
Lift and Project Algorithms for Precedence Constrained Scheduling to

Minimize Completion Time

Shashwat Garg ∗ Janardhan Kulkarni † Shi Li ‡

Abstract

We consider the classic problem of scheduling jobs with
precedence constraints on a set of identical machines
to minimize the weighted completion time objective.
Understanding the exact approximability of the problem
when job lengths are uniform is a well known open
problem in scheduling theory. In this paper, we show
an optimal algorithm that runs in polynomial time and
achieves an approximation factor of (2 + ε) for the
weighted completion time objective when the number
of machines is a constant. The result is obtained by
building on the lift and project approach introduced in
a breakthrough work by Levey and Rothvoss [15] for the
makespan minimization problem.

1 Introduction

A classic problem in scheduling theory is as follows:
We are given a set J of n jobs, where each job j ∈ J
has a processing length pj and a weight wj . The jobs
have precedence constraints, which are given by a partial
order “≺”. A constraint j ≺ j′ requires that job j′ can
only start after job j is completed. The jobs need to be
scheduled on a set of m identical machines. The goal is
to schedule jobs non-preemptively on machines – that is,
each job is assigned to a single time interval of length pj
on a single machine – respecting precedence constraints
so as to optimize a certain objective function. One of the
most widely studied objective function in the literature
is that of minimizing the sum of weighted completion
times of jobs. In the classic three field notation 1, the

∗Eindhoven University of Technology, s.garg@tue.nl. A part
of this work was done when the author was visiting MSR,

Redmond.
†Microsoft Research, Redmond, jakul@microsoft.com
‡University at Buffalo, Buffalo, NY, shil@buffalo.edu. Work

supported in part by NSF grants CCF-1566356 and CCF-1717134.
1In the α|β|γ-notation introduced in [9], α denotes the machine

environment. We consider the case where we have m identical
machines. We use α = P to denote case where m is a part of

the input, α = Pm to denote the case where m is fixed, and
α = 1 to denote the case m = 1. β denotes the set of features in
the scheduling problem. In the paper, we always have prec ∈ β,

indicating we have precedence constraints between jobs. We may
have pj = 1 ∈ β, indicating that all jobs have size 1. γ indicates

problem is denoted by P |prec|∑j wjCj . The problem
has been studied quite extensively in the literature
[9, 6, 5, 20, 25, 11, 14, 26, 2, 15, 20, 10, 4, 21] for decades.
Despite this, large gaps remain in our understanding
of the problem. The influential survey of Schuurman
and Woeginger [23] lists the exact approximability and
hardness of this problem as one of the top ten open
problems in scheduling theory (Problem 9 in the list).

With precedence constraints, the weighted comple-
tion time objective is more general than the problem
of minimizing makespan, which is the problem of min-
imizing the maximum completion time of jobs. This
is true because one can create a dummy job of size 0
and weight 1 that must be processed after all jobs in
J , whose weights are set to 0. Already in 1966, Gra-
ham [8] showed that any greedy non-idling scheduling
is a 2− 1/m approximation to the problem of minimiz-
ing makespan with precedence constraints on identical
machines. As showed by Svensson [26], the approxima-
tion factor of 2 is the best possible even for the spe-
cial case P |prec, pj = 1|Cmax of the problem where all
jobs have unit size, under a variant of the Unique Game
Conjecture (UGC) introduced by Bansal and Khot [2].
As minimizing weighted completion time generalizes the
makespan objective function, the lower bound of 2 also
extends to the problem P |prec, pj = 1|∑j wjCj .

On the positive side, the best known approxima-
tion ratios for the problem of minimizing the sum of
weighted completion times are 1 +

√
2 for P |prec, pj =

1|∑j wjCj , and 2+2 ln 2+ ε for P |prec|∑j wjCj , both
due to Li [18]. Both these results are obtained by round-
ing a time-indexed LP relaxation for the problem, and
build on the ideas in the papers [20, 10, 4]. Although
we do not know if the integrality gap of time indexed
LP given by Li [18] is more than 2, due to technical
reasons it seems difficult round the time indexed LP to
obtain the optimal approximation factor of 2, achieving
which remains an important open problem in scheduling
theory.

In most real world applications, the number of ma-

objective value: we use Cmax for the makespan objective and∑
j wjCj for the weighted completion time objective.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

chines is typically much smaller than the number of
jobs. Hence, a natural question is if one can design
better approximation algorithms for the case where m
is a constant, which is denoted by Pm|prec|∑j wjCj in
the three field notation. The question has attracted
a lot of attention for the makespan objective. For
the makespan problem, whether Pm|prec, pj = 1|Cmax

is NP-hard or not for any m ≥ 3, and whether
Pm|prec|Cmax is strongly NP-hard or not for any
m ≥ 2 are long-standing open problems. On the
positive side, the recent breakthrough result of Levey
and Rothvoss [15] gave an (1 + ε)-approximation al-
gorithm for the problem Pm|prec, pj = 1|Cmax, with
running time exp

(
exp

(
Om,ε(log2 log n)

))
, via Sherali-

Adams lift of the natural LP relaxation of the problem
to exp

(
Om,ε(log2 log n)

)
levels. Later, Garg [7] made

the result strictly quasi-polynomial time.
For the weighted completion time objective, the

result of Bansal and Khot [2] showed that even the
problem 1|prec, pj = 1|∑j wjCj , i.e, the problem where
there is only 1 machine and all jobs have length 1, can
not be approximated better than 2− ε under a variant
of Unique Games Conjecture (UGC). On the positive
side, a 2-approximation algorithm for 1|prec|∑j wjCj
was given by Hall et al. [10]. However, the algorithm
crucially uses the fact that there are no idle times in
the schedule when there is only one machine. As soon
as one goes beyond the single machine environment
this is no longer true; hence, it is not known how
they can be extended to the case where we have more
(but constant number of) machines, even for the case
where all job sizes are 1. In this paper we solve this
problem by giving a (2 + ε)-approximation algorithm
for Pm|prec, pj = 1|∑j wjCj , which is almost optimal
due to the UGC-hardness of 2 − ε for the problem
1|prec, pj = 1|∑j wjCj . The main result of the paper
is the following.

Theorem 1.1. For any ε > 0, there is a (2 + ε)-
approximation for Pm|prec, pj = 1|∑j wjCj, i.e,
the problem of scheduling precedence constrained unit-
length jobs on m identical machines to minimize the
total weighted completion time, which runs in time

n2
O((m/ε) log(1/ε))

.

The technically interesting aspect of the above re-
sult is that our algorithm differs from the previous ap-
proaches to weighted completion time objective, and
is based on the LP-hierarchy approach (also called lift
and project method) for the corresponding makespan
problem introduced by Levey and Rothvoss [15]. How-
ever, we remark that our algorithm runs in polyno-
mial time. In contrast, the algorithm of [15] runs in
time slightly more than quasi-polynomial. Similar to

[15, 3], our result shows the effectiveness of the LP-
hierarchy approach in designing better approximation
algorithms for scheduling problems. Further, as noted
in [15], even after more than a decade of research on the
topic, there are very few problems where LP-hierarchies
are truly useful in designing better approximation algo-
rithms. Our result adds to the literature on the topic,
and we hope that some of the ideas here will be useful
in resolving open problems concerning completion time
related objective functions.

2 Our Techniques

Our result is obtained by rounding a LP-hierarchy
solution of natural LP for the problem. Our techniques
build on the work of [15], so we begin by first giving the
high level overview of their algorithm for minimizing the
makespan when jobs have unit lengths.

At the heart of analysis of the Levey-Rothvoss
algorithm [15] for minimizing makespan is the following
simple observation: if the maximum chain length of jobs
in the set J is at most εT , where T is a guess of the
optimal makespan, then Graham’s algorithm already
gives a (1 + ε)-approximation. At a high-level, the
algorithm in [15] uses the above observation in the
following way: it partitions the input instance J into
three sets Jtop, Jmid and Jbot. The jobs in the set Jmid

can be ignored (or discarded) as it is mainly required
for technical reasons. The partitioning is done, guided
by an LP-hierarchy solution, satisfying following two
properties: 1) The maximum chain length among Jtop
is small. 2) The precedence constraints across the jobs
in the sets Jtop and Jbot are loose, and can be easily
satisfied. If one can recursively schedule the jobs in Jbot
with (1 + ε) approximation factor, then such a schedule
can be easily extended to include Jtop by using a simple
greedy algorithm. This is possible because of the two
properties satisfied by our partitioning.

Similar to the Levey-Rothvoss algorithm [15], our
algorithm is also based on solving the natural LP relax-
ation to the problem, lifted to some number r of rounds,
partitioning jobs into top, middle and bottom jobs ac-
cording to their fractional support, and then schedule
them separately. However, one big difference between
our algorithm and that of [15] is that our algorithm is
not recursive: we solve each bottom instance directly.
As a result, we only need one level of partitioning of the
time horizon, and only condition on constant number of
events. This leads to a polynomial time algorithm for
Pm|prec, pj = 1|∑j wjCj .

In a nutshell, our non-recursive algorithm is ob-
tained by perfectly aligning the two 2-approximation
algorithms, for the two special cases of P |prec, pj =
1|∑j wjCj : the problem 1|prec, pj = 1|∑j wjCj for

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

weighted completion time objective but on a single ma-
chine, and the problem P |prec, pj = 1|Cmax on multi-
ple machines but with the objective of minimizing the
makespan. Coincidentally, both special cases admit 2-
approximation algorithms [8, 10], and both factors of 2
are tight under some stronger version of UGC [26, 2].
For each bottom instance defined by a bottom inter-
val Io and the set J∗bot(o) of bottom jobs assigned to
Io, we solve the problem of scheduling J∗bot(o) in Io to
minimize the makespan, instead of the weighted com-
pletion time. We show that the loss caused by consid-
ering the makespan objective is small, since the interval
Io is very short. This is where the 2-approximation for
P |prec, pj = 1|Cmax comes into place: using twice many
time slots, we can schedule J∗bot(o) inside Io.

Then we show that the top jobs can be inserted into
the schedule without adding too many slots to each Io.
We used a simple property that the number of jobs with
fractional completion time at most C in the LP solution
is at most 2mC, that is, twice the number of jobs that
can be scheduled before or at C in an integral schedule.
This is indeed the key property used to obtain the 2-
approximation for 1|prec, pj = 1|∑j wjCj in [10]. In
order to insert top jobs, we also need the properties that
the maximum chain-length formed by top jobs is small,
and that there are no precedence constraints between
top jobs and bottom jobs assigned to each interval Io.
The first one can be guaranteed by conditioning, where
the second one can be guaranteed using some techniques
similar to those in [15]. Similar to [15], we show that the
middle jobs can be discarded at first then inserted back
without increasing the objective value by too much.

Using the above techniques, we shall have an addi-

tive term of w(J) · O(1)·T
2Ω(1/ε) in the total weighted comple-

tion time (where T is the makespan of a “reasonable”
schedule of J). This comes from the length of inter-
vals in our partitioning. Our final algorithm is based
on decomposing the original instance into many sub in-
stances, each containing a set of jobs with similar frac-
tional completion times. We solve each sub-instance
separately; the additive terms from these sub-instances
become multiplicative in the end.

Due to some technical reasons, our final algorithm
for the original instance J is not based on the Sherali-
Adams lift of the natural LP relaxation. Rather, we
apply the “round-or-cut” framework that has been used
in many recent results [1, 16, 17]. We only solve the
non-lifted LP relaxation for the instance J , and given
a solution x to the LP, the rounding algorithm either
rounds x to an integral schedule of cost at most (2 + ε)
times the cost of x, or reports that x violates some
valid linear constraint. The rounding algorithm works
by decomposing the instance J into many sub-instances

J∗ using x, and solving each instance J∗ separately
using the Sherali-Adams hierarchy based algorithm.
It returns a constraint violated by x if the lifted LP
relaxation for some J∗ is infeasible.

3 Basics of Sherali-Adams Hierarchy

In this section, we state some basic facts about Sherali-
Adams hierarchy that we will need. We refer the reader
to [13, 24, 12, 19, 22] for an extensive introduction to
hierarchies. Assume we have a linear program without
an objective function: Ax ≤ b. The set of feasible
solutions is defined as X = {x ∈ {0, 1}n : Ax ≤ b}.
It is convenient to think of each i ∈ [n] as an event, and
in a solution x ∈ {0, 1}n, xi indicates whether the event
i happens or not.

The idea of Sherali-Adams hierarchy is to
strengthen the original LP Ax ≤ b by adding more vari-
ables and constraints. Of course, each x ∈ X should still
be a feasible solution to the strengthened LP (when ex-
tended to a vector in the higher-dimensional space). For
some r ≥ 1, the r-th round of Sherali-Adams lift of the
linear program has variables xS , for every S ⊆ [n] of
size at most r. For every solution x ∈ X , xS is sup-
posed to indicate whether all the events in S happen or
not in the solution x; that is, xS =

∏
i∈S xi. Thus each

x ∈ X can be naturally extended to a 0/1-vector in the
higher-dimensional space defined by all the variables.

To derive the set of constraints, let us focus on the
j-th constraint

∑n
i=1 aj,ixi ≤ bj in the original linear

program 2. Consider two subsets S, T ⊆ [n] such that
|S|+ |T | ≤ r− 1. Then the following constraint is valid
for X ; i.e, all x ∈ X , the constraint is satisfied:

∏
i∈S

xi
∏
i∈T

(1− xi)
(

n∑
i=1

aj,ixi − bj
)
≤ 0.

To linearize the above constraint, we expand the left
side of the above inequality and replace each monomial
with the corresponding xS′ variable. Then, we obtain
the following linear constraint:

∑
T ′⊆T

(−1)|T
′|

(
n∑
i=1

aj,ixS∪T ′∪{i} − bjxS∪T ′
)
≤ 0.

(3.1)

The r-th round of Sherali-Adams lift contains the
above constraint for all j, S, T such that |S|+|T | ≤ r−1,
and the trivial constraint that x∅ = 1. For a linear
program P and an integer r ≥ 1, we use SA(P, r) to
denote the r-th round Sherali-Adams lift of P. We

2We assume that xi ≥ 0, xi ≤ 1,∀i ∈ [n] are also in the set
Ax ≤ b of constraints.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

also view P (resp. SA(P, r)) as the polytope of feasible
solutions to the linear program P (resp. SA(P, r)). For
every i ∈ [n], we identify the variable xi in the original
LP and x{i} in a lifted LP.

A simple observation is that xS1 ≥ xS2 if S1 ⊆ S2,
for a valid solution x ∈ SA(P, r) and |S1| ≤ |S2| ≤
r. Consider the case where S2 = S1 ∪ {i} for some
i /∈ S1. Linearizing the constraint xi ≤ 1 multiplied by∑
i′∈S1

xi gives the constraint xS2
≤ xS1

. This implies,
all the variables have values in [0, 1] as x∅ = 1.

Conditioning Let x ∈ SA(P, r) for some linear
program P on n variables and r ≥ 2. Let i ∈ [n] be
an event such that xi > 0; then we can define a solution
x′ ∈ SA(P, r− 1) obtained from x by “conditioning” on
the event i. For every S ⊆ [n] of size at most r − 1, x′S
is defined as

x′S :=
xS∪{i}

xi
.

Observation 3.1. Let x′ be obtained from x ∈
SA(P, r) by conditioning on some event i, for some
r ≥ 2. Then x′ ∈ SA(P, r − 1) and x′i = 1.

Proof. By definition of the conditioning operation, we
have x′i =

x{i}∪{i}
xi

= xi
xi

= 1, and x′∅ =
x∅∪{i}
xi

= xi
xi

= 1.
The constraint (3.1) on x′ for j, S and T is implied by
(3.1) on x for j, S ∪ {i} and T .

Observation 3.2. Let x ∈ SA(P, r) for some r ≥ 2
and x′ ∈ SA(P, r−1) be obtained from x by conditioning
on some event i. Then, if xi′ ∈ {0, 1} for some i′ ∈ [n],
then x′i′ = xi′ .

Proof. If xi′ = 0, then x′i′ =
x{i′}∪{i}

xi
= 0 since

x{i′}∪{i} ≤ xi′ = 0. Consider the case xi′ = 1.
Expanding the constraint (1 − xi)(1 − xi′) ≥ 0 gives
the constraint 1 − xi − xi′ + x{i′,i} ≥ 0. This implies

xi = xi′,i. Thus, x′i′ =
x{i,i′}
xi

= 1.

The observation says that once an event i′ happens
with extension 0 or 1 w.r.t lifted solution x, then it will
always happen with the same extension (0 or 1) w.r.t
any solution x′ obtained from x by conditioning. To
understand the conditioning operation and the above
observations better, it is useful to consider the ideal case
where x corresponds to a convex combination of integral
solutions in X . Then we can view x as a distribution
over X . Then, conditioning on the event i over the
solution x corresponds to conditioning on i over the
distribution x.

4 Overview of (2 + ε)-Approximation for
Pm|prec, pj = 1|∑j wjCj

In this section we provide an overview of the (2 + ε)-
approximation algorithm for the weighted completion

time problem, give some useful definitions and lemmas
and describe the natural LP relaxation. The detailed
algorithm will be given in Sections 5 and 6.

Let k = O (1/ε) be large enough and then our

goal becomes to obtain a
(

2 + O(1)
k

)
-approximation

algorithm. Let J∗ ⊆ J be the set of jobs we need
to schedule (due to the decomposition we shall discuss
soon, J∗ is not necessarily J). Let T be an upper bound
on the makespan of any reasonable schedule of J∗; then
we require that all the jobs to be scheduled in [T]. Let Φ
be a guess of the value of the weighted completion time
of the jobs in the optimum schedule of J∗. We first
solve Sherali-Adams lift of the natural LP relaxation of
the problem to r = 2O(mk log k) many levels to obtain a
solution x. Our main rounding algorithm (described
in Section 5) then returns a schedule whose total

weighted completion time is at most
(

2 + O(1)
k

)
Φ +

O(1)·w(J∗)·T
2k

. This does not immediately lead to a(
2 + O(1)

k

)
-approximation, due to the additive term

O(1)·w(J∗)·T
2k

. We show (in Section 6) that the additive
term can be removed by decomposing the original
instance J into many sub-instances J∗ and running
the main rounding algorithm on each J∗. The main
rounding algorithm works as follows.

• By conditioning on a constant number of events in
the solution x we arrive at a solution x∗, in which
we guarantee that the maximum length of a chain
formed by “flexible jobs” is small; these are the jobs
that could become top jobs later. From now on, we
only need to focus on the solution x∗ to the original
LP relaxation. (See Section 5.1.)

• We define a random partition I = {I1, I2, · · · , Ih}
of [T] where all intervals in I except I1 and Ih have
length L, where T/L = Om,k(1). We then divide
J∗ into top, middle and bottom jobs (denoted as
J∗top, J

∗
mid and J∗bot respectively), according to the

number of intervals in I that the support (under
a careful definition of “support”) of each job j
in x intersects: j is a top job if the number is
large, a bottom job if the number is 1 and a
middle job otherwise. A top job must be a flexible
job, implying that the maximum length of a chain
formed by top jobs is small. The probability that
a job becomes a middle job is small, allowing us to
ignore them most of the time. (See Section 5.2.)

• We create equal-length intervals I ′ =

{I ′1, I ′2, · · · , I ′h}, with length L′ =
(

2 + O(1)
k

)
L,

that is, about twice the length of a typical interval
in I. We then assign J∗top ∪ J∗bot to intervals in
I ′ and we shall schedule jobs assigned to each I ′o

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

in I ′o. Let oj be the index of the interval a job
j ∈ J∗top ∪ J∗bot is assigned to; we shall use J∗top(o)
and J∗bot(o) to denote set of top and bottom jobs
assigned to I ′o respectively. For a job j ∈ J∗bot,
oj is defined as the index o such that Io contains
the support of j in x∗ (Section 5.3). The oj ’s
for top jobs are defined to satisfy the following
properties. (a) The assignment agrees with the
precedence constraints. (b) The interval Ioj is not
late compared to time Cj , the completion time of
j in the solution x∗; this will guarantee that the
completion time of j in the final schedule is at

most
(

2 + O(1)
k

)
Cj . (c) For each o ∈ [h], we have

|J∗top(o) ∪ J∗bot(o)| ≤
(

2 + O(1)
k

)
L so that there

is enough capacity in the interval I ′o. (d) There
are no precedence constraints between J∗top(o) and
J∗bot(o) for each o ∈ [h]; this will be used when we
schedule J∗top(o) ∪ J∗bot(o) in I ′o. (See Section 5.4.)

• We show that jobs in J∗bot(o) ∪ J∗top(o) can be
scheduled inside I ′o. We construct the schedule in
two steps. First we use Graham’s list scheduling
algorithm to schedule jobs J∗bot(o) in I ′o; this can
be done since the algorithm is a 2-approximation
and we have |I ′o| ≥ 2|Io|. J∗top(o) can be greedily
inserted so that the makespan of the schedule for
J∗top(o) ∪ J∗top(o) is at most L′. This uses the

properties that |J∗top(o) ∪ J∗bot(o)| ≤
(

2 + O(1)
k

)
L,

the maximum length of a chain of jobs in J∗top(o)
is small, and there are no precedence constraints
between J∗top(o) and J∗bot(o). (See Section 5.5.)

• We then define an oj ∈ [h] for each job j ∈ J∗mid

and insert j to I ′oj (Section 5.6). Unlike top and
bottom jobs, we may need to increase the length of
I ′oj by 1 in order to insert a job j ∈ J∗mid to I ′oj .
We restrict that each oj is not too small or too big;
it should be consistent with the fractional support
of j according to x∗. On one hand, this guarantees
that the completion time of a middle job j is at
most 2Cj . On the other hand, the increments of
completion times of other jobs due to the insertion
of middle jobs are not too large. (See Section 5.7.)

As we mentioned, using the above main algorithm,
the expected total weighted completion time of the

output schedule has an additive term of O(1)·w(J∗)·T
2k

.
This comes from the length L of intervals in I. In order
to obtain a multiplicative (2 + ε)-approximation, we
decompose the given instance into many sub instances,
and solve each sub instance using the main rounding
algorithm. Roughly speaking, we partition J into many
groups, where a group ` contains the jobs j whose
fractional completion time Cj is between 2`−1 and 2`.

Then, we discard one out of every k groups. For each
set of (at most) k − 1 consecutive groups that are not
discarded, we create an instance J∗ containing jobs in
these groups and use the main rounding algorithm to
solve the instance J∗. For each discarded group, we also
construct a reasonable schedule of jobs in the group.
Then, the final schedule is obtained by combining all
these sub-schedules carefully. The jobs assigned to a
same instance J∗ have similar fractional completion
times and the additive term can be bounded using
multiplicative ones. Moreover, the influence of jobs from
instances for lower-indexed groups is small.

For each instance J∗ in the decomposition, we need
to know the optimum weighted completion time ΦJ∗ for
scheduling J∗, in order to formulate the lifted LP relax-
ation for J∗ using the Sherali-Adams hierarchy. Since
we do not know the decomposition of J at the begin-
ning, we cannot not solve the problem using a single
lifted LP relaxation for the instance J . Rather, our al-
gorithm is based on the “rounding-or-cut” framework.
We solve the non-lifted LP relaxation for J to obtain
a solution x, and use x to decide the decomposition of
J into sub-instances. Then for each J∗ in the decom-
position, we define ΦJ∗ to be the weighted completion
time for J∗ according to x, and formulate the lifted LP
relaxation for J∗ using this ΦJ∗ value. If the lifted LP
relaxation is infeasible, then we know that the weighted
completion time for scheduling J∗ is strictly bigger than
ΦJ∗ and thus we can return a constraint that x violated.
Suppose the lifted LP relaxations are feasible for all J∗.
Then the rounding algorithm can obtain good sched-
ules for all these J∗ and combine them into a final good
schedule for J . The decomposition algorithm and its
analysis are described in Section 6.

4.1 Useful Definitions and Lemmas Before for-
mally describing the algorithm, we give some useful
definitions and lemmas, and then describe the natu-
ral LP relaxation for the problem. Given a subset
J ′ ⊆ J of jobs, we use ∆(J ′) to the denote the max-
imum length of a precedence chain of jobs in J ′. We
define w(J ′) =

∑
j∈J′ wj as the total weight of jobs in

J ′.

Reasonable Schedule A schedule for J ′ ⊆ J is a
function S ∈ ZJ′>0. The makespan of a schedule S for
J ′ is defined as maxj∈J′ Sj . Given a schedule S, and a
time slot t ∈ Z>0, we define S−1(t) = {j ∈ J ′ : Sj = t}
to be the set of jobs scheduled at time slot t. A schedule
S is said to be valid if

• (capacity constraints) for every t ∈ Z>0 we have
|S−1(t)| ≤ m,

• (precedence constraints) for every pair j, j′ ∈ J ′ of

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

jobs such that j ≺ j′, we have Sj < Sj′ .

Definition 4.1. A valid schedule S for some J ′ ⊆ J
is said to be reasonable if for every j ∈ J ′, any schedule
obtained from S by decreasing Sj is not a valid one.

If a schedule S for J ′ is not reasonable, then we can
decrease the scheduling time of some job j ∈ J ′ without
violating the validity of the schedule. This does not
increase the completion time of any job. Thus, without
loss of generality, we can assume that the schedule we
are looking for is a reasonable schedule. Graham’s
result [8] shows that any reasonable schedule for J ′

gives a 2-approximation for the problem of scheduling
J ′ to minimize the makespan. This analysis is recovered
by our Corollary 4.6; indeed, our analysis requires the
strong lemma (Lemma 4.4).

Definition 4.2. For any reasonable schedule S for
some subset J ′ ⊆ J , we say a slot t within the makespan
of S is busy if |S−1(t)| = m and idle otherwise.

Claim 4.3. Let S be a reasonable schedule for some
J ′ ⊆ J . Let j ∈ J ′ and let t be the latest idle slot
that is before Sj (we assume t exists). Then there is a
job j′ ∈ J ′ such that Sj′ = t and j′ ≺ j.

Proof. Since S is reasonable, changing Sj to t will make
S invalid. It must be the case that some precedence
constraint is violated since t is idle. So, there is a job
j1 ∈ J ′ with j1 ≺ j and t ≤ Sj1 < Sj . If Sj1 = t then
let j′ = j1 and we are done. Otherwise, t < Sj1 < Sj .
Then changing Sj1 to t will make S invalid since S is
reasonable. There must be a job j2 ∈ J ′ with j2 ≺ j1
and t ≤ Sj2 < Sj1 . If Sj2 = t then let j′ = j2 and we are
done. Otherwise, t < Sj2 < Sj2 . So, we can repeat this
process and eventually we can find a job j′ ∈ J ′ with
Sj′ = t and j′ ≺ j. �

Lemma 4.4. Let S be a reasonable schedule for some
J ′ ⊆ J . Let J ′′ ⊆ J ′ be some subset of jobs such
that there are no precedence constraints between J ′′ and
J ′ \ J ′′. Then

max
j∈J′′

Sj ≤
⌊ |J ′|
m

⌋
+ ∆(J ′′).

Proof. Notice that the total number of busy slots in S
is at most

⌊
|J′|
m

⌋
. Now focus on a job j ∈ J ′′ and we

count the total number of idle slots before or at Sj . Let
t1, t2, · · · , tg be the sequence of idle slots before Sj , with
t1 < t2 < · · · < tg < Sj . Then, by Claim 4.3, there is
a job jg ∈ J ′ such that jg ≺ j and Sjg = tg. Applying
the claim again to jg, there is a job jg−1 ∈ J ′ such that
jg−1 ≺ jg and Sjg−1

= tg−1. Repeatedly applying the

claim, we can find a chain of jobs j1 ≺ j2 ≺ · · · ≺ jg ≺ j
in J ′ and Sjg′ = tg′ for every g′ ∈ [g]. Notice that we
assumed there are no precedence constraints between
J ′′ and J ′ \ J ′′ and j ∈ J ′′. Thus, all the jobs in
the chain are in J ′′, implying, g + 1 ≤ ∆(J ′′). Thus,
the total number of idle slots before or at t is at most
g + 1 ≤ ∆(J ′′). The lemma follows. �

Definition 4.5. We define TJ′ =
⌊
|J′|
m

⌋
+ ∆(J ′) for

every J ′ ⊆ J .

Corollary 4.6. Any reasonable schedule S for some
J ′ ⊆ J has makespan at most TJ′ .

Proof. The corollary follows by applying Lemma 4.4
with J ′′ = J ′, since there are no precedence constraints
between J ′′ and J ′ \ J ′′ = ∅. �

Notice that both
⌊
|J′|
m

⌋
and ∆(J ′) are lower bounds

on the makespan of any valid schedule for J ′. Thus,
any reasonable schedule gives a 2-approximation for the
makespan minimization problem.

4.2 LP Relaxation Consider the problem of
scheduling a set J ′ ⊆ J on m machines. Let Φ be
an upper bound on the optimum weighted completion
time. Then the natural LP relaxation contains the
following constraints:∑

t∈[TJ′]

xj,t = 1, ∀j ∈ J ′(4.2)

∑
j∈J′

xj,t ≤ m, ∀t ∈ [TJ′](4.3)

∑
j∈J′,t∈[TJ′]

wjxj,tt ≤ Φ(4.4)

∑
s∈[t−1]

xj,s ≥
∑
s∈[t]

xj′,s, ∀j ≺ j′ ∈ J ′, t ∈ [TJ′](4.5)

xj,t ≥ 0, ∀j ∈ J ′, t ∈ [TJ′](4.6)

In the above definition, each variable xj,t indicates
whether job j is scheduled at the time slot t. Since we
are looking for a reasonable schedule, we can restrict
the makespan of our schedule to be TJ′ . We now
argue that Constraints (4.2), (4.3), (4.5) and (4.6) are
valid and define a valid linear program for the problem
of scheduling J ′. (4.2) requires all jobs in J ′ to be
scheduled, (4.3) requires that the total number of jobs
scheduled at any time slot t is at most m. (4.5) captures
the precedence constraints: for any pair of jobs j ≺ j′

and time slot t, j′ is scheduled at or before time t, only
if j is scheduled at or before time t − 1. (4.6) enforce
the non-negativity constraints.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

The objective we want to minimize is the weighted
completion time

∑
j∈J′,t∈[TJ′]

wjxj,tt. As is common in

the LP/SDP hierarchy framework, we capture the ob-
jective of the optimization problem as an LP constraint,
as required by (4.4). So, the LP does not have an ob-
jective function and we are only interested in its feasi-
bility. When applying the lift-and-project framework,
(4.4) will be lifted together with the other constraints.

For every J ′ ⊆ J of jobs and Φ ≥ 0, we use PJ′(Φ)
to denote the above LP, as well as the polytope of
feasible solutions (xj,t)j∈J′,t∈[TJ′] to the LP.

Claim 4.7. Let x ∈ PJ′(Φ) for some Φ ≥ 0 and
J ′ ⊆ J . Let Cj =

∑
t∈[TJ] xj,tt for every j ∈ J ′ be the

fractional completion time of j according to x. Then
j ≺ j′ implies Cj′ ≥ Cj + 1.

Proof. The proof follows from the constraints of our LP
relaxation. We have,

Cj =
∑

s∈[TJ′]

xj,ss =

TJ′∑
s=1

s∑
t=1

xj,s

=

TJ′∑
t=1

TJ′∑
s=t

xj,s =

TJ′∑
t=1

1−
∑

s∈[t−1]

xj,s


≤

TJ′∑
t=1

1−
∑
s∈[t]

xj′,s

 =

TJ′∑
t=1

TJ′∑
s=t+1

xj′,s

=

TJ′∑
s=1

(s− 1)xj′,s = Cj′ − 1. �

The following lemma bounds TJ′ using the frac-
tional completion times of jobs in J ′. It will be used
later in Section 6 to remove the additive term.

Lemma 4.8. Let x ∈ PJ(Φ) for some Φ ≥ 0. Let
Cj =

∑
t∈[TJ] xj,tt for every j ∈ J . Then, for every

subset J ′ ⊆ J , we have TJ′ ≤ 3 ·maxj∈J′ Cj.

Proof. Recall that TJ′ =
⌊
|J′|
m

⌋
+ ∆(J ′). We upper

bound |J′|
m and ∆(J ′) using Cmax := maxj∈J′ Cj re-

spectively. First, for every two jobs j ≺ j′ we have
Cj′ ≥ Cj + 1, by Claim 4.7. Thus Cmax ≥ ∆(J ′).
Then we shall prove |J ′| ≤ 2mCmax, which implies⌊
|J′|
m

⌋
≤ 2Cmax and thus the lemma. To see this, for

every j ∈ J ′ and t, we draw a rectangle with height xj,t
and horizontal span (t− 1, t] in the 2D plane. Then the
total area of rectangles for each j ∈ J ′ is exactly 1, and
the horizontal position of the mass center for these rect-
angles is exactly Cj − 1/2. Thus overall, the horizontal
position of the mass center for all rectangles for jobs in

J ′ is at most Cmax. Notice that for each real number
τ > 0, the total height of rectangles horizontally cov-
ering τ is at most m by Constraint (4.3). That means
that |J ′| = the total area of rectangles for J ′, and is at
most 2mCmax.

5 The Main Rounding Algorithm

In this section, we give our main rounding algorithm,
by proving the following theorem:

Theorem 5.1. (Main Theorem) Let k ≥ 5 be an
integer, r = 2O(mk log k) be a big enough integer, J∗ ⊆ J
and Φ > 0. Let x ∈ SA(PJ∗(Φ), r). Then in running
time nO(r), we can find a valid schedule of J∗ with total

weighted completion time at most
(

2 + O(1)
k

)
Φ + O(1)

2k
·

w(J∗) · TJ∗ .

Due to the additive term O(1)
2k
·w(J∗)·TJ∗ , we do not

obtain a multiplicative-
(

2 + O(1)
k

)
-approximation im-

mediately using the above theorem. As we mentioned,
in Section 6 we shall achieve this goal by decomposing
the set J of jobs into many subsets and applying Theo-
rem 5.1 for each subset J∗ in the decomposition.

For notational convenience, we use T for TJ∗ and
P(Φ) for PJ∗(Φ). We define two important global
parameters that will be used across the whole section:

• k1 = mk(2 dlog ke+ 3) = Θ(mk log k);

• u =
⌊

T
2k1+k·k

⌋
.

We assume that u ≥ k. Otherwise we have mT <
m·2k1+k ·k = 2O(mk log k) and we can allow r > mT ≥ n;
then the polytope SA(P(Φ), r) is exact and we can find
a valid schedule of J∗ with weighted completion time at
most Φ.

5.1 Reducing the Maximum Chain Length of
Flexible Jobs In this section, we condition on some
events so that there are no long chains of flexible jobs,
defined as follows.

Definition 5.2. Let x ∈ SA(P(Φ), r′) for some r′ ≥
1. Then for every j ∈ J∗, we define Bxj =
min {t : xj,t > 0} and Exj = max {t : xj,t > 0} be the
minimum and maximum time slot t in which j is sched-
uled with a positive fraction according to x. We say j
is flexible w.r.t x if Exj −Bxj ≥ k2u.

The definition is to guarantee that all top jobs (defined
later) will be flexible. Then main lemma we prove in
the section is the following:

Lemma 5.3. If the parameter r in Theorem 5.1 is large
enough, then in nO(r) time we can find a solution x∗ ∈

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

P(Φ), such that

∆
(
{j ∈ J∗ : j is flexible w.r.t x∗}

)
≤ u

2k
.(5.7)

Proof. We start from r′ = r and x∗ = x ∈ SA(P(Φ), r′).
While (5.7) does not hold, we apply the following
procedure. Take a

⌈
u
2k

⌉
-length chain Q of flexible jobs

w.r.t x∗. Notice for each j in Q, [Bx
∗

j , (Bx
∗

j + Ex
∗

j)/2]

has length at least k2u/2. Thus there is a real number

τ ∈ [1, T] and a set J ′ ⊆ Q of at least
(k2u/2)du/2ke

T−1 ≥
k2u2

2k+1T
jobs, such that τ ∈

[
Bx
∗

j , (Bx
∗

j + Ex
∗

j)/2
]

for
every j ∈ J ′. Let j′ ∈ J ′ be the job that appears the
last in the chain Q and let t = Bx

∗

j′ . Notice that by the

definition of Bx
∗

j′ , we have that x∗j′,t > 0. So we can
condition on the event x∗j′,t = 1. We update x∗ to be
the solution in SA(P(Φ), r′−1) under this conditioning,
and we then update r′ to r′ − 1. After this operation,
all jobs j ∈ J ′ will have Ex

∗

j ≤ t ≤ τ , since all these
jobs precede j′ and the scheduling time of j′ is fixed
to t in x∗. Also, notice that the conditioning can only
increase Bx

∗

j since the set of time slots t with x∗j,t > 0

can only shrink. Thus, for every job j ∈ J ′, Ex∗j −Bx
∗

j

is decreased by at least a factor of 2 by the conditioning.
Moreover, for any job j /∈ J ′, the conditioning can only
increase Bx

∗

j and decrease Ex
∗

j and thus Ex
∗

j −Bx
∗

j can
only go down.

Initially, Ex
∗

j − Bx
∗

j ≤ T − 1. We can decrease

Ex
∗

j −Bx
∗

j by at least a factor 2 for at most
⌈
log(T/k2u)

⌉
times before it becomes less than k2u. Since J ′ has size
at least k2u2

2k+1T
in each iteration, the number of iterations

for the above procedure is at most

|J∗| ·
⌈
log(T/k2u)

⌉
k2u2

2k+1T

≤ 2k+1T · mT ·
⌈
log(T/k2u)

⌉
k2u2

=
2k+1m

k2
· T

2

u2
·
⌈

log
T

k2u

⌉
.

Since T
u = O(2k1+k · k) and k1 = Θ(mk log k), the

right side of the above sequence is at most m · 2O(k1) =
2O(mk log k). Thus, if we make r = 2O(mk log k) to be large
enough, then we can apply the above procedure until
(5.7) holds, before we reduce r′ to 1. By projecting the
x∗ to the subspace defined by the level-1 variables, we
obtain an solution x∗ ∈ P(Φ). The running time of the
algorithm is nO(r).

Thus, we have now an x∗ ∈ P(Φ) such that (5.7)
happens. The proof of Lemma 5.3 is the only place
where we use the conditioning. From now on, we shall
fix this x∗ ∈ P(Φ) and simply use Bj and Ej for
Bx
∗

j and Ex
∗

j . That is, Bj = min
{
t : x∗j,t > 0

}
and

Ej = max
{
t : x∗j,t > 0

}
for every j ∈ J∗.

Definition 5.4. For every j ∈ J∗, let Cj =
∑
t x
∗
j,tt

be the fractional completion time of j according to x∗

and Dj = min {Bj + k(Cj −Bj), Ej}.

Notice that we have Bj ≤ Cj ≤ Dj ≤ Ej . For a
technical reason, we shall use [Bj , dDje] as the support
of j when we define top, middle and bottom jobs.
Also notice that for two jobs j ≺ j′ ∈ J∗, we have
Bj′ ≥ Bj + 1, Cj′ ≥ Cj + 1 and Ej′ ≥ Ej + 1; however
Dj′ ≥ Dj + 1 may not hold.

5.2 Generating a Random Partition I and
Defining Bottom, Middle and Top Jobs To gener-
ate the partition I, we first partition [T] into chunks of
size u. That is, each chunk is of the form ((i−1)u, iu]∩
[T] for some integer i. Let p be an integer chosen uni-
formly at random between 0 and k1 − 1 and let q be
a random integer in [2p]. We shall partition [T] into a
set of intervals as follows: the first interval I1 contains
the first q chunks; for each o = 2, 3, · · · , Io contains the
next 2p chunks, or the remaining chunks if there are less
than 2p of them. So p controls the length of intervals in
I and q is a shifting parameter.

More formally, we let L = 2pu. Let h be the largest
integer such that (h−2)L+qu < T . Then I1 = [qu]∩[T]
and Io =

(
(o− 2)L+ qu, (o− 1)L+ qu

]
∩ [T] for every

o = 2, 3, · · · , h. Let I = {I1, I2, · · · , Ih} be the set of
intervals that partition [T]. Notice that the intervals
I2, I3, · · · , Ih−1 have size L, while I1 and Ih may have
sizes smaller than L. See Figure 1 for the partitioning
of [T] into I.

Definition 5.5. For every j ∈ J∗, let vBj , v
C
j and vDj

be the indices of the intervals in I that contain Bj , dCje
and dDje respectively. (Notice that Bj is an integer, but
Cj and Dj might be fractional.)

We show some simple claims regarding vB , vC and vD.
Since Bj ≤ dCje ≤ dDje, we have

Claim 5.6. vBj ≤ vCj ≤ vDj , for every j ∈ J∗.

The following simple observation will be useful
later.

Claim 5.7. For two jobs j, j′ ∈ J∗ such that j ≺ j′, we
have vBj ≤ vBj′ and vCj ≤ vCj′ .

Proof. The claim holds since Bj ≤ Bj′ and Cj ≤ Cj′ if
j ≺ j′. �

We now divide jobs into top, middle and bottom
jobs, according to the number vDj − vBj + 1 of intervals
in I that [Bj , dDje] intersects for each j:

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

chunk
· · · · · ·

u slots

I1: q chunks I2: 2
p chunks I4: 2

p chunksI3: 2
p chunks

Figure 1: Partitioning of [T] into intervals I = {I1, I2, · · · , Ih}.

Definition 5.8. We say j ∈ J∗ is a top job if vDj −
vBj + 1 ≥ k2 + 2k + 2, a middle job if vDj − vBj + 1 ∈
[2, k2 + 2k+ 1] and a bottom job if vDj − vBj + 1 = 1 (or

equivalently vBj = vCj = vDj). Let J∗top, J
∗
mid, J

∗
bot denote

the set of top, middle and bottom jobs respectively.

The following claim and two lemmas are regarding
the top jobs.

Claim 5.9. For every j ∈ J∗top, we have Dj − Bj ≥
k(k + 2)L.

Proof. By the definition of top jobs, [Bj , dDje] inter-
sects at least k2 + 2k + 2 intervals in I. Since all in-
tervals in {I2, I3, · · · , Ih−1} have length exactly L, we
have dDje − Bj + 1 ≥ (k2 + 2k)L + 2, implying that
Dj −Bj ≥ k(k + 2)L. �

We defined the flexible jobs in such a way that all
the top jobs will be flexible, thus we have:

Lemma 5.10. ∆(J∗top) ≤ u
2k

.

Proof. Notice that for every job j ∈ J∗top, we have
Ej−Bj ≥ Dj−Bj ≥ k(k+2)L = k(k+2)2pu ≥ k2u, by
Claim 5.9. Thus, all jobs in J∗top are flexible jobs w.r.t
x∗. Since (5.7) holds for x∗, we have ∆(J∗top) ≤ u

2k
.

The following lemma lower bounds the number of
intervals in I that [Bj , dCje] intersects, for a top job j:

Lemma 5.11. For every j ∈ J∗top, we have vCj −vBj +1 ≥
k + 2.

Proof. For every j ∈ J∗top, we have Cj − Bj ≥ (Dj −
Bj)/k ≥ (k+2)L, by Claim 5.9. So, [Bj , dCje] intersects
at least k+2 intervals in I. By the definition of vBj and

vCj , we have that vCj − vBj + 1 ≥ k + 2. �

One purpose of selecting the parameters p and q
randomly as above is to guarantee that the probability
that each job becomes a middle job is small. This is
crucial to upper bound the expected completion times
of jobs. Formally, we have

Lemma 5.12. For any job j ∈ J∗, we have Pr[j ∈
J∗mid] ≤ 1

km , where the probability is over the random
choices of p and q.

Proof. Let z be the number of chunks that [Bj , dDje]
intersect. Notice that all the intervals in I other than
the first and the last one has exactly 2p chunks. For
j ∈ J∗mid to happen, one of the following two events
must happen:

1. either z/(k2 + 2k + 2) ≤ 2p < z,

2. or 2p ≥ z and [Bj , dDje] intersects 2 intervals in I.

Indeed, if both events do not happen, then either z >
2p(k2 + 2k + 2), in which case j must be a top job, or
z ≤ 2p and [Bj , dDje] intersects 1 interval in I, in which
case j is a bottom job.

The probability that the first event happens is at

most
dlog(k2+2k+2)e

k1
≤ 2dlog ke+1

k1
since there are at most⌈

log(k2 + 2k + 2)
⌉

different values of p satisfying the
condition. Now consider the second event. For fixed
p such that 2p ≥ z, [Bj , dDje] will intersect either 1 or
2 intervals in I, and j ∈ J∗mid if it intersects 2. Notice
that this happens with probability exactly z−1

2p , over all
the random choices of q. Considering all such values of
p together, we have

Pr[the second event happens]

≤
∑

p∈[0,k1):2p≥z

1

k1
· z − 1

2p
<

2

k1
.

Thus, the probability of j ∈ J∗mid is at most
2dlog ke+3

k1
= 2dlog ke+3

km(2dlog ke+3) = 1
km . �

To construct our schedule, we build a set I ′ of
intervals I ′1, I

′
2, · · · , I ′h of size L′, where

L′ =

⌈
2

(
1 +

2

k

)
L

⌉
+
⌊ u

2k

⌋
≈ 2L.(5.8)

More specifically, I ′o = (oL′, (o + 1)L′] ∩ Z for every
o ∈ [h]. With the intervals I ′ defined, we shall first
assign J∗top ∪ J∗bot to them and we guarantee that jobs
assigned to each I ′o can be scheduled inside I ′o. Then we
shall insert J∗mid to the schedule, which may require us
to increase the sizes of intervals in I ′.

5.3 Assigning Bottom Jobs to Intervals The
assignment of bottom jobs to I ′ is straightforward: for
each job j ∈ J∗bot, we define oj = vBj = vCj = vDj and
assign j to I ′oj . Let J∗bot(o) = {j ∈ J∗bot : oj = o} be

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

the set of bottom jobs assigned to I ′o, for every o ∈ [h].
Claim 5.13 and Lemma 5.14 will be used later to show
that there is scheduling of J∗bot(o) with small makespan.

Claim 5.13. For every o ∈ [h], we have ∆(J∗bot(o)) ≤
L.

Proof. For every two jobs j ≺ j′, we have Bj′ ≥ Bj + 1.
Also all jobs j ∈ J∗bot(o) has Bj ∈ Io. Thus, we have
∆(J∗bot(o)) ≤ |Io| ≤ L. �

Lemma 5.14. For each o ∈ [h], we have |J∗bot(o)| ≤
mL

1−1/k .

Proof. Notice that for every j ∈ J∗bot(o), we have
Bj ∈ Io and dDje ∈ Io. Recall that Dj =
min {Bj + k(Cj −Bj), Ej}. If Dj = Ej , then∑Dj
t=Bj

x∗j,t = 1. Otherwise, Dj = Bj + k(Cj − Bj).

In this case
∑bDjc
t=Bj

x∗j,t ≥ 1 − 1/k; otherwise we have∑Ej
t=bDjc+1 x

∗
j,t > 1/k, implying Cj > Bj + 1

k · (bDjc +

1−Bj) ≥ Bj+ 1
k (Dj−Bj) = Cj , a contradiction. In any

case, at least 1 − 1/k fraction of the job j is scheduled
in [Bj , bDjc]∩Z ⊆ Io in x∗. Then, the size of J∗bot(o) is

at most m|Io|
1−1/k ≤ mL

1−1/k . �

5.4 Assigning Top Jobs to Intervals I ′ In this
section, we assign top jobs to I ′, by defining an oj for
jobs j ∈ J∗top. This is done by solving a b-matching
problem, as in the proof of the following lemma. Similar
techniques have been used in [LR16] to remove the
dependences between top and bottom jobs.

Lemma 5.15. We can find an integer vector (oj)j∈J∗top

such that

• for every j ∈ J∗top, we have oj ∈ [vBj + 1, vCj − 1],
and

• for every o ∈ [h], we have∣∣J∗bot(o) ∪ {j ∈ J∗top : oj = o
}∣∣ ≤ 2m

(
1 + 2

k

)
L.

Notice that the first property requires oj to be inside
[vBj + 1, vCj − 1], instead of [vBj , v

C
j]. This can guarantee

that there are no precedence constraints between top
jobs and bottom jobs assigned to I ′o. On the other hand,
since vCj − vBj is big for top jobs, we can guarantee this
stronger condition, by losing a small factor on the ratio
between L′ and L.

Proof. [Proof of Lemma 5.15] We formulate the problem
of finding the vector (oj)j∈J∗top

as a b-matching problem
as follows. The left side of the bipartite graph is
J∗top ∪ J∗bot and the right side is [h]. For every j ∈ J∗bot,
there is an edge between j and oj . For every j ∈ J∗top
and every o ∈ [vBj + 1, vCj − 1], there is an edge between

j and o. We need to find a matching where every
j ∈ J∗top ∪ J∗bot is matched exactly once, and every

o ∈ [h] is matched at most 2m
(
1 + 2

k

)
L times. By

Hall’s theorem, the problem is feasible if and only if for
every 0 ≤ b ≤ e ≤ h, we have∣∣J∗[b,e]∣∣ ≤ 2m(e− b+ 1)

(
1 +

2

k

)
L,

where J∗[b,e] = J∗top[b, e] ∪ J∗bot[b, e], J∗top[b, e] ={
j ∈ J∗top : b ≤ vBj + 1 < vCj − 1 ≤ e

}
and J∗bot[b, e] =⋃e

o=b J
∗
bot(o). That is J∗[b,e] is the set of jobs that must

be matched to indices in [b, e].
Notice that every job j ∈ J∗top has (vCj − 1)− (vBj +

1) − 1 ≥ k, by Lemma 5.11. Thus, if e − b + 1 < k,
then J∗top[b, e] = ∅. The above statement holds since

|J∗bot(o)| ≤ Lm
1−1/k ≤ 2m

(
1 + 2

k

)
L for every o ∈ [h]

by Lemma 5.14. So, we assume e − b + 1 ≥ k. Let
b′ = max {1, b− 1} and e′ = min {h, e+ 1}. For every
j ∈ J∗top[b, e], we have [Bj , dCje] ⊆ IvBj ∪IvBj +1∪IvBj +2∪
· · · ∪ IvCj ⊆ Ib′ ∪ Ib′+1 ∪ Ib′+2 ∪ · · · ∪ Ie′ . This also holds

for every j ∈ J∗bot[b, e].
Now we focus on the scheduling of jobs J∗[b,e] accord-

ing to the solution x∗. Let s be the minimum time slot
in Ib′ and t be the maximum time slot in Ie′ . The Cj
values of jobs in J∗[b,e] is at most t and all these jobs are
scheduled at or after time slot s. Since there are only
m machines, the total number of jobs in J∗[b,e] can only

be at most 2m(t− s+ 1) ≤ 2m(e′ − b′ + 1)L.
Since e− b+1 ≥ k and e′− b′+1 ≤ e− b+1+2, we

have that e′−b′+1 ≤
(
1 + 2

k

)
(e−b+1). Thus, we have

that
∣∣J∗[b,e]∣∣ ≤ 2m

(
1 + 2

k

)
(e− b+ 1)L. This finishes the

proof of the lemma. �

We use the above lemma to find the vector (oj)j∈J∗top

satisfying the above properties. W.l.o.g, we can make
sure that if j ≺ j′ for two jobs j, j′ ∈ J∗top, then
oj ≤ oj′ . This can be assumed due to Claim 5.7:
if oj > oj′ , we can simply switch oj and oj′ . Let
J∗top(o) =

{
j ∈ J∗top : oj = o

}
for every o ∈ [h]. So the

second statement of Lemma 5.15 is |J∗bot(o)∪J∗top(o)| ≤
2m
(
1 + 2

k

)
L.

5.5 Scheduling of Top and Bottom Jobs With
the assignment of jobs in J∗bot ∪ J∗top to I ′, we can
now construct a scheduling S1 of these jobs, where
jobs in J∗bot(o) ∪ J∗top(o) will be scheduled in I ′o. This
will automatically satisfy the precedence constraints
between jobs assigned to different intervals:

1. For two jobs j, j′ ∈ J∗bot with j ≺ j′, we have
oj = vBj ≤ vBj′ = oj′ , by Claim 5.7.

2. For two jobs j, j′ ∈ J∗top with j ≺ j′, we have
oj ≤ oj′ by the construction.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

3. For every o ∈ [h], there are no precedence con-
straints between J∗top(o) and J∗bot(o).

To see the third statement, focus on two jobs j ∈ J∗top
and j′ ∈ J∗bot. If j ≺ j′, then oj ≤ vCj − 1 ≤ vCj′ − 1 <

vCj′ = oj′ . If j′ ≺ j, then oj ≥ vBj + 1 ≥ vBj′ + 1 > vBj′ =
oj′ . Thus, it suffices for us to guarantee the precedence
constraints between jobs in J∗top(o) and between jobs in
J∗bot(o), for every o ∈ [h].

Lemma 5.16. For every o ∈ [h], we can efficiently find
a valid schedule of J∗bot(o)∪J∗top(o) on m machines with
makespan at most L′.

Proof. We build the schedule in two steps. First, we
construct any reasonable schedule Ŝ for J∗bot(o). Then,

we insert J∗top(o) to Ŝ, without changing the scheduling

times of J∗bot(o), to form a reasonable schedule Ŝ ′ for
J∗bot(o) ∪ J∗top(o). Notice that this is possible since
there are no precedence constraints between J∗bot(o) and
J∗top(o). Obviously, this can be done efficiently using
the following process. We construct an order of jobs in
J∗bot ∪J∗top that respects the precedence constraints and
puts J∗bot before J∗top. Starting from the empty schedule,
for every job in j ∈ J∗bot ∪ J∗top according to the order,
we update the schedule by inserting j to the earliest slot
that maintains the validity of the schedule.

We first consider the reasonable schedule Ŝ for
J∗bot(o). By Corollary 4.6, the makespan of Ŝ is at most

TJ∗bot(o)
=
⌊
|J∗bot(o)|

m

⌋
+ ∆(J∗bot(o)). By Lemma 5.14

and Claim 5.13, this is at most
(

1 + 1
1−1/k

)
L ≤

2
(
1 + 2

k

)
L ≤ L′, as k ≥ 5.

Now, focus on the reasonable schedule Ŝ ′ of
J∗bot(o) ∪ J∗top(o), extended from S ′. We then apply
Lemma 4.4 with J ′ = J∗bot(o)∪J∗top(o) and J ′′ = J∗top(o).
Notice that there are no precedence constraints between
J ′′ = J∗top(o) and J ′ \ J ′′ = J∗bot(o). Thus, we have

max
j∈J∗top(o)

Ŝ ′j ≤
|J∗bot(o) ∪ J∗top(o)|

m
+ ∆(J∗top(o))

≤ 2

(
1 +

2

k

)
L+

⌊ u
2k

⌋
= L′,

by Lemma 5.15 and 5.10. Thus, overall, the makespan
of Ŝ ′ is at most L′.

We apply the above lemma for every o ∈ [h] to
construct a valid schedule S1 for J∗bot ∪J∗top, where jobs
in J∗bot(o)∪J∗top(o) are scheduled in I ′o, for every o ∈ [h].

5.6 Inserting Middle Level Jobs In the final step
of the algorithm, we insert jobs in J∗mid to S1 to form
the final schedule S2. We shall define oj ∈ [vBj , v

C
j] for

every j ∈ J∗mid. This is done via the following lemma.

Lemma 5.17. We can choose an index oj ∈ [vBj , v
C
j] for

each j ∈ J∗mid, such that for any two jobs j, j′ ∈ J∗ with
j ≺ j′, we have oj ≤ oj′ .

Proof. This is implied by Claim 5.7, and that all jobs
j ∈ J∗top ∪ J∗bot have oj ∈ [vBj , v

C
j]. Formally, for every

j ∈ J∗mid, define

bj = max

{
vBj , max

j′∈J∗top∪J∗bot:j
′≺j

oj′

}
and ej = min

{
vCj , min

j′∈J∗top∪J∗bot:j≺j′
oj′

}
.

Thus, we need oj ∈ [bj , ej] to guarantee that oj ∈
[vBj , v

C
j] for every j ∈ J∗mid and the precedence con-

straints between J∗top ∪ J∗bot and J∗mid. Thus first we
have to prove bj ≤ ej for every j ∈ J∗mid. We prove
this by comparing each of the two terms in the “max”
operator defining bj and each of the two terms in the
“min” operator defining ej :

• vBj ≤ vCj .

• for every j′ ∈ J∗top ∪ J∗bot such that j ≺ j′, we have

vBj ≤ vBj′ ≤ oj′ .
• for every j′ ∈ J∗top ∪ J∗bot such that j′ ≺ j, we have

oj′ ≤ vCj′ ≤ vCj .

• for every j′, j′′ ∈ J∗top ∪ J∗bot such that j′ ≺ j ≺ j′′,
we have oj′ ≤ oj′′ .
Thus, it suffices to find a vector (oj)j∈J∗mid

such that
oj ∈ [bj , ej] for every j ∈ J∗mid, and for any two jobs
j, j′ ∈ J∗mid such that j ≺ j′, we have oj ≤ oj′ . Indeed,
we can simply define oj = bj for every j ∈ J∗mid: for
every j, j′ ∈ J∗mid with j ≺ j′, bj ≤ bj′ is implied by the
definitions of bj and bj′ , and the facts that vBj ≤ vBj′ and
≺ is transitive.

With oj defined, we can then insert each job j ∈
J∗mid to I ′oj . Notice that this will automatically guaran-
tee the precedence constraints between jobs scheduled
in different intervals in I ′. However, there might be no
way to guarantee all the precedence constraints between
a j ∈ J∗mid and the jobs that have already been sched-
uled in I ′oj (including the jobs in J∗top(oj)∪J∗bot(oj) and
all the middle jobs that have been inserted to the inter-
val). To address this issue, we can extend the size of I ′oj
by 1 (and shift the intervals after I ′oj accordingly).

5.7 Analyzing the Expected Completion Times
We now analyze the expected completion time of each
job j ∈ J∗. Let us fix the choices of p and q; thus the
partition of J∗ into J∗top, J

∗
mid, J

∗
bot is fixed. For every

job j ∈ J∗, the completion time of j is at most the total

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

size of intervals in
{
I ′1, I

′
2, · · · , I ′oj

}
, after the insertion

of J∗mid, which is at most

ojL
′ + |{j′ ∈ J∗mid : oj′ ≤ oj}| ,

where ojL
′ is the total length of intervals{

I ′1, I
′
2, · · · , I ′oj

}
before the insertion of J∗mid, and

|{j′ ∈ J∗mid : oj′ ≤ oj}| is an upper bound on the
increase of the quantity due to insertion of J∗mid.

We focus on the expected value of the second term,
over all random choices of p and q. The idea is to show
that if some j′ ∈ J∗mid has oj′ ≤ oj , then Cj′ is not too
big compared to Cj . This uses the fact that a middle
job j′ has a small Cj′ −Bj′ . Formally, we have

Cj′ ≤ Bj′ +Dj′ −Bj′ ≤ Bj′ + (k2 + 2k + 2)L

≤ (oj′ + 1)L+ (k2 + 2k + 2)L

≤ (oj′ + k2 + 2k + 3)L

≤ (oj + k2 + 2k + 3)L ≤ Cj + (k2 + 2k + 4)L.

The second inequality holds since [Bj′ , dDj′e] inter-
sects at most k2 + 2k + 1 intervals in I. The third in-

equality is due to oj′ ≥ vBj′ =
⌈
Bj′−qu

L

⌉
≥ Bj′

L − 1, and

the last inequality is due to oj ≤ vCj =
⌈
dCje−qu

L

⌉
≤

Cj
L + 1.

For a fixed job j ∈ J∗, the number of jobs
j′ with Cj′ ≤ Cj + (k2 + 2k + 4)L is at most
2m
(
Cj + (k2 + 2k + 4)L

)
. For each such job j′, we

have Pr[j′ ∈ J∗mid] ≤ 1
km , by Lemma 5.12. Thus,

the expected value of |{j′ ∈ J∗mid : oj′ ≤ oj}| is at most
1
km×2m

(
Cj + (k2 + 2k + 4)L

)
≤ 2Cj

k +4kL since k ≥ 5.
Thus, overall, the expected completion time of any

job j ∈ J∗ is at most

ojL
′ +

2Cj
k

+ 4kL

≤
(
Cj
L

+ 1

)
×
(⌈

2

(
1 +

2

k

)
L

⌉
+
⌊ u

2k

⌋)
+

2Cj
k

+ 4kL

≤
(
Cj
L

+ 1

)
×
(

2

(
1 +

2

k

)
L+

u

2k
+ 1

)
+

2Cj
k

+ 4kL

≤ 2

(
1 +

2

k

)
Cj +

Cj
2p+k

+
Cj
L

+O(1) · L

+
2Cj
k

+ 4kL

≤
(

2 +
O(1)

k

)
Cj +O(1) · kL.

In the last inequality, we used the assumption that
L ≥ u ≥ k, which implies

Cj
L ≤

Cj
k .

By the definition of L and u, we have kL =
k2qu ≤ k2k1u ≤ T

2k
. Thus, the expected

weighted completion time of our schedule is at most(
2 + O(1)

k

)∑
j∈J∗ wjCj + O(1) · T

2k
· ∑j∈J∗ wj ≤(

2 + O(1)
k

)
Φ + O(1)

2k
· T · w(J∗). We can derandomize

the algorithm by enumerating all possible choices of p
and q. This finishes the proof of Theorem 5.1.

6 Obtaining Multiplicative Approximation via
Decomposition

In this section, we show how to remove the additive term
in Theorem 5.1, by decomposing the input instance J
into multiple instances J∗. This will finish the proof
of Theorem 1.1. The technical lemma we are going to
prove is the following:

Lemma 6.1. Let k ≥ 5, Φ ≥ 0 and x∗ ∈ PJ(Φ)

be given. Then, in running time n2
O(mk log k)

, we can
either find a subset J ′ ⊆ J such that any valid schedule
S of J ′ has weighted completion time strictly larger
than

∑
j∈J′,t∈[TJ] x

∗
j,tt, or output a schedule of J with

weighted completion time at most
(

2 + O(1)
k

)
Φ.

We first show how Lemma 6.1 implies Theorem 1.1.
By binary search, we assume we are given an upper
bound Φ on the weighted completion time of the opti-
mum schedule for J , and our goal is to output a schedule
with weighted completion time at most (2 + ε)Φ. Let
k = Θ(1/ε) to be large enough.

We run the ellipsoid method using the following
separation oracle. Given a vector x∗ ∈ [0, 1]J×[TJ], the
separation oracle first checks if x∗ ∈ PJ(Φ); if not, it
returns a constraint defining PJ(Φ) that is violated by
x∗ and we proceed to the next iteration of the ellipsoid
method. Otherwise, the separation oracle runs the
algorithm stated in Lemma 6.1. If the outcome of the
algorithm is a subset J ′ ⊆ J such that any schedule S
for J ′ has weighted completion time strictly larger than∑
j∈J′,t∈[TJ] x

∗
j,tt, then the separation oracle returns

the following valid constraint that is violated by x∗:

∑
j∈J′

wj
∑
t∈[TJ]

xj,tt ≥

∑
j∈J′

wj
∑
t∈[TJ]

x∗j,tt

+ 1.

We used the assumption that all weights are integers
and thus the weighted completion time of any integral
schedule is always an integer. In this case, we also pro-
ceed to the next iteration of the ellipsoid method. If
the outcome of the algorithm is a schedule of J with

weighted completion time at most
(

2 + O(1)
k

)
Φ, then

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

we terminate the ellipsoid method by returning the
this schedule. If k = Θ(1/ε) is large enough, then
the weighted completion time of the output schedule
is at most (2 + ε)Φ. Since there is a schedule of J
with weighted completion time at most Φ, the ellipsoid
method will terminate in polynomial number of itera-
tions. The running time of the algorithm is the number
of iterations times the running time for the algorithm
in Lemma 6.1, which is

n2
O(mk log k)

= n2
O((m/ε) log(1/ε))

.

Proof. [Proof of Lemma 6.1] In this proof, we shall use
T for TJ . For any j ∈ J , let Cj =

∑
t∈[T] tx

∗
j,t be the

fractional completion time of j according to x∗. For any
integer p ∈ [k], and integer ` ∈ Z≥0, we define

Jp` =
{
j ∈ J : logCj ∈

(
`k − p, `k + k − 1− p

]}
,

J ′p` =
{
j ∈ J : logCj ∈

(
`k + k − 1− p, (`+ 1)k − p

]}
.

Notice that for any p ∈ [k], the sets {Jp` }` ∪
{
J ′p`
}
`

form a partition of J . (See Figure 2.) For two different
sets in the partition, precedence constraints can only go
from jobs in the left-side set to jobs in the right-side
set, due to Claim 4.7. We define Jp[`] =

⋃
`′≤` J

p
`′ and

J ′p[`] =
⋃
`′≤` J

′p
`′ for every ` ∈ Z≥0.

For every p ∈ [k] and integer ` ∈ Z≥0, we let Φp` =∑
j∈Jp`

wjCj be the total weighted completion time of

jobs in Jp` , according to x∗. Let r = 2O(mk log k) be the
parameter satisfying the statement of Theorem 5.1. For
every p ∈ [k] and ` ∈ Z≥0, we check if SA(PJp` (Φp`), r)
is empty or not. If it is empty for some p and `, then
we can return the set J ′ = Jp` and finish the proof of
the lemma. Thus, we assume that for every p ∈ [k] and
` ∈ Z≥0, we have SA(PJp` (Φp`), r) 6= ∅.

Now we randomly choose some integer p ∈ [k]; from
now on, this p is fixed. For every ` ∈ Z≥0, we apply
Theorem 5.1 to with J∗ = Jp` and Φ = Φp` to obtain
a schedule Sp` of Jp` with weighted completion time at

most
(

2 + O(1)
k

)
Φp` + O(1)

2k
· TJp` · w(Jp`).

With the schedules {Sp` }`∈Z≥0
defined, we construct

the final schedule S for J greedily. Start from S being
the empty schedule. For every ` = 0, 1, 2, · · · , we
apply the following procedure. First we append the
schedule Sp` to the end of S. Then we decrease the
scheduling times of some jobs in S to make it reasonable.
We construct an arbitrary reasonable schedule S ′p` of
J ′p` and append S ′p` to the end of S. Again we
decrease the scheduling times of some jobs in S until it
becomes reasonable. This finishes the description of the
construction of our final S. Notice that the procedure
is valid since the order (Jp0 , J

′p
0 , J

p
1 , J

′p
1 , · · ·) agrees with

the precedence constraints.

We then analyze the total weighted completion time
of all jobs in the final schedule S. We first analyze
the contribution of jobs in Jp` , for some ` ∈ Z≥0. The
contribution is at most(

2 +
O(1)

k

)
Φp` +

O(1)

2k
· TJp` · w(Jp`)

+ TJp
[`−1]

∪J′p
[`−1]
· w(Jp`).

The first two terms come from the weighted com-
pletion time of schedule Sp` . Since we appended Sp` to
a reasonable schedule of Jp[`−1] ∪ J

′p
[`−1], the completion

time of each job j ∈ Jp` will be increased by at most
TJp

[`−1]
∪J′p

[`−1]
, which leads to the third term.

By Lemma 4.8, we have TJp` ≤ 3 · 2`k+k−1−p and

TJp
[`−1]

∪J′p
[`−1]
≤ 3 ·2`k−p. Thus, the weighted completion

time of Jp` in S is at most(
2 +

O(1)

k

)
Φp` +O(1) · 2`k−p · w(Jp`).

Now we consider the contribution of J ′p` , for some
` ∈ Z≥0. The completion time of any job j ∈ J ′p` in
S is at most TJp

[`]
∪J′p

[`]
, which by Lemma 4.8, is at most

3 · 2(`+1)k−p. So, the contribution of J ′p` is at most

O(1) · w(J ′p`) · 2(`+1)k−p.

Thus, overall, the total weighted completion time of jobs
in J is at most

∑
`

((
2 +

O(1)

k

)
Φp` +O(1) · 2`k−p · w(Jp`)

)
+
∑
`

O(1) · w(J ′p`) · 2(`+1)k−p

≤
(

2 +
O(1)

k

)
Φ +O(1)

∑
`

2`k−p · w(Jp`)

+O(1)
∑
`

2(`+1)k−p · w(J ′p`)

=:

(
2 +

O(1)

k

)
Φ +Q1 +Q2.

We now consider the expected contribution of each
job j to the terms Q1, over all random choices of p.
Let Ej denote the event that j ∈ ⋃` Jp` . Notice that
Pr[Ej] = k−1

k . When Ej happens, let ` be the index
such that j ∈ Jp` . Then, it is easy to see that under
the condition that Ej happens, dlogCje − (`k − p) is
uniformly distributed in [k − 1]. Thus, the expected

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

logCj

Jp
0 J ′p

0
Jp
1 J ′p

1
Jp
2 J ′p

2 · · · · · ·
k − 1 1

−p

k − 1 1 k − 1 1

Jp
` J ′p

`

`k − p `k + k − 1− p
(`+ 1)k − p

· · · · · ·

Figure 2: Partitioning of J into {Jp` }` ∪
{
J ′p`
}
`

according to logCj .

contribution of j to Q1 is at most

O(1) · wj · E[2`k−p] ≤ O(1) · wj ·
1

k

k−1∑
k′=1

2dlogCje−k
′

≤ O(1) · wj ·
1

k

k−1∑
k′=1

2Cj
2k′

=
O(1)

k
wjCj .

Then we consider the expected contribution of j to
Q2. Notice that j contributes to Q2 only when Ej does
not happen. Under this condition, its contribution to
Q2 is at most O(1) · wj · 2Cj = O(1) · wjCj . Thus the

expected contribution of j to Q2 is at most O(1)
k wjCj .

Overall, the expected value of Q1 + Q2 is at most
O(1)
k

∑
j∈J wjCj , over all random choices of p. This

implies that the expected weighted completion time
of the solution output by our algorithm is at most(

2 + O(1)
k

)∑
j∈J wjCj =

(
2 + O(1)

k

)
Φ. We can de-

randomize our algorithm by enumerating all possible
choices of p. This finishes the proof of Lemma 6.1. �

References

[1] Hyung-Chan An, Mohit Singh, and Ola Svensson. LP-
based algorithms for capacitated facility location. In
Proceedings of the 55th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2014, 2014.

[2] Nikhil Bansal and Subhash Khot. Optimal long code
test with one free bit. In Proceedings of the 2009 50th
Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’09, pages 453–462. IEEE Computer
Society, 2009.

[3] Nikhil Bansal, Aravind Srinivasan, and Ola Svensson.
Lift-and-round to improve weighted completion time
on unrelated machines. In Proceedings of the 48th An-
nual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 156–167, 2016.

[4] Soumen Chakrabarti, Cynthia A. Phillips, Andreas S.
Schulz, David B. Shmoys, Cliff Stein, and Joel Wein.
Improved scheduling algorithms for minsum criteria,
pages 646–657. Springer Berlin Heidelberg, 1996.

[5] C. Chekuri and S. Khanna. Approximation algo-
rithms for minimizing average weighted completion
time. Handbook of Scheduling: Algorithms, Models,
and Performance Analysis. CRC Press, Inc., Boca Ra-
ton, FL, USA, 2004.

[6] Fabián A. Chudak and David B. Shmoys. Approxi-
mation algorithms for precedence-constrained schedul-
ing problems on parallel machines that run at different
speeds. In Proceedings of the Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’97,
pages 581–590. Society for Industrial and Applied
Mathematics, 1997.

[7] Shashwat Garg. Quasi-ptas for scheduling with prece-
dences using LP hierarchies. Accepted to ICALP, 2018.

[8] R. L. Graham. Bounds on multiprocessing timing
anomalies. SIAM JOURNAL ON APPLIED MATH-
EMATICS, 17(2):416–429, 1969.

[9] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H.
G. Rinnooy Kan. Optimization and approximation
in deterministic sequencing and scheduling: a survey.
Ann. Discrete Math., 4:287–326, 1979.

[10] Leslie A. Hall, Andreas S. Schulz, David B. Shmoys,
and Joel Wein. Scheduling to minimize average com-
pletion time: Off-line and on-line approximation algo-
rithms. Math. Oper. Res., 22(3):513–544, August 1997.

[11] Han Hoogeveen, Petra Schuurman, and Gerhard J.
Woeginger. Non-approximability results for scheduling
problems with minsum criteria. In Proceedings of
the 6th International IPCO Conference on Integer
Programming and Combinatorial Optimization, pages
353–366. Springer-Verlag, 1998.

[12] Jean B. Lasserre. Global optimization with polynomi-
als and the problem of moments. SIAM Journal on
Optimization, 11(3):796–817, 2001.

[13] M. Laurent. A comparison of the sherali-adams, lovsz-
schrijver and lasserre relaxations for 0-1 program-
ming. Mathematics of Operations Research, 28:470–
496, 2001.

[14] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity
of scheduling under precedence constraints. Oper. Res.,
26(1):22–35, February 1978.

[15] Elaine Levey and Thomas Rothvoss. A (1+epsilon)-
approximation for makespan scheduling with prece-
dence constraints using LP hierarchies. In Proceedings
of the Forty-eighth Annual ACM Symposium on The-
ory of Computing, STOC ’16, pages 168–177. ACM,
2016.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

[16] Shi Li. On uniform capacitated k-median beyond the
natural LP relaxation. In Proceedings of the 26th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2015).

[17] Shi Li. Approximating capacitated k -median with (1
+ ε)k open facilities. In Proceedings of the 27th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2016), pages 786–796, 2016.

[18] Shi Li. Scheduling to minimize total weighted com-
pletion time via time-indexed linear programming re-
laxations. In Proceedings of the 2017 IEEE 58rd An-
nual Symposium on Foundations of Computer Science,
FOCS ’17, 2017.

[19] L. Lovasz and A. Schrijver. Cones of matrices and
set-functions and 01 optimization. SIAM Journal on
Optimization, 1(2):166–190, 1991.

[20] Alix Munier, Maurice Queyranne, and Andreas S.
Schulz. Approximation Bounds for a General Class
of Precedence Constrained Parallel Machine Scheduling
Problems, pages 367–382. Springer Berlin Heidelberg,
1998.

[21] Maurice Queyranne and Maxim Sviridenko. Approxi-
mation algorithms for shop scheduling problems with
minsum objective. Journal of Scheduling, 5(4):287–
305, 2002.

[22] Thomas Rothvoss. The lasserre hierarchy in approxi-
mation algorithms, 2013.

[23] Petra Schuurman and Gerhard J. Woeginger. Poly-
nomial time approximation algorithms for machine
scheduling: Ten open problems, 1999.

[24] Hanif Sherali and Warren P. Adams. A hierarchy of
relaxations between the continuous and convex hull
representations for zero-one programming problems.
3:411–430, 05 1990.

[25] Martin Skutella. A 2.542-approximation for prece-
dence constrained single machine scheduling with re-
lease dates and total weighted completion time ob-
jective. Operations Research Letters, 44(5):676 – 679,
2016.

[26] Ola Svensson. Conditional hardness of precedence con-
strained scheduling on identical machines. In Proceed-
ings of the Forty-second ACM Symposium on Theory
of Computing, STOC ’10, pages 745–754. ACM, 2010.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

