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Abstract. In this paper, we revisit the classical k-median problem. Us-
ing the standard LP relaxation for k-median, we give an efficient algo-
rithm to construct a probability distribution on sets of k centers that
matches the marginals specified by the optimal LP solution. Analyzing
the approximation ratio of our algorithm presents significant technical
difficulties: we are able to show an upper bound of 3.25. While this is
worse than the current best known 3 + ε guarantee of [2], because: (1) it
leads to 3.25 approximation algorithms for some generalizations of the
k-median problem, including the k-facility location problem introduced
in [10], (2) our algorithm runs in Õ(k3n2/δ2) time to achieve 3.25(1+δ)-
approximation compared to the O(n8) time required by the local search
algorithm of [2] to guarantee a 3.25 approximation, and (3) our approach
has the potential to beat the decade old bound of 3 + ε for k-median.
We also give a 34-approximation for the knapsack median problem, which
greatly improves the approximation constant in [13]. Using the same
technique, we also give a 9-approximation for matroid median problem
introduced in [11], improving on their 16-approximation.
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1 Introduction

In this paper, we present a novel LP rounding algorithm for the metric k-median
problem which achieves approximation ratio 3.25. For the k-median problem, we
are given a finite metric space (F ∪ C, d) and an integer k ≥ 1, where F is a
set of facility locations and C is a set of clients. Our goal is to select k facilities
to open, such that the total connection cost for all clients in C is minimized,
where the connection cost of a client is its distance to its nearest open facility.
When F = C = X, the set of points with the same nearest open facility is
known as a cluster and thus the sum measures how well X can be partitioned
into k clusters. The k-median problem has numerous applications, starting from
clustering to data mining [3], to assigning efficient sources of supplies to minimize
the transportation cost([12, 16]).

The problem is NP-hard and has received a lot of attention ([15], [6], [7],
[10], [1]). The best known approximation factor is 3 + ε approximation due to
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[2]. Jain et al. [9] proved that the k-median problem is 1 + 2/e ≈ 1.736-hard to
approximate.

Our algorithm (like several previous ones) for the k-median problem is based
on the following natural LP relaxation:

LP(1) min
∑
i∈F,j∈C d(i, j)xi,j s.t.∑

i∈F
xi,j = 1, ∀j ∈ C; xi,j ≤ yi, ∀i ∈ F , j ∈ C;∑

i∈F
yi ≤ k; xi,j , yi ∈ [0, 1], ∀i ∈ F , j ∈ C.

It is known that the LP has an integrality gap of 2. On the positive side, [1]
showed that the integrality gap is at most 3 by giving an exponential time
rounding algorithm.

Very recently, Kumar [13] gave a (large) constant-factor approximation al-
gorithm for a generalization of the k-median problem, which is called knapsack
median problem. In the problem, each facility i ∈ F has an opening cost fi and
we are given a budget M . The goal is to open a set of facilities such that their
total opening cost is at most M , and minimize the total connection cost. When
M = k and fi = 1 for every facility i ∈ F , the problem becomes k-median.

Krishnaswamy et al. [11] introduced another generalization of k-median,
called matroid-median problem. In the problem, the set of open facilities has
to form an independent set of some given matroid. [11] gave a 16-approximation
for this problem, assuming there is a separation oracle for the matroid polytope.

1.1 Our Results

We give a simple and efficient rounding procedure. Given an LP solution, we
open a set of k facilities from some distribution and connect each client j to
its closest open facility, such that the expected connection cost of j is at most
3.25 times its fractional connection cost. This leads to a 3.25 approximation for
k-median. Though the provable approximation ratio is worse than that of the
current best algorithm, we believe the algorithm (and particularly our approach)
is interesting for the following reasons:

Firstly, our algorithm is more efficient than the 3+ε-approximation algorithm
with the same approximation guarantee. The bottleneck of our algorithm is
solving the LP, for which we can apply Young’s fast algorithm for the k-median
LP [17].

Secondly, our approach has the potential to beat the decade old 3 + ε-
approximation algorithm for k-median. In spite of the simplicity of our algo-
rithm, we are unable to exploit its full potential due to technical difficulties in
the analysis. Our upper bound of 3.25 is not tight. The algorithm has some pa-
rameters which we have instantiated for ease of analysis. It is possible that the
algorithm with these specific choices gives an approximation ratio strictly better
than 3; further there is additional room for improvement by making a judicious
choice of algorithm parameters.
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The distribution of solutions produced by the algorithm satisfies marginal
conditions and negative correlation. Consequently, the algorithm can be easily
extended to solve the k-median problem with facility costs and the k-median
problem (called k-facility location problem) with multiple types of facilities, both
introduced in [10]. The techniques of this paper yield a factor 3.25 algorithm for
the two generalizations.

Based on our techniques for the k-median problem, we give a 34-approximation
algorithm for the knapsack median problem, which greatly improves the constant
approximation given by [13].(The constant was 2700.) Following the same line of
the algorithm, we can give a 9-approximation for the matroid-median problem,
improving on the 16-approximation in [11].

2 The Approximation Algorithm for the k-Median
Problem

Our algorithm is inspired by the 62
3 -approximation for k-median by [7] and

the clustered rounding approach of Chudak and Shmoys [8] for facility location
as well as the analysis of the 1.5-approximation for UFL problem by [4]. In
particular, we are able to save the additive factor of 4 that is lost at the beginning
of the 6 2

3 -approximation algorithm by [7], using some ideas from the rounding
approaches for facility location.

We first give with a high level overview of the algorithm. A simple way to
match the marginals given by the LP solution is to interpret the yi variables
as probabilities of opening facilities and sample independently for each i. This
has the problem that with constant probability, a client j could have no facility
opened close to j. In order to address this, we group fractional facilities into
bundles, each containing a total fractional of between 1/2 and 1. At most one
facility is opened in each bundle and the probability that some facility in a
bundle is picked is exactly the volume, i.e. the sum of yi values for the bundle.

Creating bundles reduces the uncertainty of the sampling process. E.g. if the
facilities in a bundle of volume 1/2 are sampled independently, with probability
e−1/2 in the worst case, no facility will be open; while sampling the bundle as a
single entity reduces the probability to 1/2. The idea of creating bundles alone
does not reduce the approximation ratio to a constant, since still with some
non-zero probability, no nearby facilities are open.

In order to ensure that clients always have an open facility within expected
distance comparable to their LP contribution, we pair the bundles. Each pair
now has at least a total fraction of 1 facility and we ensure that the rounding
procedure always picks one facility in each pair. The randomized rounding pro-
cedure makes independent choices for each pair of bundles and for fractional
facilities that are not in any bundle. This produces k facilities in expectation.
We get exactly k facilities by replacing the independent rounding by a depen-
dent rounding procedure with negative correlation properties so that our anal-
ysis need only consider the independent rounding procedure. (The technique of
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dependent rounding was used in [5] to approximate the fault-tolerant facility
location problem.)

Now we proceed to give more details. We solve LP(1) to obtain a fractional so-
lution (x, y). By splitting one facility into many if necessary, we can assume xi,j ∈
{0, yi}. We remove all facilities i from C with yi = 0. Let Fj = {i ∈ F : xi,j > 0}.
So, instead of using x and y, we shall use (y, {Fj |j ∈ C}) to denote a solution.

For a subset of facilities F ′ ⊆ F , define vol(F ′) =
∑
i∈F ′ yi to be the vol-

ume of F ′. So, vol(Fj) = 1,∀j ∈ C. W.L.O.G, we assume vol(F) = k. Denote
by d(j,F ′) the average distance from j to F ′ w.r.t weights y, i.e, d(j,F ′) =∑
i∈F ′ yid(j, i)/vol(F ′). Define dav(j) =

∑
i∈Fj

yid(i, j) to be the connection

cost of j in the fractional solution. For a client j, let B(j, r) denote the set of
facilities that have distance strictly smaller than r to j.

Our rounding algorithm consists of 4 phases, which we now describe.

2.1 Filtering Phase

We begin our algorithm with a filtering phase, where we select a subset C′ ⊆ C of
clients. C′ has two properties: (1) The clients in C′ are far away from each other.
With this property, we can guarantee that each client in C′ can be assigned an
exclusive set of facilities with large volume. (2) A client in C\C′ is close to some
client in C′, so that its connection cost is bounded in terms of the connection
cost of its neighbour in C′. So, C′ captures the connection requirements of C and
also has a nice structure. After this filtering phase, our algorithm is independent
of the clients in C\C′. Following is the filtering phase.

Initially, C′ = ∅, C′′ = C. At each step, we select the client j ∈ C′′ with the
minimum dav(j), breaking ties arbitrarily, add j to C′ and remove j and all j′s
that d(j, j′) ≤ 4dav(j

′) from C′′. This operation is repeated until C′′ = ∅.

Lemma 1. (1) For any j, j′ ∈ C′, j 6= j′, d(j, j′) > 4 max {dav(j), dav(j′)};
(2) For any j′ ∈ C\C′, there is a client j ∈ C′ such that dav(j) ≤ dav(j′), d(j, j′) ≤
4dav(j

′).

We leave the proof of the lemma to the full version of the paper.

2.2 Bundling Phase

Since clients in C′ are far away from each other, each client j ∈ C′ can be assigned
a set of facilities with large volume. To be more specific, for a client j ∈ C′, we
define a set Uj as follows. Let Rj = 1

2 minj′∈C′,j′ 6=j d(j, j′) be half the distance
of j to its nearest neighbour in C′, and F ′j = Fj ∩ B(j, 1.5Rj) to be the set of

facilities that serve j and are at most 1.5Rj away.1 A facility i which belongs to
at least one F ′j is claimed by the nearest j ∈ C′ such that i ∈ F ′j , breaking ties
arbitrarily. Then, Uj ⊆ Fj is the set of facilities claimed by j.

1 It is worthwhile to mention the motivation behind the choice of the scalar 1.5 in the
definition of F ′

j . If we were only aiming at a constant approximation ratio smaller
than 4, we could replace 1.5 with 1, in which case the analysis is simpler. On the
other hand, we believe that changing 1.5 to ∞ would give the best approximation,
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Lemma 2. The following two statements are true:
(1) 1/2 ≤ vol(Uj) ≤ 1,∀j ∈ C′, and (2) Uj ∩ Uj′ = ∅,∀j, j′ ∈ C′, j 6= j′.

Proof. Statement 2 is trivial; we only consider the first one. Since Uj ⊆ F ′j ⊆ Fj ,
we have vol(Uj) ≤ vol(Fj) = 1. For a client j ∈ C′, the closest client j′ ∈ C′\ {j}
to j has d(j, j′) > 4dav(j) by lemma 1. So, Rj > 2dav(j) and the facilities in Fj
that are at most 2dav(j) away must be claimed by j. The set of these facilities
has volume at least 1− dav(j)/(2dav(j)) = 1/2. Thus, vol(Uj) ≥ 1/2.

The sets Uj ’s are called bundles. Each bundle Uj is treated as a single entity
in the sense that at most 1 facility from it is open, and the probability that 1
facility is open is exactly vol(Uj). From this point, a bundle Uj can be viewed as a
single facility with y = vol(Uj), except that it does not have a fixed position. We
will use the phrase “opening the bundle Uj” the operation that opens 1 facility
randomly from Uj , with probabilities yi/vol(Uj).

2.3 Matching Phase

Next, we construct a matchingM over the bundles (or equivalently, over C′). If
two bundles Uj and Uj′ are matched, we sample them using a joint distribution.
Since each bundle has volume at least 1/2, we can choose a distribution such
that with probability 1, at least 1 bundle is open.

We construct the matching M using a greedy algorithm. While there are at
least 2 unmatched clients in C′, we choose the closest pair of unmatched clients
j, j′ ∈ C′ and match them.

2.4 Sampling Phase

Following is our sampling phase.

1: for each pair (j, j′) ∈M do
2: With probability 1− vol(Uj′), open Uj ; with probability 1− vol(Uj), open

Uj′ ; and with probability vol(Uj) + vol(Uj′)− 1, open both Uj and Uj′ ;
3: end for
4: If some j ∈ C′ is not matched in M, open Uj randomly and independently

with probability vol(Uj);
5: For each facility i not in any bundle Uj , open it independently with proba-

bility yi.

After we selected the open facilities, we connect each client to its nearest open
facility. Let Cj denote the connection cost of a client j ∈ C. Our sampling process
opens k facilities in expectation, since each facility i is open with probability yi.
It does not always open k facilities as we promised. In the full version of the
paper, we shall prove the following lemma:

in which case the algorithm also seems cleaner (since F ′
j = Fj). However, if the

scalar were ∞, the algorithm is hard to analyze due to some technical reasons. So,
the scalar 1.5 is selected so that we don’t lose too much in the approximation ratio
and yet the analysis is still manageable.
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Lemma 3. There is a rounding procedure in which we always open k facilities
and the probability that i is open is exactly yi. The E[Cj ] in this procedure is at
most the E[Cj ] in the rounding procedure we described. Moreover, the events that
facilities are open are negatively-correlated; that is, for every set S of facilities,

Pr[all facilities in S are open] ≤
∏
i∈S

yi.

By Lemma 3, it suffices to consider the rounding procedure we described. We
shall outline the proof of the 3.25 approximation ratio for the above algorithm
in section 3. As a warmup, we conclude this section with a much weaker result:

Lemma 4. The algorithm gives a constant approximation for k-median.

Proof. It is enough to show that the ratio between E[Cj ] and dav(j) is bounded,
for any j ∈ C. Moreover, it suffices to consider a client j ∈ C′. Indeed, if j /∈ C′,
there is a client j1 ∈ C′ such that dav(j1) ≤ dav(j), d(j, j1) ≤ 4dav(j), by the
second property of lemma 1. So E[Cj ] ≤ E[Cj1 ] + 4dav(j). Thus, the ratio for j
is bounded by the ratio for j1 plus 4. So, it suffices to consider j1.

W.L.O.G, assume dav(j1) = 1. Let j2 be the client in C′\ {j1} that is closest
to j1. Consider the case where j1 is not matched with j2 (this is worse than
the case where they are matched). Then, j2 must be matched with another
client, say j3 ∈ C′, before j1 is matched, and d(j2, j3) ≤ d(j1, j2). The sampling
process guarantees that there must be a open facility in Uj2 ∪ Uj3 . It is true
that j2 and j3 may be far away from j1. However, if d(j1, j2) = 2R (thus,
d(j1, j3) ≤ 4R, dav(j2), dav(j3) ≤ R/2), the volume of Uj1 is at least 1 − 1/R.
That means with probability at least 1− 1/R, j1 will be connected to a facility
that serves it in the fractional solution; only with probability 1/R, j1 will be
connected to a facility that is O(R) away. This finishes the proof.

3 Outline of the Proof of the 3.25-Approximation Ratio

If we analyze the algorithm as in the proof of lemma 4, an additive factor of 4 is
lost at the first step. This additive factor can be avoided,2 if we notice that there
is a set Fj of facilities of volume 1 around j. Hopefully with some probability,
some facility in Fj is open. It is not hard to show that this probability is at least
1 − 1/e. So, only with probability 1/e, we are going to pay the additive factor
of 4. Even if there are no open facilities in Fj , the facilities in Fj1 and Fj2 can
help to reduce the constant.

A natural style of analysis is: focus on a set of “potential facilities”, and
consider the expected distance between j and the closest open facility in this
set. An obvious candidate for the potential set is Fj ∪Fj1 ∪Fj2 ∪Fj3 . However,
we are unable to analyze this complicated system.

Instead, we will consider a different potential set. Observing that Uj1 ,Uj2 ,Uj3
are disjoint, the potential set Fj∪Uj1∪Uj2∪Uj3 is much more tractable. Even with

2 this is inspired by the analysis for the facility location problem in [8, 4, 14].
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this simplified potential set, we still have to consider the intersection between
Fj and each of Uj1 , Uj2 and Uj3 . Furthermore, we tried hard to reduce the
approximation ratio at the cost of complicating the analysis(recall the argument
about the choice of the scalar 1.5). With the potential set Fj ∪ Uj1 ∪ Uj2 ∪ Uj3 ,
we can only prove a worse approximation ratio. To reduce it to 3.25, different
potential sets are considered for different bottleneck cases.

W.L.O.G, we can assume j 6∈ C′, since we can think of the case j ∈ C′ as j 6∈ C′
and there is another client j1 ∈ C′ with d(j, j1) = 0. We also assume dav(j) = 1.
Let j1 ∈ C′ be the client such that dav(j1) ≤ dav(j) = 1, d(j, j1) ≤ 4dav(j) = 4.
Let j2 be the closest client in C′\ {j1} to j1, thus d(j1, j2) = 2Rj1 . Then, either
j1 is matched with j2, or j2 is matched with a different client j3 ∈ C′, in which
case we will have d(j2, j3) ≤ d(j1, j2) = 2Rj1 . We only consider the second case.
Readers can verify this is indeed the bottleneck case.

For the ease of notation, define 2R := d(j1, j2) = 2Rj1 , 2R
′ := d(j2, j3) ≤

2R, d1 := d(j, j1), d2 := d(j, j2) and d3 := d(j, j3).
At the top level, we divide the analysis into two cases : the case 2 ≤ d1 ≤ 4

and the case 0 ≤ d1 ≤ 2. (Notice that we assumed dav(j) = 1 and thus 0 ≤
d1 ≤ 4.) For some technical reason, we can not include the whole set Fj in the
potential set for the former case. Instead we only include a subset F ′j (notice
that j /∈ C′ and thus F ′j was not defined before). F ′j is defined as Fj ∩B(j, d1).

The case 2 ≤ d1 ≤ 4 is further divided into 2 sub-cases : F ′j ∩ F ′j1 ⊆ Uj1 and
F ′j ∩ F ′j1 6⊆ Uj1 . Thus, we will have 3 cases, and the proof of the approximation
ratios appear in the full paper.

1. 2 ≤ d1 ≤ 4,F ′j ∩ F ′j1 ⊆ Uj1 . In this case, we consider the potential set F ′′ =
F ′j ∪F ′j1 ∪Uj2 ∪Uj3 . Notice that F ′j = Fj ∩B(j, d1), F ′j1 = Fj1 ∩B(j1, 1.5R).
In this case, E[Cj ] ≤ 3.243.

2. 2 ≤ d1 ≤ 4,F ′j ∩ F ′j1 6⊆ Uj1 . In this case, some facility i in F ′j ∩ F ′j1 must be
claimed by some client j′ 6= j1. Since d(j, i) ≤ d1, d(j1, i) ≤ 1.5R, we have

d(j, j′) ≤ d(j, i) + d(j′, i) ≤ d(j, i) + d(j1, i) ≤ d1 + 1.5R.

If j′ /∈ {j2, j3}, we can include Uj′ in the potential set and thus the potential
set is F ′′ = F ′j ∪ F ′j1 ∪ Uj2 ∪ Uj3 ∪ Uj′ . If j ∈ {j2, j3}, then we know j and
j2, j3 are close. So, we either have a “larger” potential set, or small distances
between j and j2, j3. Intuitively, this case is unlikely to be the bottleneck
case. In this case, we show E[Cj ] ≤ 3.189.

3. 0 ≤ d1 ≤ 2. In this case, we consider the potential set F ′′ = Fj∪Uj1∪Uj2∪Uj3 .
In this case, E[Cj ] ≤ 3.25.

3.1 Running Time of the Algorithm

We now analyze the running time of our algorithm in terms of n = |F ∪ C|. The
bottleneck of the algorithm is solving the LP. Indeed, the total running time for
rounding is O(n2).

To solve the LP, we use the (1+ε) approximation algorithm for the fractional
k-median problem in [17]. The algorithm gives a fractional solution which opens
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(1 + ε)k facilities with connection cost at most 1 + ε times the fractional optimal
in time O(kn2 ln(n/ε)/ε2). We set ε = δ/k for some small constant δ. Then, our
rounding procedure will open k facilities with probability 1−δ and k+1 facilities
with probability δ. The expected connection cost of the integral solution is at
most 3.25(1 + δ/k) times the fractional optimal. Conditioned on the rounding
procedure opening k facilities, the expected connection cost is at most 3.25(1 +
δ/k)/(1− δ) ≤ 3.25(1 +O(δ)) times the optimal fractional value.

Theorem 1. For any δ > 0, there is a 3.25(1 + δ)-approximation algorithm for
k-median problem that runs in Õ

(
(1/δ2)k3n2

)
time.

3.2 Generalization of the Algorithm to Variants of k-Median

The distribution of k open facilities produced by our algorithm satisfies marginal
conditions. That is, the probability that a facility i is open is exactly yi. This
allows our algorithm to be extended to some variants of the k-median problem.

The first variant is called k-facility location problem, which is a common
generalization of k-median and UFL introduced in [10]. In the problem, we are
given set F of facilities, set C of clients, metric (d,F ∪ C), opening cost fi for
each facility i ∈ F and an integer k. The goal is to open at most k facilities
and connect each client to its nearest open facility so as to minimize the sum of
the opening cost and the connection cost. The best known approximation ratio
for the k-facility location problem was 2 +

√
3 + ε, due to Zhang [18]. For this

problem, the LP is the same as LP(1), except that we add a term
∑
i∈F fiyi to

the objective function. After solving the LP, we use our rounding procedure to
obtain an integer solution. The expected opening cost of the solution is exactly
the fractional opening cost in the LP solution, while the expected connection
cost is at most 3.25 times the fractional connection cost. This gives a 3.25-
approximation for the problem, improving the 2 +

√
3 + ε-approximation.

Another generalization introduced in [10] is the k-median problem with t
types of facilities. The goal of the problem is to open at most k facilities and
connect each client to one facility of each type so as to minimize the total connec-
tion cost. Our techniques yield a 3.25 approximation for this problem as well.
We first solve the natural LP for this problem. Then, we apply the rounding
procedure to each type of facilities. The only issue is that the number of open
facilities of some type in the LP solution might not be an integer. This can be
handled using the techniques in the proof of Lemma 3.

4 Approximation Algorithms for Knapsack-Median and
Matroid-Median

The LP for knapsack-median is the same as LP (1), except that we change the
constraint

∑
i∈F yi ≤ k to the knapsack constraint

∑
i∈F fiyi ≤M .

As shown in [13], the LP has unbounded integrality gap. To amend this, we
do the same trick as in [13]. Suppose we know the optimal cost OPT for the
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instance. For a client j, let Lj be its connection cost. Then, for some other client
j′, its connection cost is at least max {0, Lj − d(j, j′)}. This suggests∑

j′∈C
max{0, Lj − d(j, j′)} ≤ OPT. (1)

Thus, knowing OPT, we can get an upper bound Lj on the connection cost of
j: Lj is the largest number such that the above inequality is true. We solve
the LP with the additional constraint that xi,j = 0 if d(i, j) > Lj . Then, the
LP solution, denoted by LP, must be at most OPT. By binary searching, we
find the minimum OPT so that LP ≤ OPT. Let

(
x(1), y(1)

)
be the fractional

solution given by the LP. We use LPj = dav(j) =
∑
i∈F d(i, j)x

(1)
i,j to denote the

contribution of the client j to LP.
Then we select a set of filtered clients C′ as we did in the algorithm for

the k-median problem. For a client j ∈ C, let π(j) be a client j′ ∈ C′ such
that dav(j

′) ≤ dav(j), d(j, j′) ≤ 4dav(j). Notice that for a client j ∈ C′, we have
π(j) = j. This time, we can not save the additive factor of 4; instead, we move the
connection demand on each client j /∈ C′ to π(j). For a client j′ ∈ C′, let wj′ =∣∣π−1(j′)

∣∣ be its connection demand. Let LP(1) =
∑
j′∈C′,i∈F wj′xi,j′d(i, j′) =∑

j′∈C′ wj′dav(j
′) be the cost of the solution

(
x(1), y(1)

)
to the new instance. For

a client j ∈ C, let LP
(1)
j = dav(π(j)) be the contribution of j to LP(1). (The

amount wj′dav(j
′) is evenly spread among the wj′ clients in π−1(j′).) Since

LPj = dav(j) ≤ dav(π(j)) ≤ LP
(1)
j , we have LP(1) ≤ LP.

For any client j ∈ C′, let 2Rj = minj′∈C′,j′ 6=j d(j, j′), if vol(B(j, Rj)) ≤ 1;
otherwise let Rj be the smallest number such that vol(B(j, Rj)) = 1. (vol(S) is

defined as
∑
i∈S y

(1)
i .) Let Bj = B(j, Rj) for the ease of notation. If vol(Bj) = 1,

we call Bj a full ball; otherwise, we call Bj a partial ball. Notice that we always

have vol(Bj) ≥ 1/2. Notice that Rj ≤ Lj since x
(1)
i,j = 0 for all facilities i with

di,j > Lj .
We find a matching M over the partial balls as in Section 2: while there are

at least 2 unmatched partial balls, match the two balls Bj and Bj′ with the
smallest d(j, j′). Consider the following LP.

LP(2) min
∑
j′∈C′ wj′

(∑
i∈Bj′

d(i, j′)yi +
(

1−
∑
i∈Bj

yi

)
Rj′
)

∑
i∈Bj′

yi = 1, ∀j′ ∈ C′, Bj′ full;
∑
i∈Bj′

yi ≤ 1, ∀j′ ∈ C′, Bj′ partial;

∑
i∈Bj

yi +
∑
i∈Bj′

yi ≥ 1, ∀(Bj , Bj′) ∈M;
∑
i∈F

fiyi ≤M ;

yi ≥ 0, ∀i ∈ F

Let y(2) be an optimal basic solution of LP (2) and let LP(2) be the value

of LP(2). For a client j ∈ C with π(j) = j′, let LP
(2)
j =

∑
i∈Bj′

d(i, j′)yi +(
1−

∑
i∈Bj′

yi

)
Rj′ be the contribution of j to LP(2). Then we prove
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Lemma 5. LP(2) ≤ LP(1).

Proof. It is easy to see that y(1) is a valid solution for LP(2). By slightly abusing

the notations, we can think of LP(2) is the cost of y(1) to LP(2). We compare

the contribution of each client j ∈ C with π(j) = j′ to LP(2) and to LP(1). If

Bj′ is a full ball, j′ contributes the same to LP(2) and as to LP(1). If Bj′ is a

partial ball, j′ contributes
∑
i∈Fj′

d(i, j′)y
(1)
i to LP(1) and

∑
i∈Bj′

d(i, j′)y
(1)
i +

(1−
∑
i∈Bj′

y
(1)
i )Rj′ to LP(2). Since Bj′ = B(j′, Rj′) ⊆ Fj′ and vol(Fj′) = 1, the

contribution of j′ to LP(2) is at most that to LP(1). So, LP(2) ≤ LP(1).

Notice that LP(2) only contains y-variables. We show that any basic solution
y∗ of LP(2) is almost integral. In particular, we prove the following lemma in
the full version of the paper:

Lemma 6. Any basic solution y∗ of LP(2) contains at most 2 fractional values.
Moreover, if it contains 2 fractional values y∗i , y

∗
i′ , then y∗i + y∗i′ = 1 and either

there exists some j ∈ C′ such that i, i′ ∈ Bj or there exists a pair (Bj , Bj′) ∈M
such that i ∈ Bj , i′ ∈ Bj′ .

Let y(3) be the integral solutin obtained from y(2) as follows. If y(2) contains
at most 1 fractional value, we zero-out the fractional value. If y(2) contains 2

fractional values y
(2)
i , y

(2)
i′ , let y

(3)
i = 1, y

(3)
i′ = 0 if fi ≤ fi′ and let y

(3)
i = 0, y

(3)
i′ =

1 otherwise. Notice that since y
(2)
i +y

(2)
i′ = 1, this modification does not increase

the budget. Let SOL be the cost of the solution y(3) to the original instance.
We leave the proof of the following lemma to the full version of the paper.

Lemma 7.
∑
i∈B(j′,5Rj′ )

y
(2)
i ≥ 1 and

∑
i∈B(j′,5Rj′ )

y
(3)
i ≥ 1. i.e, there is an

open facility (possibly two facilities whose opening fractions sum up to 1) inside
B(j′, 5Rj′) in both the solution y(2) and the solution y(3).

Lemma 8. SOL ≤ 34OPT.

Proof. Let ĩ be the facility that y
(2)

ĩ
> 0, y

(3)

ĩ
= 0, if it exists; let j̃ be the client

that ĩ ∈ Bj̃ .
Now, we focus on a client j ∈ C with π(j) = j′. Then, d(j, j′) ≤ 4dav(j) =

4LPj . Assume that j′ 6= j̃. Then, to obtain y(3), we did not move or remove an

open facility from Bj′ . In other words, for every i ∈ Bj′ , y(3)i ≥ y(2)i . In this case,
we show

SOLj′ ≤
∑
i∈Bj′

d(i, j′)y
(2)
i + (1−

∑
i∈Bj′

y
(2)
i )× 5Rj′ .

If there is no open facility in Bj′ in y(3), then there is also no open facility in
Bj′ in y(2). Then, by Lemma 7, SOLj′ = 5Rj′ = right-side. Otherwise, there is

exactly one open facility in Bj′ in y(3). In this case, SOLj′ =
∑
i∈Bj′

d(j′, i)y
(3)
i ≤

right-side since y
(3)
i ≥ y(2)i and d(i, j′) ≤ 5Rj′ for every i ∈ Bj′ .
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Observing that the right side of the inequality is at most 5LP
(2)
j , we have

SOLj ≤ 4LPj + SOLj′ ≤ 4LPj + 5LP
(2)
j .

Now assume that j′ = j̃. Since there is an open facility in B(j′, 5Rj′) by
Lemma 7, we have SOLj ≤ 4LPj+5Rj′ . Consider the set π−1(j′) of clients. Notice

that we have Rj′ ≤ Lj′ since x
(1)
i,j′ = 0 for facilities i such that d(i, j′) > Lj′ .

Also by Inequality (1), we have
∑
j∈π−1(j′)(Rj′ − d(j, j′)) ≤

∑
j∈π−1(j′)(Lj′ −

d(j, j′)) ≤ OPT. Then, since d(j, j′) ≤ 4LPj for every j ∈ π−1(j′), we have∑
j∈π−1(j′)

SOLj ≤
∑
j

(4LPj + 5Rj′) ≤ 4
∑
j

LPj + 5
∑
j

Rj′

≤ 4
∑
j

LPj + 5
(
OPT +

∑
j

d(j, j′)
)
≤ 24

∑
j

LPj + 5OPT,

where the sums are all over clients j ∈ π−1(j′). Summing up all clients j ∈ C,
we have

SOL =
∑
j∈C

SOLj =
∑

j /∈π−1(j̃)

SOLj +
∑

j∈π−1(j̃)

SOLj

≤
∑

j /∈π−1(j̃)

(4LPj + 5LP
(2)
j ) + 24

∑
j∈π−1(j̃)

LPj + 5OPT

≤ 24
∑
j∈C

LPj + 5
∑
j∈C

LP
(2)
j + 5OPT ≤ 24LP + 5LP(2) + 5OPT ≤ 34OPT,

where the last inequality follows from the fact that LP(2) ≤ LP(1) ≤ LP ≤ SOL.
Thus, we proved

Theorem 2. There is an efficient 34-approximation algorithm for the knapsack-
median problem.

It is not hard to change our algorithm so that it works for the matroid median
problem. The analysis for the matroid median problem is simpler, since y(2) will
already be an integral solution. We leave the proof of the following theorem to
the full version of the paper.

Theorem 3. There is an efficient 9-approximation algorithm for the matroid
median problem, assuming there is an efficient oracle for the input matroid.
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