BERTT 5 501 (2026 F F 224 1)
Network Flow

BORZ: LT
R R 2T BB

@ Network Flow

© Ford-Fulkerson Method

© Correctness of Ford-Fulkerson's Method and Maximum Flow
Minimum Cut Theorem

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm
@ Capacity-Scaling Algorithm

© Bipartite Matching Problem
@ s-t Edge-Disjoint Paths Problem
@ More Applications

2/84

Flow Network

@ Abstraction of fluid flowing through edges

e Digraph G = (V, E) with source s € V and sink t € V/
o No edges enter s
o No edges leave ¢

e Edge capacity ¢, € Ry for everye € £

Def. An s-t flow is a function f : ' — R such that
o foreverye € E: 0 < f(e) <c, (capacity conditions)
o for every v € V'\ {s,t}:

Z fle) = Z f(e). (conservation conditions)

e€din(v) e€out (V)

The value of a flow f is

val(f Z f(e

e€dout(s)

Def. An s-t flow is a function f : ' — R such that

o foreveryee E: 0 < f(e) <ce (capacity conditions)

o for every v € V'\ {s,t}:

Z fle) = Z f(e). (conservation conditions)

e€din (v) eEJout (V)
The value of a flow f is

val(f) == > fle

Geéout()

Maximum Flow Problem

Input: directed network G = (V, E), capacity function
c: E—Ryg, source s € V andsinkt € V

Output: an s-t flow f in G with the maximum val(f)

Maximum Flow Problem: Example

Maximum Flow Problem: Example

Maximum Flow Problem: Example

@ Network Flow

© Ford-Fulkerson Method

© Correctness of Ford-Fulkerson's Method and Maximum Flow
Minimum Cut Theorem

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm
@ Capacity-Scaling Algorithm

© Bipartite Matching Problem
@ s-t Edge-Disjoint Paths Problem
@ More Applications

6/84

7/84

e Start with empty flow: f(e) =0 for every e € E

7/84

e Start with empty flow: f(e) =0 for every e € E
@ Define the residual capacity of e to be ¢, — f(e)

7/84

Greedy Algorithm
e Start with empty flow: f(e) =0 for every e € E
@ Define the residual capacity of e to be ¢, — f(e)

e Find an augmenting path: a path from s to ¢, where all edges
have positive residual capacity

Greedy Algorithm
e Start with empty flow: f(e) =0 for every e € E
@ Define the residual capacity of e to be c. — f(e)

e Find an augmenting path: a path from s to ¢, where all edges
have positive residual capacity

@ Augment flow along the path as much as possible

Greedy Algorithm
e Start with empty flow: f(e) =0 for every e € E
@ Define the residual capacity of e to be c. — f(e)

e Find an augmenting path: a path from s to ¢, where all edges
have positive residual capacity

Augment flow along the path as much as possible

Repeat until we got stuck

Greedy Algorithm: Example

Greedy Algorithm: Example

Greedy Algorithm: Example

Greedy Algorithm: Example

Greedy Algorithm: Example

Greedy Algorithm: Example

Greedy Algorithm: Example

Greedy Algorithm: Example

Greedy Algorithm: Example

12/12

Greedy Algorithm: Example

Greedy Algorithm: Example

Greedy Algorithm: Example

Greedy Algorithm Does Not Always Give a
Optimum Solution

Greedy Algorithm Does Not Always Give a
Optimum Solution

Greedy Algorithm Does Not Always Give a
Optimum Solution

Greedy Algorithm Does Not Always Give a
Optimum Solution

7
\\\ <4

Fix the Issue: Allowing “Undo” Flow Sent

a
Z,
x\\ <4
= t
Z,
SN A\

b

Fix the Issue: Allowing “Undo” Flow Sent

Fix the Issue: Allowing “Undo” Flow Sent

Fix the Issue: Allowing “Undo” Flow Sent

Assumption (u,v) and (v,u) are not both in £

Assumption (u,v) and (v,u) are not both in £

Def. For a s-t flow f, the residual graph G of G = (V, E) w.r.t f
contains:

Assumption (u,v) and (v,u) are not both in £

Def. For a s-t flow f, the residual graph G of G = (V, E) w.r.t f
contains:

@ the vertex set V/,

Assumption (u,v) and (v,u) are not both in £

Def. For a s-t flow f, the residual graph G of G = (V, E) w.r.t f
contains:

@ the vertex set V/,

o for every e = (u,v) € E with f(e) < ¢, a forward edge
e = (u,v), with residual capacity c¢(e) = c. — f(e),

Assumption (u,v) and (v,u) are not both in £

Def. For a s-t flow f, the residual graph G of G = (V, E) w.r.t f
contains:

o the vertex set V,

o for every e = (u,v) € E with f(e) < ¢, a forward edge
e = (u,v), with residual capacity c¢(e) = c. — f(e),

o for every e = (u,v) € E with f(e) > 0, a backward edge

/

e’ = (v, u), with residual capacity cs(e') = f(e).

Assumption (u,v) and (v,u) are not both in £

Def. For a s-t flow f, the residual graph G of G = (V, E) w.r.t f
contains:

@ the vertex set V/,

o for every e = (u,v) € E with f(e) < c., a forward edge
e = (u,v), with residual capacity c¢(e) = c. — f(e),

° for every e = (u,v) € E with f(e) > 0, a backward edge
), with residual capacity cs(e') = f(e).

@\3@

Original graph G and f Residual Graph G

Residual Graph: One More Example

Agumenting Path

Augmenting the flow along a path P from s to ¢t in G

Augment(P)
1 b+ min cr(e)
2: for every (u,v) € P do
if (u,v) is a forward edge then
4 f(u,v) < f(u,v)+0b
5: else > (u,v) is a backward edge
6
7

f(v,u) < f(v,u) —b

Example for Augmenting Along a Path

o
x\\ =7
= t
—
o
SN A\

Example for Augmenting Along a Path

o
x\\ =7
= t
—
o
SN A\

Example for Augmenting Along a Path

Example for Augmenting Along a Path

Example for Augmenting Along a Path

Ford-Fulkerson’'s Method

Ford-Fulkerson(G, s, t, ¢)

1: let f(e) < 0O for every e in G

2: while there is a path from s to t in Gy do

3: let P be any simple path from s to ¢ in G
4 f <augment(f, P)

5

. return f

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Ford-Fulkerson: Example

Fulkerson: Example

Ford-

Fulkerson: Example

Ford-

Outline

© Correctness of Ford-Fulkerson's Method and Maximum Flow
Minimum Cut Theorem

Correctness of Ford-Fulkerson's Method

@ The procedure augment(f, P) maintains the two conditions:

o foreveryec E: 0< f(e) <c. (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

eEdin (v) eE€dout (V)

@ When Ford-Fulkerson’s Method terminates, val(f) is maximized
© Ford-Fulkerson’'s Method will terminate

Correctness of Ford-Fulkerson's Method

© The procedure augment(f, P) maintains the two conditions:

o foreveryec E: 0< f(e) <c. (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

eEdin (v) eE€dout (V)

@ When Ford-Fulkerson’s Method terminates, val(f) is maximized
© Ford-Fulkerson’'s Method will terminate

o foreveryee E: 0 < f(e) <ece (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

e into v e out of v

o foreveryee E: 0 < f(e) <ece (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

e into v e out of v

o foreveryee E: 0 < f(e) <ece (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

e into v e out of v

e for an edge e correspondent to a forward edge :
b<c.— fle) = fle)+b<c

o foreveryee E: 0 < f(e) <ece (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

e into v e out of v

e for an edge e correspondent to a forward edge :
b<c.— fle) = fle)+b<c

o for an edge e correspondent to a backward edge :
b< fle) = f(e)—b>0

o foreveryee E: 0 < f(e) <ece (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

e into v e out of v

v net increase = b —b =0

e for an edge e correspondent to a forward edge :
b<c.— fle) = fle)+b<c

o for an edge e correspondent to a backward edge :
b< fle) = f(e)—b>0

o foreveryee E: 0 < f(e) <ece (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

e into v e out of v

net increase = b+ (—b) =0

e for an edge e correspondent to a forward edge :
b<c.— fle) = fle)+b<c

o for an edge e correspondent to a backward edge :
b< fle) = f(e)—b>0

o foreveryee E: 0 < f(e) <ece (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

e into v e out of v

net increase = —b — (=b) =0

e for an edge e correspondent to a forward edge :
b<c.— fle) = fle)+b<c

o for an edge e correspondent to a backward edge :
b< fle) = f(e)—b>0

o foreveryee E: 0 < f(e) <ece (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

e into v e out of v

net increase = —b

net increase = b

e for an edge e correspondent to a forward edge :
b<c.— fle) = fle)+b<c

o for an edge e correspondent to a backward edge :
b< fle) = f(e)—b>0

Correctness of Ford-Fulkerson's Method

@ The procedure augment(f, P) maintains the two conditions:

o foreveryec E: 0< f(e) <c. (capacity conditions)
o for every v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

eEdin (v) eE€dout (V)

@ When Ford-Fulkerson's Method terminates, val(f) is maximized
© Ford-Fulkerson's Method will terminate

Def. An s-t cut of G = (V,E) is a pair (S CV,T =V \S) such
thatse SandteT. J

Def. An s-t cut of G = (V,E) is a pair (S CV,T =V \S) such
thatse SandteT.

Def. The cut value of an s-t cut is

c(S,T) = Z Ce.

e=(u,v)EEueSWET

Def. An s-t cut of G = (V,E) is a pair (S CV,T =V \S) such
that s€ SandteT.

Def. The cut value of an s-t cut is

c(S,T) = Z Ce.

e=(u,v)EEueSweT

Def. Given an s-t flow f and an s-t cut (S,7"), the net flow sent
from S to T is

f(5,T) = > fle) - > f(e).

e=(u,v)EEUES,VET e=(u,v)EEUET VES

o(S,T) =14+ 12 =26

& f(S,T)=9+6-4=11
a\

o(S,T) =14+ 12 =26

& f(S,T)=9+6-4=11
a\

Obs. f(S,T) < ¢(S,T) st cut (S, 7).

o(S,T) =14+ 12 =26

& f(S,T)=9+6-4=11
a\

Obs. f(S,T) < ¢(S,T) st cut (S, 7). J

Obs. f(S,T) =val(f) for any s-t flow f and any s-t cut (S, 7). |

o(S,T) =14+ 12 =26

& f(S,T)=9+6-4=11
a\

Obs. f(S,T) < ¢(S,T) st cut (S, 7). J

Obs. f(S,T) =val(f) for any s-t flow f and any s-t cut (S, 7). |

Coro.

| < i S, T) f -t fl .
val(f) < » CI&I&T) c(S,T) for every s-t flowf J

i) val(f) < min (S, T) for every s-t flowf.
s-t cut (S,T)

i) val(f) < min (S, T) for every s-t flowf. ’
s-t cut (S,T)

We will prove

satisfies

Main Lemma The flow f found by the Ford-Fulkerson's Method
val(f) = ¢(S,T) for some s-t cut (S,T). J

LT val(f) < min ¢(S,T) for every s-t flowf.
s-t cut (S,T)

We will prove

Main Lemma The flow f found by the Ford-Fulkerson's Method

satisfies
val(f) = ¢(S,T) for some s-t cut (S, 7).

Corollary and Main Lemma implies

Maximum Flow Minimum Cut Theorem

sup val(f) = min ¢(5,7T).
s-t flow f (f) st cut (S,T) ()

Maximum Flow Minimum Cut Theorem

sup val = min ¢(S,T).
s-t flol\i/ f (f) s-t cut (S,T) ()

Main Lemma The flow f found by the Ford-Fulkerson's Method

satisfies
val(f) = ¢(S,T) for some s-t cut (S,T).

Proof of Main Lemma.

Main Lemma The flow f found by the Ford-Fulkerson's Method

satisfies
val(f) = ¢(S,T) for some s-t cut (S,T).

Proof of Main Lemma.
@ When algorithm terminates, no path from s to t in Gy,

Main Lemma The flow f found by the Ford-Fulkerson's Method

satisfies
val(f) = ¢(S,T) for some s-t cut (S, T).

Proof of Main Lemma.
@ When algorithm terminates, no path from s to t in Gy,
@ What can we say about G 7

Main Lemma The flow f found by the Ford-Fulkerson's Method

satisfies
val(f) = ¢(S,T) for some s-t cut (S, T).

Proof of Main Lemma.

@ When algorithm terminates, no path from s to t in Gy,

@ What can we say about G 7

@ Thereis a s-t cut (S,T), such that there are no edges from S to T

Main Lemma The flow f found by the Ford-Fulkerson's Method

satisfies
val(f) = ¢(S,T) for some s-t cut (S, T).

Proof of Main Lemma.

@ When algorithm terminates, no path from s to t in Gy,

@ What can we say about G 7

@ Thereis a s-t cut (S,T), such that there are no edges from S to T
@ For every e = (u,v) € E,u € S,v € T, we have f(e) =c,

Main Lemma The flow f found by the Ford-Fulkerson's Method

satisfies
val(f) = ¢(S,T) for some s-t cut (S, T).

Proof of Main Lemma.

@ When algorithm terminates, no path from s to t in Gy,

@ What can we say about G 7

@ Thereis a s-t cut (S,T), such that there are no edges from S to T
@ For every e = (u,v) € E,u € S,v € T, we have f(e) =c,

@ For every e = (u,v) € E,u € T,v € S, we have f(e) =0

Main Lemma The flow f found by the Ford-Fulkerson's Method

satisfies
val(f) = ¢(S,T) for some s-t cut (S, T).

Proof of Main Lemma.
@ When algorithm terminates, no path from s to t in Gy,

What can we say about G?

There is a s-t cut (S, T), such that there are no edges from S to T
For every e = (u,v) € E,u € S,v € T, we have f(e) =c,

For every e = (u,v) € E,u € T,v € S, we have f(e) =0

Thus,

vallf)=f(ST) = >, flo- > fl=

e=(u,v)EEueSweT e=(u,v)EEueTWES

Z ce =c(S,T). O

e=(u,v)eE,ueS,weT

Correctness of Ford-Fulkerson's Method

@ The procedure augment(f, P) maintains the two conditions:

o foreveryec E: 0< f(e) <c. (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

eEdin (v) eE€dout (V)

@ When Ford-Fulkerson’s Method terminates, val(f) is maximized
© Ford-Fulkerson’'s Method will terminate

Ford-Fulkerson’'s Method will Terminate

Intuition:

@ In every iteration, we increase the flow value by some amount

Ford-Fulkerson’'s Method will Terminate

Intuition:
@ In every iteration, we increase the flow value by some amount

@ There is a maximum flow value

Ford-Fulkerson’'s Method will Terminate

Intuition:
@ In every iteration, we increase the flow value by some amount
@ There is a maximum flow value

@ So the algorithm will finally reach the maximum value

Ford-Fulkerson’'s Method will Terminate

Intuition:

@ In every iteration, we increase the flow value by some amount
@ There is a maximum flow value

@ So the algorithm will finally reach the maximum value

However, the algorithm may not terminate if some capacities are
irrational numbers. (“Pathological cases")

Lemma Ford-Fulkerson’s Method will terminate if all capacities are
integers.

290/84

Lemma Ford-Fulkerson’s Method will terminate if all capacities are
integers.

Proof.
@ The maximum flow value is finite (not o).
@ In every iteration, we increase the flow value by at least 1.

@ So the algorithm will terminate. O

Lemma Ford-Fulkerson’s Method will terminate if all capacities are
integers.

Proof.
@ The maximum flow value is finite (not o).
@ In every iteration, we increase the flow value by at least 1.

@ So the algorithm will terminate. O

@ Integers can be replaced by rational numbers.

Correctness of Ford-Fulkerson's Method

@ The procedure augment(f, P) maintains the two conditions:

o foreveryec E: 0< f(e) <c. (capacity conditions)
o forevery v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

eEdin (v) eE€dout (V)

@ When Ford-Fulkerson’s Method terminates, val(f) is maximized
© Ford-Fulkerson’'s Method will terminate

Outline

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm
@ Capacity-Scaling Algorithm

Running time of the Generic Ford-Fulkerson's
Algorithm

Ford-Fulkerson(G, s,t, ¢)

1: let f(e) < 0 for every e in G

2: while there is a path from s to ¢ in G do

3: let P be any simple path from s to ¢t in G
4 f <augment(f, P)

5

. return f

@ O(m)-time for Steps 3 and 4 in each iteration
@ Total time = O(m)x number of iterations

Running time of the Generic Ford-Fulkerson's
Algorithm

Ford-Fulkerson(G, s,t, ¢)

1: let f(e) < 0 for every e in G

2: while there is a path from s to ¢ in G do

3: let P be any simple path from s to ¢t in G
4 f <augment(f, P)

5

. return f

O(m)-time for Steps 3 and 4 in each iteration
Total time = O(m)x number of iterations

Assume all capacities are integers, then algorithm may run up to
val(f*) iterations, where f* is the optimum flow

Total time = O(m - val(f*))
Running time is “Pseudo-polynomial”

The Upper Bound on Running Time Is Tight!

The Upper Bound on Running Time Is Tight!

The Upper Bound on Running Time Is Tight!

The Upper Bound on Running Time Is Tight!

The Upper Bound on Running Time Is Tight!

The Upper Bound on Running Time Is Tight!

The Upper Bound on Running Time Is Tight!

The Upper Bound on Running Time Is Tight!

The Upper Bound on Running Time Is Tight!

The Upper Bound on Running Time Is Tight!

The Upper Bound on Running Time Is Tight!

The Upper Bound on Running Time Is Tight!

The Upper Bound on Running Time Is Tight!

Better choices for choosing augmentation paths:
@ Choose the shortest augmentation path

@ Choose the augmentation path with the largest bottleneck
capacity

Outline

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm

Shortest Augmenting Path

shortest-augmenting-path(G, s, ¢, ¢)
1: let f(e) < 0O for every e in G
2: while there is a path from s to t in Gy do
3: P < breadth-first-search(Gy, s,)
4 f <augment(f, P)
5

. return f

Due to [Dinitz 1970] and [Edmonds-Karp, 1970]

Running Time of Shortest Augmenting Path
Algorithm

Lemma 1. Throughout the algorithm, length of shortest path from
s to t in Gy never decreases.

2. After at most m shortest path augmentations, the length of the
shortest path from s to ¢ in G strictly increases.

Running Time of Shortest Augmenting Path
Algorithm

Lemma 1. Throughout the algorithm, length of shortest path from
s to t in Gy never decreases.

2. After at most m shortest path augmentations, the length of the
shortest path from s to ¢ in G strictly increases.

@ Length of shortest path is between 1 and n — 1

Running Time of Shortest Augmenting Path
Algorithm

Lemma 1. Throughout the algorithm, length of shortest path from
s to t in Gy never decreases.

2. After at most m shortest path augmentations, the length of the
shortest path from s to ¢ in G strictly increases.

@ Length of shortest path is between 1 and n — 1

@ Algorithm takes at most O(mn) iterations

Running Time of Shortest Augmenting Path
Algorithm

Lemma 1. Throughout the algorithm, length of shortest path from
s to t in Gy never decreases.

2. After at most m shortest path augmentations, the length of the
shortest path from s to ¢ in G strictly increases.

@ Length of shortest path is between 1 and n — 1
@ Algorithm takes at most O(mn) iterations
@ Shortest path from s to ¢ can be found in O(m) time using BFS

Running Time of Shortest Augmenting Path
Algorithm

Lemma 1. Throughout the algorithm, length of shortest path from
s to t in Gy never decreases.

2. After at most m shortest path augmentations, the length of the
shortest path from s to ¢ in G strictly increases.

@ Length of shortest path is between 1 and n — 1
@ Algorithm takes at most O(mn) iterations
@ Shortest path from s to ¢ can be found in O(m) time using BFS

Theorem The shortest-augmenting-path algorithm runs in time
O(m?n).

@ Divide V into levels: L; contains the set of vertices v such that

the length of shortest path from s to v in Gy is %

Proof of Lemma: Focus on G/

@ Divide V into levels: L; contains the set of vertices v such that
the length of shortest path from s to v in Gy is %
o Forth edges : edges from L; to L;,; for some ¢

Proof of Lemma: Focus on G/

@ Divide V into levels: L; contains the set of vertices v such that
the length of shortest path from s to v in Gy is %

o Forth edges : edges from L; to L;,; for some ¢

@ Side edges : edges from L; to L; for some i

Proof of Lemma: Focus on G/

@ Divide V into levels: L; contains the set of vertices v such that
the length of shortest path from s to v in Gy is %

o Forth edges : edges from L; to L;,; for some ¢

@ Side edges : edges from L; to L; for some i

@ Back edges: edges from L; to L; for some i > j

Proof of Lemma: Focus on G/

@ Divide V into levels: L; contains the set of vertices v such that
the length of shortest path from s to v in Gy is %

o Forth edges : edges from L; to L;,; for some ¢

@ Side edges : edges from L; to L; for some i

@ Back edges: edges from L; to L; for some i > j

Proof of Lemma: Focus on G/

Divide V' into levels: L; contains the set of vertices v such that
the length of shortest path from s to v in Gy is %

Forth edges : edges from L; to L;,, for some ¢

Side edges : edges from L; to L; for some i

Back edges: edges from L; to L; for some i > j

No jump edges: edges from L; to L; for j > i+ 2

Proof of Lemma: Focus on G/

Divide V' into levels: L; contains the set of vertices v such that
the length of shortest path from s to v in Gy is %

Forth edges : edges from L; to L;,, for some ¢

Side edges : edges from L; to L; for some i

Back edges: edges from L; to L; for some i > j

No jump edges: edges from L; to L; for j > i+ 2

@ Assuming t € Ly, shortest s — ¢ path uses k forth edges

@ Assuming t € Ly, shortest s — ¢ path uses k forth edges

@ After augmenting along the path, back edges will be added to Gy

Proof of Lemma: Focus on G/

@ Assuming t € Ly, shortest s — ¢ path uses k forth edges
@ After augmenting along the path, back edges will be added to Gy
@ One forth edge will be removed from G

Proof of Lemma: Focus on G/

@ Assuming t € Ly, shortest s — ¢ path uses k forth edges
@ After augmenting along the path, back edges will be added to Gy
@ One forth edge will be removed from G

@ In O(m) iterations, there will be no paths from s to ¢ of length &
in Gf.

Improving the O(m*n) Running Time for Shortest
Path Augmentation Algorithm

Improving the O(m*n) Running Time for Shortest
Path Augmentation Algorithm

@ For some networks, O(mn)-augmentations are necessary

Improving the O(m*n) Running Time for Shortest
Path Augmentation Algorithm

@ For some networks, O(mn)-augmentations are necessary

@ Idea for improved running time: reduce running time for each
iteration

Improving the O(m*n) Running Time for Shortest
Path Augmentation Algorithm

@ For some networks, O(mn)-augmentations are necessary

@ Idea for improved running time: reduce running time for each
iteration

e Simple idea = O(mn?) [Dinic 1970]

Improving the O(m*n) Running Time for Shortest
Path Augmentation Algorithm

@ For some networks, O(mn)-augmentations are necessary

@ Idea for improved running time: reduce running time for each
iteration

e Simple idea = O(mn?) [Dinic 1970]
@ Dynamic Trees = O(mnlogn) [Sleator-Tarjan 1983]

Outline

@ Running Time of Ford-Fulkerson-Type Algorithm

@ Capacity-Scaling Algorithm

Capacity-Scaling Algorithm

@ Idea: find the augment path from s to ¢ with the largest
bottleneck capacity

Capacity-Scaling Algorithm

@ Idea: find the augment path from s to ¢ with the sufficiently large
bottleneck capacity

Capacity-Scaling Algorithm

@ Idea: find the augment path from s to ¢ with the sufficiently large
bottleneck capacity

@ Assumption: Capacities are integers between 1 and C'

Capacity-Scaling Algorithm

@ Idea: find the augment path from s to ¢ with the sufficiently large
bottleneck capacity

@ Assumption: Capacities are integers between 1 and C'

capacity-scaling(G, s, t, ¢)

1: let f(e) < 0O for every e in G
A < largest power of 2 which is at most C'
while A > 1 do do
while there exists an augmenting path P with bottleneck
capacity at least A do
f <—augment(f, P)

6: A+ AJ2
7: return f

N

S

Obs. The outer while loop repeats 1 + |log, C'| times.

Obs. The outer while loop repeats 1 + |log, C'| times.

Lemma At the beginning of A-scale phase, the value of the
max-flow is at most val(f) + 2mA.

Obs. The outer while loop repeats 1 + |log, C'| times.

Lemma At the beginning of A-scale phase, the value of the
max-flow is at most val(f) + 2mA.

@ Each augmentation increases the flow value by at least A

Obs. The outer while loop repeats 1 + |log, C'| times.

Lemma At the beginning of A-scale phase, the value of the
max-flow is at most val(f) + 2mA.

@ Each augmentation increases the flow value by at least A

@ Thus, there are at most 2m augmentations for A-scale phase.

Obs. The outer while loop repeats 1 + |log, C'| times.

Lemma At the beginning of A-scale phase, the value of the
max-flow is at most val(f) + 2mA.

@ Each augmentation increases the flow value by at least A

@ Thus, there are at most 2m augmentations for A-scale phase.

Theorem The number of augmentations in the scaling max-flow
algorithm is at most O(mlog C). The running time of the algorithm
is O(m?log O).

Polynomial Time

Assume all capacities are integers between 1 and C'.

Ford-Fulkerson O(m2C') pseudo-polynomial
Capacity-scaling: O(m?logC) | weakly-polynomial
Shortest-Path-Augmenting: O(m?n) strongly-polynomial

@ Polynomial : weakly-polynomial and strongly-polynomial

Polynomial Time

Assume all capacities are integers between 1 and C'.

Ford-Fulkerson O(m2C') pseudo-polynomial
Capacity-scaling: O(m?logC) | weakly-polynomial
Shortest-Path-Augmenting: O(m?n) strongly-polynomial

@ Polynomial : weakly-polynomial and strongly-polynomial

Brief History

Algorithm Year Time Description
Ford-Fulkerson | 1956 | O(mf) | Ford-Fulkerson Method.
Edmonds-Karp | 1972 | O(nm?) | Shortest Augmenting Paths
Dinic 1970 | O(n*m) | SAP with blocking Flows
Goldberg-Tarjan | 1988 O(n?) Generic Push-Relabel
Goldberg-Tarjan | 1988 | O(n?y/m) | PR using highest-label nodes
Chen et al. 2022 | O(m!*°M) [LP-solver, dynamic algorithms

@ Chen et al. [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva, 2022].

@ Network Flow

© Ford-Fulkerson Method

© Correctness of Ford-Fulkerson's Method and Maximum Flow
Minimum Cut Theorem

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm
@ Capacity-Scaling Algorithm

© Bipartite Matching Problem
@ s-t Edge-Disjoint Paths Problem
@ More Applications

45 /84

Bipartite Graphs

Def. A graph G = (V, E) is bipartite if the vertices V' can be
partitioned into two subsets L and R such that every edge in E is
between a vertex in L and a vertex in R.

Def. Given a bipartite graph G = (LU R, F), a matching in G is a
set M C FE of edges such that every vertex in V is an endpoint of at
most one edge in M.

Def. Given a bipartite graph G = (LU R, F), a matching in G is a
set M C FE of edges such that every vertex in V is an endpoint of at
most one edge in M.

v

Maximum Bipartite Matching Problem
Input: bipartite graph G = (LU R, F)

Output: a matching M in G of the maximum size

Def. Given a bipartite graph G = (LU R, F), a matching in G is a
set M C FE of edges such that every vertex in V is an endpoint of at
most one edge in M.

Maximum Bipartite Matching Problem
Input: bipartite graph G = (LU R, F)

Output: a matching M in G of the maximum size

Def. Given a bipartite graph G = (LU R, F), a matching in G is a
set M C FE of edges such that every vertex in V is an endpoint of at
most one edge in M.

v

Maximum Bipartite Matching Problem
Input: bipartite graph G = (LU R, F)

Output: a matching M in G of the maximum size

Reduce Maximum Bipartite Matching to Maximum
Flow Problem

Reduce Maximum Bipartite Matching to Maximum
Flow Problem

Reduce Maximum Bipartite Matching to Maximum
Flow Problem

Reduce Maximum Bipartite Matching to Maximum
Flow Problem

Reduce Maximum Bipartite Matching to Maximum
Flow Problem

o Create a digraph G’ = (LU RU {s,t}, E') with capacity
c: B — RZO:

Add a source s and a sink ¢

Add an edge from s to each vertex u € L of capacity 1

Add an edge from each vertex v € R to t of capacity 1

Direct all edges in E from L to R, and assign oo capacity (or

capacity 1) to them

Reduce Maximum Bipartite Matching to Maximum
Flow Problem

o Create a digraph G’ = (LU RU {s,t}, E') with capacity
c: B — RZO:

Add a source s and a sink ¢

Add an edge from s to each vertex u € L of capacity 1

Add an edge from each vertex v € R to t of capacity 1

Direct all edges in E from L to R, and assign oo capacity (or

capacity 1) to them

@ Compute the maximum flow from s to ¢t in G’

Reduce Maximum Bipartite Matching to Maximum
Flow Problem

o Create a digraph G’ = (LU RU {s,t}, E') with capacity
c: B — RZO:

Add a source s and a sink ¢

Add an edge from s to each vertex u € L of capacity 1

Add an edge from each vertex v € R to t of capacity 1

Direct all edges in E from L to R, and assign oo capacity (or

capacity 1) to them

@ Compute the maximum flow from s to ¢t in G’

@ The maximum flow gives a matching

Reduce Maximum Bipartite Matching to Maximum
Flow Problem

o Create a digraph G’ = (LU RU {s,t}, E') with capacity
c: B — RZO:

Add a source s and a sink ¢

Add an edge from s to each vertex u € L of capacity 1

Add an edge from each vertex v € R to t of capacity 1

Direct all edges in E from L to R, and assign oo capacity (or

capacity 1) to them

@ Compute the maximum flow from s to ¢t in G’
@ The maximum flow gives a matching
@ Running time:

Reduce Maximum Bipartite Matching to Maximum
Flow Problem

o Create a digraph G’ = (LU RU {s,t}, E') with capacity
c: B — RZO:

Add a source s and a sink ¢

Add an edge from s to each vertex u € L of capacity 1

Add an edge from each vertex v € R to t of capacity 1

Direct all edges in E from L to R, and assign oo capacity (or

capacity 1) to them

@ Compute the maximum flow from s to ¢t in G’
@ The maximum flow gives a matching
@ Running time:
o Ford-Fulkerson: O(m x max flow value) = O(mn).

Reduce Maximum Bipartite Matching to Maximum
Flow Problem

o Create a digraph G’ = (LU RU {s,t}, E') with capacity
c: B — RZO:

Add a source s and a sink ¢

Add an edge from s to each vertex u € L of capacity 1

Add an edge from each vertex v € R to t of capacity 1

Direct all edges in E from L to R, and assign oo capacity (or

capacity 1) to them

@ Compute the maximum flow from s to ¢t in G’
@ The maximum flow gives a matching
@ Running time:

o Ford-Fulkerson: O(m x max flow value) = O(mn).
o Hopcroft-Karp: O(mn'/?) time

Lemma Size of max matching = value of max flow in G’

Lemma Size of max matching = value of max flow in G’

Proof. <.
Given a maximum matching M C FE, send a flow along each edge
e € M and thus we have a flow of value |M|. O

Lemma Size of max matching = value of max flow in G’

Proof. <.
Given a maximum matching M C FE, send a flow along each edge
e € M and thus we have a flow of value |M|. O

AR

Lemma Size of max matching = value of max flow in G’ J

Proof. <.
Given a maximum matching M C FE, send a flow along each edge
e € M and thus we have a flow of value |M|. O

Lemma Size of max matching = value of max flow in G’

Lemma Size of max matching = value of max flow in G’)

51/84

Lemma Size of max matching = value of max flow in G’

Proof. >.

@ The maximum flow f in G’ is integral since all capacities are
integral

Lemma Size of max matching = value of max flow in G’

Proof. >.

@ The maximum flow f in G’ is integral since all capacities are
integral

@ Let M to be the set of edges e from L to R with f(e) =1

Lemma Size of max matching = value of max flow in G’

Proof. >.

@ The maximum flow f in G’ is integral since all capacities are
integral

@ Let M to be the set of edges e from L to R with f(e) =1

@ M is a matching of size that equals to the flow value m

Lemma Size of max matching = value of max flow in G’

Proof. >.
@ The maximum flow f in G’ is integral since all capacities are
integral

@ Let M to be the set of edges e from L to R with f(e) =1

@ M is a matching of size that equals to the flow value

ST AR

'f

.a.\{?‘. !

g

Lemma Size of max matching = value of max flow in G’

Proof. >.

@ The maximum flow f in G’ is integral since all capacities are
integral

@ Let M to be the set of edges e from L to R with f(e) =1

@ M is a matching of size that equals to the flow value

DA

N

Perfect Matching

Def. Given a bipartite graph G = (LU R, E) with |L| = |R|, a
perfect matching M of (G is a matching such that every vertex
v € L U R participates in exactly one edge in M.

Perfect Matching

Def. Given a bipartite graph G = (LU R, E) with |L| = |R|, a
perfect matching M of (G is a matching such that every vertex
v € L U R participates in exactly one edge in M.

Assuming |L| = |R| = n, when does G = (LU R, E)) have a perfect
matching?

Perfect Matching

Def. Given a bipartite graph G = (LU R, E) with |L| = |R|, a
perfect matching M of (G is a matching such that every vertex
v € L U R participates in exactly one edge in M.

Assuming |L| = |R| = n, when does G = (L U R, E) not have a
perfect matching?

Perfect Matching

Def. Given a bipartite graph G = (LU R, E) with |L| = |R|, a
perfect matching M of (G is a matching such that every vertex
v € L U R participates in exactly one edge in M.

Assuming |L| = |R| = n, when does G = (L U R, E) not have a
perfect matching?

L

Perfect Matching

Def. Given a bipartite graph G = (LU R, E) with |L| = |R|, a
perfect matching M of (G is a matching such that every vertex
v € L U R participates in exactly one edge in M.

Assuming |L| = |R| = n, when does G = (L U R, E) not have a
perfect matching?

@ For X C L, define N(X)={ve R:Jue X, (u,v) € E}

Perfect Matching

Def. Given a bipartite graph G = (LU R, E) with |L| = |R|, a
perfect matching M of (G is a matching such that every vertex
v € L U R participates in exactly one edge in M.

Assuming |L| = |R| = n, when does G = (L U R, E) not have a
perfect matching?

o For X C L, define N(X)={ve R:Jue X, (u,v) € E}
@ |[N(X)| < X for some X C L = no perfect matching

Perfect Matching

Def. Given a bipartite graph G = (LU R, E) with |L| = |R|, a
perfect matching M of (G is a matching such that every vertex
v € L U R participates in exactly one edge in M.

Assuming |L| = |R| = n, when does G = (L U R, E) not have a
perfect matching?

o For X C L, define N(X)={ve R:Jue X, (u,v) € E}
e |[N(X)| < X for some X C L <= no perfect matching

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Proof. =—.

If G has a perfect matching, then vertices matched to X C N(X);
thus |[N(X)| > | X]. O

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Proof. <.

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Proof. <.

e Contrapositive: if no perfect
matching, then
34X C L, IN(X)| < |X]

|L| = |R|. Then G has a perfect matching if and only if

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|IN(X)| > | X]| for every X C L.

Proof. <«—.

e Contrapositive: if no perfect
matching, then
X C L, |N(X)| < |X]|

@ Consider the network flow
instance

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Proof. <«—.

e Contrapositive: if no perfect
matching, then
X C L, |N(X)| < |X]|

@ Consider the network flow
instance

@ Thereis a s-t cut (S,T) of
value at most n — 1

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Proof. <«—.

e Contrapositive: if no perfect
matching, then
X C L, |N(X)| < |X]|

@ Consider the network flow
instance

@ Thereis a s-t cut (S,T) of
value at most n — 1

@ Define L,, L;, R, R; as in
figure [

|

(LU R, E) be a bipartite graph with

|R|. Then G has a perfect matching if and only if

3

Ul
I <
O, >
<3
£ -8
nru N
o= =
2 Al
e
= Il =<
T==

\

A1)
A
)

\ X

N
NG
S

L

50

=

Proof.

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Proof. <«——.

e Contrapositive: if no perfect
matching, then
X C L, |N(X)| < |X]|

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Proof. <«——.

e Contrapositive: if no perfect
matching, then
X C L, |N(X)| < |X]|

@ No edges from L, to R;, since
their capacities are oo

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Proof. <«——.

e Contrapositive: if no perfect
matching, then
X C L, |N(X)| < |X]|

@ No edges from L, to R;, since
their capacities are oo

o ¢(S,T) = |Li| + |Ry| < n

Hall’s Theorem Let G = (L U R, E) be a bipartite graph with
|L| = |R|. Then G has a perfect matching if and only if
|IN(X)| > | X]| for every X C L.

Proof. <«——.

e Contrapositive: if no perfect
matching, then
X C L, |N(X)| < |X]|

@ No edges from L, to R;, since
their capacities are oo

o ¢(S,T) = |Li| + |Rs| < n
o |N(Ly)| < |Rs| <n—|L| =
| Ls|. O

V.

@ Network Flow

© Ford-Fulkerson Method

© Correctness of Ford-Fulkerson's Method and Maximum Flow
Minimum Cut Theorem

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm
@ Capacity-Scaling Algorithm

© Bipartite Matching Problem
@ s-t Edge-Disjoint Paths Problem
@ More Applications

56,84

s-t Edge Disjoint Paths
Input: a directed (or undirected) graph G = (V, F) and s,t € V

Output: the maximum number of edge-disjoint paths from s to ¢ in

G

s-t Edge Disjoint Paths
Input: a directed (or undirected) graph G = (V, F) and s,t € V

Output: the maximum number of edge-disjoint paths from s to ¢ in

@ Solving the maximum flow problem, where all capacities are 1

o All flow values are integral (i.e, either 0 or 1)

@ Solving the maximum flow problem, where all capacities are 1

o All flow values are integral (i.e, either 0 or 1)

@ Solving the maximum flow problem, where all capacities are 1
o All flow values are integral (i.e, either 0 or 1)

From flow to disjoint paths

@ Solving the maximum flow problem, where all capacities are 1
o All flow values are integral (i.e, either 0 or 1)
From flow to disjoint paths

o find an arbitrary s — t path where all edges have flow value 1

@ Solving the maximum flow problem, where all capacities are 1
o All flow values are integral (i.e, either 0 or 1)

From flow to disjoint paths

o find an arbitrary s — t path where all edges have flow value 1

@ change the flow values of the path to 0 and repeat

@ Solving the maximum flow problem, where all capacities are 1
o All flow values are integral (i.e, either 0 or 1)

From flow to disjoint paths

o find an arbitrary s — t path where all edges have flow value 1

@ change the flow values of the path to 0 and repeat

@ Solving the maximum flow problem, where all capacities are 1
o All flow values are integral (i.e, either 0 or 1)

From flow to disjoint paths

o find an arbitrary s — t path where all edges have flow value 1

@ change the flow values of the path to 0 and repeat

@ Solving the maximum flow problem, where all capacities are 1
o All flow values are integral (i.e, either 0 or 1)

From flow to disjoint paths

o find an arbitrary s — t path where all edges have flow value 1

@ change the flow values of the path to 0 and repeat

Theorem The maximum number of edge disjoint paths from s to ¢
equals the minimum value of an s-t cut (S, 7). J

Theorem The maximum number of edge disjoint paths from s to ¢
equals the minimum value of an s-t cut (S, 7). J

s-t Edge Disjoint Paths in Undirected Graphs

s-t Edge Disjoint Paths in Undirected Graphs

@ an undirected edge — two anti-parallel directed edges.

s-t Edge Disjoint Paths in Undirected Graphs

@ an undirected edge — two anti-parallel directed edges.
@ Solving the s-t maximum flow problem in the directed graph

s-t Edge Disjoint Paths in Undirected Graphs

@ an undirected edge — two anti-parallel directed edges.
@ Solving the s-t maximum flow problem in the directed graph
@ Convert the flow to paths

s-t Edge Disjoint Paths in Undirected Graphs

@ an undirected edge — two anti-parallel directed edges.

@ Solving the s-t maximum flow problem in the directed graph
@ Convert the flow to paths

@ Issue: both e = (u,v) and ¢ = (v, u) are used

s-t Edge Disjoint Paths in Undirected Graphs

@ an undirected edge — two anti-parallel directed edges.

@ Solving the s-t maximum flow problem in the directed graph
@ Convert the flow to paths

@ Issue: both e = (u,v) and ¢ = (v, u) are used

e Fix: if this happens we change f(e) = f(¢/) =0

Menger's Theorem

Menger’'s Theorem In an undirected graph, the maximum number
of edge-disjoint paths between s to t is equal to the minimum
number of edges whose removal disconnects s and t.

Menger's Theorem

Menger’'s Theorem In an undirected graph, the maximum number
of edge-disjoint paths between s to t is equal to the minimum
number of edges whose removal disconnects s and t.

Menger's Theorem

Menger’'s Theorem In an undirected graph, the maximum number
of edge-disjoint paths between s to t is equal to the minimum
number of edges whose removal disconnects s and t.

s-t connectivity measures how well s and ¢ are connected.

Global Min-Cut Problem
Input: a connected graph G = (V, E)
Output: the minimum number of edges whose removal will
disconnect GG

Global Min-Cut Problem
Input: a connected graph G = (V, E)
Output: the minimum number of edges whose removal will
disconnect GG

Global Min-Cut Problem
Input: a connected graph G = (V, E)
Output: the minimum number of edges whose removal will
disconnect GG

Solving Global Min-Cut Using Maximum Flow

1. let G’ be the directed graph obtained from G by replacing every
edge with two anti-parallel edges

2: for every pair s # t of vertices do

3: obtain the minimum cut separating s and ¢ in GG, by solving
the maximum flow instance with graph G’,source s and sink ¢

4: output the smallest minimum cut we found

@ Need to solve ©(n?) maximum flow instances

Solving Global Min-Cut Using Maximum Flow

1. let G’ be the directed graph obtained from G by replacing every
edge with two anti-parallel edges
. for every pair s # t of vertices do
obtain the minimum cut separating s and ¢ in GG, by solving
the maximum flow instance with graph G’,source s and sink ¢

4: output the smallest minimum cut we found

w N

@ Need to solve ©(n?) maximum flow instances

o Can we do better?

Solving Global Min-Cut Using Maximum Flow

1. let G’ be the directed graph obtained from G by replacing every
edge with two anti-parallel edges

2: for every pair s # t of vertices do

3: obtain the minimum cut separating s and ¢ in GG, by solving
the maximum flow instance with graph G’,source s and sink ¢

4: output the smallest minimum cut we found

@ Need to solve ©(n?) maximum flow instances

@ Can we do better?
@ Yes. We can fix s. We only need to enumerate ¢

@ Network Flow

© Ford-Fulkerson Method

© Correctness of Ford-Fulkerson's Method and Maximum Flow
Minimum Cut Theorem

@ Running Time of Ford-Fulkerson-Type Algorithm
@ Shortest Augmenting Path Algorithm
@ Capacity-Scaling Algorithm

© Bipartite Matching Problem
@ s-t Edge-Disjoint Paths Problem
ﬂ More Applications

64/84

Extension of Network Flow: Circulation Problem
Input: A digraph G = (V, E)
capacities ¢ € ZZ,
supply vector d € ZV with 3~ _, d, =0
Output: whether there exists f : E — Z> s.t.

S ofle)= D> fle) Yo eV

e€dout(v) e€din(v)

0< fle) <ee Veec E

Extension of Network Flow: Circulation Problem
Input: A digraph G = (V, E)
capacities ¢ € ZZ,
supply vector d € ZV with 3~ _, d, =0
Output: whether there exists f : E — Z>¢ s.t.

S ofle)= D> fle) YoeV

e€dout(v) e€din(v)

ng()SCe V€EE

@ d, denotes the net supply of a good
@ d, > 0: there is a supply of d, at v
@ d, < 0: there is a demand of —d, at v

@ problem: whether we can match the supplies and demands
without violating capacity constraints

Example

Example

Example

Reduction

Example Reduction

Reduction to maximum flow

@ add a super-source s and a super-sink ¢ to network

e for every v € V with d, > 0: add edge (s, v) of capacity d,
e for every v € V with d, < 0: add edge (v, t) of capacity —d,

o check if maximum flow has value 3 ., _ d,

o d(S) =3, sd, VS C V.
° C(Sa Vv \ S) = Z(u,v)eE:uGS,v¢S Clu,v)-

Lemma The instance is feasible if and only if for every S C V,
d(S) <c(S,V\9).

o d(S) =3, sd, VS C V.
° C(Sa Vv \ S) = Z(u,v)GE:uGS,MES Clu,v)-

Lemma The instance is feasible if and only if for every S C V,
d(S) <c(S,V\9).

Proof of “only if" direction.

e if for some S CV, ¢(S,V'\ §) < d(S), then the demand in S can
not be sent out of S. O

v

o d(S) =3, sd, VS C V.
° C(Sa Vv \ S) = Z(u,v)GE:uES,MZS Clu,v)-

Lemma The instance is feasible if and only if for every S C V,
d(S) <c(S,V\9).

Proof of “only if" direction.

e if for some S CV, ¢(S,V'\ §) < d(S), then the demand in S can
not be sent out of S. O

@ It remains to consider the “if" direction

Proof of “if" Direction

Lemma The instance is feasible if and only if for every S C V,
d(S) < ¢(S,V\9).

Proof of “if" Direction

Lemma The instance is feasible if and only if for every S C V,

d(S) < c(S,V\ 9).

@ assume instance is infeasible:
max-flow < d(A)

e A={veV:d, >0}
e B:={veV:d, <0}

A

EZARET

EREFYE]

=7

Proof of “if" Direction

Lemma The instance is feasible if and only if for every S C V,
d(S) < ¢(S,V\9).

@ assume instance is infeasible: 1 ¢ 3
max-flow < d(A) : ,}4 . E//

e A={veV:d, >0} 9/;/:\>t

e B:={veV:d, <0})XN/O./

e (S3s,T>t): min-cut : i -

Proof of “if" Direction

Lemma The instance is feasible if and only if for every S C V,

d(S) < c(S,V\ 9).

@ assume instance is infeasible:
max-flow < d(A)

e A={veV:d, >0}
e B:={veV:d, <0}
e (S3s,T>t): min-cut

S
&

G

A

VL]

_—

EZARETS
B

d(TNA) +]dSNB)| +c(S\ {s},T\ {t}) < d(A)
dTNA) —dSNB)+c(S\ {s},T\ {t}) < d(A)
c(S\ {s}, T\ {t}) <d(SNA)+d(SNB)=d(S\ {s})

7
+

Proof of “if" Direction

Lemma The instance is feasible if and only if for every S C V,

d(S) < c(S,V\ 9).

@ assume instance is infeasible:
max-flow < d(A)

e A={veV:d, >0}
e B:={veV:d, <0}
e (S3s,T>t): min-cut

S
&

G

A

VL]

_—

EZARETS
B

d(TNA) +]dSNB)| +c(S\ {s},T\ {t}) < d(A)
dTNA) —dSNB)+c(S\ {s},T\ {t}) < d(A)
c(S\ {s}, T\ {t}) <d(SNA)+d(SNB)=d(S\ {s})

o Define S’ = S\ {s}: d(S") > (S, V \ §).

7
+

Circulation Problem with Capacity Lower Bounds
Input: A digraph G = (V, E)
capacities ¢ € ZZ,
capacity lower bounds I € ZZ;, 0 <. < c.
supply vector d € ZV with 3~ _, d, =0
Output: whether there exists f : £ — Z> s.t.

S fle)= D> fle) VoeV

e€dout(v) e€din(v)

le < fle) <ece Vee E

Removing Capacity Lower Bounds

Removing Capacity Lower Bounds

Removing Capacity Lower Bounds

8 e b handling e = (u,v) with [, > 0
1 Od;<_du_le
1
' o d «dy+1,
v ° (+—c.— 1,
/
0, 3] @[, +0

Removing Capacity Lower Bounds

2, 5]

8 e b handling e = (u,v) with [, > 0
1 Od;<_du_le
1
' o d «dy+1,
v ° (+—c.— 1,
/
0, 3] @[, +0

60—N7

@ in old instance: flow is f(e) € [le,c.] = f(e) =l € [0,cc — L]

@ in new instance: flow is f(e) — I, € [0,c]

Input: integers n,k > 1 and E C [n] x [k]
integers 0 < ¢; < ¢}, Vi € [n]
integers 0 < p; < p},,Vj € [k]

71/84

Survey Design
Input: integers n,k > 1 and E C [n] x [k]
integers 0 < ¢; < ¢}, Vi € [n]
integers 0 < p; < p’;,Vj € [K]
Output: £/ C E s.t.
a<|{jelk]:(i,j) € E'} <d,
pi < i € lm]: (i,5) € E'} < 1,

Vi € [n]
Vi € [k]

Survey Design
Input: integers n,k > 1 and E C [n] x [k]
integers 0 < ¢; < ¢}, Vi € [n]
integers 0 < p; < p’;,Vj € [K]
Output: £/ C E s.t.
a<|{jelk]:(i,j) € E'} <d, Vi € [n]
pi < i€ [m]: (i,j) € E'} < pj, vj € [k]

Background

@ [n]: customers, [k]:products

@ 15 € E: customer ¢ purchased product j and can do a survey
@ every customer i needs to do between ¢; and ¢, surveys

@ every product j needs to collect between p; and p; surveys

Reduction to Circulation
@ vertices {s,t} W [n| W [K],
e (i,j) € E: (i,7) with bounds
[0,1]
e Vi: (s,i) with bounds [¢;, ¢/]
e Vj: (j,t) with bounds [p;, pf]

customers

surveys

Reduction to Circulation

@ vertices {s,t} W [n| W [K],

e (i,j) € E: (i,j) with bounds
[0,1]

@ Vi: (s,4) with bounds [¢;, ¢/]

e Vj: (j,t) with bounds [p;, pf]

@ (t,s) with bounds [0, co]

customers

surveys

Airline Scheduling
Input: a DAG G = (V,E)

Output: the minimum number of disjoint paths in GG to cover all
vertices

Airline Scheduling
Input: a DAG G = (V,E)

Output: the minimum number of disjoint paths in GG to cover all
vertices

Airline Scheduling
Input: a DAG G = (V,E)

Output: the minimum number of disjoint paths in G to cover all
vertices

Background
@ vertex : a flight

@ edge (u,v): an aircraft that serves u
can serve v immediately

@ goal: minimize the number of aircrafts
v

Reduction to the Circulation Problem

Reduction to the Circulation Problem

@ split v into (vjn, Vout)

Reduction to the Circulation Problem

@ split v into (vjn, Vout)

@ add s, and (s, v;,), Yo

Reduction to the Circulation Problem

@ split v into (Vin, Vout)
@ add s, and (s, v;,), Yo
e add ¢, and (vout, t), Vv

Reduction to the Circulation Problem

@ split v into (Vin, Vout)
@ add s, and (s, v;,), Yo
e add ¢, and (vout, t), Vv

@ set lower and upper
bounds

Reduction to the Circulation Problem

split v into (Vin, Vout)
add s, and (s, viy), Vo
add ¢, and (vout, t), Vo

set lower and upper
bounds

@ add t — s of capacity £

Reduction to the Circulation Problem

split v into (Vin, Vout)
add s, and (s, viy), Vo
add ¢, and (vout, t), Vo

set lower and upper
bounds

add t — s of capacity £

@ find minimum k s.t.
instance is feasible

Input: A graph G = (V, E), with edge costs ¢ € Z%

two reward vectors a,b € ZY,

75/84

Image Segmentation
Input: A graph G = (V, E), with edge costs ¢ € Zgo
two reward vectors a,b € ZY,

Output: a cut (A, B) of G so as to maximize

Z ay Z by, — Z Clu,w)

vEA veB (u,v)€E:|{u,v}NA|=1

Image Segmentation
Input: A graph G = (V, E), with edge costs ¢ € Zgo
two reward vectors a,b € ZY,

Output: a cut (A, B) of G so as to maximize

Z ay + Z bv - Z C(u,v)

vEA veB (u,v)€E:|{u,v}NA|=1

Background

@ a,: the likelihood of v being a foreground pixel
@ b,: the likelihood of v being a background pixel
® C(uu): the penalty for separating u and v

@ need to maximize total reward - total penalty

76/84

Reduction to Network
Flow

@ replace (u,v) with two
anti-parallel arcs

Reduction to Network

Flow

e replace (u,v) with two
anti-parallel arcs

@ add source s and arcs
(s,v),Vv

@ add sink ¢ and arcs
(v,t), Yo

Reduction to Network
Flow

e replace (u,v) with two
anti-parallel arcs

@ add source s and arcs
(s,v),Vv

@ add sink t and arcs
(v,t), Yo

@ set capacities

Reduction to Network
Flow

e replace (u,v) with two
anti-parallel arcs

@ add source s and arcs
(s,v),Vv

@ add sink t and arcs
(v,t), Yo

@ set capacities

Reduction to Network
Flow

e replace (u,v) with two
anti-parallel arcs

@ add source s and arcs
(s,v),Vv

@ add sink t and arcs
(v,t), Yo

@ set capacities
@ The cut value of (S ={s} UA,{t}UB)is

Z ay + Z bv + Z Clu,w)

veB vEA (u,v)€E:{u,v}NA|=1

=3 (@, +0,) - (Z a,+ Y b, — > C(w))

veV veA veB (u,v)€E:|{u,v}NA|=1

@ The cut value of (S ={s}UA{t}UB)is
Z(av + b (Z ay + Z b - Z C(uﬂ,))
veV veEA veB (u,v)€E:|{u,v}NA|=1

= Z a, + b,) — (objective of (A, B))

veV

@ The cut value of (S ={s}UA{t}UB)is

Z(av +by) (Zav Zb - Z C(u7v)>

veV veEA veB (u,v)€E:|{u,v}NA|=1
= Z a, + b,) — (objective of (A, B))
veV

@ So, maximizing the objective of (A, B) is equivalent to minimizing
the cut value.

Input: A DAG G = (V. E)
revenue on vertices: p € Z"; p,'s could be negative.

78/84

Project Selection
Input: A DAG G = (V. E)
revenue on vertices: p € Z"; p,'s could be negative.

Output: A set B C V satisfying the precedence constraints:
veEB = ueB, V(uv)€EFE

Project Selection
Input: A DAG G = (V, E)
revenue on vertices: p € Z"; p,'s could be negative.
Output: A set B C V satisfying the precedence constraints:
veEB = ueB, V(uv)€EFE

Motivation

e Motivation: (u,v) € E: uis a
prerequisite of v, to select v,
we must select u

@ Goal: maximize the revenue
subject to the precedence
constraint.

Project Selection
Input: A DAG G = (V, E)
revenue on vertices: p € Z"; p,'s could be negative.
Output: A set B C V satisfying the precedence constraints:
veEB = ueB, V(uv)€EFE

Motivation

e Motivation: (u,v) € E: uis a
prerequisite of v, to select v,
we must select u

@ Goal: maximize the revenue
subject to the precedence
constraint.

Project Selection
Input: A DAG G = (V, E)
revenue on vertices: p € Z"; p,'s could be negative.
Output: A set B C V satisfying the precedence constraints:
veEB = ueB, V(uv)€EFE

Motivation

e Motivation: (u,v) € E: uis a
prerequisite of v, to select v,
we must select u

@ Goal: maximize the revenue
subject to the precedence
constraint.

79/84

Reduction

@ add source s and sink ¢

@ p, <0: (s,v) of capacity —p,
e p, > 0: (v,t) of capacity p,
o L={v:p, <0}

e R={v:p, >0}

Reduction
@ add source s and sink ¢

Py < 0: (s,v) of capacity —p,
py > 0: (v,t) of capacity p,
L={v:p, <0}
R={v:p,>0}.

precedence edges: co capacity |

Reduction

add source s and sink ¢

Py < 0: (s,v) of capacity —p,
py > 0: (v,t) of capacity p,
L={v:p, <0}
R={v:p,>0}.

precedence edges: oo capacity) T=BU{t)

e min-cut (S ={s} UA,T = {t} UB)

Reduction

add source s and sink ¢

Py < 0: (s,v) of capacity —p,
py > 0: (v,t) of capacity p,
L={v:p, <0}
R={v:p,>0}.

precedence edges: oo capacity | T=BU{t)

e min-cut (S ={s} UA,T = {t} UB)
@ no oo-capacity edges from A to B

Reduction

@ add source s and sink ¢

@ p, <0: (s,v) of capacity —p,
e p, > 0: (v,t) of capacity p,
o L={v:p, <0}

e R={v:p, >0}

@ precedence edges: oo capacity | T=BU{t)

e min-cut (S ={s} UA,T = {t} UB)
@ no oo-capacity edges from A to B
@ cut value is

YNop)+ D == b= . Pt D p

vEBNL vEANR vEBNL vEBNR vER

=D P

vER veEB

@ B is a valid solution <= ¢(5,T) # o0

@ B is a valid solution <= ¢(5,T) # o0

e when B is valid, ¢(S,T) = Y cpPv — 2 vep Po

@ B is a valid solution <= ¢(5,T) # o0

e when B is valid, ¢(S,T) = Y cpPv — 2 vep Po

@ so, to maximize > . p,, we need to minimize ¢(S,T).

Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V' such that
no two vertices in [are adjacent in G.

Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V' such that
no two vertices in [are adjacent in G.

Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V' such that
no two vertices in [are adjacent in G.

Maximum Independent Set Problem
Input: graph G = (V, E)
Output: the size of the maximum independent set of GG

Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V' such that
no two vertices in [are adjacent in G.

Maximum Independent Set Problem
Input: graph G = (V, E)
Output: the size of the maximum independent set of GG

@ Maximum Independent Set is NP-hard

Vertex-Cover

Def. Given a graph G = (V| E), a vertex cover of GG is a subset
S C V such that for every (u,v) € E'thenu e Sorve S .

Vertex-Cover

Def. Given a graph G = (V, E), a vertex cover of G is a subset
S C V such that for every (u,v) € E'thenu e Sorve S . J

Vertex-Cover

Def. Given a graph G = (V| E), a vertex cover of GG is a subset
S C V such that for every (u,v) € E'thenu e Sorve S . J

Vertex-Cover Problem
Input: G = (V, E) and integer k

Output: whether there is a vertex cover of G of size at most k

83,84

Q: What is the relationship between Vertex-Cover and Ind-Set?

J

Q: What is the relationship between Vertex-Cover and Ind-Set?

)

A: S is a vertex-cover of G = (V, E) if and only if V'\ S'is an
independent set of G.

)

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V, E) if and only if V'\ S'is an
independent set of G.

@ So, MinVC = n— MaxIS

@ MinVC: size of minimum vertex cover

@ MaxIS: size of maximum independent set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V, E) if and only if V'\ S'is an
independent set of G.

@ So, MinVC = n— MaxIS

@ MinVC: size of minimum vertex cover

@ MaxIS: size of maximum independent set

Lemma In a bipartite graph G = (LU R, E), we have
@ MaxM = MinVC = n— MaxIS

@ MaxM: size of maximum matching

e First, MaxM < MinVC, for any graph.

e First, MaxM < MinVC, for any graph.
@ In bipartite graphs, there is a VC of size MaxM:

e First, MaxM < MinVC, for any graph.
@ In bipartite graphs, there is a VC of size MaxM:

e First, MaxM < MinVC, for any graph.
@ In bipartite graphs, there is a VC of size MaxM:

e (S,T): st cut

e First, MaxM < MinVC, for any graph.
@ In bipartite graphs, there is a VC of size MaxM:

(S,T): st cut
(ueLLveR)eM

eveES=ues
eveT =ueT

e First, MaxM < MinVC, for any graph.
@ In bipartite graphs, there is a VC of size MaxM:

(S,T): st cut
(ueLLveR)eM

eveES=ues
eveT =ueT

@ unmatched vertices are in
(LNS)U(RNT)

o No edges in E between L NS
and RNT

e First, MaxM < MinVC, for any graph.
@ In bipartite graphs, there is a VC of size MaxM:

(S,T): st cut
(ueLLveR)eM

eveES=ues
eveT =ueT

@ unmatched vertices are in
(LNS)U(RNT)

o No edges in E between L NS
and RNT

o (LNTY)U(RNS)isa VC,
whose size is | M|

	Network Flow
	Ford-Fulkerson Method
	Correctness of Ford-Fulkerson's Method and Maximum Flow Minimum Cut Theorem
	Running Time of Ford-Fulkerson-Type Algorithm
	Shortest Augmenting Path Algorithm
	Capacity-Scaling Algorithm

	Bipartite Matching Problem
	s-t Edge-Disjoint Paths Problem
	More Applications

