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Abstract. In this paper we define the notion of (p, δ)–Gromov hyperbolic space where
we relax Gromov slimness condition to allow that not all but a positive fraction of all the
triangles are δ–slim. Furthermore, we study their traffic congestion under geodesic routing.
We also construct a constant degree family of expanders with congestion Θ(n2) in contrast
to random regular graphs that have congestion O(n log3(n)) (as shown in [17]).

1. Introduction

The purpose of this work is to continue the study of traffic congestion under geodesic routing.
By geodesic routing we mean that the path chosen to route the traffic between the nodes is
the shortest path. We assume there is a pre-defined consistent way to break ties so that
the shortest path between any two nodes is uniquely defined. Our set up throughout the
paper is the following. Let {Gn}∞n=1 be a family of connected graphs where Gn has n nodes.
For each pair of nodes in Gn, consider a unit flow of traffic that travels through the shortest
path between nodes as we previously discussed. Hence, the total traffic flow in Gn is equal
to n(n − 1)/2. Given a node v ∈ Gn we define Ln(v) as the total flow passing through the
node v. Let Mn be the maximum vertex flow across the network

Mn := max
{
Ln(v) : v ∈ Gn

}
.

It is easy to see that for any graph n− 1 ≤Mn ≤ n(n− 1)/2.

It was observed experimentally in [16], and proved formally in [1, 2], that if the family is
Gromov hyperbolic then the maximum vertex congestion scales as Θ(n2). More precisely, let
{Gn}∞n=1 be an increasing sequence of finite simple graphs such that |Gn| = n and consider
a traffic flowing in this graphs that is uniform and geodesically routed between all pairs of
nodes. If this sequence is uniformly Gromov δ–hyperbolic, for some non–negative δ, then
there is a sequence of nodes in {xn}∞n=1 with xn ∈ Gn such that the total traffic passing
through xn is greater than cn2 for some positive constant c independent on n. These highly
congested nodes are called the core of the graph.

In this work we extend this analysis and study what happens with the traffic congestion if
we relax the slimness condition so that not all but a fraction of all the triangles is δ–slim.
More precisely, we say that a metric (X, d) is (p, δ)–hyperbolic if for at least a p fraction of
the 3–tuples (u, v, w) ∈ X×X×X the geodesic triangle 4uvw is δ–slim. The case p equals 1
corresponds to the classic Gromov δ–hyperbolic space. We show that the congestion in these
graphs scales as Ω(p2n2/D2

n) where Dn is the diameter of Gn.
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Another important family of graphs are expanders. In graph theory, an expander graph is a
sparse graph that has strong connectivity properties. Expander constructions have spawned
research in pure and applied mathematics, with several applications to complexity theory,
design of robust computer networks, and the theory of error-correcting codes. It is well known
that random regular graphs are a large family of expanders. We proved in [17] that random
d–regular graphs have maximum vertex congestion scaling as O(n log3d−1(n)). Therefore, it
is a natural question to ask if expanders have always low congestion under geodesic routing.
In Section 5, we show that this is not the case. More precisely, we construct a family of
expanders {Gn}∞n=1 with maximum vertex congestion Θ(n2).

2. Preliminaries

2.1. Hyperbolic Metric Spaces. In this Section we review the notion of Gromov δ–
hyperbolic space. There are many equivalent definitions of Gromov hyperbolicity but the
one we take as our definition is the property that triangles are slim.

Definition 2.1. Let δ > 0. A geodesic triangle in a metric space X is said to be δ–slim if
each of its sides is contained in the δ–neighbourhood of the union of the other two sides. A
geodesic space X is said to be δ–hyperbolic if every triangle in X is δ–slim.

It is easy to see that any tree is 0-hyperbolic. Other examples of hyperbolic spaces include,
any finite graph, the fundamental group of a surface of genus greater or equal than 2, the
classical hyperbolic space, and any regular tessellation of the hyperbolic space (i.e. infinite
planar graphs with uniform degree q and p–gons as faces with (p− 2)(q − 2) > 4).

2.2. Expanders. We say that a family of graphs {Gn}∞n=1 is a c–expander family if the edge
expansion (also isoperimetric number or Cheeger constant) h(Gn) ≥ c where

h(Gn) = min

{
|∂S|
|S|

: S ⊂ Gn with 1 ≤ |S| ≤ |Gn|/2

}
and ∂S is the edge boundary of S, i.e., the set of edges with exactly one endpoint in S.

3. Congestion on (p, δ)–Hyperbolic Graphs

In this Section we generalize the definition of Gromov hyperbolic spaces to include spaces
where not all but a fixed proportion of the triangles in the metric space are slim. Furthermore
we study what are the traffic characteristics in these graphs.

Definition 3.1 ((p, δ)-hyperbolic). We say that a metric (X, d) is (p, δ)–hyperbolic if for at
least a p fraction of the 3–tuples (u, v, w) ∈ X ×X ×X the geodesic triangle 4uvw is δ–slim.

A classical δ–hyperbolic spaces corresponds to p equals one.

Theorem 3.1. Let (X, d) be a (p, δ)-hyperbolic metric of size n. Let D be the diameter of
the metric and M = max {|B(u, δ)| : u ∈ X} be the maximum number of points in a ball of
radius δ. Then there exists a point a ∈ X such that the traffic passing through a is at least
p2n2/(D2M3).
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Before proving the theorem, we prove the following useful lemma.

Lemma 3.2. Let G = (U, V,E) be a bipartite graph such that |U | = |V | = n and |E| ≥ pn2.
The edges of G are colored in such a way that every vertex in U ∪ V is incident to at most t
colors (u is incident to a color c if u is incident to an edge with color c). Then, there must
be a color that is used by at least (pn/t)2 edges in E.

Proof. Define three random variables A,B and C as follows. We randomly select an edge
(u, v) ∈ E and let A = u,B = v and C be the color of the edge (u, v).

Since h(A) ≤ log n, h(B) ≤ log n and h(A,B) ≥ log(pn2) = 2 log n − log(1/p), we have
I(A;B) = h(A) + h(B)− h(A,B) ≤ log(1/p). (h is the entropy function and I(A,B) is the
mutual information between A and B.) Moreover, if we know A = u, then there can be
at most t possible colors for C. Thus, we have h(C|A) ≤ log t. Similarly, h(C|B) ≤ log t.
Hence,

h(C|B) ≥ I(C;A|B) = h(A|B)− h(A|C,B) = h(A)− I(A;B)− h(A|C,B)

≥ h(A)− I(A;B)− h(A|C) = I(A;C)− I(A;B).

Thus h(C) = h(C|A) + I(A;C) ≤ h(C|A) + h(C|B) + I(A;B) ≤ log(t2/p).

Notice that |E| ≥ pn2. The inequality implies that there must be a color that is used by at
least pn2/(t2/p) = (pn/t)2 edges. �

Now, we proceed to prove the theorem. For any 3 points u, v, w ∈ X, let cuvw be the
barycenter of the triangle 4uvw. By a simple counting argument, there must be a point
w ∈ X such that for at least p fraction of the ordered pairs (u, v) ∈ X ×X, 4uvw is δ–slim.
We fix such a point w from now on. Define G = (U = X,V = X,E) as follows. For any
two vertices u ∈ U, v ∈ V , (u, v) ∈ E iff 4uvw is δ–slim. The color of (u, v) ∈ E is cuvw.
Then, |E| ≥ pn2. Moreover, if c is the color of (u, v), then c is in the δ-neighbourhood of
[uw]. Thus, any vertex u can be incident to at most DM colors. By Lemma 3.2, there must
be a color c that is used by at least p2n2/(DM)2 edges in E. Notice that for each such edge
(u, v) ∈ E, c is in the δ-neighbourhood of [uv]. Thus, [uv] will contain a vertex in the ball
B(c, δ). Since |B(c, δ)| ≤M , for some vertex c′ ∈ B(c, δ) and p2n2/(D2M3) different ordered
pairs (u, v) ∈ X ×X, [uv] contains c′.

4. Traffic on Expanders

In this section we construct a constant degree family of expanders with Θ(n2) congestion.
This result is in contrast to random regular graphs that have congestion O(n log3(n)) (as
shown in [17]).

Theorem 4.1. There exists a family {Gn}∞n=1 of constant–degree expanders with congestion
Θ(n2).
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Figure 1. Construction of the expander G. There are two trees TL and TR,
each with n leaves, a root node v∗ and an expander A with 2n nodes. We
connect v∗ to the two roots of TL and TR. We create a random matching
between the 2n leaves of TL and TR and the 2n vertices of A; there is a path
of length c connecting each pair in the matching. We also replace edges of A
with paths of length c.

4.1. Construction of the Expander Graph. For an even integer h, let T be a tree of
depth h defined as follows. Each node in depth 0 to h/2 − 1 of T has 3 children, and each
node in depth h/2 to h− 1 has 2 children (root has depth 0 and leaves have depth h). Thus,

T has exactly n := 3h/2 × 2h/2 =
√

6
h

leaves. We use L(T ) to denote the set of leaves of T .
Define λ(d) to be the number of leaves in a sub–tree of T rooted at some vertex of depth
h− d . Then, we have

λ(d) =

{
2d 0 ≤ d ≤ h/2
2h/23d−h/2 h/2 < d ≤ h

.

Construct a graph G as follows. (See Figure 1.) Let A be a degree–3 expander of size 2n. Let
TL and TR be two copies of the tree T . We create a random matching between the 2n leaves
of TL and TR and the vertices of A. We add a matching edge between each matched pair of
vertices. We also add an vertex v∗ that is connected to the roots of TL and TR. Finally, we
scale matching edges and expander edges by a factor of c (i.e., replace those edges with paths
of length c) for some constant even number c to be determined later.

Proposition 4.1. The graph G is an expander of degree at most 4 and size Θ(n).

Proof. Since replacing edges with paths of length c only decrease the expansion by a factor of
c, we only need to consider the graph obtained before the scaling operation. Let G′ be that
graph. For the simplicity of the notation, let T ′ be the tree rooted at v∗ with 2 sub–trees TL
and TR and L(T ′) = L(TL) ∪ L(TR). We also use I(T ′) to denote the set of inner vertices of
T ′.

Assume that G′ is not an 0.01α-expander. Then, let S ⊆ V (G′) be a set of size at most
|V (G′)| /2 such that EG′(S, V (G′) \ S) < 0.01α |S|.
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We notice the following two facts :

(1) If |S ∩ I(T ′)| ≥ |S ∩ L(T ′)|+s then there must be at least s edges between S∩V (T ′)
and V (T ′) \ S.

(2) If
∣∣ |S ∩ L(T ′)|−|S ∩ V (A)|

∣∣ ≥ s then there must be at least smatching edges between
S and V (G′) \ S.

By the first fact, we can assume |S ∩ I(T ′)| ≤ 0.6|S|. Then∣∣S ∩ L(T ′)
∣∣+ |S ∩ V (A)| ≥ 0.4|S|.

By the second fact, we have |S ∩ V (A)| ≥ 0.15|S|. If |S ∩ V (A)| ≤ |V (A)| /2 then EG′(S, V (G′)\
S) ≥ 0.15α|S|. Thus, we have |S ∩ V (A)| ≥ |V (A)| /2. If |S ∩ V (A)| ≤ 0.9 |V (A)| then

EG′(S, V (G′) \ S) ≥ α |V (A) \ S| ≥ 0.1

0.9
α |S ∩ V (A)| ≥ α|S|/60.

Thus, we have |S ∩ V (A)| ≥ 0.9 |V (A)|, which implies |S ∩ L(T ′)| ≥ 0.9 |V (A)| − 0.1|S| by
the second fact. Then |S| ≥ 1.8 |V (A)| − 0.1|S|, implying that

|S| ≥ 1.6 |V (A)| ≥ 1.6

3

∣∣V (G′)
∣∣ > 0.5

∣∣V (G′)
∣∣ ,

a contradiction. �

4.2. Proof of the High Congestion in G. Consider the set L(TL)×L(TR) of n2 pairs. We
shall show that for a constant fraction of pairs (u, v) in this set, the shortest path connecting
u and v will contain v∗. It is easy to see that for every (u, v) ∈ L(TL) × L(TR), there is a
path of length 2h+ 2 connecting u and v that goes through v∗.

Focus on the graph G \ v∗. We are interested in the number of pairs (u, v) ∈ L(TL)× L(TR)
such that dG\v∗(u, v) ≤ 2h+ 2. Fix a vertex u ∈ L(TL) from now on. Consider the set P of
simple paths starting at u and ending at L(TR). We say a path P ∈ P has rank r if it enters
and leaves the expander r times. Notice that we always have r ≥ 1, since we must use the
expander A from u to L(TR).

For a path P of rank r, we define the pattern of P , denoted by ptn(P ), as a sequence
t = (t1, t2, · · · , t2r+1) of 2r + 1 non-negative integers as follows. For 1 ≤ i ≤ r, ct2i is the
length of the sub-path of P correspondent to the i-th traversal of P in the expander A.
(Recall that we replaced each expander edge with a path of length c.) The path P will
contain r + 1 sub-paths in the two copies of T (the first and/or the last sub-path might
have length 0). Let 2t2i−1 be the length of the i-th sub-path in the tree. Notice that P
can only enter and leave the trees through leaves and thus the lengths of those sub-paths
must be even. If some path P ∈ P has ptn(P ) = (t1, t2, · · · , t2r+1), then the length of P
is exactly len(t[2r+1]) := 2

∑r
i=0 t2i+1 + c

∑r
i=1(t2i + 2), where t[2r+1] denotes the sequence

(t1, t2, · · · , t2r+1). Notice that the c(t2i+2) term in the definition of len includes the 2c edges
replaced by the 2 matching edges through which the path enters and leaves the expander.

We call a sequence (t1, t2, · · · , t2r+1) of non-negative integers a valid pattern of rank r if
len(t[2r+1]) ≤ 2h+ 2.
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Lemma 4.2. The number of paths P ∈ P with ptn(P ) = t[2r+1] is at most

(
3

2

)r
[

r∏
i=1

λ(t2i−1)2
t2i

]
λ(t2r+1).

Proof. For any leaf v in T , we have at most λ(t) possible simple paths of length 2t in T that
start at v and end at L(T ). For a degree-3 graph(in particular, a degree-3 expander), we
have at most 3

2 × 2t simple paths that start at any fixed vertex. From a leaf in TL or TR,
we only have one way to enter the expander. Similarly, we only have one way to leave the
expander from a vertex in the expander. Thus, the total number of simple paths of pattern
t[2r+1] is at most

λ(t1)

(
3

2
2t2
)
λ(t3)

(
3

2
2t4
)
· · ·λ(t2r+1) =

(
3

2

)r
[

r∏
i=1

λ(t2i−1)2
t2i

]
λ(t2r+1).

�

We fix the rank r ≥ 1 from now on. For some integer ` ∈ [0, r], suppose t[2`] is a prefix of
some valid pattern of rank r. Define W (t[2`]) to be the maximum t2`+1 such that t[2`+1] is a
prefix of some valid pattern of rank r. That is,

W
(
t[2`]
)

=

⌊
2h+ 2− 2

∑`
i=1 t2i−1 − c

∑`
i=1(t2i + 2)− 2c(r − `)

2

⌋
,

Similarly, we define

W
(
t[2`−1]

)
=

⌊
2h+ 2− 2

∑`
i=1 t2i−1 − c

∑`−1
i=1(t2i + 2)− 2c(r − `)

c

⌋
− 2.

For some prefix t[2`] of some valid pattern of rank r, let Pt[2`] be the set of paths P ∈ P of

rank r such that t[2`] is a prefix of ptn(P ). We prove that

Lemma 4.3. For any 0 ≤ ` ≤ r, we have

∣∣∣Pt[2`]∣∣∣ ≤ 2Cr−`
(

3

2

)` ∏̀
i=1

[
λ(t2i−1)2

t2i
]
×
√

6
W(t[2`])

for some large enough constant C.
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Proof. For ` = r, Lemma 5.2 implies∣∣∣Pt[2r]∣∣∣ ≤ W(t[2r])∑
t2r+1=0

(
3

2

)r r∏
i=1

[
λ(t2i−1)2

t2i
]
λ(t2r+1)

=

(
3

2

)r r∏
i=1

[
λ(t2i−1)2

t2i
]W(t[2r])∑
t2r+1=0

λ(t2r+1)

≤ 2

(
3

2

)r r∏
i=1

[
λ(t2i−1)2

t2i
]
×
√

6
W(t[2r])

.

The last inequality holds since
∑W(t[2r])

t2r+1=0 λ(t2r+1) ≤ 2λ
(
W
(
t[2r]

))
≤ 2
√

6
W(t[2r]).

Now, suppose the lemma holds for some 1 ≤ ` ≤ r and we shall prove that it holds for `− 1.
By the induction hypothesis, we have∣∣∣Pt[2`−2]

∣∣∣ ≤ W(t[2`−2])∑
t2`−1=0

W(t[2`−1])∑
t2`=0

2Cr−`
(

3

2

)` ∏̀
i=1

[
λ(t2i−1)2

t2i
]
×
√

6
W(t[2`])

= 2Cr−`
(

3

2

)` `−1∏
i=1

[
λ(t2i−1)2

t2i
]W(t[2`−2])∑

t2`−1=0

λ(t2`−1)

W(t[2`−1])∑
t2`=0

2t2`
√

6
W(t[2`])

.

It is sufficient to prove that
∑W(t[2`−2])

t2`−1=0 λ(t2`−1)
∑W(t[2`−1])

t2`=0 2t2`
√

6
W(t[2`]) ≤ 2C

3

√
6
W(t[2`−2]).

LHS ≤ 1

1− 2/
√

6
c/2

W(t[2`−2])∑
t2`−1=0

λ(t2`−1)
√

6
W(t[2`−1]on(0))

(4.1)

≤ 1

1− 2/
√

6
c/2

√6
W(t[2`−2]on(0,0))

1−
√

2/3
+
λ
(
W
(
t[2`−2]

))
1−

√
2/3

 (4.2)

≤ 1

1− 2/
√

6
c/2

2

1−
√

2/3

√
6
W(t[2`−2])

, (4.3)

where t[2`−1] on (1) denotes the sequence obtained by concatenating the two sequences t[2`−1]
and (1).

We explain Inequalities (5.1),(5.2) and (5.3) one by one. Focus on the termQ = 2t2`
√

6
W(t[2`]).

If we increase t2` by 1, then W
(
t[2`]
)

will decrease by exactly c/2, by the definition of W .

(We assumed c is an even number.) Thus, Q will decrease by a factor of
√

6
c/2
/2. By the

rule of the geometric sum,

W(t[2`−1])∑
t2`=0

Q ≤ Q|t2`=0

1− 2/
√

6
c/2

=

√
6
W(t[2`−1]on(0))

1− 2/
√

6
c/2

,

implying Inequality (5.1).
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Now focus on the term Q = λ(t2`−1)
√

6
W(t[2`−1]on(0))

. If we increase t2`−1 by 1, then

W
(
t[2`−1] on (0)

)
will decrease by 1. Then, Q will either decrease by a factor of

√
6/2 =

√
3/2,

or increase by a factor of 3/
√

6 =
√

3/2, depending on whether t2`−1 ≤ h/2. We can split

the sum

W (t[2`−2])∑
t2`−1=0

Q into 2 sums at the point h/2 if necessary. Again, using the geometric

sum, we have
W (t[2`−2])∑
t2`−1=0

Q ≤
Q|t2`−1=0

1−
√

2/3
+
Q|t2`−1=W (t[2`−2])

1−
√

2/3
,

implying Inequality (5.2).

Inequality (5.3) follows from the fact that W
(
t[2`−2] on (0, 0)

)
= W

(
t[2`−2]

)
and λ(t) ≤

√
6
t

for any t ∈ [0, h].

This finishes the proof if we let C =
3(

1− 2/
√

6
c/2
)(

1−
√

2/3
) . �

Notice that W (∅) =
⌊
2h+2−2rc

2

⌋
= h+ 1− rc for an even integer c. Thus,

|P∅| ≤ 2Cr
√

6
h+1−rc

= 2
√

6

(
C√
6
c

)r√
6
h

= 2
√

6

(
C√
6
c

)r

n.

P∅ is essentially the set of paths in P with rank r. For a large enough c, we have C <
√

6
c
.

Summing up over all r ≥ 1, we have that the total number of paths in P is at most

2
√

6C/
√

6
c

1− C/
√

6
c n.

For a large enough constant c (say, c = 6), the number will be at most n/2.

Then, consider the graph G. We know there is a path of length 2h + 2 from u to v via v∗

for any vertex v ∈ L(TR). Thus, for a fixed vertex u ∈ L(TL), there are at least n/2 vertices
v ∈ L(TR) such that the minimum length between u and v contains v∗. Therefore, there are
n2/2 pairs (u, v) such that the shortest path between u and v contain v∗.
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