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Abstract. We present a 1.488 approximation algorithm for the metric uncapacitated facility location
(UFL) problem. The previous best algorithm was due to Byrka [1]. By linearly combining two algorithms
A1(γf ) for γf = 1.6774 and the (1.11,1.78)-approximation algorithm A2 proposed by Jain, Mahdian
and Saberi [8], Byrka gave a 1.5 approximation algorithm for the UFL problem. We show that if γf

is randomly selected from some distribution, the approximation ratio can be improved to 1.488. The
algorithm cuts the gap with the 1.463 approximability lower bound by almost 1/3.

1 Introduction

In this paper, we present an improved algorithm for the uncapacitated facility location problem (UFL). In
the UFL problem, we are given a set of potential facility locations F , each i ∈ F with a cost ci, a set of
clients C, and a metric d over F ∪ C. The solution is a set F ′ ⊂ F denoting the positions where facilities are
open. We want to find a solution that minimizes the sum of the facility cost and the connection cost. The
facility cost is the sum of ci over all i ∈ F ′, and the connection cost is the sum of distances from all clients
to their nearest facility in F ′.

The UFL problem is NP-hard and has received a lot of attention in the literature. Hochbaum [5] pre-
sented a greedy algorithm with O(log n) approximation guarantee. Shmoys, Tardos, and Aardal [12] used
the techniques of Lin and Vitter [10] to give the first constant-approximation algorithm. The approximation
ratio they achieved was 3.16. After that, a large number of constant approximation algorithms have been
proposed([4], [9], [3], [7], [8], [11]). Up to now, the best known approximation ratio was 1.50, due to Byrka
[1].

In terms of hardness result, Guha and Kuller [6] showed that there is no ρ approximation algorithm
for the metric UFL problem for any ρ < 1.463, unless NP ⊂ DTIME

(
nO(log log n)

)
. Jain et al. ([8])

generalized the result to show that no (λf , λc)-bifactor approximation algorithm exists for λc < 1 + 2e−λf

unless NP ⊂ DTIME
(
nO(log log n)

)
. Here, we say that an algorithm is a (λf , λc)-approximation algorithm

if the solution has total cost λfF ∗ + λcC
∗, where F ∗ and C∗ are the facility and the connection cost of an

optimal solution, respectively.
Built on the work of Byrka [1], we give a 1.488-approximation algorithm for the UFL problem. Byrka

presented an algorithm A1(γf ) which gives the optimal bi-factor approximation (γf , 1 + 2e−γf ) for γf ≥
1.6774. By linearly combining A1(1.6774) and the (1.11, 1.7764)-approximation algorithm A2 proposed by
Jain, Mahdian and Saberi [8], Byrka was able to give a 1.5 approximation algorithm. We show that if
γf is randomly selected from some distribution, a linear combination of A1(γf ) and A2 can give a 1.488
approximation.

Due to the hardness result, for every λf , there is an hard instance for the algorithm A1(γf ). Roughly
speaking, we show that a fixed instance can not be hard for two different λf ’s. We give an bifactor ap-
proximation ratio for A1(λf ) that depends on the input instance. Then we introduce a 0-sum game that
characterizes the approximation ratio of our algorithm. The game is between an algorithm player who plays
a distribution of λf and an adversary who plays an instance. By giving an explicit strategy for the algorithm
player, we show that the value of the game is at most 1.488.

We first review the algorithm A1(γ) used in [1] in section 2, and then give our improvement in section 3.



2 Review of the algorithm A1(γ) in [1]

In this section, we review the (γ, 1 + 2e−γ)-approximation algorithm A1(γ) for γ ≥ 1.67736 in [1].
In A1(γ) we first solve the following natural LP for the UFL problem.

min
∑

i∈F,j∈FC

ci,jxi,j +
∑
i∈F

fiyi

s.t

∑
i∈F xi,j = 1 ∀j ∈ C

xi,j − yi ≤ 0 ∀i ∈ F , j ∈ C
xi,j , yi ≥ 0 ∀i ∈ F , j ∈ C

If the y-variables are fixed, x-variables can be assigned greedily : each j ∈ C is connected to 1 fraction
of the closest facilities. After obtaining a solution (x, y), we modify it by scaling the y-variables up by a
constant γ > 1. Let y be the scaled y-variables. We reassign x-variables using the above greedy process to
obtain a new solution (x, y). By splitting facilities if necessary, we can assume xi,j ∈ {0, yi}, xi,j ∈ {0, yi}
and y ≤ 1, for every i ∈ C, j ∈ F .

For some F ′ ⊂ F , define vol(F ′) =
∑

i∈F ′ yi. For a client j, we say a facility i is one of his close facilities
if it fractionally serves j in (x, y). If xi,j = 0, but i was serving client j in solution (x, y), then we say i is a
distant facility of client j. Let FC

j ,FD
j to be the set of close facilities, distance facilities of j, respectively, and

Fj = FC
j ∪ FD

j . Define dC
av(j), d

D
av(j), dav(j) to be the average distance from j to FC

j ,FD
j ,Fj , respectively.

The average distances are with respect to the weights y (or equivalently, y). Thus, dav(j) is the connection
cost of j in the fractional solution. Define dC

max(j) to be maximum distance from j to a facility in FC
j . It’s

easy to see the following facts :

1. dC
av(j) ≤ dC

max(j) ≤ dD
av(j), dC

av(j) ≤ dav(j) ≤ dD
av(j),∀j ∈ C;

2. dav(j) = 1
γ dC

av(j) + γ−1
γ dD

av(j),∀j ∈ C;
3. vol(FC

j ) = 1, vol(FD
j ) = γ − 1, vol(Fj) = γ.

We greedily select a subset of clients C′ in the following way. Initially C′′ = C, C′ = ∅. While C′′ is not
empty, select the client j in C′′ with the minimum dC

av(j) + dC
max(j), add j to C′ and remove j and all clients

j′ satisfying FC
j ∩ FC

j′ 6= ∅ from C′′. So, C′ has the following properties :

1. FC
j ∩ FC

j′ = ∅,∀j, j′ ∈ C, j 6= j′;
2. For every j /∈ C′, there exists a j′ ∈ C′ such that FC

j ∩FC
j′ 6= ∅ and dC

av(j
′) + dC

max(j′) ≤ dC
av(j) + dC

av(j).
This j′ is called the cluster center of j.

We shall randomly rounding the fractional solution to an integral solution. For each j ∈ C′, open one of
his close facilities randomly with probabilities yi. For each facility i that is not a close facility of any client
in C′, open it independently with probability yi. Each client j is connected to its closest open facility, and
let Cj be the connection cost of j.

It’s easy to see that the expected facility cost of the solution is exactly γ times the facility cost in the
fractional solution. If j ∈ C′, E[Cj ] = dC

av(j) ≤ dav(j).
Byrka in [1] showed that

1. The probability that some facility in FC
j is open is at least 1 − e−vol(FC

j ) = 1 − e−1, and under the
condition that this is true, the expected distance between j and the closest open facility in FC

j is at most
dC

av(j);
2. The probability that some facility in FD

j is open is at least 1 − e−vol(FD
j ) = 1 − e−(γ−1), and under the

condition that this is true, the expected distance between j and the closest open facility in FD
j is at

most dD
av(j);

3. For a client j /∈ C′, d(j,FC
j′ \) ≤ dD

av(j) + dC
max(j) + dC

av(j), where j′ is cluster center of j; or equivalently,
under the condition that there is no open facility in Fj , the expected distance between j and the unique
open facility in FC

j′ is at most dD
av(j) + dC

max(j) + dC
av(j).
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Since dC
av(j) ≤ dD

av(j) ≤ dD
av(j) + dC

max(j) + dC
av(j), E[Cj ] is at most

(1 − e−1)dC
av(j) + e−1(1 − e−(γ−1))dD

av(j) + e−1e−(γ−1)(dD
av(j) + dC

max(j) + dC
av(j))

= (1 − e−1 + e−γ)dC
av(j) + e−1dD

av(j) + e−γdC
max(j)

≤ (1 − e−1 + e−γ)dC
av(j) + (e−1 + e−γ)dD

av(j) (1)

Notice that the connection cost of j in the fractional solution is dav(j) = 1
γ dC

av(j) + γ−1
γ dD

av(j). We want to
compute the maximum ratio between (1 − e−1 + e−γ)dC

av(j) + (e−1 + e−γ)dD
av(j) and 1

γ dC
av(j) + γ−1

γ dD
av(j).

Since dC
av(j) ≤ dD

av(j), the ratio is maximized when dC
av(j) = dD

av(j) or dC
av(j) = 0. For γ ≥ γ0 ≈ 1.67736, the

maximum ratio is achieved when dC
av(j) = dD

av(j), in which case the ratio is 1 + 2e−γ . Thus, the algorithm
A1(1.67736) gives a (1.67736, 1 + 2e−1.67736 ≈ 1.37374) bi-factor approximation. 1

Then, combining A1(γ0) and the (1.11, 1.78)-bi-factor approximation algorithm A2 due to [11] will give
a 1.5-approximation.

3 A 1.488 approximation algorithm for the UFL problem

In this section, we give our new approximation algorithm for the UFL problem. Our algorithm is also based
on the combination of the A1(γ) and A2. However, instead of using A1(γ) for a fixed γ, we randomly select
γ from some distribution.

To understand why the approach can reduce the approximation ratio, we list some requirements that the
upper bound given by (1) is tight.

First, the facilities in Fj have tiny weights. In other words, for every facility maxi∈Fj yi tends to 0.
Moreover, all these facilities were independently sampled in the algorithm. These conditions are necessary
to tighten the 1 − e−1 (e−1 − e−(γ−1) resp.) upper bound for the probability that at least 1 facility in FC

j

(mFD
j resp.) is open.

Second, the distances from j to all the facilities in FC
j (FD

j resp.) are the same. Otherwise, the expected
distance from j to the closest open facility in FC

j (FD
j resp.), under the condition that it exists, is strictly

smaller than dC
av(j) (dD

av(j) resp.).
Third, dC

max(j) = dD
av(j). This is also required since we used dD

av(j) as an upper bound of dC
max(j) in the

last inequality of (1).
To satisfy all the above conditions, the distances from j to Fj must be distributed as follows. 1/(γ + ε)

fraction of facilities in Fj have distances a to j, and the other 1− 1/(γ + ε) fraction have distances b > a to
j. For ε tends to 0, dC

av(j) = a and dC
max(j) = dD

av(j) = b.
However, for the above instance, if we replace γ with γ + 1.01ε (say), we have dC

max(j) = dC
av(j) and thus

can save a lot in the approximation ratio.
Thus, by using only two different γ s, we are already able to make an improvement. To give a better

analysis, we first give a upper bound on the expected connection cost of j, in terms of the distribution of
distances from j to Fj , not just dC

av(j) and dD
av(j). Then, we consider a 0-sum game between player A and

player B. Player A plays a distribution of γ such that the facility cost is not scaled up by too much, player B
plays a distribution of distances from j to Fj such that dav(j) = 1, and the value of the game is the expected
connection cost of j. We show that the value of this game is small by giving an explicit strategy for player
A.

We structure the remaining part of this section as follows. We give the upper bound for the expected
connection cost of j in subsection 3.1, and the explicit strategy for player A in subsection 3.2.

3.1 Upper bounding the expected connection cost of a client

It suffices to consider a client j where j /∈ C′.(We can treat the case j ∈ C′ as the case where j /∈ C′ and
there is some j′ ∈ C′ such that d(j, j′) = 0). We first give an upper bound on the average distance from j

1 Byrka’s analysis in [1] was a little bit different; it used some variables from the dual LP. Later in [2], Byrka et al.
gave an analysis without using the dual LP, which is the one we cite in our paper.
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to FC
j′ \Fj . The bound and the proof are similar to the counterparts in [1], except that we made a slight

improvement. The improvement only affects the final approximation ratio by a tiny amount; however, it is
useful because it simplifies the analysis later.

Lemma 1. For some j /∈ C′, let j′ be the cluster center of j. So j′ ∈ C′,FC
j ∩FC

j′ 6= ∅ and dC
av(j′)+dC

max(j′) ≤
dC

av(j)+dC
max(j). We have d(j,FC

j′ \Fj) ≤ (2−γ)dC
max(j)+(γ−1)dD

av(j)+dC
max(j′)+dC

av(j′), for any γ ≥ 1.

FC
j ∩ FC

j′

FD
j ∩ FC

j′

j j′

FC
j′ \Fj

FC
j′ \FD

j

Fig. 1. Sets of facilities used in the proof

Proof. Figure 1 illustrates the sets of facilities we are going to use in the proof. If the distance between j
and j′ is at most (2 − γ)dC

max(j) + (γ − 1)dD
av(j) + dC

av(j′), then the remaining dC
max(j′) is enough for the

distance from j′ to any facility in FC
j′ . So, we will assume

d(j, j′) ≥ (2 − γ)dC
max(j) + (γ − 1)dD

av(j) + dC
av(j

′) (2)

(2) implies d(j, j′) ≥ dC
max(j)+ dC

av(j
′). Since d(j,FC

j ∩FC
j′ ) ≤ dC

max(j), we have d(j′,FC
j ∩FC

j′ ) ≥ dC
av(j

′). If
d(j′,FD

j ∩ FC
j′ ) ≥ dC

av(j′), then d(j′,FC
j′ \Fj) ≤ dC

av(j
′) and the lemma follows from the fact that d(j, j′) ≤

dC
max(j) + dC

max(j′) ≤ (2 − γ)dC
max(j) + (γ − 1)dD

av(j) + dC
max(j′).

So, we can also assume
d(j′,FD

j ∩ FC
j′ ) = dC

av(j
′) − z (3)

for some positive z. Let ŷ = vol(FD
j ∩ FC

j′ ). Notice that ŷ ≤ max {γ − 1, 1}. (3) implies

d(j′,FC
j′ \FD

j ) = dC
av(j

′) +
ŷ

1 − ŷ
z (4)

From (2) and (3), we get

d(j,FD
j ∩ FC

j′ ) ≥ (2 − γ)dC
max(j) + (γ − 1)dD

av(j) + z = dD
av(j) − (2 − γ)(dD

av(j) − dC
max(j)) + z

This further implies

dC
max(j) ≤ d(j,FD

j \FC
j′ ) ≤ dD

av(j) −
ŷ

γ − 1 − ŷ

(
z − (2 − γ)(dD

av(j) − dC
max(j))

)
=⇒ dD

av(j) − dC
max(j) ≥ ŷ

γ − 1 − ŷ

(
z − (2 − γ)(dD

av(j) − dC
max(j))

)
=⇒ dD

av(j) − dC
max(j) ≥ ŷ

γ − 1 − ŷ
z
/ (

1 +
(2 − γ)ŷ
γ − 1 − ŷ

)
=

ŷz

(γ − 1)(1 − ŷ)
(5)
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Notice that we used the fact that 1 +
(2 − γ)ŷ
γ − 1 − ŷ

≥ 0. From (2) and (5), we get

d(j′,FC
j ∩ FC

j′ ) ≥ d(j, j′) − d(j,FC
j ∩ FC

j′ ) ≥ (2 − γ)dC
max(j) + (γ − 1)dD

av(j) + dC
av(j

′) − dC
max(j)

= (γ − 1)(dD
av(j) − dC

max(j)) + dC
av(j

′) ≥ ŷ

1 − ŷ
z + dC

av(j
′)

Combining the above inequality and (4), we have

d(j′,FC
j′ \Fj) ≤ dC

av(j
′) +

ŷ

1 − ŷ
z

So,

d(j,FC
j′ \Fj) ≤ dC

max(j) + dC
max(j′) + d(j′,FC

j′ \Fj)

≤ (2 − γ)dC
max(j) + (γ − 1)

(
dD

av(j) − ŷz

(γ − 1)(1 − ŷ)

)
+dC

max(j′) + dC
av(j′) +

ŷ

1 − ŷ
z

= (2 − γ)dC
max(j) + (γ − 1)dD

av(j) + dC
max(j′) + dC

av(j′)

Lemma 2.
d(j,FC

j′ \Fj) ≤ γdav(j) + (3 − γ)dC
max(j)

Proof. Noticing that dC
max(j′) + dC

av(j′) ≤ dC
max(j) + dC

av(j), the proof is straightforward.

d(j,FC
j′ \Fj) ≤ (2 − γ)dC

max(j) + (γ − 1)dD
av(j) + dC

max(j′) + dC
av(j′)

≤ (2 − γ)dC
max(j) + (γ − 1)dD

av(j) + dC
max(j) + dC

av(j)

= γ

(
1
γ

dC
av(j) +

γ − 1
γ

dD
av(j)

)
+ (3 − γ)dC

max(j)

= γdav(j) + (3 − γ)dC
max(j)

For a client j ∈ C, define hj : [0, 1] → R∗ to be the distribution of distances form j to Fj in the following
way. Let i1, i2, · · · , im the facilities in Fj , in the non-decreasing order of distances to j. Then hj(p) = dit,j ,
where t is the minimum number such that

∑t
s=1 yis

≥ p. Notice that hj is defined using the y, not y, and is
thus independent of γ. Define h(p) =

∑
j∈C hj(p). Observe the following facts :

1. hjs and h are non-decreasing functions;

2. dav(j) =
∫ 1

0

hj(p)dp, dC
av(j) = γ

∫ 1/γ

0

hj(p)dp,

dC
max(j) = hj(1/γ), dD

av(j) =
γ

γ − 1

∫ 1

1/γ

hj(p)dp.

Lemma 3. For any client j,

E(Cj) ≤
∫ 1

0

hj(p)e−γpγdp + e−γ

(
γ

∫ 1

0

hj(p)dp + (3 − γ)hj

(
1
γ

))
Proof. Let j′ ∈ C′ be the cluster center of j. We connect j to the closest open facility in Fj ∪ FC

j′ .
We can assume that facilities in Fj\FC

j′ are independently sampled; otherwise, the expected connection
cost can only be smaller. Indeed, consider two distributions p1 and p2. The only difference between p1 and p2

is that, in p1 two facilities i and i′ are dependently sampled (with probability yi, i is open, with probability
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yi′ , i′ is open, and with probability 1− yi − yi′ , none of them are open), while in p2 they are independently
sampled. W.L.O.G, assume d(j, i) ≤ d(j, i′). We consider the distribution of the distance from j to the
closest open facility in {i, i′} (∞ if it does not exist). In p1, the distribution is : with probability yi, we get
d(j, i); with probability yi′ , we get d(j, i′) and with the remaining 1 − yi − yi′ probability, we get ∞. In
p2, the distribution is : with probability yi, we get d(j, i), with probability (1 − yi)yi′ , we get d(j, i′) and
with the remaining probability (1− yi)(1− yi′), we get ∞. So, the distribution for p2 strictly dominates the
distribution for p1. So, the expected connection cost w.r.t p2 is at least as large as the expected connection
cost w.r.t p1. This can be easily extended to more than 2 facilities.

Then, we perform the following sequence of operations :

1. Split the set FC
j′ into two subsets: FC

j′ ∩ Fj , and FC
j′ \Fj ;

2. Scale up ȳ values in FC
j′ \Fj so that the volume of FC

j′ \Fj becomes 1;
3. Assume FC

j′ ∩ Fj and FC
j′ \Fj are independently sampled.

We show that the sequence of operations do not change the expected connection cost of j. Indeed, consider
distribution of the distance between j and the closest open facility in FC

j′ . The distribution does not change
after we performed the operations. This is true since dmax(j,FC

j′ ∩ Fj) ≤ dmin(j,FC
j′ \Fj), where dmax and

dmin represents the maximum and the minimum distance from a client to a set of facilities, respectively.
Then again, we can assume facilities in FC

j′ ∩Fj are independently sampled. Now, we are in the situation
where, facilities in Fj are independently sampled, exact 1 facility in FC

j′ \Fj is open and the probabilities
that facilities are open are proportional to their y values.

We split each facility i ∈ Fj into facilities with infinitely small y values. This can only increase the
expected connection cost of j. Thus, the expected connection cost of j is upper bounded by∫ 1

0

hj(p)e−γpγdp + e−γd(j,FC
j′ \Fj)

≤
∫ 1

0

hj(p)e−γpγdp + e−γ

(
γ

∫ 1

0

hj(p)dp + (3 − γ)hj

(
1
γ

))
This concludes the proof.

Lemma 4. The expected connection cost of the integral solution is

E(C) ≤
∫ 1

0

h(p)e−γpγdp + e−γ

(
γ

∫ 1

0

h(p)dp + (3 − γ)h
(

1
γ

))
Proof.

E(C) ≤
∑
j∈F

(∫ 1

0

hj(p)e−γpγdp + e−γ

(
γ

∫ 1

0

hj(p)dp + (3 − γ)hj

(
1
γ

)))

=
∫ 1

0

h(p)e−γpγdp + e−γ

(
γ

∫ 1

0

h(p)dp + (3 − γ)h
(

1
γ

))

3.2 An explicit distribution of γ

In this subsection, we give an explicit distribution of γ. This can be proved through a 0-sum game between
an algorithm player and an h player.

For fixed h and γ, let’s define

α(γ, h) =
∫ 1

0

h(p)e−γpγdp + e−γ

(
γ

∫ 1

0

h(p)dp + (3 − γ)h
(

1
γ

))
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We can scale h so that
∫ 1

0
h(p)dp = 1. Then,

α(γ, h) =
∫ 1

0

h(p)e−γpγdp + e−γ

(
γ + (3 − γ)h

(
1
γ

))
Then, for a fixed h, the algorithm A1(γ) will give a (γ, α(h, γ))-bi-factor approximation. We consider a

0-sum game between an algorithm player A and an adversary B. The mixed strategy of player A is a pair
(µ, θ), where 0 ≤ θ ≤ 1 and µ is 1 − θ times a probability density function for γ. So, θ +

∫ ∞
1

µ(γ)dγ = 1.
This strategy corresponds to running algorithm A2 with probability θ and running algorithm A1(γ) with
probability µ(γ)dγ. The mixed strategy for player B is a monotone non-negative function h over [0, 1] such
that

∫ 1

0
h(p)dp = 1. The value of the game is

ν(µ, θ, h) = max
{∫ 2

1

γµ(γ)dγ + 1.11θ,

∫ 2

1

α(γ, h)µ(γ)dγ + 1.78θ

}
Then, our goal becomes finding a strategy for A that minimizes the value. For a fixed strategy (θ, µ) of

player A, the best strategy of player B is a threshold function hq, for some 0 ≤ q < 1, where

hq(p) =
{

0 p < q
1

1−q p ≥ q

In order to obtain the value of this game, we discretize the domain of µ into many small intervals divided
by points {γi = 1 + i/n : 0 ≤ i ≤ n}, and restrict µ to be non-zero only in the center of each interval. Thus,
the value of the game is approximately characterized by the following LP.

min β s.t

1
n

n∑
i=1

xi + θ ≥ 1

1
n

n∑
i=1

γi−1 + γi

2
xi + 1.11θ ≤ β

1
n

n∑
i=1

α

(
γi−1 + γi

2
, hq

)
xi + 1.78θ ≤ β ∀q ∈ [0, 1)

x1, x2, · · · , xn, θ ≥ 0

Solving the above LP for n = 500 using Matlab, we get a mixed strategy for player A that achieves value
1.4879. The strategy is roughly of the following form. θ is about 0.2; µ has an impulse point at γ ≈ 1.5, with
impulse value 0.5; the remaining 0.3 weight is distributed between γ = 1.5 and γ = 2.

In light of the program generated solution, we give an analytical solution for the strategy of player A and
show that the value of the game is at most 1.488. With probability θ2, we run algorithm A2; with probability
θ1, we run algorithm A1(γ) with γ = γ1; and with probability 1 − θ2 − θ1, we run algorithm A1(γ) with γ
randomly chosen between γ1 and γ2. So, the function µ is

µ(p) = θ1δ(p − γ1) + aIγ1,γ2(p)

where δ is the Dirac delta function, a = 1−θ1−θ2
γ2−γ1

, and Iγ1,γ2 is the 1 if γ1 < γ < γ2 and 0 otherwise. (See
figure 2.) The values of θ1, θ2, γ1, γ2, a will be determined later.

The scaling factor for the facility cost will be

λf = θ1λ1 + a(γ2 − γ1)
γ1 + γ2

2
+ 1.11θ2
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Accumulated probability θ1

γ1 γ2

a

Fig. 2. The distribution of γ. With probability θ1, we run algorithm A1(γ1); with probability θ2, we run algorithm
A2; with probability 1 − θ1 − θ2 = a(γ2 − γ1), we run algorithm A2(γ) with γ randomly selected from [γ1, γ2].

Now, we consider the scaling factor λc for the connection cost. It’s enough to consider the case where
h = hq for some 0 ≤ q < 1. When h = hq,

λc(q) =
∫ ∞

1

(∫ 1

0

e−γpγhq(p)dp + e−γ(γ + (3 − γ)hq(1/γ))
)

µ(γ)dγ + 1.78θ2

=
∫ γ2

γ1

∫ 1

q

e−γpγ
1

1 − q
dpadγ +

∫ γ2

γ1

e−γγadγ +
∫ γ2

γ1

(3 − γ)hq(1/γ)adγ

+θ1

∫ 1

q

e−γ1pγ1
1

1 − q
dp + θ1e

−γ1(γ1 + (3 − γ1)hq(1/γ1)) + 1.78θ2

= B1(q) + B2(q) + B3(q) + 1.78θ2

where

B1(q) =
∫ γ2

γ1

∫ 1

q

e−γpγ
1

1 − q
dpadγ +

∫ γ2

γ1

e−γγadγ

=
a

1 − q

∫ γ2

γ1

(e−γq − e−γ)dγ − a(γ + 1)e−γ
∣∣γ2

γ1

=
a

(1 − q)q
(e−γ1q − e−γ2q) − a

1 − q
(e−γ1 − e−γ2) + a((γ1 + 1)e−γ1 − (γ2 + 1)e−γ2)

B2(q) =
∫ γ2

γ1

(3 − γ)hq(1/γ)adγ

=


∫ γ2

γ1
(3 − γ) 1

1−q adγ = a
1−q ((2 − γ1)e−γ1 − (2 − γ2)e−γ2) 0 ≤ q < 1/γ2∫ 1/q

γ1
(3 − γ) 1

1−q adγ = a
1−q

(
(2 − γ1)e−γ1 − (2 − 1/q)e−1/q

)
1/γ2 ≤ q ≤ 1/γ1

0 1/γ1 < q < 1

B3(q) = θ1

∫ 1

q

e−γ1pγ1
1

1 − q
dp + θ1e

−γ1(γ1 + (3 − γ1)hq(1/γ1))

= θ1

(
1

1 − q
(e−γ1q − e−γ1) + e−γ1γ1 + e−γ1(3 − γ1)hq(1/γ1)

)

=

θ1

(
1

1−q (e−γ1q − e−γ1) + e−γ1γ1 + e−γ1 (3−γ1)
1−q

)
0 ≤ q ≤ 1/γ1

θ1

(
1

1−q (e−γ1q − e−γ1) + e−γ1γ1

)
1/γ1 < q < 1

8



So, we have 3 cases :

1. 0 ≤ q < 1/γ2

λc(q) =
a

(1 − q)q
(e−γ1q − e−γ2q) − a

1 − q
(e−γ1 − e−γ2)

+a((γ1 + 1)e−γ1 − (γ2 + 1)e−γ2) +
a

1 − q

(
(2 − γ1)e−γ1 − (2 − γ2)e−γ2

)
+θ1(

1
1 − q

(e−γ1q − e−γ1) + e−γ1γ1 +
1

1 − q
e−γ1(3 − γ1)) + 1.78θ2

=
a

(1 − q)q
(e−γ1q − e−γ2q) +

A1

1 − q
+ θ1

e−γ1q

1 − q
+ A2

where A1 = a(e−γ1 − γ1e
−γ1 − e−γ2 + γ2e

−γ2) + 2θ1e
−γ1 − θ1e

−γ1γ1

A2 = a((γ1 + 1)e−γ1 − (γ2 + 1)e−γ2) + θ1e
−γ1γ1 + 1.78θ2

2. 1/γ2 ≤ q ≤ 1/γ1

λc(q) =
a

(1 − q)q
(e−γ1q − e−γ2q) +

A1

1 − q
+ θ1

e−γ1q

1 − q
+ A2

+
a

1 − q

(
(2 − γ2)e−γ2 − (2 − 1/q)e−1/q

)
3. 1/γ1 < q < 1

λc(q) =
a

(1 − q)q
(e−γ1q − e−γ2q) − a

1 − q
(e−γ1 − e−γ2)

+a((γ1 + 1)e−γ1 − (γ2 + 1)e−γ2) + θ1(
1

1 − q
(e−γ1q − e−γ1) + e−γ1γ1) + 1.78θ2

=
a

(1 − q)q
(e−γ1q − e−γ2q) +

A3

1 − q
+ θ1

e−γ1q

1 − q
+ A2

where A3 = a(−e−γ1 + e−γ2) − θ1e
−γ1

Let γ1 = 1.479311, γ2 = 2.016569, θ1 = 0.503357, θ2 ≈ 0.195583, a = 0.560365. Then,

λf = θ1λ1 + a(γ2 − γ1)
γ1 + γ2

2
+ 1.11θ2 ≈ 1.487954

and λc(q) has maximum value about 1.487989, achieved at q = 0(see figure 3).
This concludes our proof.
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