Circuit-Sat, For Every Y ∈NP

Let check-Y(s, t) be the certifier for problem Y : check-Y(s, t)
returns 1 if t is a valid certificate for s.

s is a yes-instance if and only if there is a t such that
check-Y(s, t) returns 1

Construct a circuit C ′ for the algorithm check-Y

hard-wire the instance s to the circuit C ′ to obtain the circuit C

s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

41/99

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique

42/99

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

Boolean variables: x1, x2, · · · , xn

Literals: xi or ¬xi

Clause: disjunction (“or”) of at most 3 literals: x3 ∨ ¬x4,
x1 ∨ x8 ∨ ¬x9, ¬x2 ∨ ¬x5 ∨ x7

3-CNF formula: conjunction (“and”) of clauses:
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

42/99

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

Boolean variables: x1, x2, · · · , xn

Literals: xi or ¬xi

Clause: disjunction (“or”) of at most 3 literals: x3 ∨ ¬x4,
x1 ∨ x8 ∨ ¬x9, ¬x2 ∨ ¬x5 ∨ x7

3-CNF formula: conjunction (“and”) of clauses:
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

42/99

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

Boolean variables: x1, x2, · · · , xn

Literals: xi or ¬xi

Clause: disjunction (“or”) of at most 3 literals: x3 ∨ ¬x4,
x1 ∨ x8 ∨ ¬x9, ¬x2 ∨ ¬x5 ∨ x7

3-CNF formula: conjunction (“and”) of clauses:
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

42/99

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

Boolean variables: x1, x2, · · · , xn

Literals: xi or ¬xi

Clause: disjunction (“or”) of at most 3 literals: x3 ∨ ¬x4,
x1 ∨ x8 ∨ ¬x9, ¬x2 ∨ ¬x5 ∨ x7

3-CNF formula: conjunction (“and”) of clauses:
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

42/99

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

Boolean variables: x1, x2, · · · , xn

Literals: xi or ¬xi

Clause: disjunction (“or”) of at most 3 literals: x3 ∨ ¬x4,
x1 ∨ x8 ∨ ¬x9, ¬x2 ∨ ¬x5 ∨ x7

3-CNF formula: conjunction (“and”) of clauses:
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

43/99

3-Sat

3-Sat
Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

To satisfy a 3-CNF, we need to satisfy all clauses

To satisfy a clause, we need to satisfy at least 1 literal

Assignment x1 = 1, x2 = 1, x3 = 0, x4 = 0 satisfies
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

43/99

3-Sat

3-Sat
Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

To satisfy a 3-CNF, we need to satisfy all clauses

To satisfy a clause, we need to satisfy at least 1 literal

Assignment x1 = 1, x2 = 1, x3 = 0, x4 = 0 satisfies
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

43/99

3-Sat

3-Sat
Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

To satisfy a 3-CNF, we need to satisfy all clauses

To satisfy a clause, we need to satisfy at least 1 literal

Assignment x1 = 1, x2 = 1, x3 = 0, x4 = 0 satisfies
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

43/99

3-Sat

3-Sat
Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

To satisfy a 3-CNF, we need to satisfy all clauses

To satisfy a clause, we need to satisfy at least 1 literal

Assignment x1 = 1, x2 = 1, x3 = 0, x4 = 0 satisfies
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

44/99

Circuit-Sat ≤P 3-Sat

x1
x2

x3

Associate every wire with a new variable

The circuit is equivalent to the following formula:

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x7) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

44/99

Circuit-Sat ≤P 3-Sat

x1
x2

x3

x5

x6

x7

x8

x9 x10

x4

Associate every wire with a new variable

The circuit is equivalent to the following formula:

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x7) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

44/99

Circuit-Sat ≤P 3-Sat

x1
x2

x3

x5

x6

x7

x8

x9 x10

x4

Associate every wire with a new variable

The circuit is equivalent to the following formula:

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x7) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

45/99

Circuit-Sat ≤P 3-Sat

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x7) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

Convert each clause to a 3-CNF

x5 = x1 ∨ x2 ⇔
(x1 ∨ x2 ∨ ¬x5) ∧
(x1 ∨ ¬x2 ∨ x5) ∧
(¬x1 ∨ x2 ∨ x5) ∧
(¬x1 ∨ ¬x2 ∨ x5)

x1 x2 x5 x5 ↔ x1 ∨ x2
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

45/99

Circuit-Sat ≤P 3-Sat

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x7) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

Convert each clause to a 3-CNF

x5 = x1 ∨ x2 ⇔

(x1 ∨ x2 ∨ ¬x5) ∧
(x1 ∨ ¬x2 ∨ x5) ∧
(¬x1 ∨ x2 ∨ x5) ∧
(¬x1 ∨ ¬x2 ∨ x5)

x1 x2 x5 x5 ↔ x1 ∨ x2
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

45/99

Circuit-Sat ≤P 3-Sat

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x7) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

Convert each clause to a 3-CNF

x5 = x1 ∨ x2 ⇔

(x1 ∨ x2 ∨ ¬x5) ∧
(x1 ∨ ¬x2 ∨ x5) ∧
(¬x1 ∨ x2 ∨ x5) ∧
(¬x1 ∨ ¬x2 ∨ x5)

x1 x2 x5 x5 ↔ x1 ∨ x2
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

45/99

Circuit-Sat ≤P 3-Sat

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x7) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

Convert each clause to a 3-CNF

x5 = x1 ∨ x2 ⇔
(x1 ∨ x2 ∨ ¬x5) ∧

(x1 ∨ ¬x2 ∨ x5) ∧
(¬x1 ∨ x2 ∨ x5) ∧
(¬x1 ∨ ¬x2 ∨ x5)

x1 x2 x5 x5 ↔ x1 ∨ x2
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

45/99

Circuit-Sat ≤P 3-Sat

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x7) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

Convert each clause to a 3-CNF

x5 = x1 ∨ x2 ⇔
(x1 ∨ x2 ∨ ¬x5) ∧

(x1 ∨ ¬x2 ∨ x5) ∧
(¬x1 ∨ x2 ∨ x5) ∧
(¬x1 ∨ ¬x2 ∨ x5)

x1 x2 x5 x5 ↔ x1 ∨ x2
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

45/99

Circuit-Sat ≤P 3-Sat

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x7) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

Convert each clause to a 3-CNF

x5 = x1 ∨ x2 ⇔
(x1 ∨ x2 ∨ ¬x5) ∧
(x1 ∨ ¬x2 ∨ x5) ∧

(¬x1 ∨ x2 ∨ x5) ∧
(¬x1 ∨ ¬x2 ∨ x5)

x1 x2 x5 x5 ↔ x1 ∨ x2
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

45/99

Circuit-Sat ≤P 3-Sat

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x7) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

Convert each clause to a 3-CNF

x5 = x1 ∨ x2 ⇔
(x1 ∨ x2 ∨ ¬x5) ∧
(x1 ∨ ¬x2 ∨ x5) ∧

(¬x1 ∨ x2 ∨ x5) ∧
(¬x1 ∨ ¬x2 ∨ x5)

x1 x2 x5 x5 ↔ x1 ∨ x2
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

45/99

Circuit-Sat ≤P 3-Sat

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x7) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

Convert each clause to a 3-CNF

x5 = x1 ∨ x2 ⇔
(x1 ∨ x2 ∨ ¬x5) ∧
(x1 ∨ ¬x2 ∨ x5) ∧
(¬x1 ∨ x2 ∨ x5) ∧

(¬x1 ∨ ¬x2 ∨ x5)

x1 x2 x5 x5 ↔ x1 ∨ x2
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

45/99

Circuit-Sat ≤P 3-Sat

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x7) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

Convert each clause to a 3-CNF

x5 = x1 ∨ x2 ⇔
(x1 ∨ x2 ∨ ¬x5) ∧
(x1 ∨ ¬x2 ∨ x5) ∧
(¬x1 ∨ x2 ∨ x5) ∧

(¬x1 ∨ ¬x2 ∨ x5)

x1 x2 x5 x5 ↔ x1 ∨ x2
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

45/99

Circuit-Sat ≤P 3-Sat

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x7) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

Convert each clause to a 3-CNF

x5 = x1 ∨ x2 ⇔
(x1 ∨ x2 ∨ ¬x5) ∧
(x1 ∨ ¬x2 ∨ x5) ∧
(¬x1 ∨ x2 ∨ x5) ∧
(¬x1 ∨ ¬x2 ∨ x5)

x1 x2 x5 x5 ↔ x1 ∨ x2
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

46/99

Circuit-Sat ≤P 3-Sat

Circuit ⇐⇒ Formula ⇐⇒ 3-CNF

The circuit is satisfiable if and only if the 3-CNF is satisfiable

The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

Thus, Circuit-Sat ≤P 3-Sat

46/99

Circuit-Sat ≤P 3-Sat

Circuit ⇐⇒ Formula ⇐⇒ 3-CNF

The circuit is satisfiable if and only if the 3-CNF is satisfiable

The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

Thus, Circuit-Sat ≤P 3-Sat

46/99

Circuit-Sat ≤P 3-Sat

Circuit ⇐⇒ Formula ⇐⇒ 3-CNF

The circuit is satisfiable if and only if the 3-CNF is satisfiable

The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

Thus, Circuit-Sat ≤P 3-Sat

46/99

Circuit-Sat ≤P 3-Sat

Circuit ⇐⇒ Formula ⇐⇒ 3-CNF

The circuit is satisfiable if and only if the 3-CNF is satisfiable

The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

Thus, Circuit-Sat ≤P 3-Sat

47/99

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique

48/99

Recall: Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ⊆ V such that
no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem

Input: G = (V,E), k

Output: whether there is an independent set of size k in G

49/99

3-Sat ≤P Ind-Set

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

A clause ⇒ a group of 3
vertices, one for each literal

An edge between every pair of
vertices in same group

An edge between every pair of
contradicting literals

Problem: whether there is an
IS of size k = #clauses

3-Sat instance is yes-instance ⇔ Ind-Set instance is yes-instance:

satisfying assignment ⇒ independent set of size k

independent set of size k ⇒ satisfying assignment

49/99

3-Sat ≤P Ind-Set

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

A clause ⇒ a group of 3
vertices, one for each literal

An edge between every pair of
vertices in same group

An edge between every pair of
contradicting literals

Problem: whether there is an
IS of size k = #clauses

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

3-Sat instance is yes-instance ⇔ Ind-Set instance is yes-instance:

satisfying assignment ⇒ independent set of size k

independent set of size k ⇒ satisfying assignment

49/99

3-Sat ≤P Ind-Set

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

A clause ⇒ a group of 3
vertices, one for each literal

An edge between every pair of
vertices in same group

An edge between every pair of
contradicting literals

Problem: whether there is an
IS of size k = #clauses

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

3-Sat instance is yes-instance ⇔ Ind-Set instance is yes-instance:

satisfying assignment ⇒ independent set of size k

independent set of size k ⇒ satisfying assignment

49/99

3-Sat ≤P Ind-Set

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

A clause ⇒ a group of 3
vertices, one for each literal

An edge between every pair of
vertices in same group

An edge between every pair of
contradicting literals

Problem: whether there is an
IS of size k = #clauses

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

3-Sat instance is yes-instance ⇔ Ind-Set instance is yes-instance:

satisfying assignment ⇒ independent set of size k

independent set of size k ⇒ satisfying assignment

49/99

3-Sat ≤P Ind-Set

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

A clause ⇒ a group of 3
vertices, one for each literal

An edge between every pair of
vertices in same group

An edge between every pair of
contradicting literals

Problem: whether there is an
IS of size k = #clauses

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

3-Sat instance is yes-instance ⇔ Ind-Set instance is yes-instance:

satisfying assignment ⇒ independent set of size k

independent set of size k ⇒ satisfying assignment

49/99

3-Sat ≤P Ind-Set

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

A clause ⇒ a group of 3
vertices, one for each literal

An edge between every pair of
vertices in same group

An edge between every pair of
contradicting literals

Problem: whether there is an
IS of size k = #clauses

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

3-Sat instance is yes-instance ⇔ Ind-Set instance is yes-instance:

satisfying assignment ⇒ independent set of size k

independent set of size k ⇒ satisfying assignment

50/99

Satisfying Assignment ⇒ IS of Size k

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every clause, at least 1
literal is satisfied

Pick the vertex correspondent
the literal

So, 1 literal from each group

No contradictions among the
selected literals

An IS of size k

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

50/99

Satisfying Assignment ⇒ IS of Size k

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every clause, at least 1
literal is satisfied

Pick the vertex correspondent
the literal

So, 1 literal from each group

No contradictions among the
selected literals

An IS of size k

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

50/99

Satisfying Assignment ⇒ IS of Size k

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every clause, at least 1
literal is satisfied

Pick the vertex correspondent
the literal

So, 1 literal from each group

No contradictions among the
selected literals

An IS of size k

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

50/99

Satisfying Assignment ⇒ IS of Size k

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every clause, at least 1
literal is satisfied

Pick the vertex correspondent
the literal

So, 1 literal from each group

No contradictions among the
selected literals

An IS of size k

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

50/99

Satisfying Assignment ⇒ IS of Size k

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every clause, at least 1
literal is satisfied

Pick the vertex correspondent
the literal

So, 1 literal from each group

No contradictions among the
selected literals

An IS of size k

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

50/99

Satisfying Assignment ⇒ IS of Size k

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every clause, at least 1
literal is satisfied

Pick the vertex correspondent
the literal

So, 1 literal from each group

No contradictions among the
selected literals

An IS of size k

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

51/99

IS of Size k ⇒ Satisfying Assignment

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every group, exactly one
literal is selected in IS

No contradictions among the
selected literals

If xi is selected in IS, set xi = 1

If ¬xi is selected in IS, set
xi = 0

Otherwise, set xi arbitrarily

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

51/99

IS of Size k ⇒ Satisfying Assignment

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every group, exactly one
literal is selected in IS

No contradictions among the
selected literals

If xi is selected in IS, set xi = 1

If ¬xi is selected in IS, set
xi = 0

Otherwise, set xi arbitrarily

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

51/99

IS of Size k ⇒ Satisfying Assignment

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every group, exactly one
literal is selected in IS

No contradictions among the
selected literals

If xi is selected in IS, set xi = 1

If ¬xi is selected in IS, set
xi = 0

Otherwise, set xi arbitrarily

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

51/99

IS of Size k ⇒ Satisfying Assignment

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every group, exactly one
literal is selected in IS

No contradictions among the
selected literals

If xi is selected in IS, set xi = 1

If ¬xi is selected in IS, set
xi = 0

Otherwise, set xi arbitrarily

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

51/99

IS of Size k ⇒ Satisfying Assignment

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every group, exactly one
literal is selected in IS

No contradictions among the
selected literals

If xi is selected in IS, set xi = 1

If ¬xi is selected in IS, set
xi = 0

Otherwise, set xi arbitrarily

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

51/99

IS of Size k ⇒ Satisfying Assignment

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every group, exactly one
literal is selected in IS

No contradictions among the
selected literals

If xi is selected in IS, set xi = 1

If ¬xi is selected in IS, set
xi = 0

Otherwise, set xi arbitrarily

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

52/99

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique

53/99

Def. A clique in an undirected graph G = (V,E) is a subset S ⊆ V
such that ∀u, v ∈ S we have (u, v) ∈ E

Clique Problem

Input: G = (V,E) and integer k > 0,

Output: whether there exists a clique of size k in G

What is the relationship between Clique and Ind-Set?

53/99

Def. A clique in an undirected graph G = (V,E) is a subset S ⊆ V
such that ∀u, v ∈ S we have (u, v) ∈ E

Clique Problem

Input: G = (V,E) and integer k > 0,

Output: whether there exists a clique of size k in G

What is the relationship between Clique and Ind-Set?

53/99

Def. A clique in an undirected graph G = (V,E) is a subset S ⊆ V
such that ∀u, v ∈ S we have (u, v) ∈ E

Clique Problem

Input: G = (V,E) and integer k > 0,

Output: whether there exists a clique of size k in G

What is the relationship between Clique and Ind-Set?

53/99

Def. A clique in an undirected graph G = (V,E) is a subset S ⊆ V
such that ∀u, v ∈ S we have (u, v) ∈ E

Clique Problem

Input: G = (V,E) and integer k > 0,

Output: whether there exists a clique of size k in G

What is the relationship between Clique and Ind-Set?

54/99

Clique =P Ind-Set

Def. Given a graph G = (V,E), define G = (V,E) be the graph
such that (u, v) ∈ E if and only if (u, v) /∈ E.

Obs. S is an independent set in G if and only if S is a clique in G.

55/99

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique

56/99

Vertex-Cover

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ⊆ V such that for every (u, v) ∈ E then u ∈ S or v ∈ S .

Vertex-Cover Problem
Input: G = (V,E) and integer k

Output: whether there is a vertex cover of G of size at most k

56/99

Vertex-Cover

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ⊆ V such that for every (u, v) ∈ E then u ∈ S or v ∈ S .

Vertex-Cover Problem
Input: G = (V,E) and integer k

Output: whether there is a vertex cover of G of size at most k

56/99

Vertex-Cover

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ⊆ V such that for every (u, v) ∈ E then u ∈ S or v ∈ S .

Vertex-Cover Problem
Input: G = (V,E) and integer k

Output: whether there is a vertex cover of G of size at most k

57/99

Vertex-Cover =P Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V,E) if and only if V \ S is an
independent set of G.

57/99

Vertex-Cover =P Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V,E) if and only if V \ S is an
independent set of G.

57/99

Vertex-Cover =P Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V,E) if and only if V \ S is an
independent set of G.

58/99

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique

59/99

Set Cover
Input: S1, S2, · · · , SM ⊆ [N] with

⋃
i∈[m] Si = [N]

Output: The smallest set I ⊆ [M] satisfying
⋃

i∈I Si = [N]

decision version: given t, does there exist a solution I with
|I| ≤ t?

Vertex Cover ≤P Set Cover
m edges ⇔ N elements

n vertices ⇔ M sets

vertex is incident to edge e ⇔ set contains element

Vertex cover is the special case of set cover where each element
appears in exactly two sets.

59/99

Set Cover
Input: S1, S2, · · · , SM ⊆ [N] with

⋃
i∈[m] Si = [N]

Output: The smallest set I ⊆ [M] satisfying
⋃

i∈I Si = [N]

decision version: given t, does there exist a solution I with
|I| ≤ t?

Vertex Cover ≤P Set Cover
m edges ⇔ N elements

n vertices ⇔ M sets

vertex is incident to edge e ⇔ set contains element

Vertex cover is the special case of set cover where each element
appears in exactly two sets.

59/99

Set Cover
Input: S1, S2, · · · , SM ⊆ [N] with

⋃
i∈[m] Si = [N]

Output: The smallest set I ⊆ [M] satisfying
⋃

i∈I Si = [N]

decision version: given t, does there exist a solution I with
|I| ≤ t?

Vertex Cover ≤P Set Cover
m edges ⇔ N elements

n vertices ⇔ M sets

vertex is incident to edge e ⇔ set contains element

Vertex cover is the special case of set cover where each element
appears in exactly two sets.

60/99

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique

61/99

k-coloring problem

Def. A k-coloring of G = (V,E) is a
function f : V → {1, 2, 3, · · · , k} so that
for every edge (u, v) ∈ E, we have
f(u) ̸= f(v). G is k-colorable if there is
a k-coloring of G.

k-coloring problem

Input: a graph G = (V,E)

Output: whether G is k-colorable or not

61/99

k-coloring problem

Def. A k-coloring of G = (V,E) is a
function f : V → {1, 2, 3, · · · , k} so that
for every edge (u, v) ∈ E, we have
f(u) ̸= f(v). G is k-colorable if there is
a k-coloring of G.

k-coloring problem

Input: a graph G = (V,E)

Output: whether G is k-colorable or not

61/99

k-coloring problem

Def. A k-coloring of G = (V,E) is a
function f : V → {1, 2, 3, · · · , k} so that
for every edge (u, v) ∈ E, we have
f(u) ̸= f(v). G is k-colorable if there is
a k-coloring of G.

k-coloring problem

Input: a graph G = (V,E)

Output: whether G is k-colorable or not

62/99

2-Coloring Problem

Obs. A graph G is 2-colorable if and only if it is bipartite.

Q: How do we check if a graph G is 2-colorable?

A: We check if G is bipartite.

62/99

2-Coloring Problem

Obs. A graph G is 2-colorable if and only if it is bipartite.

Q: How do we check if a graph G is 2-colorable?

A: We check if G is bipartite.

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

Base Graph

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

Base Graph

x4 x̄4

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3Base Graph

x4 x̄4

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

???

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

63/99

3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3

64/99

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique

65/99

Recall: Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

We consider Hamiltonian Cycle Problem in directed graphs

Exercise: HC-directed ≤P HC

65/99

Recall: Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

We consider Hamiltonian Cycle Problem in directed graphs

Exercise: HC-directed ≤P HC

65/99

Recall: Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

We consider Hamiltonian Cycle Problem in directed graphs

Exercise: HC-directed ≤P HC

66/99

3-Sat ≤P Directed-HC

s

t

x1

x2

x3

xn

Vertices s, t

A long enough double-path Pi

for each variable xi

Edges from s to P1

Edges from Pn to t

Edges from Pi to Pi+1

xi = 1 ⇐⇒ traverse Pi

from left to right

e.g,
x1 = 1, x2 = 1, x3 = 0, x4 = 0

66/99

3-Sat ≤P Directed-HC

s

t

x1

x2

x3

xn

Vertices s, t

A long enough double-path Pi

for each variable xi

Edges from s to P1

Edges from Pn to t

Edges from Pi to Pi+1

xi = 1 ⇐⇒ traverse Pi

from left to right

e.g,
x1 = 1, x2 = 1, x3 = 0, x4 = 0

66/99

3-Sat ≤P Directed-HC

s

t

x1

x2

x3

xn

Vertices s, t

A long enough double-path Pi

for each variable xi

Edges from s to P1

Edges from Pn to t

Edges from Pi to Pi+1

xi = 1 ⇐⇒ traverse Pi

from left to right

e.g,
x1 = 1, x2 = 1, x3 = 0, x4 = 0

66/99

3-Sat ≤P Directed-HC

s

t

x1

x2

x3

xn

Vertices s, t

A long enough double-path Pi

for each variable xi

Edges from s to P1

Edges from Pn to t

Edges from Pi to Pi+1

xi = 1 ⇐⇒ traverse Pi

from left to right

e.g,
x1 = 1, x2 = 1, x3 = 0, x4 = 0

66/99

3-Sat ≤P Directed-HC

s

t

x1

x2

x3

xn

Vertices s, t

A long enough double-path Pi

for each variable xi

Edges from s to P1

Edges from Pn to t

Edges from Pi to Pi+1

xi = 1 ⇐⇒ traverse Pi

from left to right

e.g,
x1 = 1, x2 = 1, x3 = 0, x4 = 0

67/99

3-Sat ≤P Directed-HC

s

t

x1

x2

x3

xn

There are exactly 2n different
Hamiltonian cycles, each
correspondent to one
assignment of variables

Add a vertex for each clause,
so that the vertex can be
visited only if one of the literals
is satisfied.

67/99

3-Sat ≤P Directed-HC

s

t

x1

x2

x3

xn

c1 = x1 ∨ x2 ∨ x3

c1

There are exactly 2n different
Hamiltonian cycles, each
correspondent to one
assignment of variables

Add a vertex for each clause,
so that the vertex can be
visited only if one of the literals
is satisfied.

68/99

A Path Should Be Long Enough

≤ 3k + 1 vertices

k: number of clauses

69/99

Yes-Instance for 3-Sat ⇒ Yes-Instance for Di-HC

s

t

x1

x2

x3

xn

c1 = x1 ∨ x2 ∨ x3

c1

In base graph, construct an HC
according to the satisfying
assignment

For every clause, one literal is
satisfied

Visit the vertex for the clause
by taking a “detour” from the
path for the literal

69/99

Yes-Instance for 3-Sat ⇒ Yes-Instance for Di-HC

s

t

x1

x2

x3

xn

c1 = x1 ∨ x2 ∨ x3

c1

In base graph, construct an HC
according to the satisfying
assignment

For every clause, one literal is
satisfied

Visit the vertex for the clause
by taking a “detour” from the
path for the literal

69/99

Yes-Instance for 3-Sat ⇒ Yes-Instance for Di-HC

s

t

x1

x2

x3

xn

c1 = x1 ∨ x2 ∨ x3

c1

In base graph, construct an HC
according to the satisfying
assignment

For every clause, one literal is
satisfied

Visit the vertex for the clause
by taking a “detour” from the
path for the literal

70/99

Yes-Instance for Di-HC ⇒ Yes-Instance for 3-Sat

Idea: for each path Pi, must follow the left-to-right or
right-to-right pattern.

To visit vertex b, can either go a-b-c or b-c-a

Created “chunks” of 3 vertices.

Directions of the chunks must be the same

Can not take a detour to some other path

70/99

Yes-Instance for Di-HC ⇒ Yes-Instance for 3-Sat

a b c

Idea: for each path Pi, must follow the left-to-right or
right-to-right pattern.

To visit vertex b, can either go a-b-c or b-c-a

Created “chunks” of 3 vertices.

Directions of the chunks must be the same

Can not take a detour to some other path

70/99

Yes-Instance for Di-HC ⇒ Yes-Instance for 3-Sat

a b c

Idea: for each path Pi, must follow the left-to-right or
right-to-right pattern.

To visit vertex b, can either go a-b-c or b-c-a

Created “chunks” of 3 vertices.

Directions of the chunks must be the same

Can not take a detour to some other path

70/99

Yes-Instance for Di-HC ⇒ Yes-Instance for 3-Sat

Idea: for each path Pi, must follow the left-to-right or
right-to-right pattern.

To visit vertex b, can either go a-b-c or b-c-a

Created “chunks” of 3 vertices.

Directions of the chunks must be the same

Can not take a detour to some other path

70/99

Yes-Instance for Di-HC ⇒ Yes-Instance for 3-Sat

Idea: for each path Pi, must follow the left-to-right or
right-to-right pattern.

To visit vertex b, can either go a-b-c or b-c-a

Created “chunks” of 3 vertices.

Directions of the chunks must be the same

Can not take a detour to some other path

70/99

Yes-Instance for Di-HC ⇒ Yes-Instance for 3-Sat

Idea: for each path Pi, must follow the left-to-right or
right-to-right pattern.

To visit vertex b, can either go a-b-c or b-c-a

Created “chunks” of 3 vertices.

Directions of the chunks must be the same

Can not take a detour to some other path

71/99

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique

72/99

Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return to
city 1

Goal: find a tour with the minimum
cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0, and L > 0

Output: whether there is a tour of length at most D

72/99

Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return to
city 1

Goal: find a tour with the minimum
cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0, and L > 0

Output: whether there is a tour of length at most D

72/99

Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return to
city 1

Goal: find a tour with the minimum
cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0, and L > 0

Output: whether there is a tour of length at most D

72/99

Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return to
city 1

Goal: find a tour with the minimum
cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0, and L > 0

Output: whether there is a tour of length at most D

72/99

Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return to
city 1

Goal: find a tour with the minimum
cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0, and L > 0

Output: whether there is a tour of length at most D

72/99

Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return to
city 1

Goal: find a tour with the minimum
cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0, and L > 0

Output: whether there is a tour of length at most D

72/99

Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return to
city 1

Goal: find a tour with the minimum
cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0, and L > 0

Output: whether there is a tour of length at most D

72/99

Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return to
city 1

Goal: find a tour with the minimum
cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0, and L > 0

Output: whether there is a tour of length at most D

73/99

HC ≤P TSP

Obs. There is a Hamilton cycle in G if and only if there is a tour for
the salesman of length n = |V |.

74/99

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique

75/99

Bipartite Graph Matching

Input: A bipartite graph G = (X ∪ Y,E) with |X| = |Y | = n

Output: whether there exists a prefect matching in G

Application: Matching between Teachers and Courses
n teachers and n courses

a teacher may or may not be able to teach a course

find a way to match the n teachers and n courses.

75/99

Bipartite Graph Matching

Input: A bipartite graph G = (X ∪ Y,E) with |X| = |Y | = n

Output: whether there exists a prefect matching in G

Application: Matching between Teachers and Courses
n teachers and n courses

a teacher may or may not be able to teach a course

find a way to match the n teachers and n courses.

76/99

3D-Matching

Input: |X| = |Y | = |Z| = n, E ⊆ X × Y × Z, |E| = m

Output: whether there exists a perfect 3-dimensional matching M ,

i.e., a set M ⊆ E of size n such that⋃
(x,y,z)∈M

{x, y, z} = X ∪ Y ∪ Z

Example

X = {1, 2, 3, 4}, Y = {A,B,C,D}
Z = {a, b, c, d}

M =
{
(1,A, a), (2,A, b), (2,B, b),

(2,C, c), (3, B, a), (3,D, d),

(4,C, c)
}

76/99

3D-Matching

Input: |X| = |Y | = |Z| = n, E ⊆ X × Y × Z, |E| = m

Output: whether there exists a perfect 3-dimensional matching M ,

i.e., a set M ⊆ E of size n such that⋃
(x,y,z)∈M

{x, y, z} = X ∪ Y ∪ Z

Example

X = {1, 2, 3, 4}, Y = {A,B,C,D}
Z = {a, b, c, d}

M =
{
(1,A, a), (2,A, b), (2,B, b),

(2,C, c), (3, B, a), (3,D, d),

(4,C, c)
}

X Y Z

1

2

3

4

a

b

c

d

A

B

C

D

76/99

3D-Matching

Input: |X| = |Y | = |Z| = n, E ⊆ X × Y × Z, |E| = m

Output: whether there exists a perfect 3-dimensional matching M ,

i.e., a set M ⊆ E of size n such that⋃
(x,y,z)∈M

{x, y, z} = X ∪ Y ∪ Z

Example

X = {1, 2, 3, 4}, Y = {A,B,C,D}
Z = {a, b, c, d}

M =
{
(1,A, a), (2,A, b), (2,B, b),

(2,C, c), (3, B, a), (3,D, d),

(4,C, c)
}

X Y Z

1

2

3

4

a

b

c

d

A

B

C

D

76/99

3D-Matching

Input: |X| = |Y | = |Z| = n, E ⊆ X × Y × Z, |E| = m

Output: whether there exists a perfect 3-dimensional matching M ,

i.e., a set M ⊆ E of size n such that⋃
(x,y,z)∈M

{x, y, z} = X ∪ Y ∪ Z

Example

X = {1, 2, 3, 4}, Y = {A,B,C,D}
Z = {a, b, c, d}

M =
{
(1,A, a), (2,A, b), (2,B, b),

(2,C, c), (3, B, a), (3,D, d),

(4,C, c)
}

X Y Z

1

2

3

4

a

b

c

d

A

B

C

D

77/99

Application: Matching among Teachers, Courses

and Resources

n teachers, n courses and n resources

e.g., resource = (location, time) pair

(x, y, z) ∈ E teacher x can teach a course y using resource z

find a way to match the teachers, courses and resources

Remark
The tuples can be arbitrary: the relationship is 3-dimensional.

It is not a concatenation of two bipartite matching problems: If a
teacher x can teach a course y, and resource z is available for
teacher x, it does not necessarily mean (x, y, z) ∈ E

77/99

Application: Matching among Teachers, Courses

and Resources

n teachers, n courses and n resources

e.g., resource = (location, time) pair

(x, y, z) ∈ E teacher x can teach a course y using resource z

find a way to match the teachers, courses and resources

Remark
The tuples can be arbitrary: the relationship is 3-dimensional.

It is not a concatenation of two bipartite matching problems: If a
teacher x can teach a course y, and resource z is available for
teacher x, it does not necessarily mean (x, y, z) ∈ E

78/99

3D-Matching = Colorful Bipartite Matching

Colorful Bipartite Matching

Input: a bipartite multi-graph G = (X ∪ Y,E) with
|X| = |Y | = n each edge in E has a color c ∈ [n]

Output: find a perfect matching M ⊆ E of G with n distinct colors

Idea: using the third dimension for colors.

Example

X = {1, 2, 3, 4}, Y = {A,B,C,D}
Z = {a, b, c, d}

M =
{
(1,A, a), (2,A, b), (2,B, b), (2,C, c),

(3,B, a), (3,D, d), (4,C, c)
}

X Y

1

2

3

4

A

B

C

D

78/99

3D-Matching = Colorful Bipartite Matching

Colorful Bipartite Matching

Input: a bipartite multi-graph G = (X ∪ Y,E) with
|X| = |Y | = n each edge in E has a color c ∈ [n]

Output: find a perfect matching M ⊆ E of G with n distinct colors

Idea: using the third dimension for colors.

Example

X = {1, 2, 3, 4}, Y = {A,B,C,D}
Z = {a, b, c, d}

M =
{
(1,A, a), (2,A, b), (2,B, b), (2,C, c),

(3,B, a), (3,D, d), (4,C, c)
}

X Y

1

2

3

4

A

B

C

D

78/99

3D-Matching = Colorful Bipartite Matching

Colorful Bipartite Matching

Input: a bipartite multi-graph G = (X ∪ Y,E) with
|X| = |Y | = n each edge in E has a color c ∈ [n]

Output: find a perfect matching M ⊆ E of G with n distinct colors

Idea: using the third dimension for colors.

Example

X = {1, 2, 3, 4}, Y = {A,B,C,D}
Z = {a, b, c, d}

M =
{
(1,A, a), (2,A, b), (2,B, b), (2,C, c),

(3,B, a), (3,D, d), (4,C, c)
}

X Y

1

2

3

4

A

B

C

D

78/99

3D-Matching = Colorful Bipartite Matching

Colorful Bipartite Matching

Input: a bipartite multi-graph G = (X ∪ Y,E) with
|X| = |Y | = n each edge in E has a color c ∈ [n]

Output: find a perfect matching M ⊆ E of G with n distinct colors

Idea: using the third dimension for colors.

Example

X = {1, 2, 3, 4}, Y = {A,B,C,D}
Z = {a, b, c, d}

M =
{
(1,A, a), (2,A, b), (2,B, b), (2,C, c),

(3,B, a), (3,D, d), (4,C, c)
}

X Y

1

2

3

4

A

B

C

D

78/99

3D-Matching = Colorful Bipartite Matching

Colorful Bipartite Matching

Input: a bipartite multi-graph G = (X ∪ Y,E) with
|X| = |Y | = n each edge in E has a color c ∈ [n]

Output: find a perfect matching M ⊆ E of G with n distinct colors

Idea: using the third dimension for colors.

Example

X = {1, 2, 3, 4}, Y = {A,B,C,D}
Z = {a, b, c, d}

M =
{
(1,A, a), (2,A, b), (2,B, b), (2,C, c),

(3,B, a), (3,D, d), (4,C, c)
}

X Y

1

2

3

4

A

B

C

D

79/99

3-SAT ≤P 3D-Matching

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)∧
(x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4)

Satisfying assignment: x1 = 0, x2 = 1, x3 = 0, x4 = 0

Using “dummy” tuples to cover remaining tip vertices.

x3

core

x1 x2 x4

core core core

79/99

3-SAT ≤P 3D-Matching

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)∧
(x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4)

Satisfying assignment: x1 = 0, x2 = 1, x3 = 0, x4 = 0

Using “dummy” tuples to cover remaining tip vertices.

x3

core

x1 x2 x4

core core core

79/99

3-SAT ≤P 3D-Matching

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)∧
(x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4)

Satisfying assignment: x1 = 0, x2 = 1, x3 = 0, x4 = 0

Using “dummy” tuples to cover remaining tip vertices.

x3

core

x1 x2 x4
true tips

core core core

false tips

79/99

3-SAT ≤P 3D-Matching

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)∧
(x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4)

Satisfying assignment: x1 = 0, x2 = 1, x3 = 0, x4 = 0

Using “dummy” tuples to cover remaining tip vertices.

x3

core

x1 x2 x4

core core core

x1 ∨ ¬x2 ∨ ¬x3

79/99

3-SAT ≤P 3D-Matching

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)∧
(x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4)

Satisfying assignment: x1 = 0, x2 = 1, x3 = 0, x4 = 0

Using “dummy” tuples to cover remaining tip vertices.

x3

core

x1 x2 x4

core core core

(¬x1 ∨ x2 ∨ ¬x4)x1 ∨ ¬x2 ∨ ¬x3

79/99

3-SAT ≤P 3D-Matching

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)∧
(x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4)

Satisfying assignment: x1 = 0, x2 = 1, x3 = 0, x4 = 0

Using “dummy” tuples to cover remaining tip vertices.

x3

core

x1 x2 x4

core core core

(¬x1 ∨ x2 ∨ ¬x4)x1 ∨ ¬x2 ∨ ¬x3 (¬x1 ∨ ¬x3 ∨ x4)

79/99

3-SAT ≤P 3D-Matching

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)∧
(x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4)

Satisfying assignment: x1 = 0, x2 = 1, x3 = 0, x4 = 0

Using “dummy” tuples to cover remaining tip vertices.

x3

core

x1 x2 x4

core core core

(¬x1 ∨ x2 ∨ ¬x4)x1 ∨ ¬x2 ∨ ¬x3 (¬x1 ∨ ¬x3 ∨ x4)
· · · · · ·

79/99

3-SAT ≤P 3D-Matching

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)∧
(x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4)

Satisfying assignment: x1 = 0, x2 = 1, x3 = 0, x4 = 0

Using “dummy” tuples to cover remaining tip vertices.

x3

core

x1 x2 x4

core core core

(¬x1 ∨ x2 ∨ ¬x4)x1 ∨ ¬x2 ∨ ¬x3 (¬x1 ∨ ¬x3 ∨ x4)
· · · · · ·

79/99

3-SAT ≤P 3D-Matching

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)∧
(x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4)

Satisfying assignment: x1 = 0, x2 = 1, x3 = 0, x4 = 0

Using “dummy” tuples to cover remaining tip vertices.

x3

core

x1 x2 x4

core core core

(¬x1 ∨ x2 ∨ ¬x4)x1 ∨ ¬x2 ∨ ¬x3 (¬x1 ∨ ¬x3 ∨ x4)
· · · · · ·

79/99

3-SAT ≤P 3D-Matching

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)∧
(x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4)

Satisfying assignment: x1 = 0, x2 = 1, x3 = 0, x4 = 0

Using “dummy” tuples to cover remaining tip vertices.

x3

core

x1 x2 x4

core core core

(¬x1 ∨ x2 ∨ ¬x4)x1 ∨ ¬x2 ∨ ¬x3 (¬x1 ∨ ¬x3 ∨ x4)

79/99

3-SAT ≤P 3D-Matching

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)∧
(x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4)

Satisfying assignment: x1 = 0, x2 = 1, x3 = 0, x4 = 0

Using “dummy” tuples to cover remaining tip vertices.

x3

core

x1 x2 x4

core core core

(¬x1 ∨ x2 ∨ ¬x4)x1 ∨ ¬x2 ∨ ¬x3 (¬x1 ∨ ¬x3 ∨ x4)

80/99

3-SAT ≤P 3D-Matching

n: number of variables m: number of clauses

k: maximum number of times a literal appears in 3-CNF formula

assume each clause contains exactly 3 literals so, 3m ≤ 2kn

Construction of 3D-Matching Instance

1: for each xi, i ∈ [n] do
2: create a core with k true tips and k false tips

3: for each clause do
4: create two private vertices u, v for the clause
5: for each of the 3 literals in clause do
6: create a tuple containing u, v and a tip for the literal

7: Repeat kn−m times:
8: create a dummy vertex pair (u, v)
9: for every tip w do: add a tuple (u, v, w) for each tip w

80/99

3-SAT ≤P 3D-Matching

n: number of variables m: number of clauses

k: maximum number of times a literal appears in 3-CNF formula

assume each clause contains exactly 3 literals so, 3m ≤ 2kn

Construction of 3D-Matching Instance

1: for each xi, i ∈ [n] do
2: create a core with k true tips and k false tips

3: for each clause do
4: create two private vertices u, v for the clause
5: for each of the 3 literals in clause do
6: create a tuple containing u, v and a tip for the literal

7: Repeat kn−m times:
8: create a dummy vertex pair (u, v)
9: for every tip w do: add a tuple (u, v, w) for each tip w

81/99

3-SAT ≤P 3D-Matching

Check: the hyper-graph constructed is indeed tripartite.

Yes-Instance for 3-SAT =⇒ Yes-Instance for
3D-Matching

Let (x1, x2, · · · , xn) be the satisfying assignment

Take the kn tuples in cores covering unsatisfied literals

All unsatisfied tips are taken; all satisfied tips remain

For every clause, one literal is satisfied. Take the tuple containing
the two private vertices for the clause, and the satisfied literal

3k −m satisfied tips remain

Use 3k −m dummy tuples to cover the 3k −m remaining tips

All vertices are covered; every vertex is covered once.

81/99

3-SAT ≤P 3D-Matching

Check: the hyper-graph constructed is indeed tripartite.

Yes-Instance for 3-SAT =⇒ Yes-Instance for
3D-Matching

Let (x1, x2, · · · , xn) be the satisfying assignment

Take the kn tuples in cores covering unsatisfied literals

All unsatisfied tips are taken; all satisfied tips remain

For every clause, one literal is satisfied. Take the tuple containing
the two private vertices for the clause, and the satisfied literal

3k −m satisfied tips remain

Use 3k −m dummy tuples to cover the 3k −m remaining tips

All vertices are covered; every vertex is covered once.

81/99

3-SAT ≤P 3D-Matching

Check: the hyper-graph constructed is indeed tripartite.

Yes-Instance for 3-SAT =⇒ Yes-Instance for
3D-Matching

Let (x1, x2, · · · , xn) be the satisfying assignment

Take the kn tuples in cores covering unsatisfied literals

All unsatisfied tips are taken; all satisfied tips remain

For every clause, one literal is satisfied. Take the tuple containing
the two private vertices for the clause, and the satisfied literal

3k −m satisfied tips remain

Use 3k −m dummy tuples to cover the 3k −m remaining tips

All vertices are covered; every vertex is covered once.

81/99

3-SAT ≤P 3D-Matching

Check: the hyper-graph constructed is indeed tripartite.

Yes-Instance for 3-SAT =⇒ Yes-Instance for
3D-Matching

Let (x1, x2, · · · , xn) be the satisfying assignment

Take the kn tuples in cores covering unsatisfied literals

All unsatisfied tips are taken; all satisfied tips remain

For every clause, one literal is satisfied. Take the tuple containing
the two private vertices for the clause, and the satisfied literal

3k −m satisfied tips remain

Use 3k −m dummy tuples to cover the 3k −m remaining tips

All vertices are covered; every vertex is covered once.

81/99

3-SAT ≤P 3D-Matching

Check: the hyper-graph constructed is indeed tripartite.

Yes-Instance for 3-SAT =⇒ Yes-Instance for
3D-Matching

Let (x1, x2, · · · , xn) be the satisfying assignment

Take the kn tuples in cores covering unsatisfied literals

All unsatisfied tips are taken; all satisfied tips remain

For every clause, one literal is satisfied. Take the tuple containing
the two private vertices for the clause, and the satisfied literal

3k −m satisfied tips remain

Use 3k −m dummy tuples to cover the 3k −m remaining tips

All vertices are covered; every vertex is covered once.

81/99

3-SAT ≤P 3D-Matching

Check: the hyper-graph constructed is indeed tripartite.

Yes-Instance for 3-SAT =⇒ Yes-Instance for
3D-Matching

Let (x1, x2, · · · , xn) be the satisfying assignment

Take the kn tuples in cores covering unsatisfied literals

All unsatisfied tips are taken; all satisfied tips remain

For every clause, one literal is satisfied. Take the tuple containing
the two private vertices for the clause, and the satisfied literal

3k −m satisfied tips remain

Use 3k −m dummy tuples to cover the 3k −m remaining tips

All vertices are covered; every vertex is covered once.

81/99

3-SAT ≤P 3D-Matching

Check: the hyper-graph constructed is indeed tripartite.

Yes-Instance for 3-SAT =⇒ Yes-Instance for
3D-Matching

Let (x1, x2, · · · , xn) be the satisfying assignment

Take the kn tuples in cores covering unsatisfied literals

All unsatisfied tips are taken; all satisfied tips remain

For every clause, one literal is satisfied. Take the tuple containing
the two private vertices for the clause, and the satisfied literal

3k −m satisfied tips remain

Use 3k −m dummy tuples to cover the 3k −m remaining tips

All vertices are covered; every vertex is covered once.

81/99

3-SAT ≤P 3D-Matching

Check: the hyper-graph constructed is indeed tripartite.

Yes-Instance for 3-SAT =⇒ Yes-Instance for
3D-Matching

Let (x1, x2, · · · , xn) be the satisfying assignment

Take the kn tuples in cores covering unsatisfied literals

All unsatisfied tips are taken; all satisfied tips remain

For every clause, one literal is satisfied. Take the tuple containing
the two private vertices for the clause, and the satisfied literal

3k −m satisfied tips remain

Use 3k −m dummy tuples to cover the 3k −m remaining tips

All vertices are covered; every vertex is covered once.

82/99

3-SAT ≤P 3D-Matching

No-Instance for 3-SAT =⇒ No-Instance for
3D-Matching

Focus on a perfect 3D-matching

For every clause, we must a tuple containing the two private
vertices, and one literal

3-SAT is not satisfiable: for some variable xi, we must have
chosen a tip for xi and a tip for ¬xi

No way to cover the 2k center vertices correspondent to xi.

Contradiction.

82/99

3-SAT ≤P 3D-Matching

No-Instance for 3-SAT =⇒ No-Instance for
3D-Matching

Focus on a perfect 3D-matching

For every clause, we must a tuple containing the two private
vertices, and one literal

3-SAT is not satisfiable: for some variable xi, we must have
chosen a tip for xi and a tip for ¬xi

No way to cover the 2k center vertices correspondent to xi.

Contradiction.

82/99

3-SAT ≤P 3D-Matching

No-Instance for 3-SAT =⇒ No-Instance for
3D-Matching

Focus on a perfect 3D-matching

For every clause, we must a tuple containing the two private
vertices, and one literal

3-SAT is not satisfiable: for some variable xi, we must have
chosen a tip for xi and a tip for ¬xi

No way to cover the 2k center vertices correspondent to xi.

Contradiction.

82/99

3-SAT ≤P 3D-Matching

No-Instance for 3-SAT =⇒ No-Instance for
3D-Matching

Focus on a perfect 3D-matching

For every clause, we must a tuple containing the two private
vertices, and one literal

3-SAT is not satisfiable: for some variable xi, we must have
chosen a tip for xi and a tip for ¬xi

No way to cover the 2k center vertices correspondent to xi.

Contradiction.

82/99

3-SAT ≤P 3D-Matching

No-Instance for 3-SAT =⇒ No-Instance for
3D-Matching

Focus on a perfect 3D-matching

For every clause, we must a tuple containing the two private
vertices, and one literal

3-SAT is not satisfiable: for some variable xi, we must have
chosen a tip for xi and a tip for ¬xi

No way to cover the 2k center vertices correspondent to xi.

Contradiction.

83/99

Subset-Sum Problem

Subset Sum Problem
Input: an integer bound W > 0

a set of n items, each with an integer weight wi > 0

Output: a subset S of items that

maximizes
∑
i∈S

wi s.t.
∑
i∈S

wi ≤ W.

Decision version: decide if there is an S with
∑

i∈S wi = W .

84/99

3D-Matching ≤P Subset-Sum

Example

X = {1, 2, 3, 4} Y = {A,B,C,D} Z = {a, b, c, d}

(1,A, a), (2,A, b), (2,B, b), (2,C, c), (3,B, a), (3,D, d), (4,C, c)

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 2 3 4 A B C D a b c d

0 0 0 0

0 00 0

0 00 0 0

0 00 0 0

0 00 0

0 00 0 0

0 00 0 0

111

1 1 1

1 1 1

1 1 1

111

1 1 1

(1, A, a)

(2, A, b)

(2, B, b)

(2, C, c)

(3, B, a)

(3, D, d)

(4, C, c)

sum= 01 1 1 111111111

84/99

3D-Matching ≤P Subset-Sum

Example

X = {1, 2, 3, 4} Y = {A,B,C,D} Z = {a, b, c, d}
(1,A, a), (2,A, b), (2,B, b), (2,C, c), (3,B, a), (3,D, d), (4,C, c)

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 2 3 4 A B C D a b c d

0 0 0 0

0 00 0

0 00 0 0

0 00 0 0

0 00 0

0 00 0 0

0 00 0 0

111

1 1 1

1 1 1

1 1 1

111

1 1 1

(1, A, a)

(2, A, b)

(2, B, b)

(2, C, c)

(3, B, a)

(3, D, d)

(4, C, c)

sum= 01 1 1 111111111

84/99

3D-Matching ≤P Subset-Sum

Example

X = {1, 2, 3, 4} Y = {A,B,C,D} Z = {a, b, c, d}
(1,A, a), (2,A, b), (2,B, b), (2,C, c), (3,B, a), (3,D, d), (4,C, c)

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 2 3 4 A B C D a b c d

0 0 0 0

0 00 0

0 00 0 0

0 00 0 0

0 00 0

0 00 0 0

0 00 0 0

111

1 1 1

1 1 1

1 1 1

111

1 1 1

(1, A, a)

(2, A, b)

(2, B, b)

(2, C, c)

(3, B, a)

(3, D, d)

(4, C, c)

sum= 01 1 1 111111111

85/99

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y ≤P X.

In general, algorithm for Y can call the algorithm for X many
times.

However, for most reductions, we call algorithm for X only once

That is, for a given instance sY for Y , we only construct one
instance sX for X

85/99

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y ≤P X.

In general, algorithm for Y can call the algorithm for X many
times.

However, for most reductions, we call algorithm for X only once

That is, for a given instance sY for Y , we only construct one
instance sX for X

85/99

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y ≤P X.

In general, algorithm for Y can call the algorithm for X many
times.

However, for most reductions, we call algorithm for X only once

That is, for a given instance sY for Y , we only construct one
instance sX for X

85/99

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y ≤P X.

In general, algorithm for Y can call the algorithm for X many
times.

However, for most reductions, we call algorithm for X only once

That is, for a given instance sY for Y , we only construct one
instance sX for X

86/99

A Strategy of Polynomial Reduction

Given an instance sY of problem Y , show how to construct in
polynomial time an instance sX of problem such that:

sY is a yes-instance of Y =⇒ sX is a yes-instance of X
sX is a yes-instance of X =⇒ sY is a yes-instance of Y

87/99

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary

88/99

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is Θ(n), n = number variables
Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is Ω(n)

Essentially we have no techniques for proving lower bound for
running time

88/99

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is Θ(n), n = number variables
Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is Ω(n)

Essentially we have no techniques for proving lower bound for
running time

88/99

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is Θ(n), n = number variables
Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is Ω(n)

Essentially we have no techniques for proving lower bound for
running time

88/99

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is Θ(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is Ω(n)

Essentially we have no techniques for proving lower bound for
running time

88/99

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is Θ(n), n = number variables
Best algorithm runs in time O(cn) for some constant c > 1

Best lower bound is Ω(n)

Essentially we have no techniques for proving lower bound for
running time

88/99

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is Θ(n), n = number variables
Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is Ω(n)

Essentially we have no techniques for proving lower bound for
running time

88/99

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is Θ(n), n = number variables
Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is Ω(n)

Essentially we have no techniques for proving lower bound for
running time

89/99

Dealing with NP-Hard Problems

Faster exponential time algorithms

Solving the problem for special cases

Fixed parameter tractability

Approximation algorithms

90/99

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n → 1.844n → 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

90/99

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))

2n → 1.844n → 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

90/99

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n → 1.844n → 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

90/99

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n → 1.844n → 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

90/99

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n → 1.844n → 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

90/99

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n → 1.844n → 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))

Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

90/99

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n → 1.844n → 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))

In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

90/99

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n → 1.844n → 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

91/99

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees

bounded tree-width graphs

interval graphs

· · ·

91/99

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees

bounded tree-width graphs

interval graphs

· · ·

91/99

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees

bounded tree-width graphs

interval graphs

· · ·

91/99

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees

bounded tree-width graphs

interval graphs

· · ·

91/99

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees

bounded tree-width graphs

interval graphs

· · ·

92/99

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
Θ(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)
Running time is f(k)nc for some c
independent of k

Vertex-Cover is fixed-parameter
tractable.

92/99

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
Θ(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)
Running time is f(k)nc for some c
independent of k

Vertex-Cover is fixed-parameter
tractable.

92/99

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
Θ(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)

Running time is f(k)nc for some c
independent of k

Vertex-Cover is fixed-parameter
tractable.

92/99

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
Θ(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)
Running time is f(k)nc for some c
independent of k

Vertex-Cover is fixed-parameter
tractable.

92/99

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
Θ(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)
Running time is f(k)nc for some c
independent of k

Vertex-Cover is fixed-parameter
tractable.

93/99

Approximation Algorithms

For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

There is an 2-approximation for the vertex cover problem: we can
efficiently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover

93/99

Approximation Algorithms

For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

There is an 2-approximation for the vertex cover problem: we can
efficiently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover

93/99

Approximation Algorithms

For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

There is an 2-approximation for the vertex cover problem: we can
efficiently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover

93/99

Approximation Algorithms

For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

There is an 2-approximation for the vertex cover problem: we can
efficiently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover

94/99

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary

95/99

Summary

We consider decision problems

Inputs are encoded as {0, 1}-strings

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

Alice has a supercomputer, fast enough to run an exponential
time algorithm

Bob has a slow computer, which can only run a polynomial-time
algorithm

Def. (Informal) The complexity class NP is the set of problems for
which Alice can convince Bob a yes instance is a yes instance

96/99

Summary

Def. B is an efficient certifier for a problem X if

B is a polynomial-time algorithm that takes two input strings s
and t

there is a polynomial function p such that, X(s) = 1 if and only if
there is string t such that |t| ≤ p(|s|) and B(s, t) = 1.

The string t such that B(s, t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.

97/99

Summary

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y ≤P X.

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

If any NP-complete problem can be solved in polynomial time,
then P = NP

Unless P = NP , a NP-complete problem can not be solved in
polynomial time

98/99

Summary

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique

99/99

Summary

Proof of NP-Completeness for Circuit-Sat
Fact 1: a polynomial-time algorithm can be converted to a
polynomial-size circuit

Fact 2: for a problem in NP, there is a efficient certifier.

Given a problem X ∈ NP, let B(s, t) be the certifier

Convert B(s, t) to a circuit and hard-wire s to the input gates

s is a yes-instance if and only if the resulting circuit is satisfiable

Proof of NP-Completeness for other problems by reductions

	Some Hard Problems
	P, NP and Co-NP
	Polynomial Time Reductions and NP-Completeness
	NP-Complete Problems
	Dealing with NP-Hard Problems
	Summary

