
Understanding the Cluster Linear Program for Correlation
Clustering∗

Nairen Cao

Boston College

Brighton, USA

caonc@bc.edu

Vincent Cohen-Addad

Google Research

Grenoble, France

cohenaddad@google.com

Euiwoong Lee

University of Michigan

Ann Arbor, USA

euiwoong@umich.edu

Shi Li

Nanjing University

Nanjing, China

shili@nju.edu.cn

Alantha Newman

CNRS - Université Grenoble Alpes

Grenoble, France

alantha.newman@grenoble-inp.fr

Lukas Vogl

École polytechnique fédérale de

Lausanne

Lausanne, Switzerland

lukas.vogl@epfl.ch

ABSTRACT
In the classic Correlation Clustering problem introduced by Bansal,

Blum, and Chawla [7], the input is a complete graph where edges

are labeled either + or −, and the goal is to find a partition of the ver-
tices that minimizes the sum of the +edges across parts plus the sum

of the -edges within parts. In recent years, Chawla, Makarychev,

Schramm and Yaroslavtsev [21] gave a 2.06-approximation by pro-

viding a near-optimal rounding of the standard LP, and Cohen-

Addad, Lee, Li, and Newman [27, 28] finally bypassed the integrality

gap of 2 for this LP giving a 1.73-approximation for the problem.

While introducing new ideas for Correlation Clustering, their

algorithm is more complicated than typical approximation algo-

rithms in the following two aspects: (1) It is based on two different

relaxations with separate rounding algorithms connected by the

round-or-cut procedure. (2) Each of the rounding algorithms has to

separately handle seemingly inevitable correlated rounding errors,
coming from correlated rounding of Sherali-Adams and other strong

LP relaxations [9, 33, 41].

In order to create a simple and unified framework for Correlation

Clustering similar to those for typical approximate optimization

tasks, we propose the cluster LP as a strong linear program that

might tightly capture the approximability of Correlation Cluster-

ing. It unifies all the previous relaxations for the problem. It is

exponential-sized, but we show that it can be (1+𝜖)-approximately

solved in polynomial time for any 𝜖 > 0, providing the framework

for designing rounding algorithms without worrying about corre-

lated rounding errors; these errors are handled uniformly in solving

the relaxation.

∗
N.C. was supported by NSF grant CCF-2008422. S.L. is affiliated with the Department

of Computer Science and Technology in Nanjing University, and supported by the State

Key Laboratory for Novel Software Technology, and the New Cornerstone Science

Laboratory. E.L. was supported in part by NSF grant CCF-2236669 and Google.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0383-6/24/06

https://doi.org/10.1145/3618260.3649749

We demonstrate the power of the cluster LP by presenting a

simple rounding algorithm, and providing two analyses, one an-

alytically proving a 1.49-approximation and the other solving a

factor-revealing SDP to show a 1.437-approximation. Both proofs

introduce principled methods by which to analyze the performance

of the algorithm, resulting in a significantly improved approxima-

tion guarantee.

Finally, we prove an integrality gap of 4/3 for the cluster LP,

showing our 1.437-upper bound cannot be drastically improved.

Our gap instance directly inspires an improved NP-hardness of

approximation with a ratio 24/23 ≈ 1.042; no explicit hardness

ratio was known before.

CCS CONCEPTS
• Theory of computation→ Facility location and clustering;
Discrete optimization; Rounding techniques; Lower bounds and infor-
mation complexity.

KEYWORDS
Clustering, approximation algorithms, exponential size linear pro-

gramming, semi-definite programming.

ACM Reference Format:
Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman,

and Lukas Vogl. 2024. Understanding the Cluster Linear Program for Correla-

tion Clustering. In Proceedings of the 56th Annual ACM Symposium on Theory
of Computing (STOC ’24), June 24–28, 2024, Vancouver, BC, Canada. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3618260.3649749

1 INTRODUCTION
Clustering is a classic problem in unsupervised machine learning

and data mining. Given a set of data elements and pairwise similar-

ity information between the elements, the task is to find a partition

of the data elements into clusters to achieve (often contradictory)

goals of placing similar elements in the same cluster and separating

different elements in different clusters. Introduced by Bansal, Blum,

and Chawla [7], Correlation Clustering elegantly models such ten-

sion and has become one of the most widely studied formulations

for graph clustering. The input of the problem consists of a com-

plete graph (𝑉 , 𝐸+ ⊎ 𝐸−), where 𝐸+ ⊎ 𝐸− =
(𝑉
2

)
, 𝐸+ representing

the so-called positive edges and 𝐸− the so-called negative edges.

https://orcid.org/0000-0002-4961-763X
https://orcid.org/0000-0002-0779-8962
https://orcid.org/0000-0003-1454-7587
https://orcid.org/0000-0001-9140-9415
https://orcid.org/0009-0009-7353-7734
https://orcid.org/0000-0002-8241-536X
https://doi.org/10.1145/3618260.3649749
https://doi.org/10.1145/3618260.3649749

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas Vogl

The goal is to find a clustering (partition) of𝑉 , namely (𝑉1, . . . ,𝑉𝑘),
that minimizes the number of unsatisfied edges, namely the +edges
between different clusters and the −edges within the same cluster.

Thanks to the simplicity and modularity of the formulation, Corre-

lation Clustering has found a number of applications, e.g., finding

clustering ensembles [12], duplicate detection [5], community min-

ing [22], disambiguation tasks [36], automated labelling [1, 16] and

many more.

This problem is APX-Hard [18], and various𝑂 (1)-approximation

algorithms [7, 18] have been proposed in the literature. Ailon,

Charikar and Newman introduced an influential pivot-based al-

gorithm, which leads to a combinatorial 3-approximation and a

2.5-approximation with respect to the standard LP relaxation [4].

The LP-based rounding was improved by Chawla, Makarychev,

Schramm and Yaroslavtsev to a 2.06-approximation [21], nearly

matching the LP integrality gap of 2 presented in [18].

It turns out that (a high enough level of) the Sherali-Adams hier-

archy can be used to design a strictly better than 2-approximation.

Cohen-Addad, Lee, and Newman [28] showed that 𝑂 (1/𝜀2) rounds
of the Sherali-Adams hierarchy have an integrality gap of at most

(1.994+𝜀). This approximation ratiowas improved by Cohen-Addad,

Lee, Li, and Newman [27] to (1.73 + 𝜀) in 𝑛poly(1/𝜀) -time, which

combines pivot-based rounding and set-based rounding.
One undesirable feature of [27] is the lack of a single convex re-

laxation with respect to which the approximation ratio is analyzed.

For technical reasons, it combines the two rounding algorithms via

a generic round-or-cut framework. Given 𝑥 ∈ [0, 1]𝐸 , each of the

two rounding algorithms outputs either an integral solution with

some guarantee or a hyperplane separating 𝑥 from the convex hull

of integral solutions; if both algorithms output integral solutions,

one of them is guaranteed to achieve the desired approximation

factor. Though each of the rounding procedures is based on some

LP relaxations, they are different, so there is no single relaxation

that can be compared to the value of the final solution.

In this work, we propose the cluster LP as a single relaxation

that captures all of the existing algorithmic results. Based on this

new unified framework, we design a new rounding algorithm as

well as principled tools for the analysis that significantly extend

the previous ones, ultimately yielding a new approximation ratio

of 1.437 + 𝜀. The study of the cluster LP sheds light on the hardness

side as well, as we prove a 4/3 ≈ 1.33 gap for the cluster LP and a

24/23 ≈ 1.042 NP-hardness of approximation.

1.1 Our Results
We first state the cluster LP here. It is similar to configuration LPs
used for scheduling and assignment problems [8, 31]. In the cluster

LP, we have a variable 𝑧𝑆 for every 𝑆 ⊆ 𝑉 , 𝑆 ≠ ∅, that indicates if 𝑆 is
a cluster in the output clustering or not. As usual, 𝑥𝑢𝑣 for every𝑢𝑣 ∈(𝑉
2

)
indicates if𝑢 and 𝑣 are separated in the clustering or not. For any

𝑥 ∈ [0, 1] (
𝑉
2
)
, we define obj(𝑥) := ∑

𝑢𝑣∈𝐸+ 𝑥𝑢𝑣 +
∑
𝑢𝑣∈𝐸− (1 − 𝑥𝑢𝑣)

to be the fractional number of edges in disagreement in the solution

𝑥 .

min obj(𝑥) s.t. (cluster LP)∑︁
𝑆∋𝑢

𝑧𝑆 = 1 ∀𝑢 ∈ 𝑉 (1)

∑︁
𝑆⊇{𝑢,𝑣}

𝑧𝑆 = 1 − 𝑥𝑢𝑣 ∀𝑢𝑣 ∈
(
𝑉

2

)
(2)

𝑧𝑆 ≥ 0 ∀𝑆 ⊆ 𝑉 , 𝑆 ≠ ∅ (3)

The objective of the LP is to minimize obj(𝑥), which is a linear

function. (1) requires that every vertex 𝑢 appears in exactly one

cluster, (2) gives the definition of 𝑥𝑢𝑣 using 𝑧 variables.

The idea behind this LP was used in [27] to design their set-based

rounding algorithm, though the LP was not formulated explicitly

in that paper. Moreover, the paper did not provide an efficient

algorithm to solve it approximately. Our first result shows that we

can approximately solve the cluster LP in polynomial time, despite

it having an exponential number of variables.We remark that unlike

the configuration LPs for many problems, we do not know how to

solve the cluster LP simply by considering its dual.

Theorem 1. Let 𝜀 > 0 be a small enough constant and opt be the
cost of the optimum solution to the given Correlation Clustering in-
stance. In time 𝑛poly(1/𝜀) , we can output a feasible cluster LP solution(
(𝑧𝑆)𝑆⊆𝑉 , (𝑥𝑢𝑣)𝑢𝑣∈(𝑉

2
)
)
with obj(𝑥) ≤ (1 + 𝜀)opt, described using a

list of non-zero coordinates. 1

The cluster LP is the most powerful LP that has been considered

for the problem. Indeed, previous algorithms in [28] and [27] can

be significantly simplified if one is given a (1 + 𝜀)-approximate

solution to the LP. A large portion of the algorithms and analysis

in [28] and [27] is devoted to handle the additive errors incurred

by the correlated rounding procedure, which is inherited from the

Raghavendra-Tan rounding technique [41]. Instead, we move the

complication of handling rounding errors into the procedure of

solving the cluster LP relaxation.

With this single powerful relaxation, we believe that Theorem 1

provides a useful framework for future work that may use more

ingenious rounding of the exponential-sized cluster LP without

worrying about errors. Indeed, the constraints in the cluster LP

imply that the matrix (1 − 𝑥𝑢𝑣)𝑢,𝑣∈𝑉 is PSD,
2
and thus the LP

is at least as strong as the natural SDP for the problem. For the

complementary version of maximizing the number of correct edges,

the standard SDP is known to give a better approximation guarantee

of 0.766 [18, 42]. For the minimization version, the standard SDP

has integrality gap at least 1.5 (see full paper), but it is still open

whether this program has an integrality gap strictly below 2 or not.

We demonstrate the power of the cluster LP by presenting and

analyzing the following algorithm, significantly improving the pre-

vious best 1.73-approximation.

Theorem 2. There exists a (1.49 + 𝜀)-approximation algorithm
for Correlation Clustering that runs in time 𝑂 (𝑛poly(1/𝜀)).

1
We remark that obj(𝑥) given by the theorem is at most 1 + 𝜀 times opt, instead of

the value of the cluster LP. This is sufficient for our purpose. One should also be able

to achieve the stronger guarantee of (1 + 𝜀)-approximation to the optimum fractional

solution. Instead of dealing with the optimum clustering C∗ in the analysis, we deal

with the optimum fractional clustering to the LP. For simplicity, we choose to prove

the theorem with the weaker guarantee.

2
Consider the matrix 𝑌 ∈ [0, 1]𝑉 ×𝑉 where 𝑦𝑢𝑣 = 1 − 𝑥𝑢𝑣 for every 𝑢, 𝑣 ∈ 𝑉
(𝑌𝑢𝑢 = 1, ∀𝑢 ∈ 𝑉). For every 𝑤 ∈ R𝑉 , we have 𝑤𝑇𝑌𝑤 =

∑
𝑢,𝑣∈𝑉 𝑦𝑢𝑣𝑤𝑢𝑤𝑣 =∑

𝑢,𝑣

∑
𝑆⊇{𝑢,𝑣} 𝑧𝑆𝑤𝑢𝑤𝑣 =

∑
𝑢,𝑣

∑
𝑆⊆𝑉 𝑧𝑆 · (𝑤𝑢 · 1𝑢∈𝑆) · (𝑤𝑣 · 1𝑣∈𝑆) =∑

𝑆⊆𝑉 𝑧𝑆 (
∑

𝑢∈𝑆 𝑤𝑢) (
∑

𝑣∈𝑆 𝑤𝑣) ≥ 0.

Understanding the Cluster Linear Program for Correlation Clustering STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

This is achieved by a key modification of the pivot-based round-

ing algorithm that is used in conjunction with the set-based algo-

rithm as in [27]. In combination with more careful analysis, which

involves principled methods to obtain the best budget function, we
obtain a significantly improved approximation ratio.

In order to obtain an even tighter analysis of the same algorithm,

we introduce the new factor revealing SDP that searches over possi-

ble global distributions of triangles in valid Correlation Clustering

instances. By numerically solving such an SDP, we can further

improve the approximation ratio of the same algorithm.

Theorem 3. There exists a (1.437 + 𝜀)-approximation algorithm
for Correlation Clustering that runs in time 𝑂 (𝑛poly(1/𝜀)).

While the proof includes a feasible solution to a large SDP and is

not human-readable, we prove that our SDP gives an upper bound
on the approximation ratio, so it is a complete proof modulo the SDP

feasibility of the solution. Our program and solution can be found

at https://github.com/correlationClusteringSDP/SDP1437code/.

We also study lower bounds and prove the following lower bound

on the integrality gap of the cluster LP.

Theorem 4. For any 𝜀 > 0, the integrality gap of the cluster LP is
at least 4/3 − 𝜀.

This integrality gap for the cluster LP, after some (well-known)

loss, directly translates to NP-hardness. It is the first hardness with

an explicit hardness ratio apart from the APX-hardness [18].

Theorem 5. Unless P = BPP, for any 𝜀 > 0, there is no (24/23−𝜀)-
approximation algorithm for Correlation Clustering.

1.2 Further Related Work
The weighted version of Correlation Clustering, where each pair of

vertices has an associated weight and unsatisfied edges contribute

a cost proportional to their weight to the objective, is shown to be

equivalent to the Multicut problem [30], implying that there is an

𝑂 (log𝑛)-approximation but no constant factor approximation is

possible under the Unique Games Conjecture [20].

In the unweighted case, a PTAS exists when the number of

clusters is a fixed constant [32, 37]. Much study has been devoted

to the minimization version of Correlation Clustering in various

computational models, for example in the online setting [24, 38, 39],

as well as in other practical settings such as distributed, parallel or

streaming [3, 6, 10, 11, 13–15, 17, 23, 25, 40, 43, 44]. Other recent

work involves settings with fair or local guarantees [2, 29, 35].

2 ALGORITHMIC FRAMEWORK AND SETUP
FOR ANALYSIS

In this section, we describe our algorithm for obtaining the im-

proved approximation ratio for Correlation Clustering.We solve the

cluster LP using Theorem 1 to get a fractional solution 𝑧 = (𝑧𝑆)𝑆⊆𝑉 ,
which determines 𝑥 ∈ [0, 1] (

𝑉
2
)
as in (2): 𝑥𝑢𝑣 := 1 − ∑

𝑆⊇{𝑢,𝑣} 𝑧𝑆
for every 𝑢𝑣 ∈

(𝑉
2

)
. We have obj(𝑥) ≤ (1 + 𝜀)opt. The theorem will

be proved in Section 4. With 𝑧, we then run two procedures: the

cluster-based rounding and the pivot-based rounding with thresh-

old 1/3. We select the better result as the final clustering. The two

procedures are defined in Algorithms 1 and 2 respectively. We use

𝑁 + (𝑢) and𝑁 − (𝑢) to denote the sets of + and−neighbors of a vertex
𝑢 ∈ 𝑉 respectively.

Algorithm 1 Cluster-Based Rounding

1: C ← ∅,𝑉 ′ ← 𝑉

2: while 𝑉 ′ ≠ ∅ do
3: randomly choose a cluster 𝑆 ⊆ 𝑉 , with probabilities

𝑧𝑆∑
𝑆′ 𝑧𝑆′

4: if 𝑉 ′ ∩ 𝑆 ≠ ∅ then C ← C ∪ {𝑉 ′ ∩ 𝑆}, 𝑉 ′ ← 𝑉 ′ \ 𝑆
5: return C

Algorithm 2 Pivot-Based Rounding with Threshold 1/3
1: C ← ∅,𝑉 ′ ← 𝑉

2: while 𝑉 ′ ≠ ∅ do
3: randomly choose a pivot 𝑢 ∈ 𝑉 ′
4: 𝐶 ← {𝑣 ∈ 𝑉 ′ ∩ 𝑁 + (𝑢) : 𝑥𝑢𝑣 ≤ 1

3
}

5: for every 𝑣 ∈ 𝑉 ′ ∩ 𝑁 − (𝑢) do independently add 𝑣 to 𝐶

with probability 1 − 𝑥𝑢𝑣
6: randomly choose a set 𝑆 ∋ 𝑢, with probabilities 𝑧𝑆 ⊲ We

have

∑
𝑆∋𝑢 𝑧𝑆 = 1

7: 𝐶 ← 𝐶 ∪ (𝑆 ∩𝑉 ′ ∩ 𝑁 + (𝑢)), C ← C ∪ {𝐶}, 𝑉 ′ ← 𝑉 ′ \𝐶
8: return C

Analysis of Cluster-Based Rounding Procedure. The cluster-based
rounding procedure is easy to analyze. The following lemma suffices.

Lemma 6. For every 𝑢𝑣 ∈
(𝑉
2

)
, the probability that 𝑢 and 𝑣 are

separated in the clustering C output by the cluster-based rounding
procedure is 2𝑥𝑢𝑣

1+𝑥𝑢𝑣 . So the probability they are in the same cluster is
1−𝑥𝑢𝑣
1+𝑥𝑢𝑣 .

Proof. We consider the first set 𝑆 chosen in the cluster-based

rounding algorithm such that {𝑢, 𝑣} ∩ 𝑆 ≠ ∅. 𝑢 and 𝑣 will be sep-

arated iff |𝑆 ∩ {𝑢, 𝑣}| = 1. The probability that this happens is

precisely

∑
|𝑆∩{𝑢,𝑣}|=1 𝑧𝑆∑
𝑆∩{𝑢,𝑣}≠∅ 𝑧𝑆

=
2𝑥𝑢𝑣
1+𝑥𝑢𝑣 . □

Therefore, a +edge 𝑢𝑣 will incur a cost of 2𝑥𝑢𝑣
1+𝑥𝑢𝑣 in expectation

in the cluster-based rounding procedure, and a −edge will incur a
cost of

1−𝑥𝑢𝑣
1+𝑥𝑢𝑣 . The approximation ratios for a +edge 𝑢𝑣 and a −edge

𝑢𝑣 are respectively 2

1+𝑥𝑢𝑣 and
1

1+𝑥𝑢𝑣 . Notice that the latter quantity
is at most 1.

Notations and Analysis for Pivot-Based Rounding Procedure. We

now proceed to the pivot-based rounding procedure in Algorithm 2.

We remark that to recover the correlated rounding algorithm in

[28] and [27], we can use 𝐶 ← ∅ in Step 4. Then we can obtain

their approximation ratios without the complication of handling

rounding errors. The errors are handled in [28] by distinguishing

between the short, median and long +edges. In our algorithm, we

also distinguish between short +edges (those with 𝑥𝑢𝑣 ≤ 1

3
) and

long +edges (those with 𝑥𝑢𝑣 > 1

3
); however, the purpose of this

distinction is to get an improved approximation ratio, instead of to

bound the rounding errors.

https://github.com/correlationClusteringSDP/SDP1437code/

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas Vogl

Our high-level setup of the analysis follows from [27, 28], which

in turn is based on [4] and [21]. We consider a general budget for
every edge. We shall define two budget functions:

• 𝑏+ : [0, 1] → R≥0 and 𝑏− : [0, 1] → R≥0.
They determine the budget 𝑏𝑢𝑣 for the edge 𝑢𝑣 : if 𝑢𝑣 ∈ 𝐸+, then
𝑏𝑢𝑣 := 𝑏

+ (𝑥𝑢𝑣), and if 𝑢𝑣 ∈ 𝐸− , then 𝑏𝑢𝑣 := 𝑏− (𝑥𝑢𝑣).
We now focus on one iteration of the while loop in Algorithm 2.

Suppose 𝑢, 𝑣,𝑤 ∈ 𝑉 ′ at the beginning of the iteration, and let 𝐶 be

the cluster constructed at the end. We use𝑢 to denote the event that

𝑢 is chosen as the pivot. We say 𝑣𝑤 incurs a cost in the iteration,

if 𝑣𝑤 ∈ 𝐸+ and |𝐶 ∩ {𝑣,𝑤}| = 1, or 𝑣𝑤 ∈ 𝐸− and {𝑣,𝑤} ⊆ 𝐶 . Then,
we define

cost𝑢 (𝑣,𝑤) := Pr[𝑣𝑤 incurs a cost | 𝑢],
and

Δ𝑢 (𝑣,𝑤) := Pr[𝐶 ∩ {𝑣,𝑤} ≠ ∅ | 𝑢] · 𝑏𝑣𝑤 .
cost𝑢 (𝑣,𝑤) is the probability that 𝑣𝑤 incurs a cost conditioned

on the event 𝑢. When an edge 𝑣𝑤 disappears, we say 𝑣𝑤 releases
its budget. So, Δ𝑢 (𝑣,𝑤) is the expected budget released by 𝑣𝑤 in

the iteration when 𝑢 is the pivot. Notice that both cost𝑢 (𝑣,𝑤) and
Δ𝑢 (𝑣,𝑤) do not depend on 𝑉 ′, provided that 𝑢, 𝑣,𝑤 ∈ 𝑉 ′.

We call a set of three distinct vertices a triangle. A set of two

distinct vertices is called a degenerate triangle. For triangle (𝑢, 𝑣,𝑤),
let

cost(𝑢, 𝑣,𝑤) :=cost𝑢 (𝑣,𝑤) + cost𝑣 (𝑢,𝑤) + cost𝑤 (𝑢, 𝑣), and

Δ(𝑢, 𝑣,𝑤) :=Δ𝑢 (𝑣,𝑤) + Δ𝑣 (𝑢,𝑤) + Δ𝑤 (𝑢, 𝑣) .
For degenerate triangle (𝑢, 𝑣), let

cost(𝑢, 𝑣) :=cost𝑢 (𝑢, 𝑣) + cost𝑣 (𝑢, 𝑣), and

Δ(𝑢, 𝑣) :=Δ𝑢 (𝑢, 𝑣) + Δ𝑣 (𝑢, 𝑣) .
We show the following lemma in our full paper.

Lemma 7. Suppose that for every 𝑉 ′ ⊆ 𝑉 , we have∑︁
(𝑢,𝑣,𝑤) ∈(𝑉 ′

3
)
cost(𝑢, 𝑣,𝑤) +

∑︁
(𝑢,𝑣) ∈(𝑉 ′

2
)
cost(𝑢, 𝑣) ≤

∑︁
(𝑢,𝑣,𝑤) ∈(𝑉 ′

3
)
Δ(𝑢, 𝑣,𝑤) +

∑︁
(𝑢,𝑣) ∈(𝑉 ′

2
)
Δ(𝑢, 𝑣) . (4)

Then, the expected cost of the clustering output by Algorithm 2 is at
most

∑
𝑢𝑣∈(𝑉

2
) 𝑏𝑢𝑣 .

To obtain an approximation ratio of 𝛼 ∈ [1, 2), we consider a
variant of our algorithm, in which we run the cluster-based round-

ing procedure (Algorithm 1) with probability
𝛼
2
, and the pivot-based

rounding procedure with threshold 1/3 (Algorithm 2) with the re-

maining probability 1 − 𝛼
2
. Clearly, the actual algorithm that picks

the better of the two clusterings generated can only be better. We

set up the budget functions 𝑏+ and 𝑏− such that every edge pays

a cost of at most 𝛼 times its LP cost in expectation. That is, the

following properties are satisfied for every 𝑥 ∈ [0, 1]:
𝛼

2

· 2𝑥

1 + 𝑥 +
(
1 − 𝛼

2

)
𝑏+ (𝑥) = 𝛼𝑥,

𝛼

2

· 1 − 𝑥
1 + 𝑥 +

(
1 − 𝛼

2

)
𝑏− (𝑥) = 𝛼 (1 − 𝑥).

This gives us the following definitions:

𝑏+𝛼 (𝑥) :=
𝛼

1 − 𝛼/2 ·
𝑥2

1 + 𝑥 , and

𝑏−𝛼 (𝑥) :=
𝛼

1 − 𝛼/2 ·
(1 + 2𝑥) (1 − 𝑥)

2(1 + 𝑥) , ∀𝑥 ∈ [0, 1] . (5)

Lemma 8. If the budget functions 𝑏+𝛼 and 𝑏−𝛼 satisfy (4) for some
𝛼 ∈ [1, 2), then our algorithm has an approximation ratio of 𝛼 .

Proof. Consider the variant of the algorithm where we run the

cluster-based rounding procedure with probability
𝛼
2
, and the pivot-

based procedure with threshold 1/3 with the remaining probability

of 1 − 𝛼
2
. By Lemma 7, the expected cost of the clustering given by

the variant is at most∑︁
𝑢𝑣∈𝐸+

(
𝛼

2

· 2𝑥𝑢𝑣

1 + 𝑥𝑢𝑣
+

(
1 − 𝛼

2

)
· 𝑏+𝛼 (𝑥𝑢𝑣)

)
+∑︁

𝑢𝑣∈𝐸−

(
𝛼

2

· 1 − 𝑥𝑢𝑣
1 + 𝑥𝑢𝑣

+
(
1 − 𝛼

2

)
· 𝑏−𝛼 (𝑥𝑢𝑣)

)
=𝛼

(∑︁
𝑢𝑣∈𝐸+

𝑥𝑢𝑣 +
∑︁

𝑢𝑣∈𝐸−
(1 − 𝑥𝑢𝑣)

)
= 𝛼 · obj(𝑥).

The actual algorithmwe run can only be better than this variant. □

As a baseline, we provide a per-triangle analysis leading to an

approximation ratio of 1.5 in the full paper:

Lemma 9. For budget functions 𝑏+ ≡ 𝑏+
1.5

and 𝑏− ≡ 𝑏−
1.5

, we have
cost(𝑇) ≤ Δ(𝑇) for every triangle 𝑇 .

Clearly, the lemma implies that (4) holds for 𝑏+ ≡ 𝑏+
1.5

and 𝑏− ≡
𝑏−
1.5

. By Lemma 8, our algorithm gives an approximation ratio of

1.5. We remark that 1.5 is the best possible ratio we can achieve

using the per-triangle analysis. For a ++− triangle with length
1

2

for +edges and length 1 for the −edge, we need to pay a factor of 2

for each of the
1

2
-length +edge. Then the cluster-based rounding

algorithm gives factors of 2 and
4

3
for +edges of lengths 0 and 1

2

respectively. For the pivot-based rounding algorithm, the factors

are at least 0 and 2. A combination of the two algorithms can only

lead to a factor of 1.5.

To get a better approximation ratio, we provide two analyses that

use global distributions of triangles. The former is purely analytic

and the latter relies on solving a factor-revealing SDP. The following

two lemmas are proved in the full paper.

Lemma 10. (4) holds for budget functions𝑏+ ≡ 𝑏+
1.49

and𝑏− ≡ 𝑏−
1.49

.

Lemma 11. (4) holds for budget functions 𝑏+ ≡ 𝑏+
1.437

and 𝑏− ≡
𝑏−
1.437

.

Combined with Lemma 8, the two lemmas imply Theorems 2

and 3 respectively.

3 OVERVIEW OF TECHNIQUES
In this section, we provide overviews of the techniques used in our

results.

Understanding the Cluster Linear Program for Correlation Clustering STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Simpler and Better Preclustering Procedure. The concept of preclus-
tering was introduced in [27]. In a preclustered instance, we prede-

termine the fate of some edges: for some edges 𝑢𝑣 , 𝑢 and 𝑣 must be

in the same cluster; for some other edges 𝑢𝑣 , 𝑢 and 𝑣 must be sepa-

rated. Since the relation of being in the same cluster is transitive,

we define a preclustered instance using a pair (K, 𝐸
adm
), where K

is a partition of 𝑉 into so called atoms and 𝐸
adm
⊆

(𝑉
2

)
is a set of

admissible edges. An atom can not be broken. If 𝑢 and 𝑣 are not

in the same atom and 𝑢𝑣 ∉ 𝐸
adm

, then 𝑢 and 𝑣 must be separated.

[27] showed how to construct a preclustered instance (K, 𝐸
adm
),

losing only a (1 + 𝜀) factor in the optimum cost, while at the same

time guaranteeing that |𝐸
adm
| ≤ 𝑂 (opt/𝜀12). This is crucial for

their correlated rounding algorithm, as it loses an additive error

depending on |𝐸
adm
|. In this work, we still need the preclustering

procedure to bound the rounding error, but now it is inside the

procedure of solving the cluster LP.

We greatly simplify the preclustering procedure from [27], and

as a result, we achieve a much better bound of𝑂 (opt/𝜀2) on |𝐸
adm
|.

[27] used the agreement graph to construct the atoms; roughly

speaking, two vertices are in agreement if their neighborhood sets

are similar to each other. The analysis uses many technical struc-

tural lemmas from [25], which solves Correlation Clustering in the

online setting. In contrast, our construction of atoms is simple: we

construct an 𝑂 (1)-approximate clustering C, mark vertices whose

costs are large, and thenK is obtained from C by removing marked

vertices and creating singletons for them. The set of admissible

edges is roughly defined as follows: we construct a graph (𝑉 , 𝐸1)
where two vertices are neighbors if their +degrees are similar. Then

an edge 𝑢𝑣 is admissible if 𝑢 and 𝑣 have many common neighbors

in 𝐸+ ∩ 𝐸1.

Solving Cluster LP by Preclustering. As we mentioned, we move

the complication of handling rounding errors to the step of solving

the cluster LP. As in [27], we construct a preclustered instance

(K, 𝐸
adm
), and formulate an LP relaxation aimed at finding the

(1 + 𝜀)-approximate good clustering for (K, 𝐸
adm
), that we call

the bounded sub-cluster LP. In contrast to [27], which solves many

instances of this LP embedded in their round-or-cut framework, we

only solve the LP once, therefore avoiding this heavy framework.

With a solution (𝑥,𝑦) to the LP, we run a procedure that constructs

a single cluster 𝐶 randomly. The probability that any vertex is in

𝐶 is precisely 1/𝑦∅ , where 𝑦∅ is the fractional number of clusters

in 𝑦. The probabilities that exactly one of 𝑢 and 𝑣 is in 𝐶 , and both

of them are in 𝐶 , are respectively
𝑥𝑢𝑣
𝑦∅

and
1−𝑥𝑢𝑣
𝑦∅

up to some error

terms arising from the Raghavendra-Tan rounding procedure. As

usual, 𝑥𝑢𝑣 is the extent in which 𝑢 and 𝑣 are separated.

To construct the solution 𝑧 = (𝑧𝑆)𝑆⊆𝑉 for the cluster LP, we

generate 𝑦∅Δ many clusters 𝐶 independently, for a large enough

polynomial Δ. Roughly speaking, the solution 𝑧 is
1

Δ times the

multi-set of clusters 𝐶 we generated. The error incurred by the

Raghavendra-Tan rounding procedure can be bounded in terms of

|𝐸
adm
|, and the error from sampling can be bounded using concen-

tration bounds.

1.49-approximation. We start with the algorithm of [27], but

make several key modifications both in the design and in the anal-

ysis. This allows us to significantly improve the approximation

ratio, first to 1.5 and, eventually, to 1.49, which shows that, perhaps

surprisingly, even the rather low approximation factor of 1.5 is not

tight for Correlation Clustering. The first key ingredient is to use a

principled budget function for the pivot-based rounding procedure,

defined earlier in (5), which is designed to optimally balance the

approximation factor of edges between the two rounding proce-

dures. This new budget function is better than the one used in [27],

but does not allow us to reach 1.5 without changing the algorithm.

Indeed, the budget for the short +edges in +++ triangles is still
too low to reach the approximation ratio 1.5. Thus, the second key

ingredient is to add the threshold step to the pivot-based rounding

procedure for the short +edges (i.e., +edges 𝑢𝑣 with 𝑥𝑢𝑣 ≤ 1/3). By
adding this threshold step, the cost of the triangles containing such

edges decreases; for example, a +++ triangle with all short edges

now has cost zero. This allows us to use the new budget function

and still reach 1.5. Notice that making the threshold too large would

result in too much cost for ++− triangles.

Finally, we observe that, analogous to the correlated rounding

approach of [28], only the bad triangles are tight, meaning their

cost equals their budget. Roughly speaking, a bad triangle is a ++−
triangle whose two +edges have value very close to half and whose

−edge has value close to one. This allows us to apply a charging

argument, in which tight triangles have part of their cost paid for

by triangles that are not tight (i.e., that have extra budget). Now

there are no tight triangles (i.e., all triangles have some unused

budget), and we can decrease the 𝛼 in the budget function from

1.5 to 70/47. As previously [4, 21, 27, 28], the analysis necessary to

reach 1.5 and go below requires a case-by-case analysis of triangle

types to ensure that the budget allocated to each triangle covers its

cost. Both the new threshold step and the new budget functions

result in an analysis that is more involved than what was required

in [27], but is still feasible.

1.437-approximation. The above charging argument between dif-

ferent types of triangles can be more systematically expressed by

a factor-revealing SDP. Given a cluster LP solution 𝑧𝑆 and vertices

𝑢, 𝑣,𝑤 , we define𝑦𝑢𝑣 :=
∑
𝑆⊇{𝑢,𝑣} 𝑧𝑆 (resp.𝑦𝑢𝑣𝑤 :=

∑
𝑆⊇{𝑢,𝑣,𝑤} 𝑧𝑆)

be the probability that 𝑢, 𝑣 (resp. 𝑢, 𝑣,𝑤) are in the same cluster.

Given any quadruple 𝑇 = (𝑎, 𝑏, 𝑐, 𝑑) ∈ [0, 1]4 and a cluster LP so-

lution 𝑧𝑆 , let 𝜂𝑇 represent the number of triangles (𝑢, 𝑣,𝑤) such
that of 𝑦𝑢𝑣 = 𝑎,𝑦𝑢𝑤 = 𝑏,𝑦𝑣𝑤 = 𝑐,𝑦𝑢𝑣𝑤 = 𝑑 . The above 1.49-

approximation analysis can be regarded as putting one constraint

on the distribution of 𝜂𝑇 . To enhance the approximation ratio and

reduce the budget function, we opt for a more detailed categoriza-

tion of triangles, imposing stronger constraints on 𝜂𝑇 .

Consider an imaginary rounding procedure, where given a pivot

𝑢, the cluster 𝐶 that contains 𝑢 is simply chosen with probability

𝑧𝐶 (note that

∑
𝐶∋𝑢 𝑧𝐶 = 1). Let 𝑋𝑣 denote the event that node 𝑣

is included in the cluster of node 𝑢 in this rounding. We can show

E[𝑋𝑣 · 𝑋𝑤] = 𝑦𝑢𝑣𝑤 and E[𝑋𝑣] · E[𝑋𝑤] = 𝑦𝑢𝑣𝑦𝑢𝑤 . The covariance
matrix 𝐶𝑂𝑉𝑢 , where 𝐶𝑂𝑉𝑢 (𝑣,𝑤) = E[𝑋𝑣 · 𝑋𝑤] − E[𝑋𝑣] · E[𝑋𝑤] =
𝑦𝑢𝑣𝑤 − 𝑦𝑢𝑣𝑦𝑢𝑤 , must be positive semidefinite (PSD). This PSD

constraint on the covariance matrix enforces a stronger constraint

on 𝜂𝑇 . For instance, if all non-degenerate triangles centered at𝑢 are

++− triangles with 𝑦 value (𝑦𝑢𝑣 = 0.5, 𝑦𝑢𝑤 = 0.5, 𝑦𝑤𝑣 = 0, 𝑦𝑢𝑣𝑤 =

0), then the covariance matrix of 𝐶𝑂𝑉𝑢 cannot be PSD because

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas Vogl

𝐶𝑂𝑉𝑢 (𝑣,𝑤) = 𝑦𝑢𝑣𝑤 − 𝑦𝑢𝑣𝑦𝑢𝑤 = −0.25 for almost all non-diagonal

entries.

For a triangle 𝑇 = (𝑦𝑢𝑣, 𝑦𝑢𝑤 , 𝑦𝑣𝑤 , 𝑦𝑢𝑣𝑤), we discretize 𝑦𝑢𝑣, 𝑦𝑢𝑤 ,
𝑦𝑣𝑤 to incorporate the PSD constraint. We partition the interval

[0, 1] into numerous subintervals 𝐼1, 𝐼2, ..., 𝐼𝑡 . Each triangle with

𝑦 value (𝑦𝑢𝑣 ∈ 𝐼𝑖 , 𝑦𝑢𝑤 ∈ 𝐼 𝑗 , 𝑦𝑣𝑤 ∈ 𝐼𝑘 , 𝑦𝑢𝑣𝑤) is placed in one of

these interval combinations. We can rearrange𝐶𝑂𝑉𝑢 as𝑄𝑢 ∈ R𝑡×𝑡 ,
where 𝑄𝑢 (𝐼𝑖 , 𝐼 𝑗) =

∑
𝑦𝑢𝑣 ∈𝐼𝑖 ,𝑦𝑢𝑤 ∈𝐼 𝑗 (𝑦𝑢𝑣𝑤 − 𝑦𝑢𝑣𝑦𝑢𝑤). Considering

𝑄 =
∑
𝑢∈𝑉 𝑄𝑢 , we can represent 𝑄 using 𝑇 and 𝜂𝑇 . The PSD prop-

erty of 𝑄𝑢 implies 𝑄 is PSD, thus enforcing a constraint on 𝜂𝑇 .

Despite there being infinitely many types of triangles in each

range 𝐼𝑖 , 𝐼 𝑗 , 𝐼𝑘 , our key observation is that 𝑦𝑢𝑣𝑤 − 𝑦𝑢𝑣𝑦𝑢𝑤 is multi-

linear. Therefore, we only need a few triangles in each range to

represent all possible triangles. We want to mention the triangles

we need are fixed so can be precomputed and the only unsure

variable is 𝜂𝑇 . To compute a lower bound

∑
𝜂𝑇 (Δ(𝑇) − cost(𝑇)),

we set up a semi-definite program (SDP) under the constraint that

𝑄 is PSD. This SDP is independent of cluster LP and relies on the

chosen interval and budget function. By employing a practical SDP

solver, we demonstrate that

∑
𝜂𝑇 (Δ(𝑇) − cost(𝑇)) ≥ 0.

Gaps and Hardness. A high-level intuition for the cluster LP is the

following: (any) LPs cannot distinguish between a random graph

and a nearly bipartite graph. For the cluster LP, given a complete

graph 𝐻 = (𝑉𝐻 , 𝐸𝐻) with 𝑛 = |𝑉𝐻 |, our Correlation Clustering

instance is𝐺 = (𝑉𝐺 , 𝐸𝐺) where𝑉𝐺 = 𝐸𝐻 and 𝑒, 𝑓 ∈ 𝑉𝐺 have a plus

edge in𝐺 if they share a vertex in𝑉 . Consider vertices of𝐻 as ideal
clusters in 𝐺 containing their incident edges. The LP fractionally

will think that it is nearly bipartite, implying that the entire 𝐸𝐻 can

be partitioned into 𝑛/2 ideal clusters of the same size. Of course,

integrally, such a partition is not possible in complete graphs.

For the cluster LP, it suffices to consider a complete graph in-

stead of a random graph. We believe (but do not prove) that such a

gap instance can be extended to stronger LPs (e.g., Sherali-Adams

strengthening of the cluster LP), because it is known that Sherali-

Adams cannot distinguish a random graph and a nearly bipartite

graph [19].

The idea for the NP-hardness of approximation is the same. The

main difference, which results in a worse factor here, is that other

polynomial-time algorithms (e.g., SDPs) can distinguish between

random and nearly bipartite graphs! So, we are forced to work with

slightly more involved structures.

Still, we use a similar construction for 3-uniform hypergraphs;

let 𝐻 = (𝑉𝐻 , 𝐸𝐻) be the underlying 3-uniform hypergraph and

𝐺 = (𝑉𝐺 , 𝐸𝐺) be the plus graph of the final Correlation Cluster-

ing instance where 𝑉𝐺 = 𝐸𝐻 and 𝑒, 𝑓 ∈ 𝐸𝐻 has an edge in 𝐺

if they share a vertex in 𝐻 . We use the hardness result of Cohen-

Addad, Karthik, and Lee [26] that shows that it is hard to distinguish

whether𝐻 is nearly bipartite, which implies that half of the vertices

intersect every hyperedge, or close to a random hypergraph.

Organization. We show how to solve the cluster LP in Section 4,

proving Theorem 1.We give the (4
3
−𝜀)-integrality gap of the cluster

LP (Theorem 4) in Section 5, and the improved hardness of 24/23−𝜀
(Theorem 5) in Section 6.

Global Notations. For two sets 𝐴 and 𝐵, we use 𝐴△𝐵 = (𝐴 \ 𝐵) ∪
(𝐵 \𝐴) to denote the symmetric difference between 𝐴 and 𝐵. We

used𝑁 +𝑢 and𝑁 −𝑢 to denote the sets of + and−neighbors of a vertex𝑢
respectively in the Correlation Clustering instance. For a clustering

C of𝑉 , we define obj(C) to be the objective value of C. For any 𝑥 ∈
[0, 1] (

𝑉
2
)
, we already defined obj(𝑥) = ∑

𝑢𝑣∈𝐸+ 𝑥𝑢𝑣 +
∑
𝑢𝑣∈𝐸− (1 −

𝑥𝑢𝑣). Recall that we defined cost𝑢 (𝑣,𝑤),Δ𝑢 (𝑣,𝑤), cost(𝑇) and Δ(𝑇)
for a triangle 𝑇 = (𝑢, 𝑣,𝑤) or a degenerate triangle 𝑇 = (𝑢, 𝑣) in
Section 2; they depend on the budget functions 𝑏+ and 𝑏− .

4 SOLVING CLUSTER LP RELAXATION
APPROXIMATELY

In this section, we show how to solve the cluster LP in polynomial

time, by proving Theorem 1, which is repeated below.

Theorem 1. Let 𝜀 > 0 be a small enough constant and opt be the
cost of the optimum solution to the given Correlation Clustering in-
stance. In time 𝑛poly(1/𝜀) , we can output a feasible cluster LP solution(
(𝑧𝑆)𝑆⊆𝑉 , (𝑥𝑢𝑣)𝑢𝑣∈(𝑉

2
)
)
with obj(𝑥) ≤ (1 + 𝜀)opt, described using a

list of non-zero coordinates.

We define some global parameters used across this section. Let

𝜀1 = 𝜀3, 𝜀rt = 𝜀
2

1
= 𝜀6, and 𝑟 = Θ(1/𝜀2

rt
) = Θ(1/𝜀12) be an integer,

with some large enough hidden constant. The subscript “rt” stands

for Raghavendra-Tan.

4.1 Preclustering
We use the definition of a preclustered instance from [27], with

some minor modifications.

Definition 12. Given a Correlation Clustering instance (𝑉 , 𝐸+⊎𝐸−),
a preclustered instance is defined by a pair (K, 𝐸

adm
), where K

is a partition of 𝑉 (which can also be viewed as a clustering), and
𝐸
adm
⊆

(𝑉
2

)
is a set of pairs such that for every 𝑢𝑣 ∈ 𝐸

adm
, 𝑢 and 𝑣

are not in a same set in K .
Each set 𝐾 ∈ K is called an atom. An (unordered) pair 𝑢𝑣 between

two vertices 𝑢 and 𝑣 in a same 𝐾 ∈ K is called an atomic edge; in
particular, a self-loop 𝑢𝑢 is an atomic edge. A pair that is neither an
atomic nor an admissible edge is called a non-admissible edge.

There are two minor differences between our definition and the

one in [27]. First, we require that K forms a partition; this can be

guaranteed by adding singletons. Second, we do not require an edge

between two different non-singleton atoms to be non-admissible.

Our construction can guarantee this condition, but it is not essential.

Definition 13. Given a preclustered instance (K, 𝐸
adm
) for some

Correlation Clustering instance (𝑉 , 𝐸+ ⊎ 𝐸−), a clustering C of 𝑉 is
called good with respect to (K, 𝐸

adm
) if

• 𝑢 and 𝑣 are in the same cluster in C for an atomic edge 𝑢𝑣 , and
• 𝑢 and 𝑣 are not in the same cluster in C for a non-admissible
edge 𝑢𝑣 .

The following theoremwith a worse bound on |𝐸
adm
| was proved

in [27]. We give a cleaner proof of the theorem in the full paper; as

a byproduct, it achieves a better bound on |𝐸
adm
|.

Theorem 14. For any sufficiently small 𝜀 > 0, there exists a
poly(𝑛, 1𝜀)-time algorithm that, given a Correlation Clustering in-
stance (𝑉 , 𝐸+ ⊎𝐸−) with optimal value opt (which is not given to us),
produces a preclustered instance (K, 𝐸

adm
) such that

Understanding the Cluster Linear Program for Correlation Clustering STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

• there exists a good clustering w.r.t (K, 𝐸
adm
), whose cost is at

most (1 + 𝜀)opt, and
• |𝐸

adm
| ≤ 𝑂

(
1

𝜀2

)
· opt.

We can assume in the preclustered instance (K, 𝐸
adm
), the edges

between two different atoms 𝐾 and 𝐾 ′ are all admissible, or all

non-admissible. If one edge between them is non-admissible, we

can change all other edges to non-admissible edges. This will not

change the set of good clusterings, and it will decrease |𝐸
adm
|.

We apply Theorem 14 to obtain a preclustered instance (K, 𝐸
adm
),

with the unknown good clustering C∗
1
. We define 𝐾𝑢 to be the atom

that contains 𝑢, and 𝑘𝑢 = |𝐾𝑢 |. We shall use 𝑁
adm
(𝑢) to be the set

of vertices 𝑣 such that 𝑢𝑣 ∈ 𝐸
adm

; so 𝑁
adm
(𝑢) = 𝑁

adm
(𝑣) if 𝑣 ∈ 𝐾𝑢 .

We further process the good clustering C∗
1
using the following pro-

cedure in [27]. This procedure is not a part of our algorithm; it is

only for analysis purpose.

1: while there exists some𝐾𝑢 in a cluster𝐶 ∈ C∗
1
with 𝑘𝑢 < |𝐶 | ≤

𝑘𝑢 + 𝜀1 · |𝑁adm
(𝑢) | do

2: C∗
1
← C∗

1
\ {𝐶} ∪ {𝐾𝑢 ,𝐶 \ 𝐾𝑢 }

Claim 15. The procedure increases obj(C∗
1
) by at most 2𝜀1 · |𝐸adm |.

Proof. Whenever we break 𝐶 into 𝐾𝑢 and 𝐶 \ 𝐾𝑢 in the proce-

dure, the cost increase is at most 𝑘𝑢 · (|𝐶 |−𝑘𝑢) ≤ 𝑘𝑢 ·𝜀1 · |𝑁adm
(𝑢) | =

𝜀1
∑
𝑣∈𝐾𝑢 |𝑁adm

(𝑣) |. We separate each atom𝐾𝑢 at most once. There-

fore, the total cost increase is at most 𝜀1
∑
𝑣∈𝑉 |𝑁adm

(𝑣) | = 2𝜀1 ·
|𝐸
adm
|. □

So, the cost of C∗
1
after the procedure will be at most (1+ 𝜀)opt+

𝑂 (𝜀1) |𝐸adm |. Crucially, the following property is satisfied:

(A1) For every 𝑢 ∈ 𝑉 , 𝐾𝑢 is either a cluster in C∗
1
, or in a cluster

of size more than 𝑘𝑢 + 𝜀1 · |𝑁adm
(𝑢) |.

4.2 Bounded Sub-Cluster LP Relaxation for
Preclustered Instances

Following [27], we form an LP relaxation aiming at finding the

good clustering C∗
1
. In the LP, we have a variable 𝑦𝑠

𝑆
, for every

𝑠 ∈ [𝑛], and 𝑆 ⊆ 𝑉 of size at most 𝑟 (recall that 𝑟 = Θ(1/𝜀12)), that
denotes the number of clusters in C∗

1
of size 𝑠 containing 𝑆 as a

subset. When 𝑆 ≠ ∅, there is at most one such cluster and thus

𝑦𝑠
𝑆
∈ {0, 1} indicates if 𝑆 is a subset of a cluster of size 𝑠 in C∗

1
. For

every 𝑆 ⊆ 𝑉 of size at most 𝑟 , let 𝑦𝑆 :=
∑
𝑠 𝑦
𝑠
𝑆
denote the number

of clusters (of any size) in C∗
1
containing 𝑆 as a subset. Again, if

𝑆 ≠ ∅, then 𝑦𝑆 ∈ {0, 1} indicates if 𝑆 is a subset of a cluster in C∗1 .
For every 𝑢𝑣 ∈

(𝑉
2

)
, we have a variable 𝑥𝑢𝑣 indicating if 𝑢 and 𝑣

are separated or not in C∗
1
. We call the LP the bounded sub-cluster

LP relaxation, as we have variables indicating if a small set 𝑆 is a

subset of a cluster or not.

We use the following type of shorthand: 𝑦𝑠𝑢 for 𝑦𝑠{𝑢} , 𝑦
𝑠
𝑢𝑣 for

𝑦𝑠{𝑢,𝑣} , and 𝑦
𝑠
𝑆𝑢

for 𝑦𝑠
𝑆∪{𝑢} . The bounded sub-cluster LP is defined

as follows. In the description, we always have 𝑠 ∈ [𝑛], 𝑢 ∈ 𝑉 and

𝑢𝑣 ∈
(𝑉
2

)
. For convenience, we omit the restrictions. By default, any

variable of the form 𝑦𝑆 or 𝑦𝑠
𝑆
has |𝑆 | ≤ 𝑟 ; if not, we do not have the

variable and the constraint involving it.

min obj(𝑥) (bounded sub-cluster LP)

𝑛∑︁
𝑠=1

𝑦𝑠𝑆 = 𝑦𝑆 ∀𝑆 (6)

𝑦𝑢 = 1 ∀𝑢 (7)

𝑦𝑢𝑣 + 𝑥𝑢𝑣 = 1 ∀𝑢𝑣 (8)

1

𝑠

∑︁
𝑢

𝑦𝑠𝑆𝑢 = 𝑦𝑠𝑆 ∀𝑠, 𝑆 (9)

𝑦𝑠𝑆 ≥ 0 ∀𝑠, 𝑆 (10)

𝑥𝑢𝑣 = 0 ∀𝑢, 𝑣 in a same 𝐾 ∈ K (11)

𝑥𝑢𝑣 = 1 ∀non-admissible edge 𝑢𝑣 (12)

𝑦𝑠𝑢 = 0 ∀𝑢, 𝑠 ∈ [𝑘𝑢 − 1] ∪
[
𝑘𝑢 + 1, 𝑘𝑢 + 𝜀1 |𝑁adm

(𝑢) |
]

(13)∑︁
𝑇 ′⊆𝑇

(−1) |𝑇
′ |𝑦𝑠𝑆∪𝑇 ′ ∈ [0, 𝑦

𝑠
𝑆]∀𝑠, 𝑆 ∩𝑇 = ∅ (14)

(6) gives the definition of 𝑦𝑆 , (7) requires 𝑢 to be contained in

some cluster, and (8) gives the definition of 𝑥𝑢𝑣 . (9) says if 𝑦
𝑠
𝑆
= 1,

then there are exactly 𝑠 elements𝑢 ∈ 𝑉 with𝑦𝑠
𝑆𝑢

= 1. (An exception

is when 𝑆 = ∅; but the equality also holds.) (10) is the non-negativity
constraint. (11) and (12) follows from that C∗

1
is a good clustering,

and (13) follows from (A1). The left side of (14) is the number of

clusters of size 𝑠 containing 𝑆 but does not contain any vertex in

𝑇 . So the inequality holds. This corresponds to a Sherali-Adams

relaxation needed for the correlated rounding [41], see Lemma 16.

The running time for solving the LP is 𝑛𝑂 (𝑟) = 𝑛𝑂 (1/𝜀
12)

.

4.3 Sampling One Cluster Using LP Solution to
the Bounded Sub-Cluster LP

We solve the bounded sub-cluster LP to obtain the 𝑦 and 𝑥 vectors.

Given 𝑦, we can use the procedure construct-cluster described in

Algorithm 3, which is from [27], to produce a random cluster 𝐶 .

Algorithm 3 construct-cluster(𝑦)
1: randomly choose a cardinality 𝑠 , so that 𝑠 is chosen with prob-

ability

𝑦𝑠∅
𝑦∅

2: randomly choose a vertex 𝑢 ∈ 𝑉 , so that 𝑢 is chosen with

probability
𝑦𝑠𝑢
𝑠𝑦𝑠∅

3: define a vector 𝑦′ such that 𝑦′
𝑆
=
𝑦𝑠
𝑆𝑢

𝑦𝑠𝑢
for every 𝑆 ⊆ 𝑉 of size

at most 𝑟 − 1
4: apply the Raghavendra-Tan correlated rounding technique over

the fractional set 𝑦′ to construct a cluster 𝐶 ⊆ 𝑉 that does not

break any atom, and return 𝐶

With (14), the Raghavendra-Tan technique can be applied:

Lemma 16 ([41]). In Step 4 of Algorithm 3, one can sample a set
𝐶 ⊆ 𝑉 that does not break atoms in time 𝑛𝑂 (𝑟) such that

• For each 𝑣 ∈ 𝑉 , Pr[𝑣 ∈ 𝐶] = 𝑦′𝑣 .
• 1

|𝑁
adm
(𝑢) |2

∑
𝑣,𝑤∈𝑁

adm
(𝑢)

��
Pr[𝑣,𝑤 ∈ 𝐶] − 𝑦′𝑣𝑤

�� ≤ 𝜀rt.
Recall that 𝜀rt = Θ(1/

√
𝑟) and the hidden constant inside Θ(·) is

large enough.

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas Vogl

As in [27], we define err
𝑠
𝑣𝑤 |𝑢 to be the error generated by the

procedure when we choose 𝑠 as the cardinality and 𝑢 as the pivot:

err
𝑠
𝑣𝑤 |𝑢 :=

����Pr [
𝑣,𝑤 ∈ 𝐶 |𝑠,𝑢

]
−
𝑦𝑠𝑢𝑣𝑤

𝑦𝑠𝑢

���� ,∀𝑣𝑤 ∈ (
𝑉

2

)
,

and

err
𝑠
𝑣𝑤 :=

1

𝑠𝑦𝑠∅

∑︁
𝑢∈𝑉

𝑦𝑠𝑢 · err𝑠𝑣𝑤 |𝑢 and err𝑣𝑤 :=
∑︁
𝑠

𝑦𝑠∅
𝑦∅
· err𝑠𝑣𝑤

as the error for 𝑣𝑤 conditioned on 𝑠 , and the unconditioned error.

Notice that all these quantities are expectations of random variables,

and thus deterministic.

The following two lemmas can be proved using the same argu-

ments as in [27].

Lemma 17 ([27]). For any 𝑣 ∈ 𝑉 , we have Pr[𝑣 ∈ 𝐶] = 1

𝑦∅
.

Lemma 18 ([27]). Focus on an edge 𝑣𝑤 ∈
(𝑉
2

)
.

(1) Pr [𝑣 ∈ 𝐶,𝑤 ∉ 𝐶] ≤ 1

𝑦∅
· 𝑥𝑣𝑤 + err𝑣𝑤 .

(2) Pr [|{𝑣,𝑤} ⊆ 𝐶] ≤ 1

𝑦∅
· 𝑦𝑣𝑤 + err𝑣𝑤 .

A similar lemma to the following is proved in [27]. The parame-

ters we use here are slightly different and we provide a proof for

completeness.

Lemma 19.
∑︁

𝑣𝑤∈(𝑉
2
)
err𝑣𝑤 ≤ 𝑂 (𝜀1) ·

1

𝑦∅
|𝐸
adm
|.

Proof. Throughout the proof, we assume 𝑢, 𝑣,𝑤 are all in𝑉 , 𝑣𝑤

and 𝑢𝑤 are in

(𝑉
2

)
.

Fix some 𝑠 ∈ [𝑛], 𝑢 ∈ 𝑉 with 𝑦𝑠𝑢 > 0, and we now bound∑
𝑣𝑤 err

𝑠
𝑣𝑤 |𝑢 . If 𝑠 = 𝑘𝑢 , then 𝐶 = 𝐾𝑢 ; no errors will be created and

the quantity is 0. Assume 𝑠 > 𝑘𝑢 . By (13), we have that 𝑠 > 𝑘𝑢 + 𝜀1 ·
|𝑁

adm
(𝑢) |, since otherwise we shall 𝑦𝑠𝑢 = 0. By the second property

of Lemma 16, we have

∑
𝑣𝑤 err

𝑠
𝑣𝑤 |𝑢 ≤

𝜀rt
2
|𝑁

adm
(𝑢) |2. (Notice that

if one of 𝑣 and𝑤 is not in 𝑁
adm
(𝑢), then err

𝑠
𝑣𝑤 |𝑢 = 0.) Recall that

𝜀rt = 𝜀
2

1
. Therefore,∑︁

𝑣𝑤∈(𝑉
2
)
err

𝑠
𝑣𝑤 |𝑢 ≤

𝜀rt

2

· |𝑁
adm
(𝑢) |2 ≤ 𝜀rt

2𝜀1
· |𝑁

adm
(𝑢) | · (𝑠 − 𝑘𝑢)

=
𝜀1

2

· |𝑁
adm
(𝑢) | ·

∑︁
𝑣∈𝑁

adm
(𝑢)

𝑦𝑠𝑢𝑣

𝑦𝑠𝑢
=
𝜀1

2

·
∑︁

𝑣,𝑤∈𝑁
adm
(𝑢)

𝑦𝑠𝑢𝑣

𝑦𝑠𝑢
.

The first equality is by (9) and 𝑦𝑠𝑢𝑣 = 𝑦
𝑠
𝑢 for every 𝑣 ∈ 𝐾𝑢 . (To see

this, notice that 𝑦𝑠𝑢𝑣 ≤ 𝑦𝑠𝑢 is implied by (14). We have 𝑦𝑢𝑣 =
∑
𝑠 𝑦
𝑠
𝑢𝑣 ,

𝑦𝑢 =
∑
𝑠 𝑦
𝑠
𝑢 , and 𝑦𝑢𝑣 = 𝑦𝑢 = 1 if 𝑣 ∈ 𝐾𝑢 .)

Considering the inequalities over all 𝑢 ∈ 𝑉 , we have∑︁
𝑣𝑤

err
𝑠
𝑣𝑤 =

1

𝑠𝑦𝑠∅

∑︁
𝑢

𝑦𝑠𝑢 ·
∑︁
𝑣𝑤

err
𝑠
𝑣𝑤 |𝑢

≤ 1

𝑠𝑦𝑠∅

∑︁
𝑢

𝑦𝑠𝑢 ·
∑︁

𝑣,𝑤∈𝑁
adm
(𝑢)

𝜀1

2

· 𝑦
𝑠
𝑢𝑣

𝑦𝑠𝑢

=
𝜀1

2

· 1

𝑠𝑦𝑠∅
·

∑︁
𝑢∈𝑉 ,𝑣,𝑤∈𝑁

adm
(𝑢)
𝑦𝑠𝑢𝑣

=
𝜀1

2

·
∑︁
𝑣∈𝑉

𝑦𝑠𝑣

𝑠𝑦𝑠∅

∑︁
𝑢∈𝑁

adm
(𝑣),𝑤∈𝑁

adm
(𝑢)

𝑦𝑠𝑢𝑣

𝑦𝑠𝑣

≤ 𝜀1
2

·
∑︁
𝑣∈𝑉

𝑦𝑠𝑣

𝑠𝑦𝑠∅

∑︁
𝑢𝑤∈𝐸

adm

(
𝑦𝑠𝑢𝑣 + 𝑦𝑠𝑣𝑤

𝑦𝑠𝑣

)
≤ 𝜀1 ·

∑︁
𝑣∈𝑉

𝑦𝑠𝑣

𝑠𝑦𝑠∅

∑︁
𝑢𝑤∈𝐸

adm

Pr[𝐶 ∩ {𝑢,𝑤} ≠ ∅ | 𝑠, 𝑣 is pivot]

= 𝜀1

∑︁
𝑢𝑤∈𝐸

adm

Pr[𝐶 ∩ {𝑢,𝑤} ≠ ∅ | 𝑠] .

To see the last inequality, notice that
𝑦𝑠𝑢𝑣
𝑦𝑠𝑣

= Pr[𝑢 ∈ 𝐶 |𝑠, 𝑣 is pivot] ≤

Pr[𝐶 ∩ {𝑢,𝑤} ≠ ∅|𝑠, 𝑣 is pivot]. The same inequality holds for
𝑦𝑠𝑣𝑤
𝑦𝑠𝑣

.

Finally, we take all 𝑠 into consideration:∑︁
𝑣𝑤

err𝑣𝑤 =
∑︁
𝑠

𝑦𝑠∅
𝑦∅
·
∑︁
𝑣𝑤

err
𝑠
𝑣𝑤

≤ 𝜀1 ·
∑︁
𝑠

𝑦𝑠∅
𝑦∅

∑︁
𝑢𝑤∈𝐸

adm

Pr[𝐶 ∩ {𝑢,𝑤} ≠ ∅|𝑠]

= 𝜀1 ·
∑︁

𝑢𝑤∈𝐸
adm

Pr[𝐶 ∩ {𝑢,𝑤} ≠ ∅]

≤ 2𝜀1

𝑦∅
|𝐸
adm
| + 3𝜀1

∑︁
𝑢𝑤∈(𝑉

2
)
err𝑢𝑤 .

To see the last inequality, we notice that 𝐶 ∩ {𝑢,𝑤} ≠ ∅ is the
union of the 3 disjoint events: 𝑢 ∈ 𝐶 and𝑤 ∉ 𝐶 , 𝑢 ∉ 𝐶 and𝑤 ∈ 𝐶 ,
and {𝑢,𝑤} ∉ 𝐶 . By Lemma 18, we have Pr[𝐶 ∩ {𝑢,𝑤} ≠ ∅] ≤
2𝑥𝑣𝑤+𝑦𝑣𝑤

𝑦∅
+ 3 · err𝑢𝑤 ≤ 2

𝑦∅
+ 3 · err𝑢𝑤 . So, we have

∑
𝑣𝑤 err𝑣𝑤 ≤

1

1−3𝜀1 ·
2𝜀1
𝑦∅
|𝐸
adm
|. This proves the lemma. □

4.4 Construction of Solution to the Cluster LP
Using Independently Sampled Clusters

With all the ingredients, we can now describe our algorithm for

solving the cluster LP approximately, finishing the proof of Theo-

rem 1. Let Δ = Θ

(
𝑛2 log𝑛

𝜀2
1
|𝐸

adm
|

)
with a large enough hidden constant,

and Δ𝑦∅ being an integer. (We assume |𝐸
adm
| ≥ 1 since otherwise

the preclustered instance is trivial.) We run Algorithm 3 Δ𝑦∅ times

independently to obtain clusters 𝐶1,𝐶2, · · · ,𝐶Δ𝑦∅ .
We use the following variant of Chernoff bound.

Theorem 20. Let 𝑋1, 𝑋2, 𝑋3, · · · , 𝑋𝑛 be independent (not neces-
sarily iid) random varibles which take values in [0, 1]. Let 𝑋 =∑𝑛
𝑖=1 𝑋𝑖 , 𝜇 = E[𝑋], and 𝜇′ ≥ 𝜇 be a real. Then for any 𝛿 ∈ (0, 1), we

have

Pr[𝑋 < (1 − 𝛿)𝜇] < 𝑒−𝛿
2𝜇/2 and Pr[𝑋 > 𝜇 + 𝛿𝜇′] < 𝑒−𝛿

2𝜇′/3 .

For every 𝑢 ∈ 𝑉 , let 𝑅𝑢 = {𝑡 : 𝑢 ∈ 𝐶𝑡 }. Notice that Δ𝑦∅ · |𝐸adm |𝑦∅𝑛2
=

Θ
(
log𝑛

𝜀2
1

)
, with a large enough hidden constant. Using Chernoff

bound and union bound, we can prove that with probability at least

1 − 1/𝑛, the following conditions hold.

• For every𝑢 ∈ 𝑉 , we have |𝑅𝑢 | ≥ (1−𝜀1)Δ𝑦∅ · 1𝑦∅ = (1−𝜀1)Δ.
• For every 𝑢, 𝑣 ∈ 𝑉 such that 𝑢𝑣 ∈ 𝐸+, we have

|𝑅𝑢 \ 𝑅𝑣 | ≤ Δ𝑦∅

(
𝑥𝑢𝑣

𝑦∅
+ err𝑢𝑣 + 𝜀1 ·max

{
𝑥𝑢𝑣

𝑦∅
+ err𝑢𝑣,

|𝐸
adm
|

𝑦∅𝑛2

})

Understanding the Cluster Linear Program for Correlation Clustering STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

≤ (1 + 𝜀1)Δ(𝑥𝑢𝑣 + 𝑦∅err𝑢𝑣) +
𝜀1Δ|𝐸adm |

𝑛2
. (15)

• For every 𝑢𝑣 ∈ 𝐸− , we have

|𝑅𝑢 ∩ 𝑅𝑣 | ≤ Δ𝑦∅

(
𝑦𝑢𝑣

𝑦∅
+ err𝑢𝑣 + 𝜀1 ·max

{
𝑦𝑢𝑣

𝑦∅
+ err𝑢𝑣,

|𝐸
adm
|

𝑦∅𝑛2

})
≤ (1 + 𝜀1)Δ(𝑦𝑢𝑣 + 𝑦∅err𝑢𝑣) +

𝜀1Δ|𝐸adm |
𝑛2

.

From now on we assume the conditions hold. For every 𝑢 ∈ 𝑉 ,
we let 𝑅′𝑢 be the set of the ⌈(1 − 𝜀)Δ⌉ smallest indices in 𝑅𝑢 . Clearly,

|𝑅′𝑢 ∩ 𝑅′𝑣 | ≤ |𝑅𝑢 ∩ 𝑅𝑣 |. We show |𝑅′𝑢 \ 𝑅′𝑣 | is still upper bounded by

(15).

Claim 21. For every 𝑢𝑣 ∈ 𝐸+ we have max{|𝑅′𝑢 \ 𝑅′𝑣 |, |𝑅′𝑣 \ 𝑅′𝑢 |} ≤
(1 + 𝜀1)Δ(𝑥𝑢𝑣 + 𝑦∅err𝑢𝑣) + 𝜀1Δ |𝐸adm |𝑛2

.

Proof. For convenience, we use 𝐵 to denote the upper bound

(1 + 𝜀1)Δ(𝑥𝑢𝑣 + 𝑦∅err𝑢𝑣) + 𝜀1Δ |𝐸adm |
𝑛2

. We think of 𝑅′𝑢 (𝑅′𝑣 resp.)

as obtained from the set 𝑅𝑢 (𝑅𝑣 resp.) by removing the largest

indices one by one. Wlog we assume |𝑅𝑢 | ≥ |𝑅𝑣 |; and thus initially

|𝑅𝑣 \ 𝑅𝑢 | ≤ |𝑅𝑢 \ 𝑅𝑣 | ≤ 𝐵. We remove the elements from 𝑅𝑢 and 𝑅𝑣
in two stages.

In the first stage we do the following. While |𝑅𝑢 | > |𝑅𝑣 |, we
remove the largest index from 𝑅𝑢 . This can not increase |𝑅𝑢 \ 𝑅𝑣 |.
After the first stage, we have |𝑅𝑢 \ 𝑅𝑣 | = |𝑅𝑣 \ 𝑅𝑢 | ≤ 𝐵.

In the second stage we do the following. While |𝑅𝑢 | = |𝑅𝑣 | >
⌈(1 − 𝜀)Δ⌉, we remove the largest index in 𝑅𝑢 from 𝑅𝑢 , and do the

same for 𝑅𝑣 . Consider one iteration of the while loop. If the two

indices are the same, then |𝑅𝑢 \ 𝑅𝑣 | = |𝑅𝑣 \ 𝑅𝑢 | does not change.
Otherwise, wlog we assume the index we removed from 𝑅𝑢 is

larger. Then removing the index in 𝑅𝑢 will decrease |𝑅𝑢 \ 𝑅𝑣 |. So
the iteration can not increase |𝑅𝑢 \ 𝑅𝑣 | = |𝑅𝑣 \ 𝑅𝑢 |. □

Then, for every 𝑡 ∈ [1,Δ𝑦∅], we define 𝐶′𝑡 = {𝑢 : 𝑡 ∈ 𝑅′𝑢 } ⊆ 𝐶𝑡 ;
then every 𝑣 is contained in 𝐶′𝑡 for exactly ⌈(1 − 𝜀)Δ⌉ values of 𝑡 .
We define 𝑧𝑆 = 1

⌈ (1−𝜀)Δ⌉ · |{𝑡 : 𝐶
′
𝑡 = 𝑆}| for every 𝑆 ⊆ 𝑉 with 𝑆 ≠ ∅.

Define 𝑥𝑢𝑣 = 1 −∑
{𝑢,𝑣}⊆𝑆 𝑧𝑆 for every 𝑢𝑣 ∈

(𝑉
2

)
. Then (𝑥, 𝑧) is a

valid solution to the cluster LP.

For a 𝑢𝑣 ∈ 𝐸+, we have

𝑥𝑢𝑣 =
1

⌈(1 − 𝜀)Δ⌉ · |𝑅
′
𝑢 \ 𝑅′𝑣 | ≤

1 + 𝜀1
1 − 𝜀 (𝑥𝑢𝑣 + 𝑦∅err𝑢𝑣) +

𝜀1 |𝐸adm |
(1 − 𝜀)𝑛2

.

For a 𝑢𝑣 ∈ 𝐸− , we have

(1 − 𝑥𝑢𝑣) ≤
1 + 𝜀1
1 − 𝜀 (1 − 𝑥𝑢𝑣 + 𝑦∅err𝑢𝑣) +

𝜀1 |𝐸adm |
(1 − 𝜀)𝑛2

.

Therefore,

obj(𝑥) ≤ (1 +𝑂 (𝜀))
©­­«obj(𝑥) + 𝑦∅

∑︁
𝑢𝑣∈(𝑉

2
)
err𝑢𝑣

ª®®¬ +𝑂 (𝜀1) |𝐸adm |
≤ (1 +𝑂 (𝜀))obj(𝑥) +𝑂 (𝜀1) |𝐸adm |

≤ (1 +𝑂 (𝜀)) · opt +𝑂 (𝜀3) ·𝑂
(1
𝜀2

)
· opt = (1 +𝑂 (𝜀))opt.

The second inequality is due to Lemma 19, and the third one used

that |𝐸
adm
| ≤ 𝑂

(
1

𝜀2

)
· opt. By scaling 𝜀, the upper bound can be

made to (1 + 𝜀)opt. This finishes the proof of Theorem 1.

5 1.33-GAP FOR CLUSTER LP
In this section, we show that the cluster LP has a gap of 4/3, proving
Theorem 4 restated below.

Theorem 4. For any 𝜀 > 0, the integrality gap of the cluster LP is
at least 4/3 − 𝜀.

The graph of the plus edges of our gap instance is based on the

line graph of a base graph; given a based graph 𝐻 = (𝑉𝐻 , 𝐸𝐻), our
correlation clustering instance is𝐺 = (𝑉𝐺 , 𝐸𝐺) where𝑉𝐺 = 𝐸𝐻 and

𝑒, 𝑓 ∈ 𝑉𝐺 have a plus edge in 𝐺 if they share a vertex in 𝑉𝐻 .

A high-level intuition is the following: LPs cannot distinguish

between a random graph and a nearly bipartite graph. Consider

vertices of 𝐻 as ideal clusters in𝐺 containing their incident edges.

Given a random graph 𝐻 , the LP fractionally will think that it is

nearly bipartite, implying that the almost entire 𝐸𝐻 can be parti-

tioned into 𝑛/2 ideal clusters. Of course, integrally, such a partition

is not possible in random graphs. For the cluster LP, it suffices

to consider a complete graph instead of a random graph. We be-

lieve (but do not prove) that such a gap instance can be extended

to stronger LPs (e.g., Sherali-Adams strengthening of the cluster

LP), because it is known that Sherali-Adams cannot distinguish a

random graph and a nearly bipartite graph [19].

Proof of Theorem 4. Let 𝐻 = (𝑉𝐻 , 𝐸𝐻) be a complete graph

on 𝑛 vertices. Let 𝑑 = 𝑛 − 1 be the degree of 𝐻 . Our correlation

clustering instance 𝐺 = (𝑉𝐺 , 𝐸𝐺) is the line graph of 𝐻 ; 𝑉𝐺 = 𝐸𝐻
and 𝑒, 𝑓 ∈ 𝐸𝐻 has + edge in 𝐺 if and only if they share a vertex in

𝐻 . The + degree of each 𝑒 ∈ 𝐸𝐻 in 𝐺 is 2𝑑 − 2.
Consider the following solution for the cluster LP: for every

𝑣 ∈ 𝑉𝐻 , let 𝐸𝑣 ⊆ 𝐸𝐻 be the 𝑑 edges containing 𝑣 . The cluster LP has

𝑧𝐸𝑣 = 1/2 for every 𝑣 ∈ 𝑣𝐻 . Each 𝑒 ∈ 𝐸𝐻 belongs to two fractional

clusters, each of which has its 𝑑 − 1 plus neighbors, so fractionally

𝑑 − 1 plus edges incident on it are violated. Since each violated edge

is counted twice, the LP value is

(𝑛
2

)
(𝑑 − 1)/2.

Let us consider the integral optimal correlation clustering of𝐺 .

Consider a cluster 𝐶 in the clustering. Note that every vertex in 𝐶

has at least |𝐶 |/2 plus neighbors in 𝐶 , which implies |𝐶 | ≤ 4𝑑 . We

apply the following procedure to 𝐶 to partition it further.

Claim 22. There is a partition of𝐶 into𝐶1, . . . ,𝐶𝑟 such that (1) each
𝐶𝑖 is a subset of 𝐸𝑣 for some 𝑣 ∈ 𝑉𝐻 , and (2) replacing𝐶 by𝐶1, . . . ,𝐶𝑟
in the correlation clustering solution increases the objective function
by at most 35|𝐶 |.

Proof. For 𝑣 ∈ 𝑉𝐻 , let 𝑛𝑣 := |𝐶 ∩ 𝐸𝑣 |. Note that
∑
𝑣 𝑛𝑣 = 2|𝐶 |.

Without loss of generality, assume 𝑉𝐻 = {𝑣1, . . . , 𝑣𝑛} with 𝑛𝑣1 ≥
· · · ≥ 𝑛𝑣𝑛 . If 𝑒 = (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐶 has 𝑖, 𝑗 > 8, then the number of its

plus neighbors in 𝐶 is 𝑛𝑣𝑖 + 𝑛𝑣𝑗 < 2 · 1
8
· 2|𝐶 | = |𝐶 |/2, so it should

not exist in 𝐶 . So, every edge is incident on 𝑣𝑖 for some 𝑖 ≤ 8.

Let us make at most

(
8

2

)
= 28 edges in 𝐶 between 𝑣1, . . . , 𝑣8 as

singleton clusters; the objective function increases by at most 28|𝐶 |.
Then partition the remaining𝐶 into 𝐸1, . . . , 𝐸8 where 𝐸𝑖 := 𝐶 ∩ 𝐸𝑣𝑖 .
Each 𝑒 ∈ 𝐸𝑖 has at most seven plus neighbors in ∪𝑗≠𝑖𝐸 𝑗 , so the

objective function increases by at most 7|𝐶 |. So, we partitioned 𝐶
into 𝐶1, . . . ,𝐶𝑟 where all the edges in 𝐶𝑖 share a common endpoint.

We increased the objective function by at most 35|𝐶 |. □

After we apply the above procedure to every cluster 𝐶 , we in-

creased the cost by at most 35|𝑉𝐻 | ≤ 35𝑛2 and all the edges in

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas Vogl

a cluster 𝐶 share a common endpoint. For 𝑣 ∈ 𝑉𝐻 , let 𝐶𝑣 be the
cluster in the solution whose common endpoint is 𝑣 . (If there are

many of them, merging them will strictly improve the objective

function value.) Without loss of generality, there are 𝑡 such clusters

𝐶𝑣1 , . . . ,𝐶𝑣𝑡 and let 𝑛𝑖 := |𝐶𝑣𝑖 | such that 𝑛1 ≥ · · · ≥ 𝑛𝑡 .

Claim 23.
∑𝑡
𝑖=1 𝑛

2

𝑖
≤ 𝑛3/3.

Proof. The LHS is monotone in (𝑛1, . . . , 𝑛𝑡), and if there is an

edge (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐶 𝑗 with 𝑗 > 𝑖 (which implies 𝑛𝑖 ≥ 𝑛 𝑗), the LHS

strictly improves by moving (𝑣𝑖 , 𝑣 𝑗) to𝐶𝑖 . Therefore, the configura-
tion that maximizes the LHS is when 𝑡 = 𝑛 and 𝐶𝑣𝑖 contains all the

edges of 𝐻 not incident on 𝑣1, . . . , 𝑣𝑖−1. In that case, the LHS is

𝑛−1∑︁
𝑖=1

(𝑛 − 𝑖)2 = 𝑛3
𝑛−1∑︁
𝑖=1

(𝑛 − 𝑖
𝑛
)2 · 1

𝑛
≤ 𝑛3

∫
1

0

(1 − 𝑥)2𝑑𝑥

= 𝑛3 [𝑥 − 𝑥2 + 𝑥3/3]1
0
= 𝑛3/3,

as desired. □

Using this, we can prove a lower bound on the cost of our near-

optimal clustering. Note that every cluster is a clique of +edges.
Thus, the only edges violated are +edges. Moreover, there are at

most

∑
𝑖∈[𝑡] 𝑛

2

𝑖
/2 ≤ 𝑛3/6 correctly clustered +edges. The cost of

our near-optimal clustering is the total number of +edges of 𝐺
minus the number of correctly clustered +edges, namely at most(𝑛
2

)
(𝑑 − 1) − 𝑛3/6 = 𝑛3/3 − 𝑜 (𝑛3). Since the cost of the optimal

clustering is at most 35𝑛2 lower than ours, it is still 𝑛3/3 − 𝑜 (𝑛3).
The fractional solution has the value at most 𝑛3/4, so the gap is at

least 4/3 − 𝑜 (1). □

6 1.04-NP HARDNESS
In this section, we show that it is NP-hard (under randomized

reductions) to obtain an algorithm with an approximation ratio of

24/23 ≥ 1.043, proving Theorem 5 restated below.

The idea is similar to the gap for the cluster LP in Section 5,

which is based on the fact that the LPs generally cannot distinguish

nearly bipartite graphs and random graphs. The main difference,

which results in a worse factor here, is that other polynomial-time

algorithms (e.g., SDPs) can distinguish between them! So, we are

forced to work with slightly more involved structures.

Still, we use a similar construction for 3-uniform hypergraphs;

let 𝐻 = (𝑉𝐻 , 𝐸𝐻) be the underlying 3-uniform hypergraph and

𝐺 = (𝑉𝐺 , 𝐸𝐺) be the plus graph of the final Correlation Clustering

instance where 𝑉𝐺 = 𝐸𝐻 and 𝑒, 𝑓 ∈ 𝐸𝐻 has an edge in 𝐺 if they

share a vertex in 𝐻 . We use the following hardness result of Cohen-

Addad, Karthik, and Lee [26] that shows that it is hard to distinguish

whether 𝐻 is nearly bipartite or close to a random hypergraph.

Theorem 24. For any 𝜀 > 0, there exists a randomized polynomial-
time algorithm that receives a 3-CNF formula𝜙 as input and outputs a
simple 3-uniform hypergraph𝐻 = (𝑉𝐻 , 𝐸𝐻) where the degree of each
vertex is (1 ± 𝑜 (1))𝑑 for some 𝑑 = 𝜔 (|𝑉𝐻 |) such that the following
properties are satisfied with high probability.

• (YES) If 𝜙 is satisfiable, there exists𝑈 ⊆ 𝑉𝐻 with |𝑈 | = |𝑉𝐻 |/2
that intersects every hyperedge in 𝐸𝐻 . Moreover, for every
𝑢 ∈ 𝑈 , |{𝑒 ∈ 𝐸𝐻 : 𝑒 ∩𝑈 = {𝑢}}| ≥ (1/2 − 𝜀)𝑑 .

• (NO) If 𝜙 is unsatisfiable, any set of 𝛾 |𝑉𝐻 | vertices (𝛾 ∈ [0, 1])
do not intersect at least a (1 − 𝛾)3 − 𝜀 fraction of hyperedges
in 𝐸𝐻 .

Proof. The same reduction in Theorem 4.1 of (the arXiv version

of) [26] yields the desired hardness. In the following, we highlight

the difference between the statement of Theorem 4.1 of [26] and

our Theorem 24 and briefly explain how our additional properties

are satisfied by their reduction.

(1) Regularity of 𝐻 : Section 4.5 of [26], based on an earlier

weighted hard instance, constructs the final hard instance

𝐻 = (𝑉𝐻 , 𝐸𝐻) as a certain random hypergraph where the

degree of each vertex 𝑣 is the sum of independent {0, 1} vari-
ables with the same expected value. This expected value is

Θ(|𝑉𝐻 |1.5), so the standard Chernoff and union bound argu-

ment will show that the degree of each vertex is almost the

same with high probability.

(2) In the (YES) case, for every𝑢 ∈ 𝑈 , |{𝑒 ∈ 𝐸𝐻 : 𝑒∩𝑈 = {𝑢}}| ≥
(1/2 − 𝜀)𝑑 : It follows from their construction in Section 4.1.

The construction is analogous to Håstad’s celebrated result

on Max-3SAT [34] where in the (YES) case, almost three

quarters of the clauses have one true literal and almost one

quarter have three true literals, so that for each true literal

ℓ , roughly half of the clauses containing ℓ has it as the only

true literal.

(3) In the (NO) case: the guarantee holds for any value of 𝛾 ∈
[0, 1] instead of just 0.5: One can simply change 1/2 to 1 − 𝛾
in the proof of Lemma 4.4 in Section 4.3. It is analogous to the

fact that all nontrivial Fourier coefficients vanish in Håstad’s

result on Max-3SAT and Max-3LIN [34].

□

Given such 𝐻 = (𝑉𝐻 , 𝐸𝐻), let 𝑛 := |𝑉𝐻 |. Our correlation clus-

tering instance 𝐺 = (𝑉𝐺 , 𝐸𝐺) is the line graph of 𝐻 ; 𝑉𝐺 = 𝐸𝐻 and

𝑒, 𝑓 ∈ 𝐸𝐻 have a plus edge in 𝐺 if they share a vertex in 𝐻 . This

means that every 𝑒 ∈ 𝑉𝐺 has (3 ± 𝑜 (1))𝑑 plus edges incident on

it; we used the fact that 𝑑 = 𝜔 (𝑛) and 𝑒 has at most 𝑂 (𝑛) other
hyperedges that intersect with 𝑒 with at least two points (which

causes double counting).

YES case. Consider 𝑈 ⊆ 𝑉𝐻 guaranteed in Theorem 24. Our

(randomized) clustering is the following: randomly permute vertices

to obtain𝑈 = {𝑣1, . . . , 𝑣𝑛/2}, and let 𝐸𝑖 := {𝑒 ∈ 𝐸𝐻 : 𝑣𝑖 ∈ 𝑒 and 𝑒 ∩
{𝑣1, . . . , 𝑣𝑖−1} = ∅}. Since𝑈 intersects every 𝑒 ∈ 𝐸𝐻 , (𝐸1, . . . , 𝐸𝑛/2)
forms a partition of 𝐸𝐻 .

We analyze the expected cost of this clustering. For each 𝑒 ∈ 𝐸𝐻 ,
let 𝑠𝑎𝑣𝑒 (𝑒) be (the number of plus neighbors in the same cluster)

minus (the number of minus neighbors in the same cluster). Intu-

itively, it is the amount of saved cost between 𝑒 and its neighbors,

compared to the situation where 𝑒 is a singleton cluster. Then, the

cost of our clustering is the total number of plus edges of𝐺 , namely

|𝐸𝐻 | · 3(1±𝑜 (1))𝑑2
= 𝑛𝑑2 · (1±𝑜 (1))

2
, minus

∑
𝑒∈𝐸𝐻 𝑠𝑎𝑣𝑒 (𝑒)/2.

Fix 𝑣 ∈ 𝑈 and let 𝐸𝑣 := {𝑒 ∈ 𝐸𝐻 : 𝑣 ∈ 𝑒}, 𝐸′𝑣 := {𝑒 ∈ 𝐸𝐻 : 𝑒 ∩𝑈 =

{𝑣}}, 𝐸′′𝑣 := 𝐸𝑣 \ 𝐸′𝑣 . Then |𝐸𝑣 | = (1 ± 𝑜 (1))𝑑 and |𝐸′𝑣 | ≥ (1/2 − 𝜀)𝑑 .
We would like to compute E[|𝐸𝑖 |2] over random permutations

where 𝑖 is defined such that 𝑣𝑖 = 𝑣 . It is clear that 𝐸
′
𝑣 ⊆ 𝐸𝑖 . For each

𝑒 ∈ 𝐸′′𝑣 , the probability that 𝑒 ∈ 𝐸𝑖 is at least 1/3 (when 𝑣 comes

Understanding the Cluster Linear Program for Correlation Clustering STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

before the other two vertices of 𝑒 in the random permutation). And

two hyperedges 𝑒, 𝑓 ∈ 𝐸′′𝑣 , the probability that both are in 𝐸𝑖 is at

least 1/5 (when 𝑣 comes first among |𝑒 ∪ 𝑓 | ≤ 5 vertices). Therefore,

E[|𝐸𝑖 |2] ≥ |𝐸′𝑖 |
2 + 2|𝐸′𝑖 | |𝐸

′′
𝑖 |/3 + |𝐸

′′
𝑖 |

2/5
≥ 𝑑2 (1/4 + 1/6 + 1/20 −𝑂 (𝜀)) = 𝑑2 (7/15 −𝑂 (𝜀)) .

Therefore, the total saving is at least 𝑛𝑑2 (7/30−𝑂 (𝜀)) and the final
cost is at most 𝑛𝑑2 (1/2 − 7/60 +𝑂 (𝜀)) = 𝑛𝑑2 (23/60 +𝑂 (𝜀)).

NO case. Our analysis will be similar to that of the gap instance,

slightly more complicated by the fact that we are working with a

non-complete hypergraph. Consider the optimal correlation cluster-

ing and consider one cluster𝐶 . For 𝑒 ∈ 𝐶 , it has at most (3±𝑜 (1))𝑑
plus edges in 𝐺 , so |𝐶 | ≤ (6 + 𝑜 (1))𝑑 ; otherwise, it is better to
make 𝑒 a singleton cluster. We prove that if 𝐶 is large, then we

can partition 𝐶 into smaller clusters where each cluster consists of

hyperedges sharing the same vertex in 𝐻 . For 𝑣 ∈ 𝐸𝐻 , let 𝐸𝑣 ⊆ 𝐸𝐻
be the set of hyperedges containing 𝑣 .

Claim 25. There is a partition of𝐶 into𝐶1, . . . ,𝐶𝑟 such that (1) each
𝐶𝑖 is a subset of 𝐸𝑣 for some 𝑣 ∈ 𝑉𝐻 , and (2) replacing𝐶 by𝐶1, . . . ,𝐶𝑟
in the correlation clustering solution increases the objective function
by at most 𝑂 (𝑛 |𝐶 |).

Proof. Without loss of generality, assume 𝑉𝐻 = {𝑣1, . . . , 𝑣𝑛}
and define 𝑛𝑖 := |𝐶 ∩ 𝐸𝑣𝑖 | such that 𝑛1 ≥ · · · ≥ 𝑛𝑛 . Note that∑
𝑖 𝑛𝑖 = 3|𝐶 |.
If 𝑒 = (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘) with 𝑖, 𝑗, 𝑘 > 20, then 𝑛𝑖 + 𝑛 𝑗 + 𝑛𝑘 < 3 ·

(3|𝐶 |/20) < |𝐶 |/2, which implies that 𝑒 has more minus neigh-

bors than plus neighbors in 𝐶 , leading to contradiction. So, every

hyperedge is incident on 𝑣𝑖 for some 𝑖 ≤ 20.

Since two vertices of 𝐻 have at most 𝑛 hyperedges containing

both of them, let usmake atmost𝑛·
(
10

2

)
hyperedges in𝐶 that contain

at least two of 𝑣1, . . . , 𝑣20 as singleton clusters; the objective function

increases by at most 𝑛 ·
(
10

2

)
· |𝐶 |. Then partition the remaining 𝐶

into 𝐸1, . . . , 𝐸20 where 𝐸𝑖 := 𝐶 ∩ 𝐸𝑣𝑖 . Each 𝑒 ∈ 𝐸𝑖 has at most

2 · 20 · 𝑛 plus edges in ∪𝑗≠𝑖𝐸 𝑗 (20 choices for 𝑣 𝑗 , 2 choices for a

vertex in 𝑒 ∋ {𝑣𝑖 }, and 𝑛 choices for hyperedges containing both

vertices), so the objective function increases by at most 𝑂 (𝑛 |𝐶 |).
So, we partitioned 𝐶 into 𝐶1, . . . ,𝐶𝑟 where all the hyperedges in

𝐶𝑖 share a common endpoint. In total, we increased the objective

function by at most 𝑂 (𝑛 |𝐶 |). □

Applying the above procedure for every cluster 𝐶 increases the

objective function by at most𝑂 (𝑛 · |𝐸𝐻 |) = 𝑂 (𝑛2𝑑). Then, we have
a clustering where all the edges in a cluster𝐶 share a common end-

point.𝐶 forms a clique in 𝐻 . For 𝑣 ∈ 𝑉𝐻 , let𝐶𝑣 be the cluster in the

solution whose common endpoint is 𝑣 . (If there are many of them,

merging them will strictly improve the objective function value.)

Without loss of generality, there are 𝑡 such clusters𝐶𝑣1 , . . . ,𝐶𝑣𝑡 and

let 𝑐𝑖 := |𝐶𝑣𝑖 | such that 𝑐1 ≥ · · · ≥ 𝑐𝑡 .

Claim 26.
∑𝑡
𝑖=1 𝑐

2

𝑖
≤ 𝑑2𝑛(0.2 +𝑂 (

√
𝜀)), where 𝜀 is the parameter

from Theorem 24.

Proof. Here, we use the NO case guarantee from Theorem 24:

for any 𝛾 ∈ [0, 1] and choice of 𝛾𝑛 vertices, it covers at most 1− (1−

𝛾)3 + 𝜀 = 3𝛾 − 3𝛾2 +𝛾3 + 𝜀 fraction of the edges, which is equivalent

to: for every 𝑖 ∈ [𝑛],
𝑖∑︁
𝑗=1

𝑐𝑖 ≤ (3(𝑖/𝑛) − 3(𝑖/𝑛)2 + (𝑖/𝑛)2 + 𝜀) |𝐸𝐻 |. (16)

Let 𝛿 = 𝑜 (1) be such that every vertex of 𝐻 has degree at most

(1 + 𝛿)𝑑 , which means that (1 + 𝛿)𝑑 ≥ 𝑐1 ≥ · · · ≥ 𝑐𝑡 . And let

𝑓𝑖/𝑛 := 𝑐𝑖/((1 + 𝛿)𝑑). Then (16) becomes

1

𝑛

𝑖∑︁
𝑗=1

𝑓𝑗/𝑛 ≤ (3(𝑖/𝑛) − 3(𝑖/𝑛)2 + (𝑖/𝑛)2 + 𝜀)
|𝐸𝐻 |
(1 + 𝛿)𝑑𝑛

≤ (3(𝑖/𝑛) − 3(𝑖/𝑛)2 + (𝑖/𝑛)2 + 𝜀)/3. (17)

(Note that |𝐸𝐻 | ≤ (1 + 𝛿)𝑑𝑛/3.) if we interpret
1

𝑛

∑𝑖
𝑗=1 𝑓𝑗/𝑛 as∫

1

0
𝑓 (𝑥)𝑑𝑥 where 𝑓 (𝑥) = 𝑐 ⌈𝑥𝑛⌉ , we have that

𝑡∑︁
𝑖=1

|𝑐𝑖 |2 ≤ (1 + 𝛿)2𝑑2𝑛max

𝑓

∫
1

0

𝑓 (𝑥)2𝑑𝑥,

where the maximum is taken over functions 𝑓 : [0, 1] → [0, 1] with
the constraints that

(1) For all 𝑦 ∈ [0, 1],∫ 𝑦

𝑥=0

𝑓 (𝑥)𝑑𝑥 ≤ 𝑦 − 𝑦2 + 𝑦3/3 + 𝜀/3. (18)

(Compared to (17), we add more constraints for every 𝑦 ∈
[0, 1], but it is valid to do so since the step function 𝑓 (·)
defined above satisfies all these constraints; if (18) is violated

for some value 𝑦 ∈ (𝑖/𝑛, (𝑖 + 1)/𝑛) for some integer 𝑖 , (17)

is violated at (𝑖 + 1)/𝑛 because 𝑓 (𝑦) stays the same in the

interval while the upper bound increases strictly less than

linearly.)

(2) 𝑓 decreasing with 𝑓 (0) ≤ 1.

Then one see that the optimal 𝑓 satisfies either 𝑓 (𝑦) = 1 or

∫ 𝑦
𝑥=0

𝑓 (𝑥)
= 𝑦 −𝑦2 +𝑦3 + 𝜀/3 for every 𝑦 ∈ [0, 1). If it is not satisfied at some 𝑦,

we can increase 𝑓 (𝑦) while decreasing 𝑓 (𝑧) for some 𝑧 > 𝑦, which

will still satisfy the constraints and increase

∫
1

0
𝑓 (𝑥)2𝑑𝑥 . Therefore,

we can conclude that 𝑓 (𝑦) = 1 for 𝑦 ≤ 𝜏 and∫ 𝑦

𝑥=0

𝑓 (𝑥)𝑑𝑥 = 𝑦 − 𝑦2 + 𝑦3/3 + 𝜀/3

⇒𝑓 (𝑦) = (𝑦 − 𝑦2 + 𝑦3/3 + 𝜀/3)′ = 1 − 2𝑦 + 𝑦2

for 𝑦 > 𝜏 , where 𝜏 = Θ(
√
𝜀) is the solution of 𝜏 = 𝜏 −𝜏2 +𝜏3 +𝜀/3.

Then, we can bound∫
1

𝑥=0

𝑓 (𝑥)2𝑑𝑥 ≤ 𝑂 (
√
𝜀) +

∫
1

𝑥=0

(1 − 2𝑥 + 𝑥2)2𝑑𝑥 ≤ 0.2 +𝑂 (
√
𝜀),

which implies that

∑
𝑖 𝑐

2

𝑖
≤ 𝑑2𝑛(0.2 +𝑂 (

√
𝜀)). □

Using this, we can prove a lower bound on the cost of our near-

optimal clustering. Note that every cluster is a clique of +edges.
Thus, the only edges violated are +edges. Moreover, there are at

most

∑
𝑖∈[𝑡] 𝑐

2

𝑖
/2 ≤ 𝑑2𝑛(0.1+𝑂 (

√
𝜀) correctly clustered +edges. The

cost of our near-optimal clustering is the total number of +edges
of 𝐺 minus the number of correctly clustered +edges, namely at

least 𝑛𝑑2 (1/2 − 0.1 −𝑂 (
√
𝜀)) = 𝑛𝑑2 (0.4 −𝑂 (

√
𝜀)). Since the cost of

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas Vogl

the optimal clustering is at most 𝑂 (𝑛2𝑑) lower than ours, it is still

𝑛𝑑2 (0.4 −𝑂 (
√
𝜀)) using 𝑑 = 𝜔 (𝑛).

Since the value in the YES case is at most (23/60 +𝑂 (𝜀))𝑛𝑑2, so
the gap is almost

24

23
≥ 1.043.

REFERENCES
[1] Rakesh Agrawal, Alan Halverson, Krishnaram Kenthapadi, Nina Mishra, and

Panayiotis Tsaparas. 2009. Generating labels from clicks. In Proceedings of the
Second ACM International Conference on Web Search and Data Mining. 172–181.

[2] Sara Ahmadian and Maryam Negahbani. 2023. Improved approximation for fair

correlation clustering. In International Conference on Artificial Intelligence and
Statistics. PMLR, 9499–9516.

[3] Kook Jin Ahn, Graham Cormode, Sudipto Guha, AndrewMcGregor, and Anthony

Wirth. 2015. Correlation Clustering in Data Streams. In Proceedings of the 32nd
International Conference on Machine Learning (ICML). 2237–2246.

[4] Nir Ailon, Moses Charikar, and Alantha Newman. 2008. Aggregating inconsistent

information: Ranking and clustering. J. ACM 55, 5 (2008), 1–27.

[5] Arvind Arasu, Christopher Ré, and Dan Suciu. 2009. Large-scale deduplication

with constraints using dedupalog. In Proceedings of the 25th IEEE International
Conference on Data Engineering (ICDE). 952–963.

[6] Sepehr Assadi and Chen Wang. 2022. Sublinear Time and Space Algorithms for

Correlation Clustering via Sparse-Dense Decompositions. In Proceedings of the
13th Conference on Innovations in Theoretical Computer Science (ITCS) (LIPIcs,
Vol. 215). 10:1–10:20.

[7] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004. Correlation clustering.

Machine learning 56, 1 (2004), 89–113.

[8] Nikhil Bansal and Maxim Sviridenko. 2006. The Santa Claus problem. In Pro-
ceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC).
31–40.

[9] Boaz Barak, Prasad Raghavendra, and David Steurer. 2011. Rounding semidefinite

programming hierarchies via global correlation. In Proceedings of 52nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS). 472–481.

[10] Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. 2022. Almost

3-Approximate Correlation Clustering in Constant Rounds. In Proceedings of 63rd
Annual IEEE Symposium on Foundations of Computer Science, (FOCS). 720–731.

[11] Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. 2023. Single-

Pass Streaming Algorithms for Correlation Clustering. In Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms (SODA). 819–849.

[12] Francesco Bonchi, Aristides Gionis, and Antti Ukkonen. 2013. Overlapping

correlation clustering. Knowledge and Information Systems 35, 1 (2013), 1–32.
[13] Mélanie Cambus, Davin Choo, Havu Miikonen, and Jara Uitto. 2021. Massively

Parallel Correlation Clustering in Bounded Arboricity Graphs. In 35th Interna-
tional Symposium on Distributed Computing (DISC) (LIPIcs, Vol. 209). 15:1–15:18.

[14] Mélanie Cambus, Fabian Kuhn, Etna Lindy, Shreyas Pai, and Jara Uitto. 2024. A

(3 + 𝜀)-Approximate Correlation Clustering Algorithm in Dynamic Streams. In

Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms (SODA).
[15] Nairen Cao, Shang-En Huang, and Hsin-Hao Su. 2024. Breaking 3-Factor Approx-

imation for Correlation Clustering in Polylogarithmic Rounds. In Proceedings of
the 2024 ACM-SIAM Symposium on Discrete Algorithms (SODA).

[16] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. 2008. A graph-theoretic

approach to webpage segmentation. In Proceedings of the 17th International con-
ference on World Wide Web (WWW). 377–386.

[17] Sayak Chakrabarty and Konstantin Makarychev. 2023. Single-Pass Pivot Algo-

rithm for Correlation Clustering. Keep it simple!. In Thirty-seventh Conference on
Neural Information Processing Systems.

[18] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. 2005. Clustering

with qualitative information. J. Comput. System Sci. 71, 3 (2005), 360–383.
[19] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. 2009. Integral-

ity gaps for Sherali-Adams relaxations. In Proceedings of the 41st Annual ACM
Symposium on Theory of Computing (STOC). 283–292.

[20] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivaku-

mar. 2006. On the hardness of approximating multicut and sparsest-cut. Compu-
tational Complexity 15, 2 (2006), 94–114.

[21] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavt-

sev. 2015. Near optimal LP rounding algorithm for correlation clustering on

complete and complete 𝑘-partite graphs. In Proceedings of the 47th Annual ACM
Symposium on Theory of Computing (STOC). 219–228.

[22] Yudong Chen, Sujay Sanghavi, and Huan Xu. 2012. Clustering sparse graphs. In

Advances in Neural Information Processing Systems (Neurips). 2204–2212.

[23] Flavio Chierichetti, Nilesh Dalvi, and Ravi Kumar. 2014. Correlation clustering in

MapReduce. In Proceedings of the 20th ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD). 641–650.

[24] Vincent Cohen-Addad, Silvio Lattanzi, Andreas Maggiori, and Nikos Parotsidis.

2022. Online and Consistent Correlation Clustering. In Proceedings of International
Conference on Machine Learning (ICML). 4157–4179.

[25] Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard,

Nikos Parotsidis, and Jakub Tarnawski. 2021. Correlation Clustering in Constant

Many Parallel Rounds. In Proceedings of the 38th International Conference on
Machine Learning (ICML). 2069–2078.

[26] Vincent Cohen-Addad and Euiwoong Lee. 2022. Johnson coverage hypothesis:

Inapproximability of k-means and k-median in 𝐿𝑝 -metrics. In Proceedings of
the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM,

1493–1530.

[27] Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. 2023. Han-

dling Correlated Rounding Error via Preclustering: A 1.73-approximation for

Correlation Clustering. In Proceedings of the 64rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS).

[28] Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. 2022. Correlation

Clustering with Sherali-Adams. In Proceedings of 63rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS). 651–661.

[29] Sami Davies, Benjamin Moseley, and Heather Newman. 2023. Fast Combinatorial

Algorithms for Min Max Correlation Clustering. arXiv preprint arXiv:2301.13079
(2023).

[30] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. 2006. Corre-

lation clustering in general weighted graphs. Theoretical Computer Science 361,
2-3 (2006), 172–187.

[31] Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviridenko.

2006. Tight approximation algorithms for maximum general assignment prob-

lems. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA). 611–620.

[32] Ioannis Giotis and Venkatesan Guruswami. 2006. Correlation Clustering with a

Fixed Number of Clusters. Theory of Computing 2 (2006), 249–266.

[33] Venkatesan Guruswami and Ali Kemal Sinop. 2011. Lasserre hierarchy, higher

eigenvalues, and approximation schemes for graph partitioning and quadratic

integer programming with PSD objectives. In Proceedings of the 52nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS). 482–491.

[34] Johan Håstad. 2001. Some optimal inapproximability results. J. ACM 48, 4 (2001),

798–859.

[35] Holger Heidrich, Jannik Irmai, and Bjoern Andres. 2023. A 4-approximation

algorithm for min max correlation clustering. arXiv preprint arXiv:2310.09196
(2023).

[36] Dmitri V. Kalashnikov, Zhaoqi Chen, Sharad Mehrotra, and Rabia Nuray-Turan.

2008. Web people search via connection analysis. IEEE Transactions on Knowledge
and Data Engineering 20, 11 (2008), 1550–1565.

[37] Marek Karpinski and Warren Schudy. 2009. Linear time approximation schemes

for the Gale-Berlekamp game and related minimization problems. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing (STOC). 313–322.

[38] Silvio Lattanzi, Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang, and Rudy

Zhou. 2021. Robust Online Correlation Clustering. In Advances in Neural Infor-
mation Processing Systems (Neurips). 4688–4698.

[39] Claire Mathieu, Ocan Sankur, and Warren Schudy. 2010. Online Correlation

Clustering. In Proceedings of 27th International Symposium on Theoretical Aspects
of Computer Science (STACS). 573–584.

[40] Xinghao Pan, Dimitris S. Papailiopoulos, Samet Oymak, Benjamin Recht, Kannan

Ramchandran, and Michael I. Jordan. 2015. Parallel Correlation Clustering on Big

Graphs. In Advances in Neural Information Processing Systems (Neurips). 82–90.
[41] Prasad Raghavendra and Ning Tan. 2012. Approximating CSPs with global

cardinality constraints using SDP hierarchies. In Proceedings of the 23d Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 373–387.

[42] Chaitanya Swamy. 2004. Correlation Clustering: Maximizing agreements via

semidefinite programming.. In Proceedings of the 15th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA). 526–527.

[43] Nate Veldt. 2022. Correlation Clustering via Strong Triadic Closure Labeling:

Fast Approximation Algorithms and Practical Lower Bounds. In International
Conference on Machine Learning (ICML). 22060–22083.

[44] Nate Veldt, David F. Gleich, and Anthony Wirth. 2018. A correlation clustering

framework for community detection. In Proceedings of the 2018 ACM World Wide
Web Conference (WWW). 439–448.

Received 13-NOV-2023; accepted 2024-02-11

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Further Related Work

	2 Algorithmic Framework and Setup for Analysis
	3 Overview of Techniques
	4 Solving Cluster LP Relaxation Approximately
	4.1 Preclustering
	4.2 Bounded Sub-Cluster LP Relaxation for Preclustered Instances
	4.3 Sampling One Cluster Using LP Solution to the Bounded Sub-Cluster LP
	4.4 Construction of Solution to the Cluster LP Using Independently Sampled Clusters

	5 1.33-gap for cluster LP
	6 1.04-NP Hardness
	References

